2011年学而思杯数学试题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 简单小数计算
2011-201.1+20.11-2.011+0.001
【解析】1828
2. 分小四则混合运算
(..)÷+⨯÷254138512311854
【解析】541(3.8512.31)1854
÷+⨯÷2 ()4(3.85 3.612.3 1.8)9
41.87.712.39
4369
16⨯+⨯⨯=⨯+⨯=⨯== 3 已知N *等于N 的因数个数,比如4*=3,则(2011*+10*+6*)*=_______
【解析】(2011*+10*+6*)*=(2+4+4)*=4
4 用字母表示数
一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k ,已知k 是自然数,则三角形的周长为______.
【解析】k =2,周长为6+7+12=25.
5 基础类型应用题1
红光大队用拖拉机耕地,2台3小时耕75亩,照这样计算,4台5小时耕____亩.
【解析】2台1小时可耕75 ÷3=25亩,4台5小时 可耕地25×2×5=250亩
6 基础类型应用题2
一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。则这个骗子一共骗了______钱?
【解析】由于一开始骗子并没有骗钱,产生骗钱的是后用零钱换50元,所以共骗得50-5=45元。
7 约数倍数
已知A 、B 两数的最小公倍数是120,B 、C 两数的最小公倍数是180,A 、C 两数的最小公倍数是72,则A 、B 、C 三数的最小公倍数是______.
【解析】120=23×3×5
180=22×32×5 72=23×32
所以最小公倍数是23×32×5=360
8 简单的逻辑推理
2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。已知二人共得到67分,其中第二局,王仪涵竟然赢了整整11分,请问,第一局郑韶婕得了______分。(羽毛球为21分制)
【解析】第二局相差11分,因此比分为21:10,第一局总分为:67-21-10=36,比分为21:15,所以第一局郑韶婕得了15分
9 简单的一半模型
下图为面积100的平行四边形,则阴影部分的面积和是_____.
【解析】阴影部分的面积为总面积的一半。100÷2=50
10 平均速度
AB 间的路被平均分成三段,王先生驾车从A 地开往B 地,已知他这三段路上的平均速度分别为30 km /h ,40 km /h 和60km /h ,则王先生在AB 间的平均速度为______km /h .
【解析】设每段路都为120km ,则王先生在这三段路的时间分别为4h ,3h ,2h 。因此总时间为9h ,而总路程是120×3=360km ,最终的平均速度为360÷9=40km /h
11 简单分数裂项
15191113()142612203042+--+-⨯ 【解析】原式11111111111(1)1422334455667=-++-+--++--⨯ 6147=⨯ 12
= 12 换元
111113572011113572011
++⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯ 【解析】设13572011⨯⨯⨯⨯⨯=A ,则原式变为
11111111111A A A A A A
A
++=+==+++++ 13 整系数方程
[(8)88]88x +⨯-÷=
【解析】(856)88x +÷=
78x +=
1x =
14 分数或比例方程
()x x ⎡⎤⨯⨯++-=⎢⎥⎣⎦321321223423
【解析】13213423
x x ++-=
x x ==6
55122
15 简单方程组
29
2232202a b c a c b b c a +⎧+=⎪⎪+⎪+=⎨⎪+⎪+=⎪⎩ 则b =_______
【解析】三式相加()27236a b c a b c +++=⇒++=
每个式子都乘2减去上式,得410
22a b c =⎧⎪=⎨⎪=⎩
b =10 16 简单的概率问题
分别先后掷2次骰子,点数之积为8的概率为三十六分之______.
【解析】先后掷2次,共可以掷出6×6=36种可能情况,其中积为8的情况共有2×4=4×2这2种,概率为三十六分之2,答案为2.
17 分百应用题
小明看一本书,计划每天看全书的九分之一。按计划看了3天后,由于急于知道结局,于是跳过了200页,并将看书速度提高了一倍,又看了1天,把书看完。已知小明计划每天看书的页数相同,则这本书共______页。
【解析】速度提高了一倍 ,看了1天,相当于原计划的2天,因此小明看了原计划3+2=5天的书,还有9-5=4天没看,所以原计划一天看书200÷4=50页,这本书共有50×9=450页
18 枚举法
一次超难的数学考试,某班前五名同学共得20分(得分是任意正整数),并且分数各不相同,也没有得0分的,则有_______种得分的情况。
【解析】有序枚举:
1、2、3、4、10
1、2、3、5、9
1、2、3、6、8
1、2、4、5、8
1、2、4、6、7
1、3、4、5、7
2、3、4、5、6
共7种
19 排列组合
用1、2、3、4、5这几个数字组成一个5位数,要求每个数字均出现1次,且3必须在2前面(但它们不一定相邻),2必须在1前面,则共能组成____个不同的五位数。