2018年初三数学中考模型之费马点问题(含答案)

合集下载

初三数学费马点练习题

初三数学费马点练习题

初三数学费马点练习题费马点(Fermat Point)是指在一个三角形中,距离三个顶点的距离之和最小的点。

它被称为费马点,是为了纪念法国数学家皮埃尔·费马(Pierre de Fermat)。

在本文中,将提供一些初三数学费马点练习题,通过这些题目的解答,读者将更好地理解费马点的概念和特性。

题目一:已知△ABC中,∠ABC = 60°,AD为边BC上的高,点E为三角形内部一点,满足∠BAE = ∠CAE = 30°。

证明:点E为△ABC的费马点。

解答一:我们需要证明点E到三个顶点A、B、C的距离之和最小。

首先,连接AE、BE、CE,构造△BAE和△CAE。

由已知条件可知,∠BAE = ∠CAE = 30°,而∠ABC = 60°。

观察三角形△BAE,角度和为180°,因此∠AEB = 180° - 30° - 30°= 120°。

同理,在三角形△CAE中,∠AEC = 180° - 30° - 30° = 120°。

现在我们可以继续分析三角形△ABC,∠ABC = 60°,∠BAC = 180°- 60° - 30° - 30° = 60°。

接下来,我们来考虑三角形△BAE和△CAE的外角。

对于△BAE,∠BEA = 180° - 120° = 60°;对于△CAE,∠CEA = 180° - 120° = 60°。

现在,我们可以观察到三角形△BAE、△CAE和△ABC中都有一个60°的角,并且对应的外角也是60°。

根据确定费马点的性质,可知点E为△ABC的费马点。

题目二:已知△ABC中,∠BAC = 90°,点D为边BC上的一点,满足BD = DC。

中考数学常见几何模型最值模型-费马点问题

中考数学常见几何模型最值模型-费马点问题

专题12 最值模型-费马点问题最值问题在中考数学常以压轴题的形式考查,费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想。

在各类考试中都以中高档题为主,中考说明中曾多处涉及。

本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。

【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。

【模型解读】结论1:如图,点M 为△ABC 内任意一点,连接AM 、BM 、CM ,当M 与三个顶点连线的夹角为120°时,MA +MB +MC 的值最小。

注意:上述结论成立的条件是△ABC 的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A 。

(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB 为一边向外作等边三角形△ABE ,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .△△ABE 为等边三角形,△AB =BE ,△ABE =60°.而△MBN =60°,△△ABM =△EBN . 在△AMB 与△ENB 中,△AB BEABM EBN BM BN =⎧⎪∠=∠⎨⎪=⎩,△△AMB △△ENB (SAS ). 连接MN .由△AMB △△ENB 知,AM =EN .△△MBN =60°,BM =BN ,△△BMN 为等边三角形.△BM =MN .△AM +BM +CM =EN +MN +CM .△当E 、N 、M 、C 四点共线时,AM +BM+CM的值最小.此时,△BMC =180°﹣△NMB =120°;△AMB =△ENB =180°﹣△BNM =120°;△AMC =360°﹣△BMC ﹣△AMB =120°.费马点的作法:如图3,分别以△ABC 的AB 、AC 为一边向外作等边△ABE 和等边△ACF ,连接CE 、BF ,设交点为M ,则点M 即为△ABC 的费马点。

中考中的费马点详解加练习

中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

2018年初三数学中考模型之费马点问题(含答案)-最新学习文档

2018年初三数学中考模型之费马点问题(含答案)-最新学习文档

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点一线。

∴AG=GP=PD,且同在一条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

费马点最值问题(解析版)

费马点最值问题(解析版)

费马点最值问题一.模型例题(共4小题)1.问题的提出:如果点P 是锐角ABC ∆内一动点,如何确定一个位置,使点P 到ABC ∆的三顶点的距离之和PA PB PC ++的值为最小?问题的转化:把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',这样就把确定PA PB PC ++的最小值的问题转化成确定BP PP P C +'+''的最小值的问题了,请你利用图1证明:PA PB PC BP PP P C ++=+'+''.问题的解决:当点P 到锐角ABC ∆的三顶点的距离之和PA PB PC ++的值为最小时,请你用一定的数量关系刻画此时的点P 的位置120APB APC ∠=∠=︒.问题的延伸:如图2是有一个锐角为30︒的直角三角形,如果斜边为2,点P 是这个三角形内一动点,请你利用以上方法,求点P 到这个三角形各顶点的距离之和的最小值.【解答】解:问题的转化:如图1,由旋转得:60PAP '∠=︒,PA P A '=,APP '∴∆是等边三角形,PP PA '∴=,PC P C '= ,PA PB PC BP PP P C ∴++=+'+''.问题的解决:满足:120APB APC ∠=∠=︒时,PA PB PC ++的值为最小;理由是:如图2,把APC ∆绕点A 逆时针旋转60度得到△AP C '',连接PP ',由“问题的转化”可知:当B 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,120APB ∠=︒ ,60APP '∠=︒,180APB APP '∴∠+∠=︒,B ∴、P 、P '在同一直线上,由旋转得:120AP C APC ''∠=∠=︒,60AP P '∠=︒ ,180AP C AP P '''∴∠+∠=︒,P ∴、P '、C '在同一直线上,B ∴、P 、P '、C '在同一直线上,∴此时PA PB PC ++的值为最小,故答案为:120APB APC ∠=∠=︒;问题的延伸:如图3,Rt ACB ∆中,2AB = ,30ABC ∠=︒,1AC ∴=,BC =把BPC ∆绕点B 逆时针旋转60度得到△BP C '',连接PP ',当A 、P 、P '、C '在同一直线上时,PA PB PC ++的值为最小,由旋转得:BP BP '=,PBP '∠=,PC P C ''=,BC BC '=,BPP ∴∆'是等边三角形,PP PB '∴=,30ABC APB CBP APB C BP ''∠=∠+∠=∠+∠=︒ ,90ABC '∴∠=︒,由勾股定理得:AC '==,PA PB PC PA PP P C AC ''''∴++=++==则点P .2.如图,ABC ∆中,AB AC =,点P 为ABC ∆内一点,120APB BAC ∠=∠=︒.若4AP BP +=,则PC 的最小值为()A .2B .23C .5D .3【解答】解:把APB ∆绕点A 逆时针旋转120︒得到△AP C ',作AD PP ⊥'于D ,则AP AP =',120PAP ∠'=︒,120AP C APB ∠'=∠=︒,30AP P ∴∠'=︒,3PP ∴'=,90PP C ∠'=︒,4AP BP += ,4BP PA ∴=-,在Rt △PP C '中,22222(3)(4)4(1)12PC P P P C PA PA PA ='+'+--+,则PC 1223=,故选:B .3.如图,2的等边ABC ∆,平面内存在点P ,则3PA PB PC +的取值范围为大于22.【解答】解:如图,将BPC ∆绕点B 顺时针旋转120︒,得△BP C '',连接PP ',过点B 作BD PP ⊥'于点D ,ABC ∆ 是等边三角形,60ABC ∴∠=︒,AB BC BC =='=,AC AB BC ∴'=+'=120CBC PBP ∠'=∠'=︒ ,180ABC ABC CBC ∴∠'=∠+∠'=︒,∴点A ,B ,C '在同一条直线上,BP BP =' ,120PBP ∠'=︒,BD PP ⊥',30BPP BP P ∴∠'=∠'=︒,PD ∴=,2PP PD ∴'==,PA PP PC PA PC AC ∴+'+=++>',因为等边三角形的边长为PA PC ∴+的取值范围为大于等于故答案为:大于等于.4.问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,ABC ∆是边长为1的等边三角形,P 为ABC ∆内部一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将BPA ∆绕点B 逆时针旋转60︒至△BP A '',连接PP '、A C ',记A C '与AB 交于点D ,易知1BA BA BC '===,120A BC A BA ABC ''∠=∠+∠=︒.由BP BP '=,60P BP '∠=︒,可知△P BP '为正三角形,有PB P P '=.故PA PB PC P A P P PC A C '''++=++.因此,当A '、P '、P 、C 共线时,PA PB PC ++有最小值是学以致用:(1)如图3,在ABC ∆中,30BAC ∠=︒,4AB =,3CA =,P 为ABC ∆内部一点,连接PA 、PB 、PC ,则PA PB PC ++的最小值是5.(2)如图4,在ABC ∆中,45BAC ∠=︒,3AB CA ==,P 为ABC ∆内部一点,连接PA 、PB 、PC ,PB PC ++的最小值.(3)如图5,P 是边长为2的正方形ABCD 内一点,Q 为边BC 上一点,连接PA 、PD 、PQ ,求PA PD PQ ++的最小值.【解答】解:(1)如图3中,将APC ∆绕点A 逆时针旋转60︒得到AFE ∆,易知AFP ∆是等边三角形,90EAB ∠=︒,在Rt EAB ∆中,5BE ==,PA PB PC EF FP PB BE ++=++ ,5PA PB PC ∴++,PA PB PC ∴++的最小值为5.故答案为5.(2)如图4中,将APB ∆绕点A 逆时针旋转90︒得到AFE ∆,易知AFP ∆是等腰直角三角形,135EAB ∠=︒,作EH BA ⊥交BA 的延长线于H .在Rt EAH ∆中,90H ∠=︒ ,45EAH ∠=︒,AE AB ==2EH AH ∴==,在Rt EHC ∆中,EC ==PB PC FP EF PC CE ++=++,∴PB PC ++,∴PB PC ++(3)如图5中,将APD∆是等边三角形,∆绕点A逆时针旋转60︒得到AFE∆,则易知AFP作EH BC⊥于H,交AD于G.,PA PD PQ EF FP PQ EH++=++易知sin60=⋅︒=2EG AE==,GH AB∴=+EH2∴++,PA PD PQ2∴++2+.PA PD PQ二.同步练习(共20小题)5.法国数学家费马提出:在ABC∆内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时PA PB PC∆中,费马点P满足++的值为费马距离.经研究发现:在锐角ABCPC=,60∠=︒,则ABCPA=,4∆的费马点,且3APB BPC CPA120∠=∠=∠=︒,如图,点P为锐角ABC费马距离为7+【解答】解:如图:120APB BPC CPA∠=∠=∠=,60ABC∠=︒,1360∴∠+∠=︒,1260∠+∠=︒,2460∠+∠=︒,14∴∠=∠,23∠=∠,BPC APB∴∆∆∽∴PC PB PB PA=,即212PB=PB∴=.7PA PB PC∴++=+故答案为:7+.6.在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)如图1,连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.如果BP CE⊥,3BP=,6AB=,则CE=(2)如图2,连接PA,PB,PC,当8AC BC==时,求PA PB PC++的最小值.【解答】解:(1)如图1,连接BD、CD,BCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,CE ===;故答案为:(2)如图2所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当8AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.即PA PB PC ++的最小值为+.7.如图,在ABC ∆中,3AB =,2AC =,60BAC ∠=︒,P 为ABC ∆内一点,则PA PB PC ++的最小值为【解答】解:如图,将ABP ∆绕着点A 逆时针旋转60︒,得到AEH ∆,连接EP ,CH ,过点C 作CN AH ⊥,交HA 的延长线于N ,ABP AHE ∴∆≅∆,BAP HAE ∴∠=∠,AE AP =,3AH AB ==,60BAH ∠=︒,60HAB EAP ∴∠=∠=︒,AEP ∴∆是等边三角形,AE AP EP ∴==,AP BP PC PC EP EH ∴++=++,∴当点H ,点E ,点P ,点C 共线时,PA PB PC ++有最小值HC ,18060CAN BAH BAC ∠=︒-∠-∠=︒ ,CN AN ⊥,30ACN ∴∠=︒,112AN AC ∴==,CN ==,4HN AH AN ∴=+=,HC ∴=,PA PB PC ∴++,8.如图,ABC ∆中,30ABC ∠=︒,5AB =,6BC =,P 是ABC ∆内部的任意一点,连接PA 、PB 、PC ,则PA PB PC ++【解答】解:如图,以BP 为边作等边三角形BPD ,将BPC ∆绕点B 顺时针旋转60︒,得到BDC '∆,连接AC ',BPD ∆ 是等边三角形,BP BD DP ∴==,60PBD ∠=︒,将BPC ∆绕点B 顺时针旋转60︒,PC C D '∴=,PBC DBC '∠=∠,6BC BC '==,603090ABC ABP PBD DBC PBD ABC PBC ''∴∠=∠+∠+∠=∠+∠+∠=︒+︒=︒,PA PB PC PA PD DC '++=++ ,∴当点A ,点P ,点D ,点C '共线时,PA PB PC ++有最小值为PC ',PC '∴===,9.如图,在ABC ∆中,90ACB ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,当3AC =,6AB =时,则PA PB PC ++的最小值是【解答】解:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到ANM ∆,连接BN .由旋转可得,AMN APB ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当3AC =,6AB =时,BC =,1sin 2ABC ∴∠=,30ABC ∴∠=︒,60ABN ∠=︒ ,90CBN ∴∠=︒当C 、P 、M 、N 四点共线时,PA PB PC ++的值最小,最小值CN ===,故答案为:.10.已知,如图在ABC ∆中,30ACB ∠=︒,5BC =,6AC =,在ABC ∆内部有一点D ,连接DA 、DB 、DC ,则DA DB ++【解答】解:如图,过点C 作CE CD ⊥,且CE CD =,连接DE ,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,连接FB ,过点F 作FH BC ⊥,交BC 的延长线于H ,CE CD ⊥ ,CE CD =,DE ∴=,将ADC ∆绕点C 逆时针旋转90︒得到FEC ∆,EF AD ∴=,90ACF ∠=︒,6CF AC ==,DA DB DB EF DE ∴++=++,∴当点F ,点E ,点D ,点B 共线时,DA DB ++有最小值为FB ,18060FCH ACF ACB ∠=︒-∠-∠=︒ ,30CFH ∴∠=︒,132CH CF ∴==,FH ==,BF ∴==11.如图,在ABC ∆中,30BAC ∠=︒,AC =,8AB =,点D 在ABC ∆内,连接DA 、DB 、DC ,则DC DB ++的最小值是【解答】解:如图,将ADB ∆绕点A 顺时针旋转120︒得到AEF ∆,连接DE ,CF ,过点F 作FH CA ⊥交CA的延长线于H .AD AE = ,120DAE ∠=︒,BD EF =,DE ∴=,DC DB DA DC DE EF ∴++=++,CD DE EF CF ++ ,在Rt ABC ∆中,90ACB ∠=︒,8AB =,30BAC ∠=︒,cos30AB AB ∴=⋅︒=在Rt AFH ∆中,90H ∠=︒,8AF AB ==,30FAH ∠=︒,142FH AF ∴==,AH ==,CH AC AH ∴=+=,CF ∴===,CD DB ∴+,CF ∴的最小值为.故答案为:.12.如图,ABC ∆中,30ABC ∠=︒,4AB =,5BC =,P 是ABC ∆内部的任意一点,连接PA ,PB ,PC ,则PA PB PC ++【解答】解:如图,将ABP ∆绕着点B 逆时针旋转60︒,得到DBE ∆,连接EP ,CD ,ABP DBE∴∆≅∆ABP DBE ∴∠=∠,4BD AB ==,60PBE ∠=︒,BE PE =,AP DE =,BPE ∴∆是等边三角形EP BP∴=AP BP PC PC EP DE∴++=++∴当点D ,点E ,点P ,点C 共线时,PA PB PC ++有最小值CD30ABC ABP PBC∠=︒=∠+∠ 30DBE PBC ∴∠+∠=︒90DBC ∴∠=︒CD ∴==,13.如图,P 为正方形ABCD 内的动点,若2AB =,则PA PB PC ++【解答】解:将BPC ∆绕点B 顺时针旋转60︒,得到△BP C '',BP BP '∴=,60PBP '∠=︒,BPC ∆≅△BP C '',BPP '∴∆是等边三角形,PC P C ''=,PBC P BC ''∠=∠,2BC BC '==,BP PP '∴=,PA PB PC AP PP P C '''∴++=++,∴当AP ,PP ',P C ''在一条直线上,PA PB PC ++有最小值,最小值是AC '的长,60150ABP PBP P BC ABP PBC '''∠+∠+∠=︒+∠+∠=︒ ,30EBC ∴∠=︒,1EC '∴=,BE '==,2AE ∴=+,AF ∴===,14.如图,在边长为6的正方形ABCD 中,点M ,N 分别为AB 、BC 上的动点,且始终保持BM CN =.连接MN ,以MN 为斜边在矩形内作等腰Rt MNQ ∆,若在正方形内还存在一点P ,则点P 到点A 、点D 、点Q 的距离之和的最小值为3+【解答】解:设BM x =,则6BN x =-,222MN BM BN =+ ,2222(6)2(3)18MN x x x ∴=+-=-+,∴当3x =时,MN 最小,此时Q 点离AD 最近,3BM BN == ,Q ∴点是AC 和BD 的交点,22AQ DQ AD ∴===,过点Q 作QM AD '⊥于点M ',在ADQ ∆内部过A 、D 分别作30M DP M AP ∠'=∠'=︒,则120APD APQ DPQ ∠=∠=∠=︒,点P 就是费马点,此时PA PD PQ ++最小,在等腰Rt AQD ∆中,AQ DQ ==,QM AD '⊥,232AM QM AQ ∴='==,故cos30AM PA '︒=,解得:PA =PM '=故3QP =PD =,则233PA PD PQ ++=⨯+=+,∴点P 到点A 、点D 、点Q 的距离之和的最小值为3+,故答案为3+.15.如图,点D 为等边三角形ABC 内一点,且120BDC ∠=︒,则AD BD 的最小值为32.【解答】解:如图,将BCD ∆绕点C 顺时针旋转60︒得到ACE ∆,连接DE ,过点A 作AH DE ⊥于H .CD CE = ,60DCE ∠=︒,DCE ∴∆是等边三角形,60EDC DEC ∴∠=∠=︒,120BDC AEC ∠=∠=︒ ,60AED ∴∠=︒,BD AE = ,∴AD AD BD AE=,AH DE ⊥ ,AD AH ∴,∴ADAH BD AE,90AHE ∠=︒ ,60AEB ∠=︒,∴sin 60AH AE =︒=,∴AD BD ,∴AD BD 的最小值为32.16.如图,已知矩形ABCD ,4AB =,6BC =,点M 为矩形内一点,点E 为BC 边上任意一点,则MA MD ME ++的最小值为4+【解答】解:将AMD ∆绕点A 逆时针旋转60︒得到△AM D '',由性质的性质可知:MD M D ='',ADD ∆'和AMM ∆'均为等边三角形,AM MM ∴=',MA MD ME D M MM ME ∴++='+'+,D M ∴'、MM '、ME 共线时最短,由于点E 也为动点,∴当D E BC '⊥时最短,此时易求得4D E D G GE '='+=+,MA MD ME ∴++的最小值为4+17.如图,在直角三角形ABC ∆内部有一动点P ,90BAC ∠=︒,连接PA ,PB ,PC ,若6AC =,8AB =,求PA PB PC ++的最小值【解答】解:如图,将ACP ∆绕点C 顺时针旋转60︒得到ECF ∆,连接PF ,BE ,作EH BA ⊥交BA 的延长线于H .由旋转的旋转可知:PA EF =,PCF ∆,ACE ∆是等边三角形,PF PC ∴=,PA PB PC EF FP PB ∴++=++,EF FP PB BE ++ ,∴当B ,P ,F ,E 共线时,PA PB PC ++的值最小,90BAC ∠=︒ ,60CAE ∠=︒,180906030HAE ∴∠=︒-︒-︒=︒,EH AH ⊥ ,6AE AC ==,132EH AE ∴==.AH ==,BE ∴===,PA PB PC ∴++的最小值为故答案为18.若点P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.当三角形的最大角小于120︒时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点”.即PA PB PC ++最小.(1)如图1,向ABC ∆外作等边三角形ABD ∆,AEC ∆.连接BE ,DC 相交于点P ,连接AP .①证明:点P 就是ABC ∆费马点;②证明:PA PB PC BE DC ++==;(2)如图2,在MNG ∆中,MN =,75M ∠=︒,3MG =.点O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是【解答】(1)证明:①如图11-中,作AM CD ⊥于M ,AN BE ⊥于N 设AB 交CD 于O .ADB ∆ ,ACE ∆都是等边三角形,AD AB ∴=,AC AE =,60DAB CAE ∠=∠=︒,DAC BAE ∴∠=∠,()ADC ABE SAS ∴∆≅∆,CD BE ∴=,DAC ABE S S ∆∆=,ADC ABE ∠=∠,AM CD ⊥ ,AN BE ⊥,∴1122CD AM BE AN ⋅⋅=⋅⋅,AM AN ∴=,APM APN ∴∠=∠,AOD POB ∠=∠ ,60OPB DAO ∴∠=∠=︒,60APN APM ∴∠=∠=︒,120APC BPC APC ∴∠=∠=∠=︒,∴点P 是就是ABC ∆费马点.②在线段PD 上取一点T ,使得PT PA =,连接AT .60APT ∠=︒ ,PT PA =,APT ∴∆是等边三角形,60PAT ∴∠=︒,AT AP =,60DAB TAP ∠=∠=︒ ,DAT BAP ∴∠=∠,AD AB = ,()DAT BAP SAS ∴∆≅∆,PB DT ∴=,PD DT PT PA PB ∴=+=+,PA PB PC PD PC CD BE ∴++=+==.(2)解:如图2:以MG 为边作等边三角形MGD ∆,以OM 为边作等边OME ∆.连接ND ,作DF NM ⊥,交NM 的延长线于F.MGD ∆ 和OME ∆是等边三角形OE OM ME ∴==,60DMG OME ∠=∠=︒,MG MD =,GMO DME∴∠=∠在GMO ∆和DME ∆中,OM ME GMO DME MG MD =⎧⎪∠=∠⎨⎪=⎩,()GMO DME SAS ∴∆≅∆,OG DE∴=NO GO MO DE OE NO∴++=++∴当D 、E 、O 、N 四点共线时,NO GO MO ++值最小,75NMG ∠=︒ ,60GMD ∠=︒,135NMD ∴∠=︒,45DMF ∴∠=︒,3MG = 322MF DF ∴==,3211222NF MN MF ∴=+==,ND ∴=MO NO GO ∴++,,19.问题提出(1)如图①,在ABC ∆中,2BC =,将ABC ∆绕点B 顺时针旋转60︒得到△A B C ''',则CC '=2;问题探究(2)如图②,在ABC ∆中,3AB BC ==,30ABC ∠=︒,点P 为ABC ∆内一点,连接PA 、PB 、PC ,求PA PB PC ++的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD 中,//AD BC ,6AB =,4AD =,60ABC BCD ∠=∠=︒.在四边形ABCD 内部有一点,满足120APD ∠=︒,连接BP 、CP ,点Q 为BPC ∆内的任意一点,是否存在一点P 和一点Q ,使得PQ BQ CQ ++有最小值?若存在,请求出这个最小值;若不存在,请说明理由.【解答】解:(1)如图①,由旋转的性质可知:BCC ∆'是等边三角形,2CC BC ∴'==,故答案为2.(2)如图②,将ABP ∆绕点B 逆时针旋转60︒得到BFE ∆,连接PF ,EC .由旋转的性质可知:PBF ∆是等边三角形,PB PF ∴=,PA EF = ,PA PB PC PC PF EF ∴++=++,PC PF EF EC ++ ,∴当P ,F 在直线EC 上时,PA PB PC ++的值最小,易证3BC BE BA ===,90CBE ∠=︒,EB BC ⊥ ,EC ∴==,PA PB PC ∴++的最小值为.(3)(3)如图③1-中,将PBQ ∆绕点B 逆时针旋转60︒得到EBG ∆,则PQ EG =,BQG ∆是等边三角形,BQ QG ∴=,PQ EG =,PQ BQ CQ EG GQ QC EC ∴++=++,EC ∴的值最小时,QP QB QC ++的值最小,如图③2-中,延长BA 交CD 的延长线于J ,作ADJ ∆的外接圆O ,将线段BO ,BP 绕点B 逆时针旋转60︒得到线段BO ',BE ,连接EO ',OB ,OP .易证()BEO BPO SAS ∆'≅∆,EO OP ∴'=,180APD AJD ∠+∠=︒ ,A ∴,P ,D ,J 四点共圆,OP ∴=,433EO ∴'=,∴点E 的运动轨迹是以O '为圆心,433为半径的圆,∴当点E 在线段CO '上时,EC 的值最小,最小值CO EO ='-',连接OO',延长OO'到R,使得O R OO'=',连接BR,则90OBR∠=︒,作RH CB⊥交CB的延长线于H,O T CH'⊥于T,OM BC⊥于M.在Rt OBM∆中,5BM=,OM=1433OB∴=,14BR∴==,由BHR OMB∆∆∽,∴RH BRBM OB=,RH∴=,////HR O T OM',OO RO'=',TM TH∴=,2RH OMO T+∴'==,3BT∴==,3CO∴'==,CO EO∴'-'=.QP QB QC∴++的最小值为.20.如图1,在ABC∆中,90ACB∠=︒,点P为ABC∆内一点.(1)连接PB,PC,将BCP∆沿射线CA方向平移,得到DAE∆,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP CE⊥,3BP=,6AB=,求CE的长.(2)如图3,连接PA ,PB ,PC ,求PA PB PC ++的最小值.小慧的作法是:以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,那么就将PA PB PC ++的值转化为CP PM MN ++的值,连接CN ,当点P 落在CN 上时,此题可解.请你参考小慧的思路,在图3中证明PA PB PC CP PM MN ++=++.并直接写出当4AC BC ==时,PA PB PC ++的最小值.【解答】解:(1)①补全图形如图所示;②如图,连接BD 、CDBCP ∆ 沿射线CA 方向平移,得到DAE ∆,//BC AD ∴且BC AD =,90ACB ∠=︒ ,∴四边形BCAD 是矩形,6CD AB ∴==,3BP = ,3DE BP ∴==,BP CE ⊥ ,//BP DE ,DE CE ∴⊥,∴在Rt DCE ∆中,223692733CE CD DE =-=-==;(2)证明:如图所示,以点A 为旋转中心,将ABP ∆顺时针旋转60︒得到AMN ∆,连接BN .由旋转可得,AMN ABP ∆≅∆,MN BP ∴=,PA AM =,60PAM BAN ∠=︒=∠,AB AN =,PAM ∴∆、ABN ∆都是等边三角形,PA PM ∴=,PA PB PC CP PM MN ∴++=++,当4AC BC ==时,AB =,当C 、P 、M 、N 四点共线时,由CA CB =,NA NB =可得CN 垂直平分AB ,12AQ AB CQ ∴==,NQ ==,∴此时CN CP PM MN PA PB PC =++=++=+.21.(1)阅读材料:如图(1),四边形ABCD 是正方形,ABE ∆是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60︒得到BN ,连接EN 、AM 、CM ,①求证:AMB ENB ∆≅∆;②当M 点在何处时,AM CM +的值最小;③当M 点在何处时,AM BM CM ++的值最小,并说明理由;(2)根据阅读材料所提供的数学思想和方法,完成下面的题目:如图(2),A 、B 、C 、D 四个城市恰好为一个正方形的四个顶点,要建立一个公路系统,使每两个城市之间都有公路相通,并使整个公路系统的总长为最短,应当如何修建?请画出你的设计图.【解答】解:(1)① 四边形ABCD 是正方形,ABE ∆是等边三角形,AB BC BE ∴==,60ABE ∠=︒,将BM 绕点B 逆时针旋转60︒得到BN ,BN BM ∴=,60MBN ∠=︒,ABE MBN ∴∠=∠,EBN ABM ∴∠=∠,且AB BE =,MB NB =,()AMB ENB SAS ∴∆≅∆;②当M 点落在BD 的中点时,A 、M 、C 三点共线时,AM CM +的值最小;③如图1,连接CE ,当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,理由如下:连接MN ,由(1)知,AMB ENB ∆≅∆,AM EN ∴=,60MBN ∠=︒ ,MB NB =,BMN ∴∆是等边三角形,BM MN ∴=,AM BM CM EN MN CM ∴++=++,根据“两点之间线段最短”,得EN MN CM EC ++=最短,∴当M 点位于BD 与CE 的交点处时,AM BM CM ++的值最小,即等于EC 的长;(2)如图2,作等边ABQ ∆和等边CDP ∆,等边CEH ∆,同理可证CHP CED ∆≅∆,则CH CE =,PH DE =,DE CE PH HE ∴+=+,∴点H ,点P ,点E 三点共线时,DE CE +的值最小值为PE ,同理,AF BF +的最小值为FQ ,DE CE EF AF BF PE FE FQ ∴++++++,∴点P ,点E ,点F ,点Q 共线时,并使整个公路系统的总长为最短,即最短距离为PQ ,∴设计图:(30)EDC ECD FAB FBA ∠=∠=∠=∠=︒22.已知,在ABC ∆中,30ACB ∠=︒(1)如图1,当2AB AC ==,求BC 的值;(2)如图2,当AB AC =,点P 是ABC ∆内一点,且2PA =,21PB =3PC =,求APC ∠的度数;(3)如图3,当4AC =,7()AB CB CA >,点P 是ABC ∆内一动点,则PA PB PC ++的最小值为43.【解答】解:(1)如图1中,作AP BC ⊥于P .AB AC = ,AP BC ⊥,BP PC ∴=,在Rt ACP ∆中,2AC = ,30C ∠=︒,cos303PC AC ∴=︒=2BC PC ∴==.(2)如图2中,将APB ∆绕点A 逆时针旋转120︒得到QAC ∆.AB AC = ,30C ∠=︒,120BAC ∴∠=︒,2PA AQ ∴==,PB QC ==,120PAQ ∠=︒ ,PQ ∴=222PQ PC QC ∴+=,90QPC ∴∠=︒,30APQ ∠=︒ ,3090120APC ∴∠=︒+︒=︒.(3)如图3中,将BCP ∆绕点C 逆时针旋转60︒得到△CB P '',连接PP ',AB ',则90ACB ∠'=︒.PA PB PC PA PP P B ++=+'+'' ,∴当A ,P ,P ',B '共线时,PA PB PC ++的值最小,最小值AB ='的长,由AB =4AC =,30C ∠=︒,可得BC CB ='=,AB ∴'=.23.阅读下列材料:小华遇到这样一个问题,如图1,ABC∆内部有一点P,连BC=,5AC=,在ABCACB∆中,30∠=︒,6接PA、PB、PC,求PA PB PC++的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将APC∆,连接PD、BE,则BE的长即为所求.∆绕点C顺时针旋转60︒,得到EDC(1)请你写出图2中,PA PB PC++(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,60∠=︒,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于ABC++最小值的线段(保留画图痕迹,画出一条即可);PA PB PC②若①中菱形ABCD的边长为4,请直接写出当PA PB PC++值最小时PB的长.【解答】解:(1)如图2. 将APC∆绕点C顺时针旋转60︒,得到EDC∆,∴∆≅∆,APC EDC∠=︒,ACP ECD==,60PCD∴∠=∠,5AC EC∴∠+∠=∠+∠,ACP PCB ECD PCB∴∠+∠=∠=︒,30ECD PCB ACBBCE ECD PCB PCD∴∠=∠+∠+∠=︒+︒=︒.306090在Rt BCEBC=,5,6CE=,∆中,90∠=︒BCE∴==BE即PA PB PC++(2)①将APC∆,连接PE、DE,∆绕点C顺时针旋转60︒,得到DEC则线段BD 等于PA PB PC ++最小值的线段;②如图31-中,当B 、P 、E 、D 四点共线时,PA PB PC ++值最小,最小值为BD . 将APC ∆绕点C 顺时针旋转60︒,得到DEC ∆,APC DEC ∴∆≅∆,CP CE ∴=,60PCE ∠=︒,PCE ∴∆是等边三角形,PE CE CP ∴==,60EPC CEP ∠=∠=︒.菱形ABCD 中,1302ABP CBP ABC ∠=∠=∠=︒,603030PCB EPC CBP ∴∠=∠-∠=︒-∠︒=︒,30PCB CBP ∴∠=∠=︒,BP CP ∴=,同理,DE CE =,BP PE ED ∴==.连接AC ,交BD 于点O ,则AC BD ⊥.在Rt BOC ∆中,90BOC ∠=︒ ,30OBC ∠=︒,4BC =,cos 4BO BC OBC ∴=∠=⨯2BD BO ∴==,13BP BD ∴==即当PA PB PC ++值最小时PB24.已知抛物线2142y x bx =-++的对称轴为1x =,与y 交于点A ,与x 轴负半轴交于点C ,作平行四边形ABOC 并将此平行四边形绕点O 顺时针旋转90︒,得到平行四边形A B O C ''''.(1)求抛物线的解析式和点A 、C 的坐标;(2)求平行四边形ABOC 和平行四边形A B O C ''''重叠部分△OC D '的周长;(3)若点P 为AOC ∆内一点,直接写出PA PC PO ++的最小值(结果可以不化简)以及直线CP的解析式.【解答】解:(1)由已知得,112()2bx =-=⨯-,则1b =,抛物线的解析式为2142y x x =-++,(0,4)A ∴,令0y =,得21402x x -++=,12x ∴=-,24x =.(2)在ABCD 中,90OAB AOC ∠=∠=︒,则//AB CO,OB ∴==2OC OC '==,OC D OCA B ∴∠'=∠=∠,C OD BOA ∠'=∠,∴△C OD BOA '∆∽,∴C OD BOA C OC C OB '∆'=== AOB ∆的周长为6+,∴△C OD '的周长为565(6255+⨯=+;(3)此点位费马点,设三角形AOB 的三边为a ,b ,c ,2OC = ,4OA =,AC ==,PA PB PC ++==.直线CP解析式为1)2y x =-+-.。

部编数学九年级上册专题18旋转模型之费马点型(解析版)含答案

部编数学九年级上册专题18旋转模型之费马点型(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题18 旋转模型之费马点型1.若一个三角形的最大内角小于120°,则在其内部有一点所对三角形三边的张角均为120°,此时该点叫做这个三角形的费马点.如图1,当△ABC 三个内角均小于120°时,费马点P 在△ABC 内部,此时120APB BPC CPA Ð=Ð=Ð=°,PA PB PC ++的值最小.(1)如图2,等边三角形ABC 内有一点P ,若点P 到顶点A ,B ,C 的距离分别为3,4,5,求APB Ð的度数.为了解决本题,小林利用“转化”思想,将△ABP 绕顶点A 旋转到ACP ¢△处,连接PP ¢,此时ACP ABP ¢V V ≌,这样就可以通过旋转变换,将三条线段PA ,PB ,PC 转化到一个三角形中,从而求出APB Ð=______.(2)如图3,在图1的基础上延长BP ,在射线BP 上取点D ,E ,连接AE ,AD .使AD AP =,DAE PAC Ð=Ð,求证:BE PA PB PC =++.(3)如图4,在直角三角形ABC 中 ,90ABC Ð=°,30ACB Ð=°,1AB =,点P 为直角三角形ABC 的费马点,连接AP ,BP ,CP ,请直接写出PA PB PC ++的值.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.2.如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长( )A.B.C.D.3.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.易证△AMD≌△AGF,∴MD∴ME+MA+MD=ME+EG过F作FH⊥BC交BC于4.问题背景:如图,将ABC D 绕点A 逆时针旋转60°得到ADE D ,DE 与BC 交于点P ,可推出结论:PA PC PE+=问题解决:如图,在MNG D 中,6MN =,75M Ð=°,MG =O 是MNG D 内一点,则点O 到MNG D 三个顶点的距离和的最小值是___________5.如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为BC=_____.6.如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.7.【问题背景】17世纪有着“业余数学家之王”美誉的法国律师皮耶·德·费马,提出一个问题:求作三角形内的一个点,使它到三角形三个顶点的距离之和最小后来这点被称之为“费马点”.如图,点P 是ABC V 内的一点,将APC △绕点A 逆时针旋转60°到AP C ¢¢V ,则可以构造出等边APP ¢V ,得AP PP ¢=,CP CP ¢=,所以PA PB PC ++的值转化为PP PB P C +¢+¢¢的值,当B ,P ,P ¢,C 四点共线时,线段BC 的长为所求的最小值,即点P 为ABC V 的“费马点”.(1)【拓展应用】如图1,点P 是等边ABC V 内的一点,连接PA ,PB ,PC ,将PAC △绕点A 逆时针旋转60°得到AP C ¢¢V .①若3PA =,则点P 与点P ¢之间的距离是______;②当3PA =,5PB =,4PC =时,求AP C Т的大小;(2)如图2,点P 是ABC V 内的一点,且90BAC Ð=°,6AB =,AC =PA PB PC ++的最小值.②∵△ABC 为等边三角形,∴AB =AC ,∠BAP +∠PAC =60°,又∵APP ¢V 是等边三角形,则,60ACP A CP ACP ACP Ð=ÐÐ+Ð=°′′′,在Rt ABC V 中,(22262BC AB AC =+=+8.背景资料:在已知ABC V 所在平面上求一点P ,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当ABC V 三个内角均小于120°时,费马点P 在ABC V 内部,当120APB APC CPB Ð=Ð=Ð=°时,则PA PB PC ++取得最小值.(1)如图2,等边ABC V 内有一点P ,若点P 到顶点A 、B 、C 的距离分别为3,4,5,求APB Ð的度数,为了解决本题,我们可以将ABP △绕顶点A 旋转到ACP ¢△处,此时ACP ABP ¢V V ≌这样就可以利用旋转变换,将三条线段PA 、PB 、PC 转化到一个三角形中,从而求出APB Ð=_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与ABC V 的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,ABC V 三个内角均小于120°,在ABC V 外侧作等边三角形ABB ¢V ,连接CB ¢,求证:CB ¢过ABC V 的费马点.(3)如图4,在RT ABC V 中,90C Ð=°,1AC =,30ABC Ð=°,点P 为ABC V 的费马点,连接AP 、BP 、CP ,求PA PB PC ++的值.(4)如图5,在正方形ABCD 中,点E 为内部任意一点,连接AE 、BE 、CE ,且边长2AB =;求AE BE CE ++的最小值.(2)证明:将△APB 逆时针旋转60°,得到△AB′P′,连结PP′,∵△APB ≌△AB′P′,∴AP =AP′,PB =PB′,AB =AB′,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP ,∵PA PB PC PP P B PC ¢¢¢++=++,∴点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,∴点P 在CB′上,∴CB ¢过ABC V 的费马点.(3)解:将△APB 逆时针旋转60°,得到△AP′B′,连结BB′,PP′,∴△APB ≌△AP′B′,∴AP′=AP ,AB′=AB ,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP ,BB′=AB ,∠ABB′=60°,∵PA PB PC PP P B PC¢¢¢++=++∴点C ,点P ,点P′,点B′四点共线时,PA PB PC ++最小=CB′,(4)解:将△BCE 逆时针旋转60°得到△CE′B′,连结∴△BCE ≌△CE′B′,∴BE =B′E′,CE =CE ′,CB =CB′,∵∠ECE′=∠BCB′=60°,∴△ECE′与△BCB′均为等边三角形,∴EE ′=EC ,BB′=BC ,∠B′BC =60°,∵AE BE CE AE EE E B ¢¢¢++=++,∴点C ,点E ,点E′,点B′四点共线时,AE【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,直角三角形性质是解题关键.9.如图,在△ABC中,∠BAC=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC的最小值.10.【问题提出】(1)如图1,四边形ABCD 是正方形,ABE △是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM ,CM .若连接MN ,则BMN △的形状是________.(2)如图2,在Rt ABC V 中,90BAC Ð=°,10AB AC +=,求BC 的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园ABCD ,6AB BC +=千米,60ABC Ð=°,公园内有一个儿童游乐场E ,分别从A 、B 、C 向游乐场E 修三条,,AE BE CE ,求三条路的长度和(即AE BE CE ++)最小时,平行四边形公园ABCD 的面积.(1)如图1,将△ADE绕点D逆时针旋转90°得到△DCF,连接EF;①把图形补充完整(无需写画法);②求2EF的取值范围;(2)如图2,求BE+AE+DE的最小值.②∵四边形ABCD是正方形,∴BC=AB=22,∠B=∴AC=22+=AB BC∵△ADE绕点D逆时针旋转由旋转的性质可知,△AEG 是等边三角形,∴AE =EG ,∵DF≤FG +EG +DE ,BE =FG ,∴AE +BE +DE 的最小值为线段DF 在Rt △AFH 中,∠FAH =30°,AB =12.如图1,点M 为锐角三角形ABC 内任意一点,连接,,AM BM CM .以AB 为一边向外作等边三角形ABE △,将BM 绕点B 逆时针旋转60°得到BN ,连接EN .(1)求证:AMB ENB △≌△;(2)若AM BM CM ++的值最小,则称点M 为ABC V 的费马点.若点M 为ABC V 的费马点,求此时,,AMB BMC CMA ÐÐÐ的度数;(3)受以上启发,你能想出作锐角三角形的费马点的一个方法吗?请利用图2画出草图,并说明作法以及理由.【答案】(1)见解析;(2)120BMC Ð=°:120AMB Ð=°;120AMC Ð=°;(3)见解析【分析】(1)结合等边三角形的性质,根据SAS 可证△AMB ≌△ENB(2)连接MN ,由(1)的结论证明ΔBMN 为等边三角形,所以BM =MN ,即AM+BM+CM =EN+MN+CM ,所以当E 、N 、M 、C 四点共线时,AM+BM+CM 的值最小,从而可求此时∠AMB 、∠BMC 、ΔCMA 的度数;(3)根据(2)中费马点的定义,又△ABC 的费马点在线段EC 上,同理也在线段BF 上,因此线段EC 和BF 的交点即为△ABC 的费马点.【详解】解:(1)证明:∵ABE △为等边三角形,∴,60AB BE ABE =Ð=°.而60MBN Ð=°,∴ABM EBN Ð=Ð.在AMB V 与ENB △中,AB BE ABM EBNBM BN =ìïÐ=Ðíï=î∴(SAS)AMB ENB V V ≌.(2)连接MN .由(1)知,AM EN =.∵60,MBN BM BN Ð=°=,∴BMN △为等边三角形.∴BM MN =.∴AM BM CM EN MN CM ++=++.∴当E 、N 、M 、C 四点共线时,AM BM CM ++的值最小.此时,180120BMC NMB Ð=°-Ð=°:180120AMB ENB BNM Ð=Ð=°-Ð=°;360120AMC BMC AMB Ð=-Ð-Ð=°°.(3)如图2,分别以ABC V 的AB ,AC 为一边向外作等边ABE △和等边ACF V ,连接,CE BF ,相交于M ,则点M 即为ABC V 的费马点,由(2)知,ABC V 的费马点在线段EC 上,同理也在线段BF 上.因此线段EC 与BF 的交点即为ABC V 的费马点.(方法不唯一,正确即可)【点睛】本题考查了等边三角形的性质,三角形全等的判定与性质,掌握三角形全等的判定和性质是解题的关键.13.若点P 为△ABC 所在平面上一点,且∠APB =∠BPC =∠CPA =120°,则点P 叫做△ABC 的费马点.当三角形的最大角小于120°时,可以证明费马点就是“到三角形的三个顶点的距离之和最小的点“.即PA +PB +PC 最小.(1)如图1,向△ABC 外作等边三角形△ABD ,△AEC .连接BE ,DC 相交于点P ,连接AP .①证明:点P 就是△ABC 费马点;②证明:PA +PB +PC =BE =DC ;(2)如图2,在△MNG 中,MN =,∠M =75°,MG =3.点O 是△MNG 内一点,则点O 到△MNG三个顶点的距离和的最小值是 .∵∠APT =60°,PT =PA,∴△APT 是等边三角形,∴∠PAT =60°,AT =AP ,∵∠DAB =∠TAP =60°,∴∠DAT =∠BAP ,∵AD =AB ,∴△DAT ≌△BAP (SAS ),∴PB =DT ,∴PD =DT+PT =PA+PB ,∴PA+PB+PC =PD+PC =CD =BE .(2)如图2:以MG 为边作等边三角形△MGD ,以OM 为边作等边△OME .连接ND ,作DF ⊥NM ,交NM 的延长线于F .∵△MGD 和△OME 是等边三角形∴OE =OM =ME ,∠DMG =∠OME =60°,MG =MD ,∴∠GMO =∠DME在△GMO 和△DME 中,OM ME GMO DME MG MD =ìïÐ=Ðíï=î,∴△GMO ≌△DME (SAS ),∴OG =DE∴NO+GO+MO =DE+OE+NO14.如图,在ABC V 中,30,6,5ACB BC AC Ð=°==,在ABC V 内部有一点P ,连接PA 、PB 、PC .(加权费马点)求:(1)PA PB PC ++的最小值;(2)PA PB ++的最小值(3)PA PB ++的最小值;(4)2PA PB +的最小值(5)12PA PB +的最小值;(6)24PA PB ++的最小值(7)42PA PB ++的最小值;(8)345PA PB PC ++的最小值。

费马点及经典例题与解析

费马点及经典例题与解析

费马点及经典例题与解析费马点,这是一个与数学息息相关的话题,它是由法国数学家费马提出的一种几何概念,即在一个凸多边形中,哪个边的长度最长,使得任意两边之和大于第三边。

这个概念在现实生活中有着广泛的应用,比如在计算机图形学、工程设计等领域都有所涉及。

本文将围绕费马点展开,介绍其基本概念、经典例题及其解析,帮助读者更好地理解和应用这一数学知识。

一、费马点的基本概念费马点是在凸多边形内的一点,使得多边形的任意两边之和大于第三边的长度。

根据费马的基本定理,任意一个凸多边形中都存在一个费马点。

它与几何中的重心不同,费马点是在一个特定区域内寻找一个点,使得该区域的任何两边之和最短。

二、经典例题及其解析例题1:求三角形中的费马点已知一个三角形ABC,求其费马点P的坐标。

解析:在三角形ABC中,费马点P的坐标可以通过以下方法求解:1.将三角形ABC分成三个区域:A区、B区和C区。

2.在每个区域内分别找到最短边的中点,并将这些中点连接起来。

3.连接形成的线段与三角形的边相交,交点即为费马点P。

在上述方法中,最短边的长度可以通过海伦公式求解,也可以通过三角形的性质直接得到。

具体来说,对于三角形ABC,其最短边为AB,则AC和BC的长度之和为AB的两倍。

因此,可以得出结论:在三角形ABC中,费马点P的坐标为((x,y)),其中:x=(A+C)/2+AB/2y=(B+C)/2-AB/2例题2:求五边形中的费马点已知一个五边形ABCDE,求其费马点P的坐标。

解析:在五边形ABCDE中,可以先将其分成五个区域,再按照上述方法求解费马点P的坐标。

由于五边形中有五条边,因此需要将每条边的中点连接起来形成新的线段。

这些线段与五边形的边相交,交点即为费马点P。

同样地,也可以通过海伦公式求解最短边的长度。

三、应用场景费马点在计算机图形学和工程设计中有着广泛的应用。

例如,在计算机图形学中,可以通过费马点来确定一个图像区域的最佳缩放比例,以达到最佳的视觉效果。

中考复习之线段和差最值之费马点问题-附练习题含参考答案

中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。

费马点问题(含答案)

费马点问题(含答案)

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵ AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴ A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵ HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴ G、P、D三点一线。

∴ AG=GP=PD,且同在一条直线上。

∵ GA+GH+GB=GA+GP+PD=AD.∴ G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

中考数学试卷费马点

中考数学试卷费马点

的位置关系是()A. 共线B. 共圆C. 共点D. 无规律2. 已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. DE=EF=FDB. ∠ABC=∠DEFC. AB+BC+CA=DE+EF+FDD. ABC≌DEF3. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定不成立?()A. AB=ACB. ∠ABC=∠DEFC. DE=EF=FDD. ABC≌DEF4. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. ∠ABC=∠DEFB. ∠ABD=∠BCDC. ∠ACF=∠BCED. ∠BAC=∠BCF5. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()A. AB=ACB. ∠ABC=∠DEFC. AB+BC+CA=DE+EF+FDD. ABC≌DEF二、填空题6. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么点D、E、F 的位置关系是()7. 已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()8. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定不成立?()9. 在三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()10. 已知三角形ABC中,点D、E、F分别满足AD=BD,BE=CE,CF=AF,那么下列哪个结论一定成立?()三、解答题点D、E、F在同一直线上。

12. (15分)已知三角形ABC的边长分别为a、b、c,点D、E、F分别满足AD=BD,BE=CE,CF=AF,求证:DE=EF=FD。

费马点问题

费马点问题

费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC 中,∠ACB =90°,∠ABC =60°,BCP 是△ABC 内一动点,将△ACP 绕点A 逆时针旋转60°得到△ADE ,连接PE 、BD ,则PA +PB +PC 的最小值为___________.【例题2】如图,等边△ABC 中,AB =2,若点P 是△ABC 内部一个动点,则P A +PB +PC 的最小值为__________.【例题3】如图,Rt △ABC 中,∠ABC =90°,AB =2,BC =P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题4】如图,正方形ABCD 内一动点E ,到顶点A 、B 、C 的距离之和AE +BE +CE,则这个正方形边长为____________.PEDCBAABCPAB CPE DCBA【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCAGNABCD P类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【例题12】如图,在△ABC中,AB=AC=4,∠BAC=90°,点P为△ABC内一点,则12P A+PBPC的最小值为___________.AB CDEMAB CDEFPC BAAB CP【例题13】如图,点P是边长为2的等边△ABCP A+PB+12PC的最小值为_________.AB CP费马点问题1.费马点在三角形内部,到三角形三个顶点的距离之和最小的点叫做费马点.2.基本模型如图,在锐角△ABC 内有一点O ,分别连接OA 、OB 、OC ,求证:当∠AOB =∠AOC =∠BOC =120°时,OA +OB +OC 最小.证明:将△APC 绕点C 旋转60°至△A ′P ′C ,则△PP ′C 是等边三角形,∴OA +OB +OC =BP +PP ′+P ′A ≥BA ′,此时∠BPC =180°-∠CPP ′=120°,∠A ′P ′C =180°-∠CP ′P =120°,∴∠APC =∠A ′P ′C =120°,∴∠AOB =∠AOC =∠BOC =120°.3.基本结论(1)对于一个各角都不超过120°的三角形,费马点是对各边的张角都是120°的点.(2)对于有一个角超过120°的三角形,费马点就是这个内角的顶点.(不作研究)4.基本题型(1)两点之间线段最短(2)垂线段最短(3)加权问题加权费马点,旋转加缩放,系数先化一,必为勾股数.A BCPABP PCP′P′A′APBC类型1:经典费马点问题:两点之间线段最短【例题1】如图,△ABC中,∠ACB=90°,∠ABC=60°,BCP是△ABC内一动点,将△ACP绕点A逆时针旋转60°得到△ADE,连接PE、BD,则PA+PB+PC的最小值为___________.【答案】7.【例题2】如图,等边△ABC中,AB=2,若点P是△ABC内部一个动点,则P A+PB+PC的最小值为__________.【答案】(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题3】如图,Rt△ABC中,∠ABC=90°,AB=2,BC=P是△ABC内一个动点,则P A+PB+PC的最小值为__________.【答案】.(提示:将△ABP绕点A顺时针旋转60°得到△AB′P′)【例题4】如图,正方形ABCD内一动点E,到顶点A、B、C的距离之和AE+BE+CE,则这个正方形边长为____________.【答案】2.(提示:将△ABE绕点A顺时针旋转60°得到△AB′E′,∠B′BP=90°-60°=30°,设B′P=x,则PB,B′B=BC=2x,在Rt△B′PC中,x2++2x)2=2,解得x=1,∴BC=PEDCBAABCP P′A′MPCBAAB CPP′B′NMPCBAEDCBAABCDEPB′E′2)【例题5】如图,△ABC 中,AB =5,BC =3,∠ABC =60°,若点P 是△ABC 内一个动点,则P A +PB +PC 的最小值为__________.【答案】7.(提示:将△ABP 绕点A 顺时针旋转60°得到△AB ′P ′)【例题6】如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC ,则P A +2PB 的最小值为_____________.【答案】.(提示:费马点)【例题7】如图,在△MNG 中,MN =6,∠M =75°,MG =O 为△MNG 内一点,则点O 到△MNG 三个顶点的距离之和的最小值为____________.【答案】(提示:将△MOG 绕点M 顺时针旋转60°得到△MO ′G ′)【例题8】如图,锐角三角形ABC 中,∠ACB =60°,AB =7,BC =5,AC =8,D 为△ABC 内一点,BD =1,△ABC 内有动点P ,则P A +PC +PD 的最小值为_________.PCB AABCPP′B′E FP′B′PD CBAGNG′O′HNMOGABCD PC′P′PFE D CBA1.(提示:将△APC绕点A逆时针旋转60°得到△AP′C′)类型2:动态费马点问题:垂线段最短【例题9】如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为___________.【答案】4+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)【例题10】如图,四个村庄坐落在矩形ABCD的四个顶点上,AB=10公里,BC=15公里,现在要设立两个车站E、F,则EA+EB+EF+FC+FD的最小值为__________公里.【答案】15+(提示:将△AMD绕点D顺时针旋转60°得到△A′M′D)类型3:加权费马点——缩放法,旋转系数大的线段【例题11】如图,在△ABC中,AB=4,BC=6,∠ABC=30°,P是△ABC内一动点,则P APB+PC的最小值为___________.【答案】(提示:将△ABP绕点B逆时针旋转90°得到△A′BP′)AB CDEMAB CDEFE′B′C′F′NMFEDCBAPCBA ABCEPP′A′【例题12】如图,在△ABC 中,AB =AC =4,∠BAC =90°,点P 为△ABC 内一点,则12P A +PBPC 的最小值为___________.【答案】(提示:方法1,将△APC 缩小到原来的12,并绕点C 顺时针旋转90°得到△AP ′C ′;方法2,原式=12(P A +2PBPC ),将△APC 扩大到原来的2倍,并绕点C 顺时针旋转90°得到△A ′P ′C )【例题13】如图,点P 是边长为2的等边△ABCP A +PB +12PC 的最小值为___________..(提示:方法1,将△APC 缩小到原来的12,并绕点A 逆时针旋转60°得到△AP ′C ′;方法2,将△APC,并绕点C 逆时针旋转30°得到△A ′P ′C ;方法3,原式=12A +2PB+PC ),将△APCC 顺时针旋转90°得到△A ′P ′C )A BCPP′A′PEC B AABCPABCE PC′P′ABCPA′P′。

费马点问答(含答案解析)

费马点问答(含答案解析)

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点一线。

∴AG=GP=PD,且同在一条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD. ∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

初中数学几何模型与最值问题04专题-费马点中三线段模型与最值问题(含答案)

初中数学几何模型与最值问题04专题-费马点中三线段模型与最值问题(含答案)

初中数学最值问题专题4 费马点中三线段模型与最值问题【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。

主要分为两种情况:(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。

(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题【模型展示】问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠P AB=∠BPC=∠CP A=120°.在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.有这两个结论便足以说明∠P AB=∠BPC=∠CP A=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!【例题】1、如图,四边形ABCD 是菱形,AB =4,且∠ABC =∠ABE =60°,G 为对角线BD (不含B 点)上任意一点,将∠ABG 绕点B 逆时针旋转60°得到∠EBF ,当AG +BG +CG 取最小值时EF 的长( )A .B .C .D .2、如图,将ABC ∆绕点A 逆时针旋转60°得到ADE ∆,DE 与BC 交于点P ,可推出结论:PA PC PE +=问题解决:如图,在MNG ∆中,6MN =,75M ∠=︒,MG =O 是MNG ∆内一点,则点O 到MNG ∆三个顶点的距离和的最小值是___________3、如图,四边形ABCD是菱形,A B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.4、如图,∠ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为,则BC=_____.5、如图,四边形ABCD 是正方形,∠ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .∠ 求证:∠AMB ∠∠ENB ;∠ ∠当M 点在何处时,AM +CM 的值最小;∠当M 点在何处时,AM +BM +CM 的值最小,并说明理由; ∠ 当AM +BM +CM 的最小值为13 时,求正方形的边长.EA DB CNMF EA DB CNM6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=(1)如图1,将∠ADE绕点D逆时针旋转90°得到∠DCF,连接EF;∠把图形补充完整(无需写画法);∠求2EF的取值范围;(2)如图2,求BE+AE+DE的最小值.专题4 费马点中三线段模型与最值问题答案【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵AH=BH=AB=12.∴∠AGH=120°, ∠HGP=60°.∴A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点一线。

∴AG=GP=PD,且同在一条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

∵∠AGC=120°, ∠CGP=60°.∴A、G、P三点一线。

∵∠CPD=120°, ∠CPG=60°.∴G、P、D三点一线。

∴AG、GP、PD三条线段同在一条直线上。

∵GA+GC+GB=GA+GP+PD=AD.∴G点是等腰三角形内到三个顶点的距离之和最小的哪一点,费马点。

但它不同于等边三角形的费马点是重心。

例3:已知:△ABC是锐角三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC 最小证明:将△BGC 逆时针旋转60°,连GP,DB.则 △CGB ≌△CPD ;∴ ∠CPD=∠CGB=120°,CG=CP,GB=PD, BC=DC,∠GCB=∠PCD.∵ ∠GCP=60°,∴ ∠BCD=60°,∴ △GCP 和△BCD 都是等边三角形。

∵ ∠AGC=120°, ∠CGP=60°.∴ A 、G 、P 三点一线。

∵ ∠CPD=120°, ∠CPG=60°.∴ G 、P 、D 三点一线。

∴ AG 、GP 、PD 三条线段同在一条直线上。

∵ GA+GC+GB=GA+GP+PD=AD.∴ G 点是等腰三角形内到三个顶点的距离之和最小的哪一点,费马点。

但它不同于等边三角形的费马点是重心。

(费马点问题)如图,P 是边长为1的等边ABC ∆内的任意一点,求t PA PB PC =++的取值范围.解:Part1:将BPC ∆绕点B 顺时针旋转60°得到''BP C ∆,易知'BPP ∆为等边三角形.从而''''PA PB PC PA PP P C AC ++=++≥(两点之间线段最短),从而3t ≥.Part2:过P 作BC 的平行线分别交AB AC 、于点M N 、,易知MN AN AM ==.因为在BMP ∆和PNC ∆中,PB MP BM <+①, PC PN NC <+②。

又APM ANM AMN ∠>∠=∠,所以PA AM <③. ①+②+③可得()()()12t AM BM MP NP NC AB MN NC AN NC <++++=++=++=,即2t <.综上,t PA PB PC =++的取值范围为32t ≤<.“费马点”与中考试题费尔马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一. 费马点——就是到三角形的三个顶点的距离之和最小的点. 费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.△三个顶点的距离之和P A+PB+PC最小?这就是所谓的费尔下面简单说明如何找点P使它到ABC马问题.图1解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以P A+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′四点在同一直线上时,P A+PB+PC最小.这时∠BP A=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BP A-∠APC=360°-120°-120°=120°△的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°,可在因此,当ABCAB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值26图2图3分析:连接AC,发现点E到A、B、C三点的距离之和就是到ABC△三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解如图2,连接AC,把△AEC绕点C顺时针旋转60°,得到△GFC,连接EF、BG、A G,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,∴AE+BE+CE = BE+EF+FG(图4).∵点B、点G为定点(G为点A绕C点顺时针旋转60°所得).∴线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG上(图3).设正方形的边长为a,那么BO=CO=22a,GC2a, GO6.∴BG=BO+GO =22a+62a.∵点E到A、B、C26∴22a626a=2.注本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.例2 (2009年北京中考题)如图4,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为()6,0A-,()6,0B,(0,43C,延长AC到点D, 使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短.分析和解:(1)D 点的坐标(3,(过程略). (2) 直线BM的解析式为y =+.图4(3)如何确定点G 的位置是本题的难点也是关健所在.设Q 点为y 轴上一点,P 在y 轴上运动的速度为v ,则P 沿M →Q →A 运动的时间为2MQ AQ v v +,使P 点到达A 点所用的时间最短,就是12MQ +AQ 最小,或MQ +2AQ 最小.解法1 ∵ BQ =AQ , ∴MQ +2AQ 最小就是MQ +AQ +BQ 最小,就是在直线MO 上找点G 使他到A 、B 、M 三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB 绕点B 顺时针旋转60°,得到△M ′Q ′B ,连接QQ ′、MM ′(图5),可知△QQ ′B 、△MM ′B 都是等边三角形,则QQ ′=BQ .又M ′Q ′=MQ ,∴MQ +AQ +BQ = M ′Q ′+ QQ ′+AQ .∵点A 、M ′为定点,所以当Q 、Q ′两点在线段A M ′上时,MQ +AQ +BQ 最小.由条件可证明Q ′点总在AM ′上,所以A M ′与OM 的交点就是所要的G 点(图6).可证OG =12MG .图5 图6 图7解法2 考虑12MQ+AQ最小,过Q作BM的垂线交BM于K,由OB=6,OM=3,可得∠BMO=30°,所以QK=12 MQ.要使12MQ+AQ最小,只需使AQ+QK最小,根据“垂线段最短”,可推出当点A、Q、K在一条直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.由OB=6,OM=3∠OBM=60°,∴∠BAH=30°在Rt△OAG中,OG=AO·tan∠BAH=3∴G点的坐标为(0,23(G点为线段OC的中点).例3 (2009年湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.图8解:(1)利用相似三角形可求PB的值为23(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CP A=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC = ∠APC =120°,∠PEC=60°∴∠B′EC+∠PEC=180°即P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即B、P、E 三点在同一直线上∴B、P、E、B′四点在同一直线上,即BB′过△ABC的费马点P.又PE=PC,B′E= P A,∴BB′=E B′+PB+PE=P A+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决。

相关文档
最新文档