华师大版2016年八年级下册数学期末压轴题集锦
最新华师大版初二下期数学期末复习(二)
八年级下期数学期末复习试题 姓名1. 在代数式x 1、21、212+x 、πxy3、y x +3、11++m a 中,分式有( )A 、2个B 、3个C 、4个D 、5个 2. 在反比例函数y=x2的图象上的一个点的坐标是( ) A 、(2,1) B 、(-2,1) C 、(2、21) D 、(21,2)3. 如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A 、当AB=BC 时,它是菱形B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=90°时,它是矩形 D、当AC =BD 时,它是正方形4. 下列每组数据中的三个数值分别为三角形的三边长,不能构成直角三角是( ) A 、3、4、5 B 、6、8、10 C 、3、2、5 D 、5、12、135. 如图在正方形ABCD 中,E 为CD 上一点,CF=CE 。
则下列结论错误的是( ) A .BE=DFB .BG ⊥DFC .∠F +∠CEB =90°D .∠FDC +∠ABG =90°6. 数据-3、-2、1、3.6、x 、5的中位数是1,那么这组数据的众数是( )A 、2B 、1C 、3D 、-27. 如图所示,在直角梯形ABCD 中,AB ∥DC ,∠B =90°,动点P 从点B 出发, 沿梯形的边由B →C →D →A 运动。
设点P 运动的路程为x ,⊿ABP 的面积为y ,把y 看作x 的函数,函数图象如图所示,则⊿ABC 的面积为( ) A .10 B .16 C .18D .328. 如图,在等腰Rt ⊿ABC 中,∠C =90°,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边运动,且保持AD =CE ,连接DE 、DF 、EF ,在此运动变化的过程中,下列结论:①⊿DFE 是等腰直角三角形;②四边形CDFE 不可为正方形;③四边形CDFE 的面积保持不变;其中正确的结论是( ) A .①②③ B .①C .①③D ②③.9. 如图,在周长为20cm 的□ ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD , 交AD 于点E ,则△ABE 的周长为( )A 、4cmB 、6cmC 、8cmD 、10cm 10. 将0.000702用科学记数法表示,结果为 。
2016-2017学年华师大版八年级下学期期末数学试卷及答案
2016-2017学年八年级下学期期末数学试卷一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣20132.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.94.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.65.(3分)下列式子成立的是()A.B.C.D.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD 7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.9.(4分)若分式的值为0.则x=.10.(4分)用科学记数法表示:0.000004=.11.(4分)数据2,4,5,7,6的极差是.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.13.(4分)命题“同位角相等,两直线平行”的逆命题是:.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是(填“甲”或“乙”).15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是(写出一个即可).16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是;(2)三角形的直角顶点的坐标是.三、解答题(共89分)18.(16分)①计算:②解方程:.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=;②此学习小组10名学生成绩的众数是;(2)求此学习小组的数学平均成绩.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(,)参考答案与试题解析一.选择题(单项选择,每小题3分,共21分)1.(3分)20130的值等于()A.0B.1C.2013 D.﹣2013考点:零指数幂.分析:根据零指数幂公式可得:20130=1.解答:解:20130=1.故选B.点评:本题主要考查了零指数幂的运算,要求同学们掌握任何非0数的0次幂等于1.2.(3分)在平面直角坐标系中,点(1,2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(1,2)所在的象限是第一象限.故选A.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)已知函数y=3x﹣1,当x=3时,y的值是()A.6B.7C.8D.9考点:函数值.分析:把x=3代入函数关系式进行计算即可得解.解答:解:x=3时,y=3×3﹣1=8.故选C.点评:本题考查了函数值求解,把自变量的值代入函数关系式计算即可,比较简单.4.(3分)已知一组数据:9,9,8,8,7,6,5,则这组数据的中位数是()A.9B.8C.7D.6考点:中位数.分析:根据这组数据是从大到小排列的,找出最中间的数即可.解答:解:∵9,9,8,8,7,6,5是从大到小排列的,∴处于最中间的数是8,∴这组数据的中位数是8;故选B.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.5.(3分)下列式子成立的是()A.B.C.D.考点:分式的混合运算.分析:利用分式的基本性质,以及分式的乘方法则即可判断.解答:解:A、+=,选项错误;B、当m=1时,=4,故选项错误;C、()2=,故选项错误;D、正确.故选D.点评:本题主要考查分式的混合运算,理解分式的性质以及运算法则是解答的关键.6.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.B D=CD B.A B=AC C.∠B=∠C D.∠BAD=∠CAD考点:全等三角形的判定.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)如图,点P是反比例函数y=(x>0)的图象上的任意一点,过点P分别作两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是矩形OAPB内任意一点,连接DA、DB、DP、DO,则图中阴影部分的面积是()A.1B.2C.3D.4.考点:反比例函数系数k的几何意义.分析:首先根据反比例系数k的几何意义,可知矩形OAPB的面积=6,然后根据题意,得出图中阴影部分的面积是矩形OAPB的面积的一半,从而求出结果.解答:解:∵P是反比例函数的图象的任意点,过点P分别做两坐标轴的垂线,∴与坐标轴构成矩形OAPB的面积=6.∴阴影部分的面积=×矩形OAPB的面积=3.故选C.点评:本题考查了反比例函数比例系数k的几何意义和矩形的性质,在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答此题的关键.二.填空题(每小题4分,共40分)8.(4分)3﹣2=.考点:负整数指数幂.专题:计算题.分析:根据幂的负整数指数运算法则计算.解答:解:原式==.故答案为:.点评:本题考查的是幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.9.(4分)若分式的值为0.则x=1.考点:分式的值为零的条件.分析:根据分式值为零的条件是分子等于零且分母不等于零,可得,据此求出x 的值是多少即可.解答:解:∵分式的值为0,∴,解得x=1.故答案为:1.点评:此题主要考查了分式值为零的条件,要熟练掌握,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.10.(4分)用科学记数法表示:0.000004=4×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000004=4×10﹣6;故答案为:4×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.(4分)数据2,4,5,7,6的极差是5.考点:极差.分析:用这组数据的最大值减去最小值即可.解答:解:由题意可知,极差为7﹣2=5.故答案为5.点评:本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.12.(4分)在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).考点:关于原点对称的点的坐标.分析:根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.解答:解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).点评:本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.13.(4分)命题“同位角相等,两直线平行”的逆命题是:两直线平行,同位角相等.考点:命题与定理.分析:把一个命题的题设和结论互换就得到它的逆命题.解答:解:命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为:“两直线平行,同位角相等”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.(4分)甲、乙两同学近期4次数学单元测试的平均分相同,甲同学的方差S=3.2,乙同学的方差S=4.1,则成绩较稳定的同学是甲(填“甲”或“乙”).考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S=3.2,S=4.1,∴S甲2<S乙2,则成绩较稳定的同学是甲.故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(4分)已知某个反比例函数,它在每个象限内,y随x增大而增大,则这个反比例函数可以是y=﹣(答案不唯一)(写出一个即可).考点:反比例函数的性质.专题:开放型.分析:设该反比例函数的解析式是y=,再根据它在每个象限内,y随x增大而增大判断出k的符号,选取合适的k的值即可.解答:解:设该反比例函数的解析式是y=,∵它在每个象限内,y随x增大而增大,∴k<0,∴符合条件的反比例函数的解析式可以为:y=﹣(答案不唯一).故答案为:y=﹣(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一,只要写出的反比例函数的解析式符合条件即可.16.(4分)如图,正方形ABCD中,M是BC上的中点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若CM=2,则AG=2.5.考点:正方形的性质;线段垂直平分线的性质;勾股定理.分析:求出BC、AB长,求出AM、求出AO,证△GAO∽△MAB,得出比例式,代入求出即可.解答:解:∵M为BC中点,CM=2,∴BC=4,BM=2,∵四边形ABCD是正方形,∴∠B=90°,AB=BC=4,在Rt△ABM中,由勾股定理得:AM==2,∵AM的垂直平分线GH,∴AO=OM=AM=,∠AOG=∠B=90°,∵∠GAO=∠MAB,∴△GAO∽△MAB,∴=,∴=,∴AG=2.5,故答案为:2.5.点评:本题考查了线段垂直平分线,相似三角形的性质和判定,勾股定理,正方形性质的应用,主要考查学生运用性质进行推理和计算的能力.17.(4分)如图,在直角坐标系中,已知点A(﹣4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,(1)△AOB的面积是6;(2)三角形的直角顶点的坐标是(8052,0).考点:坐标与图形变化-旋转;三角形的面积.专题:规律型.分析:(1)根据点A、B的坐标求出OA、OB,再根据三角形的面积列式计算即可得解;(2)观察不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商是671可知三角形是第671个循环组的最后一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.解答:解:(1)∵A(﹣4,0),B(0,3),∴OA=4,OB=3,∴△AOB的面积=×4×3=6;(2)由图可知,每3个三角形为一个循环组依次循环,∵2013÷3=671,∴三角形是第671个循环组的最后一个三角形,12×671=8052,∴三角形的直角顶点的坐标是(8052,0).故答案为:6;(8052,0).点评:本题考查了坐标与图形变化﹣旋转,三角形的面积,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(共89分)18.(16分)①计算:②解方程:.考点:解分式方程;分式的加减法.专题:计算题.分析:①原式利用同分母分式的减法法则计算,约分即可得到结果;②分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:①原式===2;②方程两边同乘以5x(x﹣6),得10x=4x﹣24,解得x=﹣4,经检验x=﹣4是分式方程的解.点评:此题考查了解分式方程,以及分式的加减法,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(8分)如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.考点:全等三角形的判定.专题:证明题.分析:由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.解答:证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(8分)如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)考点:作图—复杂作图.专题:作图题.分析:(1)分别以B、C为圆心,大于BC的一半为半径画弧,两弧交于点M、N,MN 就是所求的直线;(2)以点C为圆心,任意长为半径画弧,交AC,BC于两点,以这两点为圆心,大于这两点的距离为半径画弧,交于一点E,作射线CE交AB于D即可.解答:解:如图所示:点评:考查三角形角平分线及边垂直平分线的画法;掌握角平分线与线段垂直平分线的作法是解决本题的关键.21.(8分)某学习小组10名学生的某次数学测验成绩统计表如下:成绩(分)60 70 80 90人数(人) 1 3 x 4(1)填空:①x=2;②此学习小组10名学生成绩的众数是90;(2)求此学习小组的数学平均成绩.考点:众数;加权平均数.分析:(1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;(2)根据平均数的计算公式分别进行计算即可.解答:解:(1)①∵共有10名学生,∴x=10﹣1﹣3﹣4=2;②∵90出现了4次,出现的次数最多,∴此学习小组10名学生成绩的众数是90;故答案为:2,90;(2)此学习小组的数学平均成绩是:=(60+3×70+2×80+4×90)=79(分).点评:此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.22.(8分)已知一次函数y=kx+b的图象经过点(1,3)和点(2,5),求k和b的值.考点:待定系数法求一次函数解析式.分析:设该一次函数解析式为y=kx+b(k≠0).把已知点的坐标代入函数解析式,可以列出关于系数k、b的方程组,通过解该方程组可以求得它们的值.解答:解:设该一次函数解析式为y=kx+b(k≠0).由题意,得解得,即k和b的值分别是2和1.点评:本题考查了待定系数法求一次函数解析式.注意:求正比例函数,只要一对x,y 的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.23.(8分)某校举行英语演讲比赛,准备购买30本笔记本作为奖品,已知A、B两种笔记本的价格分别是12元和8元.设购买A种笔记本x本.(1)购买B种笔记本(30﹣x)本(用含x的代数式表示);(2)设购买这两种笔记本共花费y元,求y元与x的函数关系式,并求出y的最大值和最小值.考点:一次函数的应用.分析:(1)根据一共准备购买30本笔记本作为奖品,可知购买B种笔记本的数量=30﹣购买A种笔记本的数量;(2)先由购买这两种笔记本共花费的钱数=购买A种笔记本花费的钱数+购买B种笔记本花费的钱数,求出y元与x的函数关系式,再由自变量的取值范围,根据一次函数的增减性,即可求得答案.解答:解:(1)∵某校举行英语演讲比赛,准备购买30本笔记本作为奖品,其中购买A 种笔记本x本,∴购买B种笔记本(30﹣x)本.(2)y=12x+8(30﹣x)=4x+240,∵k=4>0,∴y随x的增大而增大,又∵0≤x≤30,∴当x=0时,y的最小值为240,当x=30时,y的最大值为360.故答案为(30﹣x).点评:本题考查的是用一次函数解决实际问题,此类题是近年2015届中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数值y随x的变化,结合自变量的取值范围确定最值.24.(8分)已知正比例函数y=x和反比例函数的图象都经过点A(3,3).(1)直接写出反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求平移的距离.考点:反比例函数与一次函数的交点问题;一次函数图象与几何变换.分析:(1)把A的坐标代入反比例函数的解析式求出即可;(2)把B的坐标代入反比例函数的解析式求出B的坐标,设平移后的直线的解析式为y=x+b,把B的坐标代入求出即可.解答:解:(1);(2)点B(6,m)在反比例函数的图象上,m=1.5,平移后的直线的解析式为y=x+b,y=x+b的图象过点B,把B的坐标代入得:1.5=6+b,解得:b=﹣4.5,∴平移的距离为4.5.点评:本题考查了用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的理解能力和计算能力.25.(12分)如图1,四边形ABCD,AEFG都是正方形,E、G分别在AB、AD边上,已知AB=4.(1)求正方形ABCD的周长;(2)将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°)时,如图2,求证:BE=DG.(3)将正方形AEFG绕点A逆时针旋转45°时,如图3,延长BE交DG于点H,设BH与AD的交点为M.①求证:BH⊥DG;②当AE=时,求线段BH的长(精确到0.1).考点:四边形综合题.分析:(1)根据正方形的周长定义求解;(2)根据正方形的性质得AB=AD,AE=AG,在根据旋转的性质得∠BAE=∠DAG=θ,然后根据“SAS”判断△BAE≌△DAG,则BE=DG;(3)①由BAE≌△DAG得到∠ABE=∠ADG,而∠AMB=∠DMH,根据三角形内角和定理即可得到∠DHM=∠BAM=90°,则BH⊥DG;②连结GE交AD于点N,连结DE,由于正方形AEFG绕点A逆时针旋转45°,AF与EG 互相垂直平分,且AF在AD上,由AE=可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出DG=,则BE=,解着利用S△DEG=GE•ND=DG•HE可计算出HE=,所以BH=BE+HE=≈5.1.解答:(1)解:正方形ABCD的周长=4×4=16;(2)证明:∵四边形ABCD,AEFG都是正方形,∴AB=AD,AE=AG,∵将正方形AEFG绕点A逆时针旋转θ(0°<θ<90°),∴∠BAE=∠DAG=θ,在△BAE和△DAG,,∴△BAE≌△DAG(SAS),∴BE=DG;(3)①证明:∵△BAE≌△DAG,∴∠ABE=∠ADG,又∵∠AMB=∠DMH,∴∠DHM=∠BAM=90°,∴BH⊥DG;②解:连结GE交AD于点N,连结DE,如图,∵正方形AEFG绕点A逆时针旋转45°,∴AF与EG互相垂直平分,且AF在AD上,∵AE=,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,DG==;∴BE=,∵S△DEG=GE•ND=DG•HE,∴HE==,∴BH=BE+HE=+=≈5.1.点评:本题考查了四边形的综合题:熟练掌握正方形的性质和旋转的性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和等腰直角三角形的性质进行几何计算.26.(13分)已知:直线l1与直线l2平行,且它们之间的距离为2,A、B是直线l1上的两个定点,C、D是直线l2上的两个动点(点C在点D的左侧),AB=CD=5,连接AC、BD、BC,将△ABC沿BC折叠得到△A1BC.(1)求四边形ABDC的面积.(2)当A1与D重合时,四边形ABDC是什么特殊四边形,为什么?(3)当A1与D不重合时①连接A1、D,求证:A1D∥BC;②若以A1,B,C,D为顶点的四边形为矩形,且矩形的边长分别为a,b,求(a+b)2的值.考点:四边形综合题.专题:综合题.分析:(1)根据平行四边形的判定方法可得到四边形ABCD为平行四边形,然后根据平行四边形的面积公式计算;(2)根据折叠的性质得到AC=CD,然后根据菱形的判定方法可判断四边形ABDC是菱形;(3)①连结A1D,根据折叠性质和平行四边形的性质得到CA1=CA=BD,AB=CD=A1B,∠1=∠CBA=∠2,可证明△A1CD≌△A1BD,则∠3=∠4,然后利用三角形内角和定理得到得到∠1=∠4,则根据平行线的判定得到A1D∥BC;②讨论:当∠CBD=90°,则∠BCA=90°,由于S△A1CB=S△ABC=5,则S矩形A1CBD=10,即ab=10,由BA1=BA=5,根据勾股定理得到a2+b2=25,然后根据完全平方公式进行计算;当∠BCD=90°,则∠CBA=90°,易得BC=2,而CD=5,所以(a+b)2=(2+5)2.解答:解(1)∵AB=CD=5,AB∥CD,∴四边形ABCD为平行四边形,∴四边形ABDC的面积=2×5=10;(2)∵四边形ABDC是平行四边形,∵A1与D重合时,∴AC=CD,∵四边形ABDC是平行四边形,∴四边形ABDC是菱形;(3)①连结A1D,如图,∵△ABC沿BC折叠得到△A1BC,∴CA1=CA=BD,AB=CD=A1B,在△A1CD和△A1BD中∴△A1CD≌△A1BD(SSS),∴∠3=∠4,又∵∠1=∠CBA=∠2,∴∠1+∠2=∠3+∠4,∴∠1=∠4,∴A1D∥BC;②当∠CBD=90°,∵四边形ABDC是平行四边形,∴∠BCA=90°,∴S△A1CB=S△ABC=×2×5=5,∴S矩形A1CBD=10,即ab=10,而BA1=BA=5,∴a2+b2=25,∴(a+b)2=a2+b2+2ab=45;当∠BCD=90°时,∵四边形ABDC是平行四边形,∴∠CBA=90°,∴BC=2,而CD=5,∴(a+b)2=(2+5)2=49,∴(a+b)2的值为45或49.点评:本题考查了四边形综合题:熟练掌握平四边形的判定与性质以及特殊平行四边形的判定与性质;会运用折叠的性质确定相等的线段和角.四、附加题(每小题0分,共10分)友情提示:请同学们做完上面考题后,估计一下你的得分情况.如果你全卷得分低于60分(及格线),则本题的得分将计入全卷总分.但计入后全卷总分最多不超过60分;如果你全卷得分已经达到或超过60分.则本题的得分不计入全卷总分.27.=.考点:分式的加减法.专题:计算题.分析:原式利用同分母分式的减法法则计算即可得到结果.解答:解:原式==.故答案为:点评:此题考查了分式的加减法,熟练掌握同分母分式的减法法则是解本题的关键.28.在平面直角坐标系中,直线y=x+1与y轴的交点坐标是(0,1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据y轴上点的坐标特征得到直线y=x+1与y轴的交点的横坐标为0,然后把x=0代入直线解析式求出对应的y的值即可.解答:解:把x=0代入y=x+1得y=1,所以直线y=x+1与y轴的交点坐标是(0,1).故答案为0,1.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了y轴上点的坐标特征.。
华师大版数学八年级下册期末数学试卷及答案.doc
若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
期末数学试卷、选择题1.函数 y = x 的自变量 x 的取值范围是 ( ) x -2 A .x ≥0且 x ≠ 2 B .x ≥ 0 C .x ≠ 2D .x>22. H7N9 禽流感病毒颗粒有多种形状,其中球形直径约为 记数法表示为 ( A . 0.1 ×10-7C . 0.1 ×10-63.已知点 P (x ,3-x )在第二象限,则 x 的取值范围为 A .x <0 B .x <3 C .x > 3 D .0<x < 3 4. 2016 年欧洲杯足球赛中,某国家足球队首发上场的A .180,182 C . 182,182 D . 5.如图,在平行四边形 A . ∠ 1=∠ 2B . C. D . B . ∠ BAD =∠ BCD AB =CDAC ⊥BD 180, 180 3,2 ABCD 中,下列结论中错误的是( 6.已知分式 第 8 题图x -1)( x +2)的值为 0,那么 x 的值是 ( x 2-1A .20B .24C . 28D .40A .- 1B . -2C .1D .1 或- 2) B .1×10-7D .1×10 -60.0000001m. 将 0.0000001 用科学 身高 (cm) 176 178 180 182 186188 192 人数 1 2 3 2 1 1111 名队员身高如下表: 则这 11名队员身高的众数和中位数分别是 (单位: cm )( )49.如图,函数 y =- x 与函数 y =- x 的图象相交于 A ,B 两点,过 A ,B 两点分别作 y 轴的x垂线,垂足分别为点 C , D ,则四边形 ACBD 的面积为 ( )10.如图,正方形 ABCD 中, AB =3,点 E 在边 CD 上,且 CD =3DE.将△ADE 沿 AE 对折至△ AFE ,延长 EF 交边 BC 于点 G ,连接 AG ,CF.下列结论:①点 G 是 BC 中点;② FG =9FC ;③ S △FGC =10.其中正确的是 ( )A .①②B .①③C .②③D .①②③、填空题11.化简:(x 2-9)·x -13= ______k12.若点 (- 2,1)在反比例函数 y =x 的图象上,则该函数的图象位于第 ______ 象限.x 13.一组数据 5,- 2,3,x ,3,- 2,若每个数据都是这组数据的众数,则这组数据的平均数是 ______ .14.如图,在矩形纸片 ABCD 中,AB =12,BC =5,点 E 在AB 上,将 △DAE 沿DE 折叠, 使点 A 落在对角线 BD 上的点 A ′处,则 AE 的长为 ______ .第 14 题图 第 18 题图15.直线 y = 3x + 1 向右平移 2 个单位,再向下平移 3 个单位得到的直线解析式为x - 3 ≥0,16.一组数据 3,4,6,8,x 的中位数是 x ,且 x 是满足不等式组 的整数,则这组 5- x > 0数据的平均数是 _______ .17.为了创建园林城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运 10趟可完成.已知甲、乙两车单独运完此堆垃圾,乙车所运的趟数是甲车的 2 倍, 则甲车单独运完此堆垃圾需要运的趟数为 __________ .18.甲、乙两地相距 50 千米,星期天上午 8:00 小聪同学在父亲陪同下骑山地车从甲地前往乙地 .2 小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地, 他们行驶的路程 y(千第 10 题图米)与小聪行驶的时间 x(小时 )之间的函数关系如图所示,小明父亲出发 ______ 小时,行进中 的两车相距 8 千米.三、解答题19.计算或解方程:1 - 2(1) -22+ 13 -|- 9|-( π-2016)0;x2- 1 x + 1120.先化简: 2x ÷x +1·x - 1 ,然后 x 在-1,0,1,2 四个数中选一个你认为合适的x - 2x + 1 x x数代入求值.21.如图,四边形 ABCD 是平行四边形,点 E , F 是对角线 BD 上的点,∠ 1=∠ 2.求证: (1) BE = DF ; (2) AF ∥ CE .22.如图,在平面直角坐标系中,直线 y =2x +b(b <0)与坐标轴交于 A ,B 两点,与双曲线 y =k x (x >0)交于 D 点,过点 D 作 DC ⊥x 轴,垂足为 C ,连接 OD.已知△ AOB ≌△ ACD .x (1) 如果 b =- 2,求 k 的值;(2) 试探究 k 与 b 的数量关系,并求出直线 OD 的解析式.(2) 2+x + 2-x16 =x 2-4=-1.23.)我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出 5 名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85100(3)计算两队决赛成绩的方差并判断哪一个代表队选手的成绩较为稳定.24.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家 1 小时50 分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(千米)与小明离家的时间x(小时)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25 分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD 所在直线的函数解析式.25.如图,在Rt△ABC 中,∠ ACB=90°,过点C 的直线MN∥AB,D 为AB 边上一点,过点 D 作DE ⊥BC,交直线MN 于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当 D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3) 若 D 为AB 中点,则当∠ A 为多少度时,四边形BECD 是正方形?请说明你的理由.、选择题1. A 2.B 3.A 4.B 5.D 6.B 7.D 8.A 9.D10.B 解析:∵四边形 ABCD 是正方形,∴ AB =AD =DC =3,∠ B =D =90°.∵CD = 3DE ,∴DE =1,则CE =2.∵△ADE 沿AE 折叠得到 △AFE ,∴DE =EF =1,AD =AF ,∠D =∠ AFE = 90°,∴∠ AFG =90°,AF =AB.在 Rt △ABG 和 Rt △ AFG 中,∴Rt △ABG ≌Rt △AFG (HL ),∴BG =FG ,∠AGB =∠AGF.设 BG = x ,则 CG =BC -BG =3 -x ,GE = GF +EF =BG +DE =x + 1.在 Rt △ECG 中,由勾股定理得CG 2+ CE 2=EG 2.即(3 -x )2+22=(x +1)2,解得 x = 1.5,∴ BG =GF =CG =1.5,①正确,②不正确.∵△ CFG 和 △CEG 中,分别把 FG 和 GE 看作底边,则这两个三角形的高相同.1 39∵ S △GCE = ×1.5 ×2= 1.5 ,∴ S △ CFG = ×1.5=,③正确.故选2 5 10二、填空题1011. x +3 12.二、四 13.2 14. 3 15.y =3x -8 16.5 17.152418.32或 34 解析:由图可知,小聪及父亲的速度为 36÷3=12(千米 /时), 33小明的父亲速度为 36÷(3- 2)= 36(千米 /时).设小明的父亲出发 x 小时两车相距 8 千米,则小聪及父亲出发的时间为 (x +2)小时 根据题意,得 12( x + 2)- 36x = 8 或 36x -12(x +2)=8,24解得 x = 23或 x = 43,24 所以,出发 23或43小时时,行进中的两车相距 8 千米. 3319.解: (1)原式=- 4+ 9-3-1=1.(2)方程的两边同乘 (x -2)(x +2),得- (x +2)2+ 16=4- x 2,解得 x =2. 检验:当 x =2 时, (x -2)(x +2)=0,所以原方程无解.(x +1)( x -1) x x 2- 120.解:原式=( x - 1) 2 ·x + 1·x∵x - 1≠0,x + 1≠0, x ≠0,∴ x ≠1,x ≠-1,x ≠0,∴在- 1,0,1,2 四个数中,使原式有意义的值只有 2, ∴当 x = 2 时,原式= 2+1= 3.参考答案AG =AG ,AB =AF , B.S △CFG =FG =1.5S △CEG =GE =2.53, 解答题x ·(x +1)x( x -1)=x +1. x - 1 x21.证明: (1)∵四边形 ABCD 为平行四边形, ∴AB =CD ,AB ∥CD ,∴∠ ABE =∠ CDF .∵∠ 1=∠ 2,∴∠ AEB =∠ CFD .∠ ABE =∠ CDF ,在△ABE 与△CDF 中, ∠ AEB =∠ CFD ,AB =CD ,∴△ ABE ≌△ CDF , ∴BE =DF.(2)∵△ ABE ≌△ CDF ,∴ AE =CF.∵∠ 1=∠ 2,∴ AE ∥ CF ,∴四边形 AECF 为平行四边形,∴ AF ∥ CE.22.解: (1)当 b =- 2时, y =2x - 2.令y =0,则 2x - 2= 0,解得 x =1; 令 x =0,则 y =- 2,∴ A (1, 0), B (0 ,- 2).∵△AOB ≌△ACD ,∴CD =OB ,AO =AC ,∴点 D 的坐标为 (2,2). k ∵点 D 在双曲线 y =kx (x>0)的图象上,∴ k = 2×2= 4.xb(2)直线 y = 2x +b 与坐标轴交点的坐标为 A-b 2,0,B (0, b ). ∵△AOB ≌△ACD ,∴CD=OB ,AO =AC ,∴点 D 的坐标为 (-b ,-b ).k∵点 D 在双曲线 y =x ( x >0)的图象上,∴ k =(-b )·(-b )=b 2.即 k 与 b 的数量关系为 k = b 2.23.解: (1)从左到右,从上到下,依次为 85, 85,80(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同 的情况下,中位数高的初中部成绩好些.11(3)∵s 2初=5[(75- 85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]= 70,s 2高=5[(70 -85)2 +(100-85)2+(100-85)2+(75-85)2+(80-85)2] =160,∴s 2初 < s 2高,∴初中代表队选手的成绩较为稳定.24.解: (1)20 1÷=20(千米 /时),2-1=1(小时 ), 即小明的骑车速度为 20 千米 /时,在南亚所游玩的时间为 1 小时.(2)从南亚所到湖光岩的路程为 20×2650-6100 =5(千米 ),20+5=25(千米 ),161+2605=49(小9时),则点 C 的坐标为 4,25 .925= k +b , 4 解得110= 6k +b ,k = 60,故 CD 所在直线的解析式为 y = 60x -110. b =- 110.25. (1)证明:∵ DE ⊥BC ,∴∠ DFB =90°. 又∵∠ ACB =90°,∴ AC ∥DE.设直线 CD 的解析式为9 11y =kx +b ,把点 4,25, 6 ,0 代入得∵AD ∥CE,∴四边形ADEC 为平行四边形,∴ CE=AD.(2) 解:当 D 在AB 中点时,四边形BECD 为菱形.理由如下:∵D 为AB 中点,∴ AD =BD.∵CE=AD,∴ CE=BD.∵CE ∥BD,∴四边形BDCE 为平行四边形.∵DE ⊥CB,∴四边形BECD 为菱形.(3) 解:若 D 为AB 中点,当∠ A=45°时,四边形BECD 为正方形.理由如下:由(2) 得四边形BECD 为菱形.∵∠ A=45°,∠ ACB =90°,∴∠ ABC=90°-45°=45°,∴△ ACB为等腰直角三角形.∵D 为AB 中点,∴∠ CDB =90°,∴四边形BECD 为正方形.。
华师大版2016年八年级下册数学期末压轴题集锦
华师大版初二年下册综合压轴题1.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( )A .1B .1-C .2D .2- 2. 如图,点P 是反比例函数xy 6=(0>x )的图象上的 任意一点,过点P 分别作两坐标轴的垂线,与坐标轴构 成矩形OAPB ,点D 是矩形OAPB 内任意一点,连接DA 、 DB 、DP 、DO ,则图中阴影部分的面积是 ( ) A .1 ; B . 2; C .3; D . 4.3.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( ) A .1 B .1- C .2 D .2-4. 观察下列等式:n a =1,1211a a -=,2311a a -=,…;根据其蕴含的规律可得( ).A. n a =2013B. n n a 12013-=C. 112013-=n aD. na -=112013 5.设函数x y 3=与1y x =-的图象的交点坐标为(a ,b ),则11a b-的值为( )A .3-B .3C .31-D .316.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程()s km 与所花时间()min t之间的函数关系,下列说法错误的...是( ). A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100/m min D .公交车的速度是350/m min7.如图所示,一只小虫在折扇上沿O →A →B →O 路径爬行,能大致描述小虫距出发点O 的距离s 与时间t 之间的函数图象是 ( )8.小华的爷爷每天坚持体育锻炼,某天他慢步..到离家较远的绿岛 公园,打了一会儿太极拳后跑步..回家.下面能反映当天小华的 爷爷离家的距离y 与时间x 的函数关系的大致图象是( ).第2题9.函数y=ax+a 与y =)0(x ≠a a在同一直角坐标系中的图象可能是( )10.观察图中菱形四个顶点所标的数字规律,可知数2013应标在( ).A .第503个菱形的上方B .第503个菱形的下方C .第504个菱形的左方D .第504个菱形的右方 二、填空题1、如图,在Rt△ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF,若平移距离为2,则四边形ABED 的面积等于 .2、如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点P 是AB 上的任意一点,作PD ⊥AC 于点D ,PE ⊥CB 于点E ,连结DE ,则DE 的最小值为 .3、如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F .则四边形OMPN 的面积为 ,AF BE 的值 .4.如图,正方形ABCD 中,M 是BC 上的中点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若CM=2,则AG= .5.如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB 连续作旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)、…, (1)△AOB 的面积是 ;yx y y x y o o x o x o D.C. B. A. x14106214859121613371115第1个 菱形 第2个 菱形 第3个 菱形 第4个 菱形EF P NBM AxyO(2)三角形(2013)的直角顶点的坐标是____ __ .6.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为a 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C —D —A —……的规律紧绕在四边形ABCD 的边上. (1)当12=a 时,细线另一端所在位置的点的坐标是 ; (2)当2013=a 时,细线另一端所在位置的点的坐标是 .7. 如图6,在正方形ABCD 中,2AB = cm , 对角线AC 、BD交于点O ,点E 以一定的速度从A 向B 移动,点F 以相同的速度 从B 向C 移动,连结OE 、OF 、EF . ⑴△AOE ≌△ ;⑵线段EF 的最小值是 cm .8.如图,OC 平分∠AOB ,点P 是OC 上一点,PM ⊥OB 于点M ,点N 是射线OA 上的一个动点..,若PM=5,则PN 的最小值为 .A9.如图,以点O 为圆心,任意长为半径画弧,与射线OP 交于点A ,再以点A 为圆心,OA长为半径画弧,两弧交于点B ,画射线OB ,则∠AOB= 度. 10.如图,直线b kx y +=与双曲线xmy =交于A(2-,1-)、B(1,n )两点,则: (1)=m ,=n ; (2)当0<-+xmb kx 时,x 的取值范围为 . 11.在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.,M PNO (第15题)AB C(第16题)A BP OAByOx(第17题)F O DC BAE图6(第17题)A O xyD CB ←→ ↓ ↑ 第16题 第17题你添加的条件是(写出一种即可) .12.表1给出了直线1l 上部分点(x ,y )的坐标值,表2给出了直线2l 上部分点(x ,y )的坐标值.(1)直线1l 与y 轴的交点坐标是 ;(2)直线1l 、2l 与y 轴围成的三角形的面积等于 .13.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3㎝,则CD= ㎝;14.如图,大正方形ADEF 与一个小正方形BCDG 并排放在一起,大正方形ADEF 的边长cm AF 8=.则直线BD 、AE 的位置关系是 ;∆ABE 的面积为2cm .15.在一次函数12+=x y 中,(1)y 随x 的增大而 (填“增大”或“减小”);(2)点),(11y x A 、),(22y x B 是一次函数12+=x y 图象上不同..的两点, 若))((2121y y x x t --=,则t 0.(用“≤、≥、>、<、=”符号表示)16.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连接AF 和CE ,则可以判定四边形AFCE 的形状是____________. 17.如图,在平面直角坐标系xoy 中,分别平行x 轴、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,求(1)线段OA 的长为 ;(2)若在直线a 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是 .b a yxA O(第16题图) A ay b第16题图 第17题第17题图αABC DE18.如图,某公园有一块菱形草地ABCD ,它的边及对角线AC 是小路,若AC 的长为m 16,边AB 的长为m 10,妈妈站在AC 的中点O 处, 亮亮沿着小路C B A D C →→→→跑步,在跑步过程中,亮亮与 妈妈之间的最短距离为m ______.19.把一副三角板放置在如图所示的位置,若把DCE ∆绕点C 按逆时针方向旋转,旋转的角度为α(α<︒0<180°), (1)若要使得DE ∥AB ,则_____=α度;(2)若要使得DCE ∆中有一条边所在的直线与AB 垂直,则_____=α度. 三、解答题1.(9分)供电局的电力维修工甲、乙两人要到30千米远的A 地进行电力抢修.甲骑摩托车先行,41小时后乙开抢修车载着所需材料出发,结果甲、乙两人同时到达.已知抢修车的速度是摩托车的1.5倍,求摩托车的速度.(1)设摩托车的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格) 速度(千米/时) 所走的路程(千米) 所用时间(时)摩托车 x30 抢修车30(2)列出方程,并求摩托车的速度.2.(13分)如图,已知△ABC 为等边三角形,CF ∥AB ,点P 为线段AB 上任意一点 (点P 不与A 、B 重合),过点P 作PE ∥BC ,分别交AC 、CF 于G 、E . (1)四边形PBCE 是平行四边形吗?为什么? (2)求证:CP=AE ;(3)试探索:当P 为AB 的中点时,四边形APCE 是什么样的特殊四边形?并说明理由。
华师大版八年级下册数学期末测试卷及含答案
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,则直线y=kx﹣k一定经过的象限是()A.第一、三、四象限B.第一、二、四象限C.第一、四象限D.第二、三象限2、下列各组的分式不一定相等的是()A. 与B. 与C. 与D. 与3、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A.1个B.2个C.3个D.4个4、在平面直角坐标系中,点(1,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限5、一艘游船在同一航线上往返于甲、乙两地,已知游船在静水中的速度为15km/h,水流速度为5km/h.游船先从甲地逆水航行到乙地,在乙地停留一段时间后,又从乙地顺水航行返回到甲地,设游船航行的时间为t(h),离开甲地的距离为s(km),则s与t之间的函数关系用图象表示大致是()A. B. C. D.6、如图,点在反比例函数的图象上,点在轴上,且,直线与双曲线交于点,则(n 为正整数)的坐标是()A. B. C. D.7、下列命题中,真命题是A.两对角线相等的四边形是矩形B.两对角线互相垂直的四边形是菱形 C.两对角线互相垂直平分且相等的四边形是正方形 D.一组对边相等另一组对边平行的四边形是平行四边形8、下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形9、若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.610、若函数y= ,当x>0时,y随x的增大而减小,则k的取值范围是()A.k>1B.k>0C.k≥1D.k<111、如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为C.5min~20min,王阿姨步行速度由慢到快 D.曲线段AB的函数解析式为12、今年余姚市上半年接待国内外游客650多万人次,实现旅游总收入61亿元,其中,61亿用科学记数法表示是()A. B. C. D.13、已知:如图,在平行四边形ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,则ED的长为( )A.4B.3C. D.214、八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A. B. C. D.15、二亿七千零九写作(),省略亿位后面的尾数约是()A.200007009;2亿B.20007009;2亿1千万C.20007009;2亿 D.20000709;2亿1千万二、填空题(共10题,共计30分)16、对于正比例函数y=m, y的值随x的值增大而减小,则m的值为________17、为了提高居民的节水意识,今年调整水价,不仅提高了每立方的水价,还施行阶梯水价.图中的和分别表示去年和今年的水费(元)和用水量()之间的函数关系图象.如果小明家今年和去年都是用水150 ,要比去年多交水费________元.18、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.19、如图,三个边长均为2的正方形重叠在一起,O1, O2是其中两个正方形的对角线交点,若把这样的n个小正方形按如图所示方式摆放,则重叠部分的面积为________.20、小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离(米)与小明出发的时间(分)之间的关系,则小明出发________分钟后与爸爸相遇.21、在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为________.22、在直角坐标系中,O是坐标原点,正方形OABC的顶点A恰好落在双曲线(x>0)上,且OA与x轴正方向的夹角为30°.则正方形OABC的面积是________.23、在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为________.24、已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为________.25、反比例函数y1= (a>0,a为常数)和y2= 在第一象限内的图象如图所示,点M在y2= 的图象上,MC⊥x轴于点C,交y1= 的图象于点A;MD⊥y轴于点D,交y1= 的图象于点B,当点M在y2= 的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积为2﹣a;③当a=1时,点A是MC的中点;④若S四边形OAMB =S△ODB+S△OCA,则四边形OCMD为正方形.其中正确的是________.(把所有正确结论的序号都填在横线上)三、解答题(共5题,共计25分)26、解分式方程: ﹣=1.27、如图,A(1,0),B(4,0),M(5,3).动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线l:y=﹣x+b也随之移动.设移动时间为t秒.(1)当t=1时,求l的解析式;(2)若l与线段BM有公共点,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在y轴上.28、如果实数x满足,求代数式的值29、已知:,,求的值.30、我市某一周各天的最高气温统计如下表:最高气温(℃)25 26 27 28天数 1 1 2 3(1)写出这组数据的中位数与众数;(2)求出这组数据的平均数.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、B6、D7、C8、D9、B10、A11、C12、C13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
华师版八年级数学下册期末复习综合题含答案
华师版八年级数学下册期末复习综合题含答案第16章三、解答题(本大题共8小题,共72分) 17.(10分)计算:(1)|-2|+⎪⎪⎪⎪⎪⎪13 -1×(π-2 )0-9 +(-1)-2;解:原式=2+3×1-3+1=3.(2)⎝ ⎛⎭⎪⎫a 2b -cd 3 3 ÷2ad 3 · ⎝⎛⎭⎪⎫c 2a 3 ; 解:原式=(a 2b )3(-cd 3)3 ·d 32a ·c 3(2a )3=-a 6b 3c 3d 9 ·d 32a ·c 38a 3 =-a 2b 316d 6.(3)⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝ ⎛⎭⎪⎫4a -1 . 解:原式=⎣⎢⎡⎦⎥⎤a -1(a -2)2-a +2a (a -2) ÷4-aa =a (a -1)-(a -2)(a +2)a (a -2)2 ·a4-a=a 2-a -a 2+4a (a -2)2·a4-a=1(a -2)2. 18.(6分)解方程:(1)(广安中考)23 +x 3x -1 =19x -3 ;解:方程两边同乘以3(3x -1)去分母, 得2(3x -1)+3x =1,解这个整式方程得x =13 ,经检验,x =13 是原方程的增根,所以原方程无解.(2)2x 2-4 +x x -2=1. 解:方程两边同时乘以(x +2)(x -2), 得2+x (x +2)=x 2-4. 2+x 2+2x =x 2-4.x =-3.经检验,x =-3是原分式方程的解. 19.(8分)先化简再求值:(1)aa -b ⎝ ⎛⎭⎪⎫1b -1a +a -1b ,其中a =2,b =13; 解:原式=aa -b·a -b ab +a -1b=1b +a -1b =a b. 当a =2,b =13 时,原式=213=6.(2)x 2x 2-1 ÷⎝⎛⎭⎪⎫1x -1+1 ,其中x 是5 的整数部分. 解:原式=x 2(x +1)(x -1) ·x -1x =xx +1.∵x 是5 的整数部分,∴x =2.当x =2时,原式=22+1 =23.20.(8分)已知分式(m -1)(m -3)m 2-3m +2 ,试问: (1)当m 为何值时,分式有意义? (2)当m 为何值时,分式值为0.解:(1)由题意得m 2-3m +2≠0,解得m ≠1且m ≠2. (2)由题意得(m -1)(m -3)=0,m 2-3m +2≠0,解得m =3, 当m =3时,分式值为0.21.(8分)已知|2a -b +1|+⎝ ⎛⎭⎪⎫3a +32b 2 =0,求代数式b 2a +b ÷⎝ ⎛⎭⎪⎫a a -b -1 ·⎝ ⎛⎭⎪⎫a -a 2a -b 的值. 解:化简代数式得原式=b 2a +b ÷a -(a -b )a -b ·a (a -b )-a 2a -b=b 2a +b ·a -b b ·-ab a -b =-ab 2a +b.由题意得a =-14 ,b =12 ,∴原式=--14×⎝ ⎛⎭⎪⎫122-14+12 =14 .22.(10分)按下列要求完成各题.(1)已知实数a ,b 满足关系1a +b +1a -b =b a 2-b 2 ,求2ab +b 2a 2的值;解:由1a +b +1a -b =2a a 2-b 2 =ba 2-b 2 可得b =2a ,将b =2a 代入2ab +b 2a 2 =2a ·2a +(2a )2a2=8. (2)如果3(x +1)(x -2) =A x +B x +1 +C x -2,求A ,B ,C 的值.解:Ax +B x +1 +C x -2 =(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B(x +1)(x -2)=3(x +1)(x -2), ∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3, ∴⎩⎪⎨⎪⎧A =0,B =-1,C =1.23.(10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2 000元要多,多出的部分能购买25副乒乓球拍. (1)若每副乒乓球拍的价格为x 元,请你用含x 的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用; (2)若购买的两种球拍数一样,求x . 解:(1)(4 000+25x )元;(2)由题意得2 000x =2 000+25x x +20 ,解得x =±40,经检验,x =±40都是原方程的解,但x>0,∴x =40.24.(12分)(德阳中考)今年南方某地发生特大洪灾,政府为了尽快搭建板房安置灾民,给某厂下达了生产A 种板材48 000 m 2和B 种板材24 000 m 2的任务.(1)如果该厂安排210人生产这两种板材,每人每天能生产A 种板材60 m 2或B种板材40 m 2,请问:应分别安排多少人生产A 种板材和B 种板材,才能确保同时完成各自的生产任务?(2)某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:问这400解:(1)设x 人生产A 种板材,根据题意得48 00060x =24 00040(210-x ) ,解得x =120.经检验,x =120是分式方程的解.210-120=90. 故安排120人生产A 种板材,90人生产B 种板材, 才能确保同时完成各自的生产任务;(2)设生产甲种板房y 间,乙种板房(400-y )间, 安置人数为12y +10(400-y )=2y +4 000, 根据题意得{108y +156(400-y )≤48 000,61y +51(400-y )≤24 000,解得300≤y ≤360,因为2大于零,所以当y =360时安置的人数最多.360×2+4 000=4 720.故最多能安置4 720人.第17章三、解答题(本大题共8小题,共72分) 17.(10分)已知一次函数y =(3+m )x +n -6.(1)当m ,n 为何值时,函数的图象过原点?(2)当m ,n 满足什么条件时,函数的图象经过第一、二、三象限? 解:(1)依题意得{3+m ≠0,n -6=0, 得m ≠-3且n =6.(2) ∵该函数图象经过第一、二、三象限, ∴{3+m>0,n -6>0, 解得m>-3且n>6.18.(6分)判断A (-2,-5),B (3,5),C (7,13)三点是否在一条直线上,并说明理由.解:A ,B ,C 三点在同一条直线上,设经过A ,B 两点的直线表达式是y =kx +b (k ≠0), ∴{-5=-2k +b ,5=3k +b , ∴{k =2,b =-1. ∴y =2x -1,当x =7时,y =2×7-1=13,∴点C 在直线AB 上,即A ,B ,C 三点在同一条直线上. 19.(8分)已知直线y =2x +3与直线y =-2x -1. (1)若两直线与y 轴分别交于点A ,B ,求点A ,B 的坐标; (2)求两直线的交点C 的坐标; (3)求△ABC 的面积.解:(1)对于y =2x +3,令x =0, 则y =3.∴点A 的坐标为(0,3).对于y =-2x -1,令x =0,则y =-1.∴点B 的坐标为(0,-1). (2)解方程组{y =2x +3,y =-2x -1, 得{x =-1,y =1. ∴点C 的坐标为(-1,1).(3)△ABC 的面积为12×[3-(-1)]×|-1|=2.20.(8分)如图,已知某电路的电压U (V)、电流I (A)、电阻R (Ω)三者之间有如下关系式:U =IR ,且该电路的电压U 恒为220 V . (1)求出电流I 关于电阻R 的函数表达式;(2)如果该电路的电阻为200 Ω,则通过他的电流是多少?解:(1)电流I 关于电阻R 的函数表达式是I =220R(R>0);(2)通过他的电流是220200=1.1 A .21.(8分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=m x(m ≠0)的图象交于点A (-1,6),B (a ,-2). (1)求一次函数与反比例函数的表达式; (2)根据图象直接写出y 1>y 2时,x 的取值范围.解:(1)把点A (-1,6)代入反比例函数y 2=mx(m ≠0),得m =-1×6=-6,∴y 2=-6x.将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).将A (-1,6),B (3,-2)代入一次函数y 1=kx +b , 得{-k +b =6,3k +b =-2, 解得{k =-2,b =4. ∴y 1=-2x +4.(2)由函数图象可得当y 1>y 2时,x<-1或0<x<3.22.(10分)(泸州中考)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A ,B 两种产品共50件.已知生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1 200元.设生产A,B两种产品的总利润为y元,其中A种产品生产的件数是x.(1)写出y与x之间的函数关系式;(2)如何安排A,B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.解:(1)y=700x+1200(50-x),即y=-500x+60000;(2)由题意得{9x+4(50-x)≤380,3x+10(50-x)≤290,解得30≤x≤36,y=-500x+60000,y随x的增大而减小,当x=30时,y最大=45000,生产B种产品20件,A种产品30件,总利润y有最大值,y最大=45000元.23.(10分)甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车沿原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲,在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变,设甲与学校相距y甲(千米),乙与学校相距y乙(千米),甲离开学校的时间为x(分),y甲,y乙与x之间的函数图象如图所示.结合图象解答下列问题:(1)电动车的速度为__0.9__千米/分;(2)甲步行所用的时间为__45__分钟;(3)求乙返回到学校时,甲与学校相距多远.解:甲步行过程中,设y甲与x的函数关系式为y甲=kx+b,则{20k +b =18,65k +b =22.5, 解得{k =0.1,b =16, ∴y 甲=0.1x +16,当x =40时,y 甲=20. 即乙返回到学校时,甲与学校相距20千米.24.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示. (1)直接写出y 与x 之间的函数关系式; (2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?解:(1)y ={2x (0≤x ≤15),-6x +120(15<x ≤20). (2)设销售单价p (元/千克)与销售时间x (天)之间的函数关系式为p =kx +b (10≤x ≤20),把点(10,10),(20,8)代入,得{10k +b =10,20k +b =8, 解得⎩⎨⎧k =-15,b =12.∴p =-15 x +12(10≤x ≤20).当x =15时,p =-15 ×15+12=9.第10天的销售金额为2×10×10=200元, 第15天的销售金额为30×9=270元.(3)当y ≥24时,①24≤2x ≤30,解得12≤x ≤15;②24≤-6x +120<30.解得15<x ≤16.综上可知“最佳销售期”的范围是12≤x ≤16,共有5天. 对于函数p =-15 x +12(10≤x ≤20),y 随x 的值的增大而减小,故当x =12时,p 有最大值,最高单价为-15×12+12=9.6元/千克.第18章三、解答题(本大题共8小题,共72分)17.(6分)如图,在▱ABCD 的对角线AC 上取两点E 和F ,若AE =CF ,求证:∠AFD =∠CEB .证明:∵四边形ABCD 为平行四边形, ∴AD 綊BC ,∴∠DAF =∠BCE , ∵AE =CF ,∴AE +EF =CF +EF , 即AF =CE ,∴△DAF ≌△BCE , ∴∠AFD =∠CEB.18.(10分)(宿迁中考)如图,在▱ABCD 中,点E ,F 分别在边CB ,AD 的延长线上,且BE =DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG =CH .证明:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,AD ∥BC ,AD =BC ,∴∠E =∠F. 又∵BE =DF ,∴AD +DF =BC +BE ,即AF =EC.在△AGF 和△CHE 中,{∠A =∠C ,AF =CE ,∠F =∠E , ∴△AGF ≌△CHE (A.S.A.),∴AG =CH.19.(8分)如图,AB ,CD 相交于点O ,AC ∥DB ,AO =BO ,E ,F 分别是OC ,OD 的中点.求证: (1)△AOC ≌△BOD ;(2)四边形AFBE 是平行四边形.证明:(1)∵AC ∥DB ,∴∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D ,∠COA =∠DOB ,AO =BO , ∴△AOC ≌△BOD ;(2) ∵△AOC ≌△BOD ,∴CO =DO.∵E ,F 分别是OC ,OD 的中点,∴OF =12 OD ,OE =12 OC ,∴EO =FO ,又∵AO =BO ,∴四边形AFBE 是平行四边形.20.(8分)如图,▱ABCD 中,∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,点M ,N 分别为AE ,CF 的中点,连接FM ,EN ,试判断FM 和EN 的数量关系和位置关系,并加以证明.解:FM =EN ,FM ∥EN.证明如下:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∠BAD =∠DCB ,∠B =∠D , ∴∠DAE =∠AEB ,∠DFC =∠BCF.∵∠BAD 和∠DCB 的平分线AE ,CF 分别交BC ,AD 于点E ,F ,∴∠BAE =∠DAE=12 ∠BAD ,∠BCF =∠DCF =12∠DCB ,∴∠BAE=∠DCF.在△BAE和△DCF中,{∠B=∠D,AB=CD,∠BAE=∠DCF,∴△BAE≌△DCF(ASA),∴AE=CF,∠AEB=∠DFC,∴∠AEB=∠BCF,∴AE∥CF.∵点M,N分别为AE,CF的中点,∴ME∥FN,ME=FN,∴四边形MENF是平行四边形,∴FM=EN,FM∥EN.21.(8分)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连结DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.证明:(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得∠1=∠FEC.∴∠1=∠2.(2)∵∠1=∠2,∴EG=GF.∵AB∥DC,∴∠DEG=∠EGF.由折叠得EC′∥B′F,B′F=BF,∴∠B′FG=∠EGF,∴∠DEG=∠B′FG.∵DE=BF,∴DE=B′F,∴△DEG≌△B′FG,∴DG=B′G.22.(10分)如图所示,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.(1)求证:CD=AN;(2)若AC⊥DN,AN=2,MN=1,求四边形ADCN的面积.(1) 证明:∵CN ∥AB ,∴∠DAC =∠NCA , (2)在△ADM 和△CNM 中,∵{∠DAC =∠NCA ,∠AMD =∠CMN ,MA =CM , ∴△ADM ≌△CNM , ∴CN =AD , ∵CN ∥AD ,∴四边形ADCN 为平行四边形,∴CD =AN ; (2)解:∵AC ⊥DN ,MN =1,AN =2,∴AM =AN 2-MN 2 =3 ,∴S △AMN =12 AM ·MN =12 ×3 ×1=32.∵四边形ADCN 是平行四边形,∴S 四边形ADCN =4S △AMN =23 .23.(10分)如图,平行四边形ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连结EF 交BD 于点O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于点G ,当FG =1时,求AE 的长.(1) 证明:∵四边形ABCD 是平行四边形, (2)∴DC ∥AB ,∴∠OBE =∠ODF.在△OBE 与△ODF 中,{∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF , ∴△OBE ≌△ODF ,∴BO =DO.(2) 解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE.∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知,OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.24.(12分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与点B,C重合),△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC 于点E,连接BF.(1)如图①,求证:△AFB≌△ADC;(2)请判断图①中四边形BCEF的形状,并说明理由;(3)若点D在BC的延长线上,如图②,其他条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.(1)证明:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°.又∵∠FAB=∠FAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.).(2)解:四边形BCEF为平行四边形.理由如下:由(1)得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC.又∵BC∥EF,∴四边形BCEF是平行四边形.(3)解:成立,理由如下:∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠BAC-∠FAE,∠DAC=∠FAD-∠FAE,∴∠FAB=∠DAC.在△AFB和△ADC中,{AF=AD,∠BAF=∠CAD,AB=AC,∴△AFB≌△ADC(S.A.S.),∴∠AFB=∠ADC,又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE.又∵BC∥EF,∴四边形BCEF是平行四边形.第19章三、解答题(本大题共8小题,共72分)17.(10分)如图,在矩形ABCD内部,以AB为边作等边△ABE,且DE=CE,∠DEC=90°,求∠AED的度数.解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AD=BC,AE=BE,∠AEB=60°,在△ADE和△BCE中,{AD=BC,AE=BE,DE=CE,∴△ADE≌△BCE(S.S.S.),∴∠AED=∠BEC,∵∠DEC=90°,∴∠AED=(360°-90°-60°)÷2=105°.18.(6分)如图,Rt△ABC中,∠C=90°,∠A,∠B的平分线交于点O,OE ⊥BC于点E,OF⊥AC于点F,求证:四边形CEOF为正方形.证明:过O点作OG⊥AB,∵AO,BO分别平分∠CAB,∠ABC,OE⊥BC,OF⊥AC,∴OF=OE=OG.又∵∠C=90°,∴四边形CEOF为正方形.19.(8分)如图,在菱形ABCD中,F为对角线BD上一点,点E为AB延长线上一点,DF=BE,CE=CF.求证:(1)△CFD≌△CEB;(2)∠CFE=60°.证明:(1)∵四边形ABCD是菱形,∴CD=CB.在△CFD和△CEB中,{CD=CB,CF=CE,DF=BE,∴△CFD≌△CEB(S.S.S.).(2)∵△CFD≌△CEB,∴∠CDB=∠CBE,∠DCF=∠BCE.∵四边形ABCD是菱形,∴∠CBD=∠ABD.∵CD=CB,∴∠CDB=∠CBD,∴∠ABD=∠CBD=∠CBE=60°.∴∠DCB=60°,∴∠FCE=∠DCB=60°.∵CF=CE,∴∠CFE=∠CEF=60°.20.(8分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连结CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,(2)∴AB=CB,∠ABC=90°.∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∠EBC+∠FBC=90°.又∵∠ABF+∠FBC=90°,∴∠ABF=∠CBE.在△ABF和△CBE中,有{AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(S.A.S.).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°-∠BFE=135°.又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB-∠FEB=135°-45°=90°,∴△CEF是直角三角形.21.(8分)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD 的中点,射线BE交AD的延长线于点F,连结CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.(1)证明:∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC.在△BCE与△FDE中,{∠FBC=∠BFD,∠DCB=∠CDF,DE=EC,∴△BCE≌△FDE,∴DF=BC.又∵DF∥BC,∴四边形BCFD为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)解:∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB=BD2-AD2=3,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF=AB2+AF2=12 .22.(10分)如图,在△ABC中,D是BC边的中点,E,F分别在线段AD及其延长线上,CE∥BF.(1)求证:△BDF≌△CDE;(2)若BD=DF,求证:四边形BFCE是矩形.证明:(1)∵D是BC边的中点,∴BD=DC.∵CE∥BF,∴∠ECD=∠FBD.在△BDF和△CDE中,{∠FBD=∠ECD,DB=DC,∠BDF=∠CDE,∴△BDF≌△CDE(A.S.A.).(2)∵△BDF≌△CDE,∴ED=DF.又BD=CD,∴四边形BFCE是平行四边形.∵BD=DF,∴BC=EF.∴四边形BFCE是矩形.23.(10分)如图,菱形ABCD中,对角线AC,BD交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连结OF,若AC=16,BD=12,求四边形OFCD的面积.(1)证明:∵DE ∥AC ,CE ∥BD ,∴四边形OCED 为平行四边形. 又∵四边形ABCD 是菱形,∴AC ⊥BD , ∴∠DOC =90°.∴四边形OCED 为矩形; (2)解:作OH ⊥BC 于点H.∵四边形ABCD 是菱形,∴AC ⊥BD ,OD =OB =12 BD =6,OA =OC =12 AC =8.∴S △DBC =12DB ·OC =48.在Rt △OBC 中,BC =OB 2+OC 2 =10,∵CF =CO =8, ∴BF =2.∵S △OBC =12 ·BO ·OC =12 ·BC ·OH ,∴6×8=10×OH.∴OH =48,∴S △OBF =12·BF ·OH =4.8,∴S 四边形OFCD =S △DBC -S △OBF =48-4.8=43.2.24.(12分)在菱形ABCD 中,∠ABC =60°,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且CF =AE ,连结BE ,EF . (1)如图①,当E 是线段AC 的中点时,求证:BE =EF ;(2)如图②,当点E 不是线段AC 的中点,其它条件不变时,请你判断(1)中的结论:__成立__.(选填“成立”或“不成立”)(3)如图③,当点E 是线段AC 延长线上的任意一点,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD 是菱形,∴AB =BC , ∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BCA =60°, ∵E 是线段AC 的中点,∴∠CBE =∠ABE =30°,AE =CE , ∵CF =AE ,∴CE =CF ,∴∠F =∠CEF =12 ∠BCA =30°,∴∠CBE =∠F =30°,∴BE =EF ;(2)解:结论成立;理由如下:过点E 作EG ∥BC 交AB 于点G , ∵四边形ABCD 为菱形,∴AB =BC ,∠BCD =120°,AB ∥CD , ∴∠ACD =60°,∠DCF =∠ABC =60°, ∴∠ECF =120°, 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴AB =AC ,∠ACB =60°,又∵EG ∥BC ,∴∠AGE =∠ABC =60°, 又∵∠BAC =60°, ∴△AGE 是等边三角形,∴AG =AE =GE ,∠AGE =60°,∴BG =CE ,∠BGE =120°=∠ECF ,又∵CF =AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.(2)解:结论成立,证明如下:过点E作EG∥BC交AB的延长线于点G,∵四边形ABCD为菱形,∴AB=BC,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△ECF中,{BG=CE,∠AGE=∠ECF,GE=CF,∴△BGE≌△ECF(S.A.S.),∴BE=EF.第20章三、解答题(本大题共8小题,共72分)17.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、课外论文成绩、平日表现成绩(三部分所占比例如图),若小方的三部分得分依次是92,80,84,求他这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%=88.8分,即小方的数学总评成绩为88.8分.18.(10分)2018年7月27日上午九点三十分在黑龙红省青少年发展基金会举行“2018年园梦大学捐款资助仪式”.八年级(1)班50名同学积极参加了这次捐款活动,下表是小明对全班捐款情况的统计结果:38元.(1)根据以上信息,请帮助小明计算出被污染的数据,并写出解答过程;(2)该班捐款金额的众数、中位数分别是多少?解:(1)被污染处的人数为50-(3+6+11+13+6)=11人.设被污染处的捐款数为x元,则11x+1460=50×38,解得x=40.即被污染处的捐款为40元;(2)捐款金额的中位数是40元,捐款金额的众数是50元.19.(8分)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选他们的各项成绩如下表所示:人的综合成绩(满分为100分).(1)(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.解:(1)这四名候选人面试成绩的中位数为88+902 =89分;(2)由题意得x ×60%+90×40%=87.6, 解得x =86,答:表中x 的值为86;(3)甲候选人综合成绩为90×60%+88×40%=89.2分, 乙候选人的综合成绩为84×60%+92×40%=87.2分, 丁候选人的综合成绩为88×60%+86×40%=87.2分, ∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.20.(8分)(东莞中考)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:(1) (2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).解:(1)∵x 甲=x 乙,s 2甲 <s 2乙 ,∴甲的成绩比较稳定,派甲参赛比较合适;(2)x 乙=(5+9+7+10+9+8)÷6=8,s 2乙=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2] ≈2.67.21.(8分)(威海中考)为积极响应“弘扬传统文化”的号召,某学校倡导全校1 200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表(1)活动启动之初学生“一周诗词诵背数量”的中位数为__4.5__首; (2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数; (3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果. 解:(1)本次调查的学生有20÷60°360°=120名, 背诵4首的有120-15-20-16-13-11=45人, ∵15+45=60人,∴这组数据的中位数是(4+5)÷2=4.5首, 故答案为4.5首; (3)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有1 200×40+25+20120=850人,答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人; (3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛前后的中位数和众数看,比赛后学生背诵诗词的积极性明显提高,这次活动举办后的效果比较理想.22.(10分)甲、乙两名同学进入九年级后,某科6次考试成绩如图:(1)请根据统计图填写下表:(2)析;①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?解:(2)①甲、乙两同学平均分相同,乙的方差小,说明乙的成绩较稳定;②甲的成绩越来越好,而乙的成绩起伏不定.23.(10分)某地发生地震后,某校学生会向全校1 900名学生发起了“心系灾区人民”的捐款活动.为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50人__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(2)平均数为16元,众数为10元,中位数为15元.(3)608名.24.(12分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:(1)a=__8__,b=__8__,c=__9__;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会__变小__.(选填“变大”“变小”或“不变”)解:(1)由题可得a=15(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如图.(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=16[(5-8)2+(9-8)2+(7-8)2+(10-8)2+(9-8)2+(8-8)2]≈2.7<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为变小.。
华师大版八年级数学下册期末综合复习培优练习题1(附答案)
华师大版八年级数学下册期末综合复习培优练习题1(附答案)一、仔细选一选:1.如果xy=1,那么①;②;③x,y互为倒数;④x,y都不能为零.其中正确的结论有()A.1个B.2个C.3个D.4个2.若点M(x,y)的坐标满足x+y=0,则点M位于()A.第二象限B.第一、三象限的夹角平分线上C.第四象限D.第二、四象限的夹角平分线上3.如图,已知四边形OABC是平行四边形,反比例函数y=(k≠0)的图象经过点C,且与AB交于点D,连接OD,CD,若BD=3AD,△OCD的面积是10,则k的值为()A.﹣10 B.5 C.D.4.如果点P在第二象限,那么点Q在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,,是函数的图象上关于原点对称的任意两点,,垂直于轴,垂足分别为,,那么四边形的面积是()A.B.2k C.4k D.k6.杨树乡共有耕地公顷,该乡人均耕地面积与总人口之间的函数图象大致为()A.B.C.D.7.若等于3,则x等于()A.B.﹣C.2 D.﹣2 8.下列性质中,平行四边形不一定具备的是A.邻角互补B.对角互补C.对边相等D.对角线互相平分9.有理数①2x;②5x y+;③12a-;④π2017x-中,是分式的有().A.①②B.①③C.①③④D.①②③④10.如果以的速度向水箱进水,可以注满.为了赶时间,现增加进水管,使进水速度达到,那么此时注满水箱所需要的时间与之间的函数关系为()A .B .C .D .11.在四边形ABCD 中,给出下列条件:;;;,选其中两个条件就能判断四边形ABCD 是平行四边形的组合是______写出一组符合条件的组合.12.甲、乙、丙三人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是=0.65,=0.55,=0.50,则射箭成绩最稳定的是______________.13.我们解答过一些求代数式的值的题目,请把下面的问题补充完整:当x 的值分别取-5、0、1…时,3x 2-2x+4的值分别为89、4、5…根据函数的定义,可以把x 看做自变量,把__________看做因变量,那么因变量_______(填“是”或“不是”)自变量x 的函数,理由是________________.14.菱形的一个内角为120°,平分这个内角的对角线长为8cm ,则菱形周长为 cm . 15.如图,在菱形ABCD 中,已知DE ⊥AB ,AE :AD=3:5,BE=2,则菱形ABCD 的面积是_______.16.当x =_________ 时,分式的值是零.17.点(),P x y 在第一象限: 0,0.x y >> 点(),P x y 在第二象限:_________. 点(),P x y 在第三象限:_________. 点(),P x y 在第四象限:_________.18.若1a-有意义,则点A(a , a -)在第______象限.19.若分式的值为正,则________20.如图,已知AB=12,点C ,D 在AB 上,且AC=DB=2,点P 从点C 沿线段CD 向点D 运动(运动到点D 停止),以AP 、BP 为斜边在AB 的同侧画等腰Rt △APE 和等腰Rt △PBF ,连接EF ,取EF 的中点G ,①△EFP 的外接圆的圆心为点G ;②四边形AEFB 的面积不变;③EF 的中点G 移动的路径长为4;④△EFP 的面积的最小值为8.以上说法中正确的有_____.21.计算:(a+2+)÷(a-).22.有这样一道题:“计算-x 的值,其中x =2018.”某同学把“x =2018”错抄成“x =2081”,但他的计算结果也是正确的,请你说说这是怎么回事?23.先化简,再求值:(1﹣)÷,其中x=24.先化简,再求值:其中25.嘉嘉和琪琪在争论这样一个问题: 嘉嘉说:“分式1xx -比()()312x x -+的值多1时,x 的值是1.”琪琪说:“分式1x x -比()()312x x -+的值多1的情况根本不存在.” 你同意谁的观点呢?请说明理由.26.无锡某学校准备组织学生及学生家长到南京大学参观体验,为了便于管理,所有人员到南京必须乘坐在同一列动车上;根据报名人数,若都买一等座单程火车票需5032元,若都买二等座单程火车票且花钱最少,则需2970元;已知学生家长人数是教师人数的2倍,无锡到南京的动车票价格(动车学生票只有二等座可以打6折)如下表所示:运行区间票价上车站下车站一等座二等座无锡南京68(元)55(元)(1)参加参观体验的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加体验的人数),其余的需买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?27.一辆货车从A地运货到240km的B地,卸货后返回A地,如图中实线是货车离A地的路程y(km)关于出发后的时间x(h)之间的函数图象.货车出发时,正有一个自行车骑行团在AB之间,距A地40km处,以每小时20km的速度奔向B地.(1)货车去B地的速度是,卸货用了小时,返回的速度是;(2)求出自行车骑行团距A地的路程y(km)关于x的函数关系式,并在此坐标系中画出它的图象;(3)求自行车骑行团与货车迎面相遇,是货车出发后几小时后,自行车骑行团还有多远到达B地.参考答案一、仔细选一选:1 2 3 4 5 6 7 8 9 10D D D C B B B B B A二、认真填一填:11.或答案不唯一12.丙13.代数式的值是对于自变量每取一个值,因变量都有唯一确定的值与它对应14.32. 15.20 16.0 17.x<0,y>0 x<0,y<0 x>0,y<018.二 19. 20.①③三、耐心做一做: 21.解:原式 =÷=·=·=.22. 解:∵÷-x =·-x =x -x =0,与x 的取值无关.∴把x =2018错抄成x =2081不会影响结果. 23.3解:(1﹣)÷===,当x=时,原式=3. 24.解:原式== =当x=2,y=时,原式=25.同意琪琪的观点,理由见解析. 解:同意琪琪的观点, 理由:由分式1x x -比()()312x x -+的值多1,可得方程1xx --1=()()312x x -+, 去分母,得x (x +2)-(x -1)(x +2)=3, 解得x =1,经检验,x =1是原分式方程的增根, ∴原分式方程无解,即不存在分式1xx -比()()312x x -+的值多1的情况. 26.(1)参加参观体验的老师有8人,家长有16人,学生有50人(2)y=(3)购买单程火车票的总费用至少2983元,最多5032元解:(1)设参加参观体验的老师有m 人、学生有n 人,则家长有2m 人,根据已知得:, 解得:. 2m=2×8=16.答:参加参观体验的老师有8人,家长有16人,学生有50人. (2)由(1)可知报名参观体验的总人数为8+16+50=74(人). 二等车票只能购买x 张,则一等车票购买了74﹣x 张. 当0≤x <50时,y=55×0.6x+68×(74﹣x )=﹣34x+5032;当50≤x<74时,y=55×0.6×50+55×(x﹣50)+68×(74﹣x)=﹣13x+3932.故购买火车票的总费用(单程)y与x之间的函数关系式为y=.(3)由(2)的函数关系式可知:当x=0时,y最高,此时y=5032;当x=73时,y最小,此时y=2983.答:购买单程火车票的总费用至少是2983元,最多是5032元.点睛: 本题主要考查对一次函数,二元一次方程组,一元一次不等式等知识,解题的关键是理解题意,学会构建方程组或一次函数解决问题,属于中考常考题型.27.(1)60km/h,1小时,80km/h(2)y=20x+40 (0≤x≤10)(3)自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地解:(1)货车去B地的速度==60km/h,观察图象可知卸货用了1小时,返回的速度==80km/h,故答案为60(km/h),1,80(km/h).(2)由题意y=20x+40 (0≤x≤10),函数图象如图所示,(3)货车返回时,y关于x的函数解析式是:y=﹣80x+640 (5≤x≤8)解方程组,解得得,答:自行车骑行团与货车迎面相遇,是货车出发后6小时后,自行车骑行团还有80km到达B地.。
华师大版数学八年级下册期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
(综合题)华师大版八年级下册数学期末测试卷及含答案(综合题)
华师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一直线与两坐标轴的正半轴分别交于A、B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是()A.y=x+10B.y=﹣x+10C.y=x+20D.y=﹣x+202、若=,则a的取值范围是()A.a>0且a≠1B.a≤0C.a≠0且a≠1D.a<03、关于函数y= ,下列说法中错误的是()A.当x>0时,y随x的增大而增大B.当x<0时,y随x的增大而增大 C.当x=1时的函数值大于x=﹣1时的函数值 D.在函数图象所在的每个象限内,y都随x的增大而增大4、下列各图中,表示y是x的函数的是()A. B. C.D.5、如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为()A. B. C. D.6、一组数据:a-1,a,a, a+1,若添加一个数据a,下列说法错误的是( )A.平均数不变B.中位数不变C.众数不变D.方差不变7、使式子÷有意义的x值是()A.x≠3,且x≠﹣5B.x≠3,且x≠4C.x≠4且 x≠﹣5D.x ≠3,且x≠4且x≠﹣58、在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A.()2016B.()2017C.()2016D.()20179、如图,已知一次函数y=kx+b的图象,且y>0,则x的取值范围是()A.x>3B.x<3C.x>0D.x<010、下列计算正确的是()A.a 3·a 3=2a 3B.(−3a 2) 3=−9a 6C.(−2) −2=D.a 2+a 3=a 511、若反比例函数的图象经过点(1,4),则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限12、一个面积为20的矩形,若长与宽分别为x,y,则y与x之间的关系用图象可表示为()A. B. C.D.13、y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根14、如图,其图象反映的过程是:张强从家去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家,其中x表示时间,y表示张强离家的距离.根据图象,下列回答正确的是()A.张强在体育场锻炼45分钟B.张强家距离体育场是4千米C.张强从离家到回到家一共用了200分钟D.张强从家到体育场的平均速度是10千米/小时15、化简的结果为()A.﹣1B.1C.D.二、填空题(共10题,共计30分)16、如图,矩形ABCD,∠BAC=60°以点A为圆心,以任意长为半径作弧分别交AB、AC于M,N两点,再分别以点M,N为圆心,以大于MN的长为半径作弧交于点P,作射线AP交BC于点E,若BE=1,则矩形ABCD的面积等于________.17、如图,Rt△OA0A1在平面直角坐标系内,∠OAA1=90°,∠AOA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4, Rt△OA4A5,…,Rt△OA2016A2017,若点A(1,0),则点A2017的横坐标为________.18、如图,在直角坐标系中,ABCD的四个顶点的坐标分别为A(0,8),B(﹣6,8),C(﹣6,0),D(0,0),现有动点P在线段CB上运动,当△ADP为等腰三角形时,P点坐标为________.19、已知在平面直角坐标系中,有三点,,.若以,,为顶点的四边形是平行四边形,写出第四个顶点的坐标________.20、若有意义,则________.21、“十一”黄金周期间无锡地铁1、2号线总客流量达1740000人次,这个数据用科学记数法表示应为________人次.22、分式与的最简公分母为________ 。
华师大版八年级下册期末复习数学测试题有答案
华师大版八年级下册数学期末试题姓名: 、选择题 (1 2个题,共4 8分) 1、有理式 11 x 2 ,二(x y), —, , --------------- , x 2 3 m x x 3 x 4x 9y 13 中,分式有(A 、 1 2、分式x x 2 A 、 x 2B 、 3、点(—4 , 1) B 、2 2有意义的条件 C 、 3 D、关于原点的对称点是( D 、 )B 、 C、(4,1) mj )和点( n )都在直线yb上,小关系是( A 、 5、 A 、 6、 A 、 C 、 m n 点(0 , X 轴上 B 、 —2 )在(B B 、Y 轴上 下列判断正确的是( 平行四边形是轴对称图形 菱形的对角线相等 关于x 的分式方程C 、 )D 、无法判断C 、第三象限D 、第四象限B 、矩形的对角线垂直平分 D 、正方形的对角线互相平分B 、 2x mx 2 5的解是正数,则m 可能是(C 、 6 顺次连接平行四边形各边中点所得到的四边形是(平行四边形B 、矩形 B 、菱形 D 、 7) D 、正方形 使关于x 的分式方程J 2的解为非负数,且使反比例函数 x 1 过第一、三象限时满足条件的所有整数 k 的和为( y4图象x1 0、平行四边形ABCD 中,/ ADC 的平分线与AB 交于点E,若AE 、 E B 是方程组 A 、 1 6 3x 2y 1-x 4y 3 B 、 1 7 4 的解,则平行四边形ABCD 的周长为( 11 C 、 1 7或1 6 D 、 5 . 5 1 1、甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设 备,之后乙组的工作效率是原来的 1.2倍,甲、 乙两组加工出的零件合在一起装箱,每 200件装一箱,零件装箱的时间忽略不计。
两组各自加工零件的数量 y (件)与时间x(时)的函数图象如图。
以下说法错误的是()A 、甲组加工零件数量y 与时间x 的关系式为y 甲40xB 、乙组加工零件总量 m 280C 、经过21小时恰好装满第1箱2D 、经过4m 小时恰好装满第2箱412、如图,在平面直角坐标系中,菱形 ABOC 勺顶点O 在坐标原点,边BO 在x轴的负半轴上,/ BOC=60 ,顶点C 的坐标为(m,3曲),反比例函数y 像与菱形对角线 AO 交于D 点,连接BD,当 轴时,k 的值是() A. 6 3 B. —63 C. 12 ,3D. - 12,3二、填空题(6个题,共2 4分)1 3、已知空气的单位体积质量是0.001239克每立方厘米,用科学记数法表示该数为;1 4、计算:3 2=, (1)0 =, (a 3)2(ab2) 3= ,3 1 5、已知 a 1 3,则 a 2 4=,a 2a 21 6、用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致。
华师大版初中八年级下学期数学期末试题及答案
(
2)在(
1)的条件下,连结 BF ,求 ∠DBF 的度数 .
ABCD 的周长是 22;③AD =CD ;④△ABP 面积的最大值
为 32.
其中正确的有
A1 个
B
2 个
C
3 个
( )
第 8 题图
如 图,矩 形 ABOC 中 点 A 的 坐 标 为 (
15.
4,
5),
E是
象于点 P .
生成绩的 平 均 数,所 以 至 少 有 一 半 女 生 的 成 绩 比 小 英
高.
你认同小红的说法吗? 请说明理由 .
(
19.
9 分)如图,四边形 ABCD 的对角线 AC 、
BD 相交于点 O ,
四边形 OBEC 是矩形,△BOC ≌△DOA .
(
1)求证:四边形 ABCD 是菱形;
(
2)若 BC =13,
2,-1),
经过点 A 、
D 的一次函数y=mx+n 的图象与反比例函数Βιβλιοθήκη 生? 并说明理由 .
当点 P 是 AC 的中点时,求得图中阴影部分 的 面
( )
D
4 个
如图,在菱形 ABCD 中,∠B =60
5.
°,
AB =2,则以 AC 为一边
的正方形 ACEF 的周长为
(考查范围:本册教材全部内容)
满分:
120 分 考试时间:
100 分钟
一、选择题(每小题3 分,共30 分)下列各小题均有四个选项,其
中只有一个是正确的 .
( )
下列分式中,有意义的条件为 x≠2 的是
1.
1
A
(汇总)华师大版八年级下册数学期末测试卷
华师大版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、某数学小组在研究一道开放题:“如图,一次函数y=kx+b与x轴、y轴分别交于A,B两点,且与反比例函数y=(x<0)交于点C(﹣6,n)和点D(﹣2,3),过点C,D分别作CE⊥y轴于点E,DF⊥x轴于点F,连接EF.你能发现什么结论?”甲同学说,n=1;乙同学说,一次函数的解析式是y=x+4;丙同学说,EF AB;丁同学说,四边形AFEC的面积为6.则这四位同学的结论中,正确的有()A.1个B.2个C.3个D.4个2、如图,正方形ABCD中,以对角线AC为一边作菱形AEFC,则∠FAB等于()A.22.5°B.45°C.30°D.135°3、a,b,c均不为0,若,则P(ab,bc)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限4、下列叙述正确的是()A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆 D.两边及其一边的对角对应相等的两个三角形全等5、如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为()A.2B.3C.D.26、一次函数y=3x-1的图象不经过( )。A.第一象限B.第二象限C.第三象限D.第四象限7、反比例函数y=(k≠0)的图象过点(-1,1),则此函数的图象在直角坐标系中的()A.第二、四象限B.第一、三象限C.第一、二象限D.第三、四象限8、如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)9、若将分式(a , b均为正数)中a , b的值分别扩大为原来的3倍,则分式的值().A.扩大为原来的3倍B.缩小为原来的C.不变D.缩小为原来的10、如图,菱形ABCD的对角线AC,BD相交于0点,E,F分别是AB,BC边上的中点,连接EF.若EF= ,BD=4,则菱形ABCD的周长为( )A.4B.4C.4D.2811、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A. B. C. D.12、如图, 甲乙两城市相距千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为(千米),客车出发的时间为(小时),它们之间的关系如图所示,则下列结论:①货车的速度是千米/小时;②离开出发地后,两车第一次相遇时,距离出发地千米;③货车从出发地到终点共用时小时;④客车到达终点时,两车相距千米.正确有()A. B. C. D.13、经统计我市去年共引进世界500强外资企业19家,累计引进外资410000000美元,数字410000000用科学记数法表示为()A.41×10 7B.4.1×10 8C.4.1×10 9D.0.41×10 914、某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是()A.27B.28C.29D.3015、一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)二、填空题(共10题,共计30分)16、则m=________17、如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,的周长是8,则的周长为________.18、下列两个条件:①y随x的增大而减小;②图象经过点(1,2).写出1个同时具备条件①、②的一个一次函数表达式________19、已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为________.20、计算(﹣2)0+ =________;计算:20112﹣2010×2012=________.21、如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD= AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE =5S△OFE,其中正确的结论是________.22、若分式方程的解为x=0,则a的值为________23、在市业余歌手大奖赛的决赛中,参加比赛的10名选手成绩统计如图所示,则这10名选手成绩的中位数是________.24、如图,在▱ABCD中,AB=5cm,AD=8cm,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=________.25、一种圆环(如图),它的外圆直径是8厘米,环宽1厘米.①如果把这样的2个圆环扣在一起并拉紧(如图2),长度为________厘米;②如果用x个这样的圆环相扣并拉紧,长度为y厘米,则y与x之间的关系式是________.三、解答题(共5题,共计25分)26、先化简,再求值:(),其中x=2.27、已知:如图,矩形ABCD的对角线AC、BD相交于点O,DE//CA,AE//BD.求证:四边形AODE是菱形.28、某市为了美化环境,计划在一定的时间内完成绿化面积40万亩的任务。
华师大版八年级下册数学期末测试题(含答案)
八年级数学下册期末测试题一、选择题(每小题3分,共30分)1.若反比例函数y= kx的图像经过点(1,-2),则k= ()A.-2B.2C.12C.-122.如果把分式a+2ba−2b中的a、b都扩大3倍,那么分式的值一定()A.是原来的3倍B.是原来的5倍C.是原来的13C.不变3.已知直线y=2x+b与坐标围成的三角形的面积是4,则b的值是()A.4B.2C.±4 C. ±24.一次函数y=kx+k(k≠0)和反比例函数y= kx(k≠0)在同一直角坐标系中的图像大致是()A. B. C. D.5. A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A. 3种B. 4种C. 5种D. 6种6.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.平行四边形一边的长是10cm,这个平行四边形的两条对角线长可以是()A. 4cm,6cmB. 6cm,8cmC. 8cm,12cmD. 20cm,30cm8.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转1800得△CFE,则四边形ADCF一定是()A. 矩形B. 菱形C. 正方形D. 梯形第8题图第9题图第10题图9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= kx(x<0)的图像经过顶点B,则k的值为()A. -12B. -27C. -32D. -3610.如图所示,正方形ABCD的边长为4,E为BC上一点,BE=1,P为AC上一动点,则当PB+PE取最小值时,求PB+PE= ()A. 3B. 4C. 5D. 6二、填空题(每小题3分,共15分)11.将直线y=-2x+1向下平移4个单位得到直线l,则直线l的解析式为___________。
2016年华师大版八年级(下)期末数学常考试题100题(解析版)
华师大版八年级(下)期末数学常考试题100题参考答案与试题解析一、选择题(共30小题)1.(常考指数:67)函数y=ax﹣a 与(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:分类讨论.分析:分别根据一次函数和反比例函数图象的特点进行逐一分析即可,由于a的符号不确定,所以需分类讨论解答:解:A、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象>0相矛盾,故A选项错误;B、由一次函数y=a(x﹣1)的图象y轴的正半轴相交可知﹣a>0,即a<0,与y=(x≠0)的图象a>矛盾,故B选项错误;C、由一次函数y=a(x﹣1)的图象与y轴的负半轴相交可知﹣a<0,即a>0,与y=(x≠0)的图象a相矛盾,故C选项错误;D、由一次函数y=a(x﹣1)的图象可知a<0,与y=(x≠0)的图象a<0一致,故D选项正确.故选:D.点评:本题考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.2.(常考指数:52)如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形,③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A.①②③B.①④⑤C.①③④D.③④⑤考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形.专题:压轴题;动点型.分析:解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE △ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③知⑤是正确的.故只有①④⑤正确.解答:解:连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.点评:此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,考查知识点较多,综合性强能力要求全面,难度较大.但作为选择题可采用排除法等特有方法,使此题难度稍稍降低一些.3.(常考指数:73)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.考点:矩形的性质.分析:本题主要根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底△AOB的高是△ABC高的得出结论.解答:解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选:B.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平四边形不具备的性质.4.(常考指数:42)(北师大版)如图,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,点B在x轴的负半轴上,且OA=OB,那么△AOB的面积为()A.2B.C.D.考点:反比例函数综合题.专题:数形结合.分析:欲求OAB的面积,已知点A是一次函数y=x的图象与反比例函数y=的图象在第一象限内的交点,可出点A的坐标,从而得到△AOB的高,结合已知OA=OB,求得底边OB,从而求出面积.解答:解:依题意A点的坐标满足方程组∴∴点A的坐标为()∴OA=2∵OB=OA=2∴S△AOB=OB×=×2×=.故选:C.点评:此题主要考查反比例函数的性质,注意通过解方程组求出交点坐标.同时要注意运用数形结合的思想.5.(常考指数:49)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°考点:全等三角形的判定与性质;等边三角形的性质.分析:通过证△ABD≌△BCE得∠BAD=∠CBE;运用外角的性质求解.解答:解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,三角形外角与内角的关系的运解答时证明三角形全等是关键.6.(常考指数:85)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A .B .C .D .考点: 反比例函数的图象;一次函数的图象.分析: 根据一次函数及反比例函数的图象与系数的关系作答.解答: 解:A 、由函数y=的图象可知k >0与y=kx+3的图象k >0一致,故A 选项正确;B 、由函数y=的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,故B 选项错误;C 、由函数y=的图象可知k <0与y=kx+3的图象k <0矛盾,故C 选项错误;D 、由函数y=的图象可知k >0与y=kx+3的图象k <0矛盾,故D 选项错误.故选:A .点评: 本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.(常考指数:76)如图,四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )A . A B=CDB .A D=BC C . A C=BD D .A B=BC考点: 矩形的判定.分析: 四边形ABCD 的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是角线相等.解答: 解:可添加AC=BD ,∵四边形ABCD 的对角线互相平分,∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD 是矩形,故选:C .点评: 此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.8.(常考指数:263)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去考点:全等三角形的应用.分析:此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.解答:解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项误.故选:C.点评:主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.9.(常考指数:75)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质.分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,∴根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10m.故选:D.点评:此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查积较广,有一定的综合性.10.(常考指数:61)已知点A(﹣2,y1)、B(﹣1,y2)、C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的坐标特点解答即可.解答:解:∵k>0,函数图象在一,三象限,由题意可知,点A、B在第三象限,点C在第一象限,∵第三象限内点的纵坐标总小于第一象限内点的纵坐标,∴y3最大,∵在第三象限内,y随x的增大而减小,∴y2<y1.故选:D.点评:在反比函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象内,按同一象限内点的特点来比较,不在同一象限内,按坐标系内点的特点来比较.11.(常考指数:50)用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS 答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全的性质是正确解答本题的关键.12.(常考指数:55)在平面直角坐标系中,点P(﹣2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出点P的横纵坐标的符号,进而判断其所在的象限.解答:解:∵点P的横坐标﹣2<0,纵坐标为﹣3<0,∴点P(﹣2,﹣3)在第三象限.故选:C.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.(常考指数:132)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形考点:正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.分析:根据邻边相等的平行四边形是菱形可判断A选项正确;根据所给条件可以证出邻边相等,可判断B选项确;根据有一个角是直角的平行四边形是矩形可判断C选项正确;根据对角线相等的平行四边形是矩形以判断出D选项错误.解答:解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;故选:D.点评:此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题及到的知识点较多,学生答题时容易出错.14.(常考指数:42)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:工程问题.分析:关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.解答:解:乙队用的天数为:,甲队用的天数为:.则所列方程为:.点评:本题考查了由实际问题抽象出分式方程,找到相应的等量关系是解决问题的关键,注意工作时间=工作总÷工作效率.15.(常考指数:45)函数中,自变量x的取值范围是()A.x>2 B.x≠2 C.x<2 D.x≠0考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据题意,得2﹣x>0,解得x<2,故选:C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.注意当单独的二次根式分母时,被开方数应大于0.16.(常考指数:83)在函数中,自变量x的取值范围是()A.x≠3 B.x≠0 C.x>3 D.x≠﹣3考点:函数自变量的取值范围;分式有意义的条件.专题:计算题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得:x﹣3≠0解得:x≠3;故选:A.点评:考查了函数自变量的范围,注意:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.(常考指数:113)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小考点:反比例函数的性质.分析:根据反比例函数的性质用排除法解答.解答:解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增18.(常考指数:83)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠BCA=∠DCA B.∠BAC=∠DAC C.∠B=∠D=90°D.C B=CD考点:全等三角形的判定.专题:压轴题.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠D 后则不能.解答:解:A、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故A选项符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故C选项不符合题意;D、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故D选项不符合题意;故选:A.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角应相等时,角必须是两边的夹角.19.(常考指数:45)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题.分析:设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的费为:,根据每个同学比原来少摊了3元钱车费即可得到等量关系.解答:解:设实际参加游览的同学共x人,根据题意得:﹣=3.故选:D.点评:本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系易错点是得到出发前后的人数.20.(常考指数:60)下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形考点:矩形的判定;平行四边形的判定;正方形的判定.分析:根据矩形的对角线相等且平分,和正方形的对角线互相垂直、相等平分进行判定即可得出结论.解答:解:A、对角线互相平分的四边形是平行四边形,故A选项正确;B、对角线相等的平行四边形才是矩形,故B选项错误;C、对角线互相垂直的矩形是正方形,故C选项正确;D、两条对角线相等的菱形是正方形,故D选项正确;故选:B.点评:平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.21.(常考指数:59)若分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x=1 D.x<1考点:分式有意义的条件.分析:本题主要考查分式有意义的条件:分母不等于0.解答:解:∵x﹣1≠0,∴x≠1.故选:A.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.22.(常考指数:41)数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的()A.平均数或中位数B.方差或极差C.众数或频率D.频数或众数考点:统计量的选择.专题:应用题.分析:方差、极差的意义:体现数据的稳定性,集中程度;方差、极差越小,数据越稳定.故要判断小明的数成绩是否稳定,老师需要知道小明这5次数学成绩的方差或极差.解答:解:由于方差和极差都能反映数据的波动大小,故判断小明的数学成绩是否稳定,应知道方差或极差.故选:B.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.23.(常考指数:65)下列函数中,自变量x的取值范围是x≥3的是()A.y=B.y=C.y=x﹣3 D.y=考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:分式有意义,分母不等于0;二次根式有意义:被开方数是非负数就可以求出x的范围.解答:解:A、分式有意义,x﹣3≠0,解得:x≠3,故A选项错误;B、二次根式有意义,x﹣3>0,解得x>3,故B选项错误;C、函数式为整式,x是任意实数,故C选项错误;D、二次根式有意义,x﹣3≥0,解得x≥3,故D选项正确.故选:D.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.24.(常考指数:113)如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠N B.A M=CN C.A B=CD D.A M∥CN考点:全等三角形的判定.专题:几何图形问题.分析:根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.解答:解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、S 直角三角形可用HL定理,本题是一道较为简单的题目.25.(常考指数:51)如图,身高1.6米的学生小李想测量学校的旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是()A . 6.4米B . 7米C . 8米D . 9米考点: 相似三角形的应用.专题: 压轴题.分析: 因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.解答: 解:设旗杆高度为h ,由题意得,h=8米.故选:C .点评: 本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比列出方程,建立适当的数学模型来解决问题.26.(常考指数:53)如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离为S ,则S 关于t 的函数图象大致为( )A .B .C .D .考点: 动点问题的函数图象.专题: 压轴题;动点型. 分析: 根据蚂蚁在上运动时,随着时间的变化,距离不发生变化可得正确选项.解答: 解:一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离S 不变,走另一条半径时,S 随t 的大而减小.故选:C .点评: 本题主要考查动点问题的函数图象;根据随着时间的变化,距离不发生变化抓住问题的特点得到图象的点是解决本题的关键.27.(常考指数:59)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A.S AS B.A SA C.A AS D.S SS考点:全等三角形的判定.专题:作图题.分析:认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三形符合SSS判定方法要求的条件,答案可得.解答:解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角应相等时,角必须是两边的夹角.28.(常考指数:46)如图,将一张等腰梯形纸片沿中位线剪开,拼成一个新的图形,这个新的图形可以是下列图形中的()A.三角形B.平行四边形C.矩形D.正方形考点:等腰梯形的性质;梯形中位线定理.分析:利用等腰梯形的性质,采用排除法进行分析.解答:解:A、把等腰梯形沿中位线剪开后形成了两个等腰梯形,不可能拼成三角形,故A选项错误;B、把等腰梯形沿中位线剪开,然后下半部分不动,上半部分倒转过来,与下半部分拼在一起,得到一个行四边形,故B选项正确;C、两个等腰梯形的角不可能为90°,不能拼出矩形,故C选项错误;D、两个等腰梯形的角不可能为90°,不能拼出正方形,故D选项错误;故选:B.点评:本题主要考查等腰梯形的性质及中位线定理的理解及运用,解答本题的关键是熟练掌握等腰梯形的性质此题难度一般.29.(常考指数:52)在中,分式的个数是()A.2B.3C.4D.5考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:在中,分式有,∴分式的个数是3个.故选:B.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以象不是分式,是整式.30.(常考指数:59)下列化简中正确的是()A.B.C.D.考点:约分.专题:计算题.分析:根据约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分次判断即可.解答:解:A、=x4,故A选项错误;B、≠0,故B选项错误;C、=,故C选项正确;D、=,故D选项错误;故选:C.点评:本题考查了约分的定义,根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,式的值不变.二、填空题(共30小题)31.(常考指数:88)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为(3,4)或(2,4)或(8,4).考点:勾股定理;坐标与图形性质;等腰三角形的性质.专题:分类讨论.分析:题中没有指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.解答:解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP===3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM中,PM==3,当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4).点评:此题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解的关键.32.(常考指数:24)如图,梯形纸片ABCD,已知AB∥CD,AD=BC,AB=6,CD=3.将该梯形纸片沿对角线AC折叠,点D恰与AB边上的E点重合,则∠B=60度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版初二年下册综合压轴题1.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( )A .1B .1-C .2D .2- 2. 如图,点P 是反比例函数xy 6=(0>x )的图象上的任意一点,过点P 分别作两坐标轴的垂线,与坐标轴构 成矩形OAPB ,点D 是矩形OAPB 内任意一点,连接DA 、 DB 、DP 、DO ,则图中阴影部分的面积是 ( )A .1 ;B . 2;C .3;D . 4.3.若点(m ,n )在函数12+=x y 的图象上,则代数式124+-n m 的值是( ) A .1 B .1- C .2 D .2-4. 观察下列等式:n a =1,1211a a -=,2311a a -=,…;根据其蕴含的规律可得( ).A. n a =2013B. n n a 12013-=C. 112013-=n aD. na -=112013 5.设函数x y 3=与1y x =-的图象的交点坐标为(a ,b ),则11a b-的值为( )A .3-B .3C .31-D .316.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程()s km 与所花时间()min t之间的函数关系,下列说法错误的...是( ). A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100/m min D .公交车的速度是350/m min7.如图所示,一只小虫在折扇上沿O →A →B →O 路径爬行,能大致描述小虫距出发点O 的距离s 与时间t 之间的函数图象是 ( )8.小华的爷爷每天坚持体育锻炼,某天他慢步..到离家较远的绿岛 公园,打了一会儿太极拳后跑步..回家.下面能反映当天小华的 爷爷离家的距离y 与时间x 的函数关系的大致图象是( ).第2题9.函数y=ax+a 与y =)0(x ≠a 在同一直角坐标系中的图象可能是( )10.观察图中菱形四个顶点所标的数字规律,可知数2013应标在( ).A .第503个菱形的上方B .第503个菱形的下方C .第504个菱形的左方D .第504个菱形的右方 二、填空题1、如图,在Rt△ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF,若平移距离为2,则四边形ABED 的面积等于 .2、如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点P 是AB 上的任意一点,作PD ⊥AC 于点D ,PE ⊥CB 于点E ,连结DE ,则DE 的最小值为 .3、如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F .则四边形OMPN 的面积为 ,AF BE g 的值 .4.如图,正方形ABCD 中,M 是BC 上的中点,连结AM ,作AM 的垂直平分线GH 交AB 于G ,交CD 于H ,若CM=2,则AG= .5.如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB 连续作yxyyx yoo xoxo D.C. B. A. x 14859121613371115第1个 菱形第2个 菱形第3个 菱形第4个 菱形EF P N BM AxyO旋转变换,依次得到三角形(1)、三角形(2)、三角形(3)、三角形(4)、…, (1)△AOB 的面积是 ;(2)三角形(2013)的直角顶点的坐标是____ __ .6.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为a 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A —B —C —D —A —……的规律紧绕在四边形ABCD 的边上. (1)当12=a 时,细线另一端所在位置的点的坐标是 ; (2)当2013=a 时,细线另一端所在位置的点的坐标是 .7. 如图6,在正方形ABCD 中,2AB = cm , 对角线AC 、BD交于点O ,点E 以一定的速度从A 向B 移动,点F 以相同的速度从B 向C 移动,连结OE 、OF 、EF . ⑴△AOE ≌△ ;⑵线段EF 的最小值是 cm .8.如图,OC 平分∠AOB ,点P 是OC 上一点,PM ⊥OB 于点M ,点N 是射线OA 上的一个动点..,若PM=5,则PN 的最小值为 .A9.如图,以点O 为圆心,任意长为半径画弧,与射线OP 交于点A ,再以点A 为圆心,OA 长为半径画弧,两弧交于点B ,画射线OB ,则∠AOB= 度.M PNO (第15题)AB C(第16题) A BP OAByOx(第17题)F OD CBAE图6(第17题)A O xyD CB ←→ ↓ ↑ 第16题 第17题10.如图,直线b kx y +=与双曲线xmy =交于A(2-,1-)、B(1,n )两点,则: (1)=m ,=n ; (2)当0<-+xmb kx 时,x 的取值范围为 . 11.在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.,你添加的条件是 (写出一种即可) . 12.表1给出了直线1l 上部分点(x ,y )的坐标值,表2给出分点(x ,y )的了直线2l 上部坐标值.(1)直线1l 与y 轴的交点坐标是 ;(2)直线1l 、2l 与y 轴围成的三角形的面积等于 .13.如图,∠BAC=100°,∠B=40°,∠D=20°,AB=3㎝,则CD= ㎝;14.如图,大正方形ADEF 与一个小正方形BCDG 并排放在一起,大正方形ADEF 的边长cm AF 8=.则直线BD 、AE 的位置关系是 ;∆ABE 的面积为2cm .第16题图 第17题第17题图1234567812345678αABC DE 15.在一次函数12+=x y 中,(1)y 随x 的增大而 (填“增大”或“减小”);(2)点),(11y x A 、),(22y x B 是一次函数12+=x y 图象上不同..的两点, 若))((2121y y x x t --=,则t 0.(用“≤、≥、>、<、=”符号表示)16.如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于点E ,交BC 边于点F ,分别连接AF 和CE ,则可以判定四边形AFCE 的形状是____________.17.如图,在平面直角坐标系xoy 中,分别平行x 轴、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,求(1)线段OA 的长为 ;(2)若在直线a 上存在点P ,使△AOP是等腰三角形.那么所有满足条件的点P 的坐标是 .18.如图,某公园有一块菱形草地ABCD ,它的边及对角线AC 是小路,若AC 的长为m 16,边AB 的长为m 10,妈妈站在AC 的中点O 处, 亮亮沿着小路C B A D C →→→→跑步,在跑步过程中,亮亮与 妈妈之间的最短距离为m ______.19.把一副三角板放置在如图所示的位置,若把DCE ∆绕点C 按逆时针方向旋转,旋转的角度为α(α<︒0<180°), (1)若要使得DE ∥AB ,则_____=α度;(2)若要使得DCE ∆中有一条边所在的直线与AB 垂直,则_____=α度. 三、解答题1.(9分)供电局的电力维修工甲、乙两人要到30千米远的A 地进行电力抢修.甲骑摩托车先行,41小时后乙开抢修车载着所需材料出发,结果甲、乙两人同时到达.已知抢修车的速度是摩托车的1.5倍,求摩托车的速度.baxAO(第16题图)OAa xybABCD O P第16题图(1)设摩托车的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格) 速度(千米/时) 所走的路程(千米) 所用时间(时)摩托车 x30 抢修车30(2)列出方程,并求摩托车的速度.2.(13分)如图,已知△ABC 为等边三角形,CF ∥AB ,点P 为线段AB 上任意一点 (点P 不与A 、B 重合),过点P 作PE ∥BC ,分别交AC 、CF 于G 、E . (1)四边形PBCE 是平行四边形吗?为什么? (2)求证:CP=AE ;(3)试探索:当P 为AB 的中点时,四边形APCE 是什么样的特殊四边形?并说明理由。
3.(13分)已知,矩形OABC 在平面直角坐标系内的位置如图所示,点O 为坐标原点,点A 的坐标为(10,0),点B 的坐标为(10,8). ⑴直接写出点C 的坐标为:C ( , ); ⑵已知直线AC 与双曲线)0(≠=m xmy 在第一象限内有一点交点Q 为(5,n ); ①求m 及n 的值;②若动点P 从A 点出发,沿折线AO →OC 的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与点P的运动时间t(秒)的函数关系式,并求当t取何值时S=10.4.(13分) 已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.(1)直接写出乙每天加工的零件个数;(用含x的代数式表示)(2)求甲、乙每天各加工零件多少个?(3)根据市场预测,加工A型零件所获得的利润为m元/ 件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.5.(13分)如图,已知点C(4,0)是正方形AOCB的一个顶点,E是AB边的中点.(1)直接写出点E 的坐标; (2)若双曲线xky =(x >0)经过点E ,且与BC 交于点F ,连结OE 、OF . ①求△OEF 的面积;②探究:经过点E 是否存在直线L : n mx y +=,使得线段OE ,直线L 及x 轴三者所围成的三角形的面积等于△OEF 的面积?若存在,求出直线L 的关系式;若不存在,请说明理由.6.(9分)如图,在□ABCD 中,点E 在CD 上,点C '在AD 上,若把BCE ∆沿BE折叠,则点C 与点'C 重合.(1)在图①中,直接写出两对相等的线段;(2)如图②,若把ABC '∆沿AD 的方向平移AD 的长度,使得点A 与点D 重合,点B 与点C 重合.求证:四边形BCFC '是菱形.7.(13分) 在平面直角坐标系中,直线AB 与y 轴、x 轴分别交于点A 、点B ,与双曲线xmy =()0,0>>x m 交于()6,1C 、()n D ,3两点,y CE ⊥轴于点E ,x DF ⊥轴于点F .(1)填空:m = ,n = ;A CEyDC ′CE图②① DC ′E图 A(2)求直线AB 的解析式; (3)求证:DB AC =.8.(13分)如图,在梯形ABCD 中,AD ∥BC ,cm AD 6=,cm CD 4=,cm BD BC 10==,点P 由点B 出发沿BD 方向匀速运动,速度为s cm /1;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为s cm /1,交BD 于点Q ,连结PE 、PF ,若设运动时间为t ()s (t <0≤5).(1)填空:._______cm PD =(用含t 的代数式表示) (2)当t 为何值时,PE 与PF 的和最小?(3)在上述运动的过程中,以P 、F 、C 、D 、E 为顶点的多边形的面积是否发生变化,试说明理由.9.(9分)如图,在△ABC 中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,CE ∥BF ,连接BE 、CF . (1)求证:△BDF ≌△CDE ;(2)若AB=AC ,求证:四边形BFCE 是菱形.10.(13分)如图,在第一象限内,双曲线xy 6=上有一动点B ,过点B 作直线BC//y 轴,交双曲线x y 1=于点C ,作直线BA//x 轴,交双曲线xy 1=于点A ,过点C 作直线CD//x轴,交双曲线xy 6=于点D ,连结AC 、BD . (1)当B 点的横坐标为2时, ①求A 、B 、C 、D 四点的坐标;②求直线BD 的解析式;(2)B 点在运动过程中,梯形ACDB 的面积 会不会变化?如会变化,请说明理由;如果不会变化,求出它的固定值.11.(13分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y (km ),出租车离甲地的距离为2y (km ),客车行驶时间为x (h ),1y ,2y 与x 的函数关系图象如图所示: (1)根据图象,直接写出....y 1,y 2关于x 的函数关系式; (2)分别求出当x =3,x =5,x =8时,两车之间的距离; (3)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式;(4)甲、乙两地间有A 、B 两个加油站,相距200km ,若客车进入A 站加油时,出租车恰好进入B 站加油。