广东省2018年1月普通高中学业水平考试数学试题(B)
2018学业水平测试:数学(1)
![2018学业水平测试:数学(1)](https://img.taocdn.com/s3/m/a6e71373561252d380eb6e22.png)
三、解答题 20、若等差数列 an满足 a1 a3 8 ,且 a6 a12 36 。(1)求 an的通项
公式;(2)设数列bn满足 b1 2 , bn1 an1 2an ,求数列bn的前
3
3
二、填空题
16、双曲线 x2 y2 1 的离心率为______
9 16
17、若 sin 2 ,且 0 ,则 tan _____
2 3
18、笔筒中放有 2 支黑色和 1 支红色共 3 支签字笔,先从笔筒中随机 取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支 笔使用,则两次使用的都是黑色笔的概率为_______
D. 8和7
1
8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图 是正方形,则该几何体的体积为( )
A.1 B. 2 C.4 D. 8
x y 1 0
9、若实数
x,
y
满足
x y 0
,则 z x 2 y 的最小值为(
)
x 0
A. 0 B. 1 C. 3 D. 2 2
B.lgx y lg x lg y
C.lg x3 3lg x
D.lg x ln x ln10
解:对于选项 B,令 x y 1 ,则 lgx y lg 2 0, 而 lg x lg y 0 ,
显然不成立。选 B
3、已知函数
f
x
x3 1,
2018 年 1 月广东省普通高中学业水平考试
(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报
![(完整版)2018年的1月广东省普通高中的学业水平考试数学试卷真的题目及答案详解解析汇报](https://img.taocdn.com/s3/m/f86d73fabe1e650e53ea992f.png)
2018年1月广东省普通高中学业水平考试数学试卷(B 卷)1、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则( ){}1,0,1,2M =-{}|12N x x =-≤<M N = . . . .A {}0,1,2B {}1,0,1-C M D N2、对任意的正实数,下列等式不成立的是( ),x y . ...A lg lg lgyy x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =3、已知函数,设,则( )31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a . . ..A 2-B 1-C 12D 04、设是虚数单位,是实数,若复数的虚部是2,则( )i x 1xi+x =. . . .A 4B 2C 2-D 4-5、设实数为常数,则函数存在零点的充分必要条件是( )a 2()()f x x x a x R =-+∈. . . .A 1a ≤B 1a >C 14a ≤D 14a >6、已知向量,,则下列结论正确的是( )(1,1)a = (0,2)b =. . . .A //a b B (2)a b b -⊥C a b =D 3a b = A7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( ). . . .A 69和B 96和C 78和D 87和8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( ). .. .A 1B 2C 4D 89、若实数满足,则的最小值为,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-( ). . . .A 0B 1-C 32-D 2-10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( )o ABCD . .A DA DC AC -=B DA DC DO +=. .C OA OB AD DB -+= D AO OB BC AC++= 11、设的内角的对边分别为,若,则( )ABC A ,,A B C ,,a b c 2,a b c ===C =.. . .A 56πB 6πC 23πD 3π12、函数,则的最大值和最小正周期分别为( )()4sin cos f x x x =()f x . . . .A 2π和B 4π和C 22π和D 42π和13、设点是椭圆上的一点,是椭圆的两个焦点,若P 2221(2)4x y a a +=>12F F ,12F F =( )12PF PF +=. . . .A 4B 8C D 14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不()f x R ()f x 10x <20x >正确的是( ). . . .A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤15、已知数列的前项和,则( ){}n a n 122n n S +=-22212n a a a +++= . . ..A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题:本大题共4小题,每小题4分,满分16分.16、双曲线的离心率为 .221916x y -=17、若,且,则 .2sin()23πθ-=0θπ<<tan θ=18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标20x y +-=3100x y -++=40x y +-=准方程是 .三、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.{}n a 138a a +=61236a a +=(1)求的通项公式;{}n a(2)设数列满足,,求数列的前项和.{}n b 12b =112n n n b a a ++=-{}n b n n S 21、如图所示,在三棱锥中,,,为的中点,垂P ABC -PA ABC ⊥平面PB BC =F BC DE 直平分,且分别交于点.PC DE AC PC ,,D E (1)证明:;//EF ABP 平面(2)证明:.BD AC ⊥2018年1月广东省普通高中学业水平考试数学试卷(B 卷)答案解析一、选择题:本大题共15小题. 每小题4分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1、B 解析:,故选B.{}101M N =- ,,2、B 解析:对于B 项,令,则,而,显然不成1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=立,故选B.3、C 解析: ,故选C.3(0)011a f ==-=- 11()(1)22f a f -∴=-==4、D 解析: ,故选D.(1)1(1)(1)22x x i x x i i i i -==-++-242xx ∴-=⇒=-5、C 解析:由已知可得,,故选C.11404a a ∆=-≥⇒≤6、B 解析:对于A 项,,错误;12-010⨯⨯≠对于B 项,,,则,正确;2(2,0)a b -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥对于C 项,,错误;2a = 对于D 项,,错误. 故选B.10122a b =⨯+⨯=A7、A 解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数1535010k ==320=6()10⨯人为,故选A.3(5020)9()10-⨯=人8、C解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.2214V =⨯⨯=9、D 解析:(快速验证法)交点为,则分别为,所以11(0,1),(0,0),(,22-2z x y =-32,0,2--的最小值为,故选D.z 2-10、D 解析:对于A 项,,错误;DA DC CA -=对于B 项,,错误;2DA DC DO +=对于C 项,,错误;OA OB AD BA AD BD -+=+=对于D 项,,正确. 故选D.AO OB BC AB BC AC ++=+=11、A解析:由余弦定理,得,又222cos 2a b c C ab +-=== ,故选A.0C π<< 5=6C π∴12、A 解析:,最小正周期为,故选A. ()2sin 2f x x = max ()2f x ∴=22T ππ==13、B 解析:122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=,故选B.122248PF PF a ∴+==⨯=14、D 解析:对于A 项,为上的奇函数 ,正确;()f x R (0)0f ∴=对于B 项,为上的减函数 ,正确;()f x R 110()(0)0x f x f ∴<⇒>=对于C 项,20x > 222221121x x x x x ∴+≥===(当且仅当,即时等号成立),正确;221()(2)f x f x ∴+≤对于D 项, 10x < 111111(2x x x x ∴+=--+≤-=--ll,错误. 故选D.111()(2)(2)f x f fx∴+≥-=-15、C 解析:当时,;当时,2n≥1122(22)2222n n n n nn n na S S+-=-=---=⨯-=1n=适合上式. 是首项为,公比211222a S==-=222()(2)4n n nn na n N a*∴=∈⇒=={}2n a∴4为的等比数列,故选C.4222124(14)4(41)143n nna a a--∴+++==-二、填空题:本大题共4小题,每小题4分,满分16分.16、解析:由已知,得532293,164a ab b=⇒==⇒= 222916255c a b c∴=+=+=⇒=双曲线的离心率为.∴53cea==17解析:,且2sin()cos23πθθ-==0θπ<< sinθ∴===.sin3tancos2θθθ∴===18、解析:.49224339P⨯==⨯19、解析:联立得22(4)(2)2x y-++=203100x yx y+-=⎧⎨-++=⎩4(4,2)2xy=⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为(4,2)-40x y+-=d圆的标准方程为.∴22(4)(2)2x y-++=3、解答题:本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、解:(1)设等差数列的公差为.{}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩ 数列的通项公式为.2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =(2)由(1)知, 2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+ 又适合上式 2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈ 数列是首项为,公差为的等差数列.122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+21、解:(1)证明:垂直平分 为的中点DE PC E ∴PC 又为的中点 为的中位线 F BC EF ∴BCP A //EF BP∴又 ,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面(2)证明:连接BE,为的中点 PB BC = E PC PC BE∴⊥垂直平分 DE PC PC DE∴⊥又, BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面又 BD BDE ⊂ 平面PC BD∴⊥ ,PA ABC BD ABC ⊥⊂平面平面PA BD∴⊥又, PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面又 AC PAC ⊂ 平面BD AC∴⊥。
2024年广东省普通高中学业水平合格性考试数学试卷(B)(3)
![2024年广东省普通高中学业水平合格性考试数学试卷(B)(3)](https://img.taocdn.com/s3/m/cdb7552dcbaedd3383c4bb4cf7ec4afe04a1b1d0.png)
一、单选题二、多选题1. 已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是A .若,,且,则B.若,,且,则C .若,,且,则D .若,,且,则2. 一个容量为100的样本,其数据分组与各组的频数如下:分组[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]频数5182032169则这组样本数据的中位数所在的区间为( )A .[50,60)B .[60,70)C .[70,80)D .[80,90)3. 已知双曲线的左焦点为F ,左顶点为A,直线交双曲线于P 、Q 两点(P 在第一象限),直线与线段交于点B ,若,则该双曲线的离心率为( )A .2B .3C .4D .54.已知向量,,若,则x =( )A.B .1C.D .-15. 如图,阴影部分所表示的集合为()A.B.C.D.6.若不等式对任意恒成立,则实数的取值范围为A.B.C.D.7. 过圆上的动点作圆的两条切线,两个切点之间的线段称为切点弦,则圆不在任何切点弦上的点形成的区域的面积为( )A.B.C.D.8. 下列函数中,既是偶函数又在上单调递减的是( )A.B.C.D.9. 已知正四棱台的所有顶点都在球的球面上,,,为内部(含边界)的动点,则( )A.∥平面B.球的表面积为C.的最小值为2024年广东省普通高中学业水平合格性考试数学试卷(B)(3)2024年广东省普通高中学业水平合格性考试数学试卷(B)(3)三、填空题四、解答题D.若与平面所成角的正弦值为,则点轨迹长度为10. 已知函数的部分图象如图所示,且,若为奇函数,则可能取值为()A.B.C.D.11. 已知双曲线的左、右焦点分别为,过点斜率为的直线与双曲线的左、右两支分别交于两点,下列命题正确的有( )A.B.当点为线段的中点时,直线的斜率为C .若,则D.12.平面直角坐标系中,的三个顶点的坐标分别是,则( )A.B .锐角三角形C .的面积为D .的外接圆半径大于213.已知数列的前n项和为,,且,若,则______.14.已知正四棱锥的底面边长为,侧棱与底面所成的角为,顶点S ,A ,B ,C ,D 在球O 的球面上,则球O 的表面积为________________.15. 已知数列,中各项均为正数,且是公为2的等差数列,若点均在双曲线上,则的取值范围是___________.16. 已知函数.(1)当函数在点处的切线方程为,求函数的解析式;(2)当时,函数在上单调递减,试求的取值范围;(3)在(1)的条件下,若是函数的零点,且,求的值.17. 在①a =2,②a =b =2,③b =c =2这三个条件中任选一个,补充在下面问题中,求△ABC 的面积的值(或最大值).已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,三边a ,b ,c 与面积S 满足关系式:,且______,求△ABC 的面积的值(或最大值).18.数列的前项和为,.(1)设,证明:数列是等比数列;(2)求数列的前项和.(3)若,,求不超过的最大的整数值.19. 设函数.(1)当时,求曲线在点处的切线方程;(2)当时,的最大值为,求的取值范围.20. 已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.21.请在①,②,③这三个条件中任选两个,将下面问题补充完整,并作答.问题:在中,,,分别是角,,的对边,且,___________,___________,计算的面积.。
广东省高中学业水平考试数学试卷含答案
![广东省高中学业水平考试数学试卷含答案](https://img.taocdn.com/s3/m/5f919afd964bcf84b8d57bc4.png)
2021年广东省普通高中学业水平考试数学模拟测试卷(时间:90分钟满分:150分)一、选择题(本大题共15小题,每小题6分,满分90分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={0,2,4},B={-2,0,2},则A∪B=()A.{0,2}B.{-2,4}C.[0,2]D.{-2,0,2,4}2.用a,b,c表示三条不同的直线,y表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥y,b∥y,则a∥b;④若a⊥y,b⊥y,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④3.函数y=log3(x+2)的定义域为()A.(-2,+∞)B.(2,+∞)C.[-2,+∞)D.[2,+∞)4.已知向量a=(2,-2),b=(2,-1),则|a+b|=()A.1B.C.5D.255.直线3x+2y-6=0的斜率是()A. B.-C. D.-6.不等式x2-9<0的解集为()A.{x|x<-3}B.{x|x<3}C.{x|x<-3或x>3}D.{x|-3<x<3}7.已知a>0,则=()A. B.C. D.8.某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.7和B.8和C.7和1D.8和9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,BD1=2,则AA1=()A.1B.C.2D.10.若不等式-4<2x-3<4与不等式x2+px+q<0的解集相同,则=()A. B.- C. D.11.设x,y满足约束条件则z=x-2y的最大值为()A.-5B.-3C.1D.412.已知圆C与y轴相切于点(0,5),半径为5,则圆C的标准方程是()A.(x-5)2+(y-5)2=25B.(x+5)2+(y-5)2=25C.(x-5)2+(y-5)2=5或(x+5)2+(y-5)2=5D.(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=2513.如图,△ABC中,=a,=b,=4,用a,b表示,正确的是()A.a+bB.a+bC.a+bD.a-b14.若数列{a n}的通项a n=2n-6,设b n=|a n|,则数列{b n}的前7项和为()A.14B.24C.26D.2815.已知函数f(x)=则不等式f(x)≤5的解集为()A.[-1,1]B.(-∞,-2]∪(0,4)C.[-2,4]D.(-∞,-2]∪[0,4]二、填空题(本大题共4小题,每小题6分,满分24分)16.已知角α的顶点与坐标原点重合,终边经过点P(4,-3),则cos α=.17.在等比数列{a n}中,a1=1,a2=2,则a4=.18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是.19.已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈[0,+∞)时,f(x)=x2-4x,则当x∈(-∞,0)时,f(x)=.三、解答题(本大题共2小题,每小题12分,满分24分.解答须写出文字说明、证明过程和演算步骤)20.△ABC的内角A,B,C的对边分别为a,b,c,已知cos A=,bc=5.(1)求△ABC的面积;(2)若b+c=6,求a的值.21.如图,三棱锥P-ABC中,P A⊥PB,PB⊥PC,PC⊥P A,P A=PB=PC=2,E是AC的中点,点F在线段PC上.(1)求证:PB⊥AC;(2)若P A∥平面BEF,求四棱锥B-APFE的体积.22.广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2017年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)计算这40名广场舞者中年龄分布在[40,70)的人数;(2)若从年龄在[20,40)的广场舞者中任取两名,求这两名广场舞者恰有一人年龄在[30,40)的概率.答案:1.D【解析】由并集的定义,可得A∪B={-2,0,2,4}.故选D.2.C【解析】②不正确,a,c的位置关系有三种,平行、相交或异面;③不正确.3.A【解析】要使y=log3(x+2)有意义,则x+2>0,解得x>-2,即定义域为(-2,+∞).故选A.4.C【解析】由a=(2,-2),b=(2,-1),可得a+b=(4,-3),则|a+b|==5.故选C.5.B【解析】直线3x+2y-6=0,可化为y=-x+3,故斜率为-.故选B.6.D【解析】由x2-9<0,可得-3<x<3.故选D.7.D【解析】,则.故选D.8.A【解析】平均数×(9+8+7+6+5+7)=7,方差s2=[(9-7)2+(8-7)2+(7-7)2+(6-7)2+(5-7)2+(7-7)2]=.故选A.9.B【解析】在长方体中,B=AB2+AD2+A,则22=12+12+A,解得AA1=.故选B.10.A【解析】∵不等式-4<2x-3<4,∴-<x<.∵不等式-4<2x-3<4与不等式x2+px+q<0的解集相同,∴不等式x2+px+q<0的解集为,∴-是方程x2+px+q=0的两个根,∴解得p=-3,q=-,∴.故选A.11.C【解析】作出约束条件表示的平面区域如图所示,当直线z=x-2y过点A(1,0)时,z取得最大值,z max=1-2×0=1.故选C.12.D【解析】由题意得圆C的圆心为(5,5)或(-5,5),故圆C的标准方程为(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=25.故选D.13.C【解析】由=4,可得=4(),则,即a+b.故选C.14.C【解析】当n≤3时,a n≤0,b n=|a n|=-a n=6-2n,即b1=4,b2=2,b3=0.当n>3时,a n>0,b n=|a n|=a n=2n-6,即b4=2,b5=4,b6=6,b7=8.所以数列{b n}的前7项和为4+2+0+2+4+6+8=26.故选C.15.C【解析】由于f(x)=当x>0时,3+log2x≤5,即log2x≤2=log24,解得0<x≤4;当x≤0时,x2-x-1≤5,即(x-3)(x+2)≤0,解得-2≤x≤3.又x≤0,所以-2≤x≤0.综上不等式f(x)≤5的解集为[-2,4],故选C.16.【解析】由题意得x=4,y=-3,r==5,cos α=.17.8【解析】设等比数列{a n}的公比为q,由题意得q==2,则a4=a1q3=1×23=8.18.【解析】记2个白球分别为白1,白2,3个黑球分别为黑1,黑2,黑3,从这5个球中任取两球,所有的取法有{白1,白2},{白1,黑1},{白1,黑2},{白1,黑3},{白2,黑1},{白2,黑2},{白2,黑3},{黑1,黑2},{黑1,黑3},{黑,黑3},共10种.其中取出的两球颜色相同取法的有4种,所以所求概率为P=.219.-x2-4x【解析】当x∈(-∞,0)时,-x∈(0,+∞),由奇函数可得f(x)=-f(-x)=-[(-x)2-4(-x)]=-x2-4x.20.【解】(1)∵A是△ABC的内角,即A∈(0,π),cos A=,∴sin A=.又bc=5,∴S△ABC=bc sin A=×5×=2.(2)由cos A=,bc=5,可得b2+c2-a2=6.由bc=5,b+c=6,可得b2+c2=(b+c)2-2bc=26.∴26-a2=6,解得a=2.21.【解】(1)∵P A⊥PB,PB⊥PC,P A⊂平面P AC,PC⊂平面P AC,P A∩PC=P,∴PB⊥平面P AC.又AC⊂平面P AC,∴PB⊥AC.(2)∵P A∥平面BEF,P A⊂平面P AC,平面BEF∩平面P AC=EF,∴P A∥EF.又E为AC的中点,∴F为PC的中点.∴S四边形APFE=S△P AC-S△FEC=S△P AC.∵PC⊥P A,P A=PC=2,∴S△P AC=×2×2=2.∴S四边形APFE=.由(1)得PB⊥平面P AC,∴PB=2是四棱锥B-APFE的高.∴S四边形APFE·PB=×2=1.22.【解】(1)由表中数据知,这40名广场舞者中年龄分布在[40,70)的人数为(0.02+0.03+0.025)×10×40=30.(2)由直方图可知,年龄在[20,30)的有2人,分别记为a1,a2;在[30,40)的有4人,分别记为b1,b2,b3,b4.现从这6人中任选两人,共有如下15种选法:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),其中恰有1人在[30,40)的情况有8种,故这两名广场舞者恰有一人年龄在[30,40)的概率为P=.。
2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)
![2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)](https://img.taocdn.com/s3/m/a5f425f06294dd88d0d26b46.png)
绝密★启用前2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)考试时间:100分钟;命题人:小高考课题研究小组题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共15小题,每小题4分,共60分.)1.集合A={0,1,2},B={x|﹣1<x<2},则A∩B=()A.{0}B.{1}C.{0,1}D.{0,1,2}2.已知数列{a n}是等比数列,且a1=,a4=﹣1,则{a n}的公比q为()A.2 B.﹣C.﹣2 D.3.命题“∀x>1,”的否定是()A.∀x>1,B.∀x≤1,C.∃x0>1,D.∃x0≤1,4.过点P(2,﹣1)且倾斜角为的直线方程是()A.x﹣y+1=0 B.x﹣2y﹣﹣2=0 C.x﹣y﹣3=0 D.x﹣2y++1=0 5.若a,b是异面直线,b,c是异面直线,则a,c的位置关系为()A.相交、平行或异面B.相交或平行C.异面D.平行或异面6.平行四边形ABCD中,=,=,则+=()A.B.C.D.7.直线y=x被圆(x﹣1)2+y2=1所截得的弦长为()A.B.1 C.D.28.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A.B.C.D.9.若如图是一个几何体的三视图,则这个几何体是()A.圆锥B.棱柱C.圆柱D.棱锥10.甲乙两人下棋,已知两人下成和棋的概率为,甲赢棋的概率为,则甲输棋的概率为()A.B.C.D.11.函数f(x)=lnx+2x﹣1零点的个数为()A.4 B.3 C.2 D.112.设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.313.为了得到函数y=sin(2x﹣),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.sin27°cos18°+cos27°sin18°的值为()A.B.C.D.115.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<f()<f()B.f()<f(1)<f()C.f()<f()<f(1)D.f()<f(1)<f()第Ⅱ卷(非选择题)评卷人得分二.填空题(共4小题,每小题4分,共16分.)16.在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),则A,B两点间的距离为.17.已知函数f(x)=log a(x﹣1)﹣2(a>0且a≠1),则函数恒过定点.18.一条光线从A(﹣,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为.19.已知F1,F2为椭圆C的两个焦点,P为C上一点,若|PF1|,|F1F2|,|PF2|成等差数列,则C的离心率为.评卷人得分三.解答题(共2小题,每小题12分,共24分.)20.如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.21.如图是一名篮球运动员在某一赛季10场比赛的得分的原始记录的茎叶图,(1)计算该运动员这10场比赛的平均得分;(2)估计该运动员在每场比赛中得分不少于40分的概率.2018年广东省普通高中学业水平测试数学模拟测试卷(考前压题篇)参考答案与试题解析一.选择题(共15小题)1.解:∵A={0,1,2},B={x|﹣1<x<2}∴A∩B={0,1}故选C2.解:由,故选C.3.解:因为全称命题的否定是特称命题,所以命题“∀x>1,”的否定是∃x0>1,故选:C.4.解:∵斜率k=tan=1,∴过点P(2,﹣1),且倾斜角为的直线方程为:y+1=x﹣2,即x﹣y﹣3=0,故选:C5.解:因为a,b是异面直线,b,c是异面直线,则a,c的位置关系可能平行,可能是异面直线,也可能是相交直线.故选A.6.解:平行四边形ABCD中,=,=,故=+=+=+,故选:A.7.解:由圆的方程得:圆心坐标为(1,0),半径r=1,∵圆心到直线x﹣y=0的距离d=,∴直线被圆截得的弦长为2=.故选C.8.解:圆O的直径AB=2,半径为1,所以圆的面积为S圆=π•12=π;△ABC的面积为S△ABC=•2•1=1,在圆O内随机撒一粒黄豆,它落在△ABC内(阴影部分)的概率是P==.故选:D.9.解:∵圆柱的正视图和侧视图都是矩形,俯视图是一个圆,∴该几何体是圆柱.故选C.10.解:∵甲乙两人下棋,两人下成和棋的概率为,甲赢棋的概率为,∴甲输棋的概率为:P=1﹣=.故选:C.11.解:在同一坐标系内分别作出函数y=lnx与y=1﹣2x的图象,易知两函数图象有且只有一个交点,即函数y=lnx﹣1+2x只有一个零点.故选D.12.解:x,y满足约束条件的可行域如图:,则z=x+y经过可行域的A时,目标函数取得最大值,由解得A(3,0),所以z=x+y 的最大值为:3.故选:D.13.解:∵y=sin(2x﹣)=sin2(x﹣),∴为了得到函数y=sin(2x﹣)的图象,只需将函数y=sin2x的图象上所有的点向右平行移动个单位长度.故选:D.14.解:sin27°cos18°+cos27°sin18°=sin(27°+18°)=sin45°=.故选:A.15.解:∵函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,∴函数y=f(x)在[2,4]上单调递减且在[0,4]上函数y=f(x)满足f(2﹣x)=f(2+x)即f(1)=f(3)∵f()<f(3)<f()∴f()<f(1)<f()故选B二.填空题(共4小题)16.解:∵在空间直角坐标系中,点A(1,3,﹣2),B(﹣2,3,2),∴A,B两点间的距离:|AB|==5,故答案为:5.17.解:根据对数函数的恒过点性质:可得:x﹣1=1,解得:x=2.那么:y=)=log a1﹣2=﹣2.则函数恒过定点为(2,﹣2).故答案为(2,﹣2).18.解:由反射定律可得点点A(﹣,0)关于y轴的对称点A′(,0)在反射光线所在的直线上,再根据点B(0,1)也在反射光线所在的直线上,用两点式求得反射光线所在的直线方程为,即2x+y﹣1=0,故答案为:2x+y﹣1=0.19.解:∵|PF1|,|F1F2|,|PF2|成等差数列,∴2|F1F2|=|PF1|+|PF2|=2a,即4c=2a,∴e==.故答案为:.三.解答题(共2小题)20.解:(Ⅰ)证明:连接BD.在正方体AC1中,对角线BD∥B1D1.又因为E、F为棱AD、AB的中点,所以EF∥BD.所以EF∥B1D1.(4分)又B1D1⊂平面CB1D1,EF⊄平面CB1D1,所以EF∥平面CB1D1.(7分)(Ⅱ)因为在正方体AC1中,AA1⊥平面A1B1C1D1,而B1D1⊂平面A1B1C1D1,所以AA1⊥B1D1.(10分)又因为在正方形A1B1C1D1中,A1C1⊥B1D1,所以B1D1⊥平面CAA1C1.(12分)又因为B1D1⊂平面CB1D1,所以平面CAA1C1⊥平面CB1D1.(14分)21.解:(1)由已知中茎叶图可得该篮球运动员在某一赛季10场比赛的得分分别为:16,24,27,33,34,36,39,41,44,46,故该运动员这10场比赛的平均得分为:(16+24+27+33+34+36+39+41+44,46)=34;(2)由(1)可得:运动员在每场比赛中得分不少于40分的场次共有3场,故该运动员在每场比赛中得分不少于40分的概率P=.。
2018年广州市普通高中毕业班综合测试一(一模)理科数学答案及评分细则
![2018年广州市普通高中毕业班综合测试一(一模)理科数学答案及评分细则](https://img.taocdn.com/s3/m/7eeccfc09e314332396893d1.png)
4 m2 12 . m2 4
所以 SABQ
解法 2:依题意直线 l 的斜率存在,设其方程为 y k x 4 ,
y k x 4 , 2 2 2 由 x2 得 4k +1 y 8ky 12k 0 . 2 y 1, 4
2 2
当 n 1 时, a1 1 也符合上式. 所以数列 an 的通项公式 an 4n 3 n N
*
.
第 1 页 共 16 页
数学(理科)答案 A
(2) n 1 时,
a1 1 ,所以 b1 2a1 2 . b1 2
a1 a2 b1 b2 an 1 5 4n 5 , bn 2
max
2
当且仅当 t 32 时,即 m 2 7 时, SABQ 所以 ABQ 面积的最大值为
3 = . 4
3 . 4
【求 ABQ 面积的另解:因为点 Q 1, 0 到直线 l 的距离为 d
3 1 m2
.
| AB | 1 m2 ( y1 y2 )2 4 y1 y2 1 m2 1 6 m2 12 .】 d | AB | 2 m2 4
2
2
3 ,所以 b 2 a 2 c 2 1 .
所以点 G 的轨迹 C 的方程为
x2 y2 1. 4
(2)解法 1:依题意可设直线 l : x my 4 .
x my 4, 2 2 由 x2 ,得 (m 4) y 8my 12 0 . 2 y 1, 4
3 . 4
广东省2018年高一下学期期末学业水平考试数学试题+Word版含答案8
![广东省2018年高一下学期期末学业水平考试数学试题+Word版含答案8](https://img.taocdn.com/s3/m/137f93ce76a20029bc642d1f.png)
高中一年级学业水平考试数学科试题卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|13}A x x =-<<,{|1}B x x =<,则()U A C B = ( ) A .{|13}x x << B .{|13}x x ≤< C .{|13}x x <≤ D .{|13}x x ≤≤2.若lg lg 0a b +=且a b ≠,则函数()x f x a =与()x g x b =的图像( ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y x =对称3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐月增加C .各年的月接待游客量高峰期大致在7,8月D . 各年1月至6月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.运行如图所示框图的相应程序,若输入,a b 的值分别为2log 3和3log 2,则输出M 的值是( )A .0B .1 C. 2 D .-15.已知空间两条不同的直线,m n 和两个不同的平面,αβ,以下能推出“αβ⊥”的是( )A .m n ⊥,//m α,//n βB .//m n ,m α⊥,n β⊥ C. m n ⊥,m α⊥,n αβ= D .//m n ,m α⊥,n β⊂6.直线20mx y m +-+=恒经过定点( )A .(1,1)-B .(1,2) C. (1,2)- D .(1,1) 7.某几何体的三视图如图所示,则该几何体的体积是( )A .12π+ B .32π+ C.312π+ D .332π+8.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数为( )A . 0B . 1 C. 2 D .39.直线2340x y --=与直线(1)10mx m y +++=互相垂直,则实数m =( )A . 2B .25- C. 35- D .-310.设函数()cos f θθθ+,其中角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点1(2P ,则()f θ=( )A . 2B .211.已知函数21()log 1f x x x=+-,若1(1,2)x ∈,2(2,)x ∈+∞,则( ) A .1()0f x <,2()0f x < B .1()0f x <,2()0f x > C. 1()0f x >,2()0f x < D .1()0f x >,2()0f x >12.菱形ABCD 中,60BAD ∠=,点E 满足2DE EC =,若172AE BE ∙= ,则该菱形的面积为( )A .92B C. 6 D .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图,在矩形区域ABCD 的,A C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机地选一地点,则该地点无信号的概率是 .14.某实验室一天的温度(单位:0C )随时间t (单位:h )的变化近似满足函数关系:()102sin()123f t t ππ=-+,[0,24)t ∈,该实验室这一天的最大温差为 .15.已知幂函数a y x =的图像经过点(2,8),且与圆222x y +=交于,A B 两点,则||AB = .16.已知0sin104m =,则用含m 的式子表示0cos7为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数()sin(2)cos(2)36f x x x ππ=++-,x R ∈.(1)求()f x 的最小正周期;(2)将()y f x =图像上所有点向左平行移动6π个单位长度,得到()y g x =的图像,求函数()y g x =的单调递增区间.18. 已知函数2()21f x ax x a =-++. (1)若(1)(1)f x f x -=+,求实数a 的值; (2)当0a >时,求()f x 在区间[0,2]上的最大值.19. 某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率; (2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等,试估计总体中男生和女生人数的比例.20. 如图所示,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠= .(1)证明:平面PAB ⊥平面PAD ;(2)若P A P D A B D C ===,90APD ∠= ,求直线PB 与平面ABCD 所成的角的大小.21. 长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动. (1)求线段AB 的中点的轨迹Γ的方程;(2)当2a =时,曲线Γ与x 轴交于,C D 两点,点G 在线段CD 上,过G 作x 轴的垂线交曲线Γ于不同的两点,E F ,点H 在线段DF 上,满足GH 与CE 的斜率之积为-2,试求DGH ∆与DGF ∆的面积之比.22.已知函数(),x x f x e a e x R -=+∙∈. (1)当1a =时,证明:()f x 为偶函数;(2)若()f x 在[0,)+∞上单调递增,求实数a 的取值范围;(3)若1a =,求实数m 的取值范围,使[(2)2]()1m f x f x +≥+在R 上恒成立.高中一年级学业水平考试数学科参考答案一、选择题13.14π-; 14.4; 15. 16. 17.解:(1)()sin 2cos 236f x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭sin 2coscos 2sincos 2cossin 2sin3366x x x x ππππ=+++sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭,故()f x 的最小正周期22T ππ==; 【法二:由于22632x x πππ-=+-,故cos 2sin 263x x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, ()sin 2cos 22sin 2363f x x x x πππ⎛⎫⎛⎫⎛⎫=++-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()f x 的最小正周期为π】(2)()22sin 263g x f x x ππ⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭, 由2222232k x k πππππ-+≤+≤+,解得71212k x k ππππ-+≤≤-+ 故()g x 的单调递增区间为7,1212k k ππππ⎡⎤-+-+⎢⎥⎣⎦,k Z ∈.18.解:(1)因为)1()1(x f x f +=-,故()f x 的图像关于直线1=x 对称, 故0a ≠且11=a,解得1=a ;【法二:直接把)1()1(x f x f +=-代入展开,比较两边系数,可得1=a 】 (2)由于0a >,()f x 的图像开口向上,对称轴10x a=>, 当11a ≤,即1a ≥时,()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f ≤,故()f x 在[]0,2上的最大值为()253f a =-; 当112a <<,即112a <<时,()f x 在10,a ⎡⎤⎢⎥⎣⎦上递减,在1,2a ⎡⎤⎢⎥⎣⎦上递增,且()()02f f >,()f x 在[]0,2上的最大值为()01f a =+; 当11a≥,即102a <≤时,()f x 在[]0,2上递减,最大值为()01f a =+;综上所述,()max 53,11,01a a f x a a -≥⎧=⎨+<<⎩19.解:(1)由频率分布直方图知,分数小于70的频率为()10.040.02100.4-+⨯=, 故从总体的400名学生中随机抽取一人,其分数小于70的概率为0.4; (2)由频率分布直方图知,样本中分数在[]50,90之间的人数为 ()1000.010.020.040.021090⨯+++⨯=(人), 又已知样本中分数小于40的学生有5人,故样本中分数在区间[)40,50内的人数为1009055--=(人), 估计总体中分数在区间[)40,50内的人数为20人;(3)由频率分布直方图知,样本中分数不小于70共60人,男、女各30人, 又已知样本中有一半男生的分数不小于70, 从而样本中男生共60人,女生有40人, 故总体中男生和女生人数的比例为603402=. 20.解:(1)//AB CD ,CD PD ⊥,故AB PD ⊥, 又AB PA ⊥,PA PD P = ,可得AB ⊥平面PAD ,AB ⊂ 平面PAB ,故平面PAB ⊥平面PAD ;(2)取AD 的中点O ,连PO 、BO , 由于PA PD =,故PO ⊥AD ,结合平面PAB ⊥平面PAD ,知PO ⊥平面ABCD , 故PBO ∠为直线PB 与平面ABCD 所成的角, 在等腰Rt PAD ∆和等腰Rt PAB ∆中,PO PA =,PB =, 于是1sin 2PO PBO PB ∠==,即直线PB 与平面ABCD 所成的角为30 .21.解:设线段AB 的中点为(),x y ,则()2,0A x ,()0,2B y , 故2AB a ==,化简得222x y a +=,此即线段AB 的中点的轨迹Γ的方程; 【法二:当A 、O 重合或B 、O 重合时,AB 中点到原点距离为a ;当A 、B 、O 不共线时,根据直角三角形斜边中线等于斜边的一半,知AB 中点到原点距离也恒为a ,故线段AB 的中点的轨迹Γ的方程为222x y a +=】(2)当2a =时,曲线Γ的方程为224x y +=,它与x 轴的交点为()2,0C -、()2,0D ,设()0,0G x ,()00,E x y ,()00,F x y -, 直线CE 的斜率002CE y k x =+,故直线GH 的斜率()0022GH x k y -+=, 直线GH 的方程是()()00022x y x x y -+=-,而直线DF 的方程是0022y x y x -=--,即()0022y y x x =--- 联立()()()000002222x y x x y y y x x -+⎧=-⎪⎪⎨⎪=--⎪-⎩,解得()0021323x x y y +⎧=⎪⎪⎨⎪=-⎪⎩,此即点H 的坐标,故23DGH H DGF F S y S y ∆∆==. 22.解:(1)当1a =时,()x x f x e e -=+,定义域(),-∞+∞关于原点对称, 而()()x x f x e e f x --=+=,说明()f x 为偶函数; (2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e e a f x f x e ae e ae e+--+---=+-+=,因为12x x <,函数x y e =为增函数,得12x x e e <,120x x e e -<, 而()f x 在[)0,+∞上单调递增,得()()12f x f x <,()()120f x f x -<, 于是必须120x x e a +->恒成立, 即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x x f x e e e e --=+=+-,设x x t e e -=+,则[)2,t ∈+∞,110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⋅+≥+⎡⎤⎣⎦恒成立,等价于21m t t ⋅≥+,即21t m t +≥恒成立,而22211111124tt t t t+⎛⎫=+=+-⎪⎝⎭,仅当112t=,即2t=时取最大值34,故34m≥.。
广东省2018年高中会考[数学]考试真题与答案解析
![广东省2018年高中会考[数学]考试真题与答案解析](https://img.taocdn.com/s3/m/bb093404657d27284b73f242336c1eb91a3733e1.png)
广东省2018年高中会考[数学]考试真题与答案解析一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合,,则(). ...2、对任意的正实数,下列等式不成立的是(). ...3、已知函数,设,则(). .. .4、设是虚数单位,是实数,若复数的虚部是2,则( ). ..{}1,0,1,2M =-{}|12N x x =-≤<M N = A {}0,1,2B {}1,0,1-C M D N,x y A lg lg lgy y x x-=B lg()lg lg x y x y +=+C 3lg 3lg x x =D ln lg ln10x x =31,0()2,0x x x f x x ⎧-≥⎪=⎨<⎪⎩(0)f a =()=f a A 2-B 1-C 12D 0i x 1xi+x =A 4B 2C 2-5、设实数为常数,则函数存在零点的充分必要条件是(). .. .6、已知向量,,则下列结论正确的是( )....7、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是(). ...8、如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为().a 2()()f x x x a x R =-+∈A 1a ≤B 1a >C 14a ≤D 14a >(1,1)a = (0,2)b =A //a bB (2)a b b -⊥C a b =D 3a b = g A 69和B 96和C 78和D 87和A 1..9、若实数满足,则的最小值为(). ...10、如图,是平行四边形的两条对角线的交点,则下列等式正确的是( ). . . .11、设的内角的对边分别为,若,则(). ...12、函数,则的最大值和最小正周期分别为( )C 4D 8,x y 1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩2z x y =-A 0B 1-C 32-D 2-o ABCD A DA DC AC -=B DA DC DO += C OA OB AD DB -+= D AO OB BC AC++= ABC V ,,A B C ,,a b c 2,a b c ===C =A 56πB 6πC 23πD 3π()4sin cos f x x x =()f x. ...13、设点是椭圆上的一点,是椭圆的两个焦点,若,则()....14、设函数是定义在上的减函数,且为奇函数,若,,则下列结论不正确的是(). .. .15、已知数列的前项和,则(). ...A 2π和B 4π和C 22π和D 42π和P 2221(2)4x y a a +=>12F F ,12F F =12PF PF +=A 4B 8C D ()f x R ()f x 10x <20x >A (0)0f =B 1()0f x >C 221((2)f x f x +≤D 111()(2)f x f x +≤{}n a n 122n n S +=-22212n a a a +++= A 24(21)n -B 124(21)n -+C 4(41)3n -D 14(42)3n -+二、填空题16、双曲线的离心率为 .17、若,且,则.18、笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为 .19、圆心为两直线和的交点,且与直线相切的圆的标准方程是.三、解答题本大题共2小题. 每小题12分,满分24分. 解答须写出文字说明、证明过程和演算步骤.20、若等差数列满足,且.(1)求的通项公式;(2)设数列满足,,求数列的前项和.21、如图所示,在三棱锥中,,,为的中点,垂直平分,且分别交于点.(1)证明:;(2)证明:.221916x y -=2sin()23πθ-=0θπ<<tan θ=20x y +-=3100x y -++=40x y +-={}n a 138a a +=61236a a +={}n a {}n b 12b =112n n n b a a ++=-{}n b n n S P ABC -PA ABC ⊥平面PB BC =F BC DE PC DE AC PC ,,D E //EF ABP 平面BD AC ⊥答案解析一、选择题1、B答案解析:,故选B.2、B答案解析:对于B 项,令,则,而,显然不成立,故选B.3、C答案解析: ,故选C.4、D 答案解析: ,故选D.5、C答案解析:由已知可得,,故选C.6、B 答案解析:对于A 项,,错误;对于B 项,,,则,正确;对于C 项,,错误;对于D 项,,错误.故选B.7、A答案解析:抽样比为,则应抽取的男生人数为,应抽取的女生人数为,故选A.8、C{}101M N =- ,,1x y ==lg()lg 2lg10x y +=>=lg lg 0x y +=3(0)011a f ==-=- 11()(1)22f a f -∴=-==(1)1(1)(1)22x x i x x i i i i -==-++- 242x x ∴-=⇒=-11404a a ∆=-≥⇒≤12-010⨯⨯≠2(2,0)ab -= (0,2)b = 20+020(2)a b b ⨯⨯=⇒-⊥2a = 10122a b =⨯+⨯=g 1535010k ==320=6()10⨯人3(5020)9()10-⨯=人答案解析:由三视图可知,该几何体为长方体,长为2,宽为2,高为1,则体积为,故选C.9、D答案解析:(快速验证法)交点为,则分别为,所以的最小值为,故选D. 10、D 答案解析:对于A 项,,错误;对于B 项,,错误;对于C 项,,错误;对于D 项,,正确. 故选D.11、A答案解析:由余弦定理,得,又 ,故选A.12、A答案解析:,最小正周期为,故选A. 13、B答案解析:,故选B.14、D 答案解析:对于A 项,为上的奇函数 ,正确;对于B 项,为上的减函数,正确;对于C 项,2214V =⨯⨯=11(0,1),(0,0),(,)22-2z x y =-32,0,2--z2-DA DC CA -=2DA DC DO +=OA OB AD BA AD BD -+=+=AO OB BCAB BC AC ++=+=222cos 2a b c C ab +-===0C π<< 5=6C π∴()2sin 2f x x = max ()2f x ∴=22T ππ==122F F c c ==⇒= 22224164a cb a ∴=+=+=⇒=122248PF PF a ∴+==⨯=()f x R (0)0f ∴=()f x R 110()(0)0x f x f ∴<⇒>=20x > 222221121x x x x x ∴+≥===(当且仅当时等号成立),正确;对于D 项, ,错误. 故选D.15、C答案解析:当时,;当时,适合上式. 是首项为,公比为的等比数列 ,故选C.二、填空题16、答案解析:由已知,得 双曲线的离心率为.17答案解析:,且18、答案解析:.19、答案解析:联立得221((2)f x f x ∴+≤10x < 111111()2x x x x ∴+=--+≤-=--111()(2)(2)f x f f x ∴+≥-=-2n ≥1122(22)2222n n n n n n n n a S S +-=-=---=⨯-=1n =211222a S ==-=222()(2)4n n n n n a n N a *∴=∈⇒=={}2n a ∴44222124(14)4(41)143n n n a a a --∴+++==- 532293,164a a b b =⇒==⇒=222916255c a b c ∴=+=+=⇒=∴53c e a ==2sin()cos 23πθθ-== 0θπ<<sin θ∴===sin 3tan cos 2θθθ∴===49224339P ⨯==⨯22(4)(2)2x y -++=203100x y x y +-=⎧⎨-++=⎩4(4,2)2x y =⎧⇒-⎨=-⎩圆心为则圆心到直线的距离为圆的标准方程为.三、解答题20、(1)设等差数列的公差为.数列的通项公式为.(2)由(1)知, 又适合上式 数列是首项为,公差为的等差数列.21、(1)证明:垂直平分为的中点又为的中点为的中位线又(2)证明:连接,为的中点 垂直平分(4,2)-40x y +-=d ∴22(4)(2)2x y -++={}n a d ∴1311161211828236511362a a a a d a a a a d a d d +=++==⎧⎧⎧⇒⇒⎨⎨⎨+=+++==⎩⎩⎩2(1)22n a n n ∴=+-⨯=∴{}n a 2n a n =2n a n =1122(1)2222n n n b a a n n n ++∴=-=+-⨯=-+2(1)224n b n n ∴=--+=-+12b = 24()n b n n N *∴=-+∈122(24)2n n b b n n +∴-=-+--+=-∴{}n b 22-22(1)2(2)232n n n S n n n n n n -∴=+⨯-=-+=-+DE PC E ∴PC F BC EF ∴BCP V //EF BP∴,EF ABP BP ABP ⊄⊂ 平面平面//EF ABP∴平面BEPB BC = E PC PC BE∴⊥DE PC又,又又,又PC DE∴⊥BE DE E = ,BE DE BDE ⊂平面PC BDE∴⊥平面BD BDE ⊂ 平面PC BD∴⊥,PA ABC BD ABC ⊥⊂ 平面平面PA BD∴⊥PC PA P = ,PC PA PAC ⊂平面BD PAC∴⊥平面AC PAC ⊂ 平面BD AC∴⊥。
2024年广东省普通高中学业水平合格性考试数学试卷(B) (2)
![2024年广东省普通高中学业水平合格性考试数学试卷(B) (2)](https://img.taocdn.com/s3/m/33f66860ec630b1c59eef8c75fbfc77da269973a.png)
一、单选题1. 点与圆上的动点之间的最近距离为( ).A.B .2C.D.2.已知函数,若,且,则实数a 的最大值为( )A .2B.C .ln2D .e3. 已知抛物线的焦点为,过点且斜率为的直线与抛物线交于、两点(点在第二象限),则( )A.B.C.D.4. 设数列满足且是前项和,且,则( )A .2024B .2023C .1012D .10115.已知复数,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6. 在三棱锥中,平面,且为等边三角形,,则三棱锥的外接球的表面积为( )A.B.C.D.7. 若关于的不等式在区间上有解,则实数的取值范围为( )A.B.C.D.8. 袋子中有5个大小质地完全相同的球,其中2个红球,3个黄球,从中随机摸出1个球,则摸到黄球的概率是( )A.B.C.D.9.已知是方程的根,是方程的根,则的值为( )A .2016B .2017C .2018D .100910. 数列为等差数列,为其前项和,,则=( )A .40B .42C .43D .4511. “稻草很轻,但是他迎着风仍然坚韧,这就是生命的力量,意志的力量”“当你为未来付出踏踏实实努力的时候,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现”……当读到这些话时,你会切身体会到读书破万卷给予我们的力量.为了解某普通高中学生的阅读时间,从该校随机抽取了800名学生进行调查,得到了这800名学生一周的平均阅读时间(单位:小时),并将样本数据分成九组,绘制成如图所示的频率分布直方图,则从这800名学生中随机抽取一人,周平均阅读时间在内的频率为()A .0.20B .0.10C .0.15D .0.302024年广东省普通高中学业水平合格性考试数学试卷(B)二、多选题三、填空题12.函数的定义域为( )A.B.C.D.13. 对于函数,如果存在实数,使得,那么称函数有不动点,也称是函数的一个不动点.下列命题中的真命题有( )A .有1个不动点B .有2个不动点C .有3个不动点D .没有不动点14.函数(,,是常数,,)的部分图象如图所示,下列结论正确的是()A.B.在区间上单调递增C.将的图象向左平移个单位,所得到的函数是偶函数D.15. 如图,在正方体中,棱长为4,分别为的中点,分别为上的一点,且满足,,设正方体的体积为,几何体的体积为,则下列结论正确的是()A.B .点到平面的距离为定值C .当时,D .当时,16. 下列四个等式正确的是( )A.B.C.D.17.已知数列满足,则______.18. 设椭圆的左顶点为上顶点为且椭圆的离心率为则过椭圆的右焦点且与直线平行的直线的方程为______________.19. 已知,则______.四、填空题五、解答题六、解答题七、解答题八、解答题20. 已知双曲线:的一条渐近线方程为,则双曲线的离心率为___________;若抛物线的焦点与双曲线的一个焦点相同,是抛物线上一点,的延长线交轴的正半轴于点,交抛物线的准线于点,且,则___________.21.已知不是常数函数,且满足:.①请写出函数的一个解析式_________;②将你写出的解析式得到新的函数,若,则实数a 的值为_________.22.已知数列满足.(1)求数列的通项公式;(2)求数列的前项和.23.如图,在多面体中,四边形为菱形,且∠ABC =60°,AE ⊥平面 ABCD ,AB =AE =2DF ,AE DF.(1)证明:平面AEC ⊥平面 CEF ;(2)求平面ABE 与平面CEF 夹角的余弦值.24. 已知方程,其中为实数.对于不同范围的值,分别指出方程所代表图形的类型,并画出显示其数量特征的草图.25. 如图,在多面体ABCDEFG 中,侧面ABGF 是矩形,侧面BCDG 与底面EFGD 是直角梯形,.(1)求证:四边形ACDE 是平行四边形;(2)若,二面角的正切值为,求多面体ABCDEFG 的体积.26. 在①;②;③,,三个条件中任选一个补充在下面的横线上,并加以解答.注:如果选择多个条件分别作答,按第一个解答计分.已知正项数列的前n 项和为,且______,(1)求数列的通项公式;(2)设,若数列满足,求证:.27. 魔方,又叫鲁比可方块,最早是由匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的机械益智玩具.魔方拥有竞速、盲拧、单拧等多种玩法,风靡程度经久未衰,每年都会举办大小赛事,是最受欢迎的智力游戏之一.通常意义下的魔方,是指狭义的三阶魔方.三阶魔方形状通常是正方体,由有弹性的硬塑料制成.常规竞速玩法是将魔方打乱,然后在最短的时间内复原.广义的魔方,指各类可以通过转动打乱和复原的几何体.魔方与华容道、法国的单身贵族(独立钻石棋)并称为智力游戏界的三大不可思议.在2018WCA 世界魔方芜湖公九、解答题开赛上,杜宇生以3.47秒的成绩打破了三阶魔方复原的世界纪录,勇夺世界魔方运动的冠军,并成为世界上第一个三阶魔方速拧进入4秒的选手.(1)小王和小吴同学比赛三阶魔方,已知小王每局比赛获胜的概率均为,小吴每局比赛获胜的概率均为,若采用三局两胜制,两人共进行了局比赛,求的分布列和数学期望;(2)小王和小吴同学比赛四阶魔方,首局比赛小吴获胜的概率为0.5,若小王本局胜利,则他赢得下一局比赛的概率为0.6,若小王本局失败,则他赢得下一局比赛的概率为0.5,为了赢得比赛,小王应选择“五局三胜制”还是“三局两胜制”?28. 为了增强中学生的体质、丰富中学生的课余生活,某中学开设了篮球、足球、排球、羽毛球四种球类运动社团,要求每位学生每周必须选择参加两种运动社团.若该学期共有20周,现对甲、乙两名同学每周选择参加的运动社团组合情况及周数进行统计,结果如下表:学生周数12周6周2周甲篮球、足球排球、足球羽毛球、排球乙排球、足球篮球、羽毛球篮球、足球以样本的频率作为总体的概率,甲、乙选择运动社团时互相独立,则(1)在甲选择排球运动社团的前提下,求甲、乙选择相同运动社团组合的概率;(2)记甲、乙两名同学在该学期第一周合计选择的运动社团的种数为,求的分布列和数学期望.。
2018年广州市一模理科数学答案解析(可编辑修改word版)
![2018年广州市一模理科数学答案解析(可编辑修改word版)](https://img.taocdn.com/s3/m/87589fb831b765ce0408140f.png)
绝密★启用前2018年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.选择题二.填空题13. 2 14. -―—15.——16. 646 2三.解答题17.解:(1)因为数列是首项为1,公差为2的等差数列,所以i = i + 2(7?-l) = 2z?-l.所以S n=2n2-jj.当H = 1 时,a l=S l=l.当2时,a n=S n-S nA=(2H2-77)-[2(« -1)2-(FZ-1)] = 3,当77 = 1时,%=1也符合上式.所以数列的通项公式=477-3(7?G N*).(2) n = l 时,> =丄,所以A =2^ =2.2两式相减,得^ = (4z7-3)f|]) ?n+12,则数列& }是首项为2公比为2的等比数列.又-^ = — =£(h£)=2-_21-2 -a = = 112.45-6.87x5.5 = 74.67 ,所以y 关于x 的线性回归方程为y = 6.87x + 74.67 .(2)若回归方程为y = 6.87x + 74.67,当 x=ll 时,y=150. 24.若回归方程为y = -0.30.x 2 +10.17.x + 68.07 ,当 x=ll 时,尸143. 64.|143.64-145.3| = 1.66 < |150.24-145.3| = 4.94,所以回归方程JF = -0.30X 2+10.17.Y + 68.07对该地11岁男童身髙中位数的拟合效果更好.当a>2时,由&+& + ... + \ b 2 所以 t+t“+&=5-(4”+1)⑸n —1因为=4/7-3,所以h =(4"-3)⑷G 77_3> - = 2n (77 = 1时也符合公式). 2n18.解:(1)nf=ii ('-寸 i=i566.8582.5= 6.874 = 5-(4n + 5)19. (1)证明:设ACC\BD = O f连sa,因为AB = AD t CB = CD,所以wc是的垂直平分线,即a为中点,且we丄so.在ASCD中,因为CB = CD = 2, ZBCD = 120°, 所以BD = 2礼CO = 1.在RtASBO中,因为ZBSD = 9Q°,O为BD中点,所以SO = ^BD = y/3.在△ sac 中,因为CO = l,SO = y/3, CS = 2f所以SO1 +CO1 =cs2.所以SO丄AC.因为BDC]SO = O,所以3C丄平面S3Z).(2)解法1:过点a作(2尺丄S3于点尤,连I, CK,由(1)知丄平面SSO.所以da丄5B.因为OKC\AO = O,所以SS丄平面AOK.因为AK c平面AOK,所以丄S3.同理可证CX丄5B.所以Z^:C是二面角A-SB-C的平面角.因为SC丄50,由(1)知/C丄SD,且ACHSC = C f 所以SD丄平面SAC.而SOc平面SAC,所以SO丄50.在RtASOS 中,OK=SOOB=1. SB 2同理可求CK =35 解法2:勸SC1BD ,由(1)知WC 丄SO, 且 ACHSC = C f所以SD 丄平面&4C.而SOc 平面SAC ,所以SO 丄SO.由(1)知,WC 丄平面SSO, SOc 平面SSO,所以SO 丄/C. 因为ACC\BD = O,所以SO 丄平面/SCO.以a 为原点,OA ,OB ,as 为x 轴,y 轴,z 轴正向建立空间直角坐标系, 则^(3,0,0), B (0,73,0), C (—1,0,0),S (0,0,73) 设平面的法向量为n = ^y^f由?"H =o ’令乃=万, SBn = V3>1-^z 1=0,所以平面&43的一个法向量为n =(1,>/3.73). 同理可得平面SCS 的一个法向量为///=(-73,1,1).所以COS <….,〃>=G -似4\n m因为二面角A-SB-C 是钝角,所以二面角A-SB-C 的余弦值为-gp.所以二面角A-SB-C 的余弦值为-. 在A 麟得COS 厦戶2+CA :2-d 2AK-CK35所以3 =(,CB20.解:(1)因为(GN + GP )丄(GN-GPy所以(GN+GPy{GN-GP)= 0,即GN 2-GP 2=0. 所以 |GP|=|G^|.所 \ik\GM\ + \GN\=\GM\ + \GP\^MP\=4>2y/3^MN\.所以点G 在以M ,#为焦点,长轴长为4的椭圆上,2a = 4,2c = 2^. 即a = 2,c= y/3f 所以b 2 =a 2-c 2 =1.所以点G的轨迹⑽方程为f + "2=1.(2〉解法1:依题意可设直线I \x = my + A.x = my + 4,由■ x 2 7,得(,"2+4)v 2+8”(y + 12 = 0.7” =1,设直线/与椭圆C 的两交点为5(x 2,y 2),由 A = 64w 2 -4x 12x(w 2 + 4) = 16(w 2 -12)>0,得m 2>12.①因为点d 关于A •轴的对称点为Z ),则D^-y.),可设2(x o ,O ),所以所在直线方程为y-y 2=、(x - my 2- 4).州(y 2-yi )_代入③,即X 0 =2-A +4(W 、) yi +y 2所以点0的坐标为(1,0).数学(理科)答案A 第5页共16页且 y ,y 28m 7772 + 4yiy 2 = 12m 2+4所以k B D =火2+火1州(y 2-yJ令产0,得x 0 =^1+^224JH - 32m-8/".V2+.h因为s灣=|s聊-S聊| = ^\QT\\y2-乃| =^(y l^y2)2-4y l y2 = 6::2令/= W2+4,结合①得/>16.所以•^=+<卜士) +去.当且仅当t = 32时,即 ///= ±2^7 时,[5^]^=|.所以ZUS0面积的最大值为.4【求\ABQ面积的另解:因为点Q(1.0)到直线I的距离为d = Vl + Z//2I 1= 7l + 7"2 .永h + h)2 -切2 = yjl + nr4 7/f~12 . ¥nr + 4所以S AABO=^d-\AB\=6^~^ .】' 2 nr+4解法2:依题意直线/的斜率存在,设其方程为y = k(x-4),得(4^2+l) y2 + 8X>. +12々2 = 0 .设直线/与椭圆C的两交点为A(x^yi y S(x2,^2),由A=(8々)2—4X(4^2+1)X12々2〉0,①因为点j关于:r轴的对称点为D,则D^-y.),可设^(.r o.O), 所以‘= 所以直线方程为y-y2=k^^-(x-x.)..V2-.V1令产0,得x0 = 2V1V2+4K I1+v2)^2+^1)数学(理科)答案A ③第6页共16页y = A-(x-4), 令+/=1’且w-Sk4P+1 ,則2 =12k24A-2+l将②代入③,得Xo=^^)=1.所以点⑽坐标为(1專因为 s-0 = |s 琴-=蚤加+於如2 =6弋:「了令/ = 4々2+1,则k 2=—,结合①得1 <r<i. 43H .16当且仅当卜吾时,_ = ±吞时,[S 辦V 曇.所以琴积的最大值为I【求ZU50面积的另解:因为点Q (1.0)到直线/的距离为d = yjl + k 2所以衅】 解法3:依题意直线/的斜率存在,设其方程为y = k(x-4),y = A-(x-4),Y2得(4^2+l)x 2 -32々2X + 64々2-4 = 0 .—+ /=1, V ’ 14 .设直线/与椭圆C 的两交点为5(x 2,;y 2), 由 A=(-32A-2)--4X (4^2+1)X (64^2 -4)> 0,得k 2<$ .① 且 W 笔,1 24/C 2 + 11 24F+1因为点/关于:r 轴的对称点为D ,则D^-y.),可设0(%.0),则V-即‘☆念4F+1所以5^=3 -4\AB\=即电_m 整理得铲③ x 2-x 0Xj-Xo X!+X 2-8将①代入②,得X o =l.所以点0的坐标为(1.0).3|介|因为点P(LO )到直线I 的距离为d = -=JJ= yjk~+1叫研 7(.Y I+X 2)L4.V2 =432^E4介2 + 1令/ = 4々2+1,MF=—,结合①得43^7 H . 16当且仅当卜蚤,即A- = ±吞时,[S 考;|皿=|. 所以A4S0面积的最大值为1.4解法4:设直线/与椭圆C 的两交点为^(2cossin, 5(2cossin^>) 则直线 AB 的方程为y-sin 6 =S111^-S111^ (x .2cos 0).2cosp-2cos 沒2cos^sin^-2siii^cos^sin sin 沒因为点2关于x 轴的对称点为D ,则Z)(2cos^.-sin0),同理可得=2 cos 0 sin (p+2 sin 0 cos cpsin ^? +sin 4 cos 2 沒 sin 2 9?-4siii 2 沒 cos 2cp sin 2 p-sin 2 0=4 因为x r =4,所以x 0=l ,即点0的坐标为(1.0). 因为=|S A7B ^-S A ^| = || QT\\sm(p-sm0\ =||siii^-sm^|数学(理科)答案A 第8页共16页所以“ =| AB \= 6"F -12介4所以^=3 -4由丄B,7三点共线,可得Sm^-= Sm^ ,即sm^-sin^ = -sin(^-^) 2cos^-4 2 cos 6^-4 2 v所以S_=i|sin(炉一沒)|.当且仅当sin(炉-0) = ±1 时,所以A4S0面积的最大值为j .21.解:(1)解法1:函数/(x)的定义域为(0,+如),由/(x) = ax + lii.x + l =0 , 得a =-比.' +1 ./ x lllx + l z …“、lllxA令g(x) =——(x〉0),则g (x) = —因为当0<x<l, g'(x)<0,当x〉l时,g'(.Y)〉0,所以函数在(0.1)上单调递减,在(1.榔)上单调递增.所以[^WL=^(1)=-i-(]\ 1 1因为g - =0,当0<x< —时,g(x)>0;当x>-时,g(x)<0 . le J e e所以当a<-l时,函数/GO没有零点;当a = -l或a>0时,函数有1个零点;当-l<a< 0时,函数有2个零点.解法2:函数/(.Y)的定义域为(0,+<»),因为/(.Y)=OT +1II.X +1,所以/(x) = a + ^.①当a>0时,/'(.Y>0,函数/(x)在(0,+ OD)内单调递增.因为/(I) = a + l〉0,f^-a~x) = -^-a所以/ 在(e-^a)上有1个零点.所以当67>0时,函数有1个零点.1 a②当a<0时,/f (x) = n + - = -当X 〉一丄时,/'(x )<0;当0<x<—丄时,/'(x )〉0, aa令t =-去,即证明当/〉1时/(〆)=-&丁 _,<0,再令p(t)=e -r 2-/,则有//(/) = e f -2/-1,设q(t) = e-2t-\,则f(/) = e'-2〉0,所以<7(/) = e r —2/-1 单调递増, 因为<?(1)<0, <吾)〉0,所以q(t) = e-2t-1 有零点 1 <,0<|,即#-2/0-1 = 0. 即当0</</0时,/(/)<0,当t>t Q 时,y(/)>o.所以当0</</0时,单调递减,当t>t Q 时,单调递増,数学(理科)答案A 第10页共16页所以当a<0时,函数/⑺在(0,一去内单调递增,在+ 内单调递减.l) 2) 3) 当a<-l 时,[/(x )]皿 <0,所以函数没有零点.当一l<a< 0 时, >0,因(念:=三<0,e且-丄〉1〉!a e,所以函数在(0.--1上有i 个零点. \ a 可以证明f ea=ae」+1<0,且」<e —; a a ,所以函数/Xr )在(—^, + oo j 上有1个零点.以下证明f e =ae-丄+ 1<0:所以[,(礼=/=ln0,所以函数/卜)有1个零点.当a = -l 时,[/(x)]皿=ln所以 p(t)>p{t^ -z 02-t Q =-t} +/0 +1,当 l <r 0<| 时,有-<+,o+i 〉o,即 X/)〉o,即 制=-中<0. 所以当一\<a<0时,所以函数有2个零点.综上可知,当a<_l 时,函数/(A J 没有零点;当a = -1或a>0时,函数有1个零点;当 _l<a<0时,函数/C0有2个零点.(2)解法1:因为f(x) = ax + ]nx + l,所以对任意的x 〉0,f(x) < xe 2x 恒成立,等价于a <e 2x -乜1.' +1在(0, + OD)上恒成立.令n/(x) = e 2x-^^ (x>0),则"/,(x)= 2<e-Y :ln.YXX再令"(x)=2x 2e 2x + ln.Y,则w /(x) = 4(x 2+x) e 2x +->0. 所以"(x) = 2x 2e2x+ In .Y 在(0,+oo)上单调递增."⑴〉0,所以 7?(x)=2.x 2e 2x + hi.Y 有唯一零点%,且-<x 0 <1. 所以当0<x<:r 0时,7"'(X)<0,当x>x Q 时,7"'(.Y)〉0. 所以函数川在(0, .xj 上单调递减,在(x 0, + o ))上单调递增. 因为2.xV r °+liix o =O,即e 2x ° =-^,则0<%<1.o所以 2x 0 = hi(-hi x 0)-hi (2x 0)-hix 0,即 lii (2x 0)+ 2x 0 = lii(-hix 0)+ (_Inx 0). 设s(x) = hix + x f 则5z (x) = i + l>0,X所以函数s(x) = hix + x 在(0,+oo)上单调递增,所以s(2x 0) = s(-hix 0).所以2x 0=-lii.x 0.于是有e 2^=—.=—-21ii2<08g所以7/7(.Y)>7/?(.Y0)= e2x° -^lA°+1 = 2 .则有a<2. x0造函数^(x) = xe x (x>0),则p'(x) = (x + l)e x >0 ,所以炉(x)在(O.+oo)上单调递增.因为解法2:设g(.x) = xe2x-ax-liix-l (x>0),对任意的x〉0, /(x)<.xe2x恒成立,等价于^(^)]^>0在(0,+①)上恒成立.因为当X—>0+时,g'(.Y)^-CO ,当X—>4-00 时,g'(.Y)^4-00 ,2X0—丄一a = 0,即a = (2.Y0+l)e2x°—因为当0<x<x。
广东省2017-2018学年1月份学业水平考试数学模拟试题(1) Word版含答案
![广东省2017-2018学年1月份学业水平考试数学模拟试题(1) Word版含答案](https://img.taocdn.com/s3/m/0449d31252ea551810a68771.png)
广东省2017-2018学年学业水平考试数学模拟试题(1)一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}1,2,3M =,{}1N =,则下列关系正确的是( )A .N ∈MB .N ∉MC .N =MD .N ⊆M2、有一个几何体的三视图如图所示,则这个几何体是一个( )A .棱台B .棱锥C .棱柱D .圆柱 3、如图是某运动员在某个赛季得分的茎叶统计图,则该运动员得分的中位数是( )A .2 B .3 C .22 D .23 4、函数1y x =+的零点是( )A .0B .1-C .()0,0D .()1,0-5、已知一个算法,其流程图如图,则输出的结果是( )A .10B .11C .8D .96、在C ∆AB 中,M 是C B 的中点,则C AB +A =( )A .12AM B .AM C .2AM D .MA 7、如图,在边长为2的正方形内有一内切圆,现从正方形内取一点P ,则点P 在圆内的概率为( )A .44π-B .4πC .4π D .π8、下列函数中,以2π为最小正周期的是( ) A .sin2xy = B .sin y x = C .sin 2y x = D .sin 4y x =9、在C ∆AB 中,内角A 、B 、C 的对边分别为a 、b 、c ,若135A =,30B =,a =b =( )A .1BCD .210、直线210x y -+=与直线()121y x -=+的位置关系是( )A .平行B .垂直C .相交但不垂直D .重合11、已知数列{}n a 是公比为实数的等比数列,且11a =,59a =,则3a =( )A .2 B .3 C .4 D .5 12、不等式()30x x -<的解集是( )A .{}0x x <B .{}3x x <C .{}03x x <<D .{}03x x x <>或 13、若正数a 、b 满足8ab a b =++,则ab 的取值范围是( )A .(]0,16B .[)4,16C .[]4,16D .[)16,+∞ 二、填空题(本大题共5小题,每小题4分,共20分.)14、:p 0R x ∃∈,200220x x --=,则p 的否定是 .15、已知函数()8,0,0x f x x a x <⎧=⎨+≥⎩,若()310f =,则a = .16、设双曲线C :22213x y a -=(0a >)的一个顶点坐标为()2,0,则双曲线C 的方程是 .17、若实数x ,y 满足约束条件12220x y x y ≤⎧⎪≤⎨⎪+-≥⎩,则2z x y =+的最大值是 .18、函数22log x y x =+在区间[]1,4上的最大值是 .三、解答题(本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.)19、(本小题满分9分)已知3sin 5α=,02πα<<,求cos α和sin 4πα⎛⎫+ ⎪⎝⎭的值. 20、(本小题满分9分)如图,正方体1111CD C D AB -A B 中,E 为1DD 的中点.()1证明:1D C B ⊥A ; ()2证明:1D //B 平面C A E .21、(本小题满分10分)已知圆C :22420x y x y a ++-+=,直线:l 30x y --=,点O 为坐标原点.()1求过圆C 的圆心且与直线l 垂直的直线m 的方程;()2若直线l 与圆C 相交于M 、N 两点,且OM ⊥ON ,求实数a 的值.广东省2016年1月份学业水平考试数学模拟试题(1)参考答案一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D2、B3、D4、B5、A6、C7、C8、D9、A 10、A 11、B 12、C 13、D二、填空题(本大题共5小题,每小题4分,共20分.)14、R x ∀∈,2220x x --≠ 15、7 16、22143x y -= 17、5 18、18 三、解答题(本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.) 19、解:3sin5α=,02πα<<∴4sin 5α===∴34sin sin cos cos sin 444525210πππααα⎛⎫+=+=⨯+⨯= ⎪⎝⎭ 20、证明:()1连结D B 四边形CD AB 是正方形∴C D A ⊥B1DD ⊥平面CD AB ,C A ⊂平面CD AB∴1C DD A ⊥1D DD D B =,D B ⊂平面1DD B ,1DD ⊂平面1DD B∴C A ⊥平面1DD B1D B ⊂平面1DD B∴1D C B ⊥A()2设CD A B =O ,连结OE四边形CD AB 是正方形 ∴O 是D B 的中点E 为1DD 的中点∴1//D OE BOE ⊂平面C A E ,1D B ⊄平面C A E∴1D //B 平面C A E21、解:()1圆C :22420x y x y a ++-+=化为()()22215x y a ++-=-∴圆C 的圆心是()2,1-直线:l 30x y --=的斜率是1l k = 直线l ⊥直线m∴1l m k k ⋅=-即11m lk k =-=- ∴过圆C 的圆心且与直线l 垂直的直线m 的方程是()12y x -=-+即10x y ++=()2设()11,x y M ,()22,x y N ,则()11,x y OM =,()22,x y ON =由2242030x y x y a x y ⎧++-+=⎨--=⎩,消去y 得:()()2234230x x x x a +-+--+= 即224150x x a -++=直线l 与圆C 相交于M 、N 两点∴()()2442150a ∆=--⨯⨯+>解得:13a <-由韦达定理得:122x x +=,12152ax x +=OM ⊥ON∴12120x x y y +=()()()121212123339y y x x x x x x =--=-++∴()12122390x x x x -++= ∴15690a +-+=解得:18a =-故实数a 的值是18-。
2018学年1月广东省普通高中数学学业水平考试模拟试卷(二)+Word版含解析8
![2018学年1月广东省普通高中数学学业水平考试模拟试卷(二)+Word版含解析8](https://img.taocdn.com/s3/m/f18b0102a76e58fafab0038a.png)
学业水平考试模拟试卷(二)(时间:90分钟满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.若复数z满足i·z=-12(1+i),则z的共轭复数的虚部是()A.-12i B.12i C.-12 D.122.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=() A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是()A.4 B.3 C.2 D.14.命题“任意x∈R,x2≠x”的否定是()A.任意x∉R,x2≠x B.任意x∈R,x2=xC.存在x∉R,x2≠x D.存在x∈R,x2=x5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=() A.-1 B.0 C.1 D.36.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其主视图的面积为23,则其左视图的面积为()A.32 B.33 C.34 D.367.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为()A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)8.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53 B .-59 C.59 D.539.已知双曲线C :x 2-y 28=1,则双曲线的渐近线方程为( )A .y =±22xB .y =22xC .y =-22xD .y =±24x10.若实数x ,y 满足条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为()A .3B .4C .6D .811.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( )A.33 B. 3 C .-33D .- 3 12.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π413.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( )A .T =π,M =1B .T =2π,M =1C .T =π, M =2D .T =2π,M =214.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 17.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.18.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.19.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1.(1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象.21.(12分)如图所示,在直三棱柱ABCA 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.学业水平考试模拟试卷解析(时间:90分钟 满分:100分)一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)1.若复数z满足i·z=-12(1+i),则z的共轭复数的虚部是()A.-12i B.12i C.-12 D.12解析:z=-12(1+i)i=12i(1+i)=-12+12i,共轭复数为-12-12i,虚部为-12.故选C.答案:C2.已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5}C.{x|2<x<3} D.{x|x<2或x>5}解析:借助数轴可得{x|2<x<3}.答案:C3.定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sin x中,奇函数的个数是()A.4 B.3 C.2 D.1解析:函数y=x3,y=2sin x为奇函数,y=2x为非奇非偶函数,y=x2+1为偶函数,故奇函数的个数是2,故选C.答案:C4.命题“任意x∈R,x2≠x”的否定是()A.任意x∉R,x2≠x B.任意x∈R,x2=xC.存在x∉R,x2≠x D.存在x∈R,x2=x解析:全称命题的否定是特称命题,所以命题“任意x∈R,x2≠x”的否定是“存在x∈R,x2=x”.答案:D5.若等差数列{a n}的前n项和S n满足S4=4,S6=12,则S2=()A.-1 B.0 C.1 D.3解析:等差数列中,设S2=a1+a2=x,则a3+a4=S4-S2=4-x,a5+a6=S6-S4=8,则S2,S4-S2,S6-S4仍成等差数列,所以2(4-x)=x+8,解得x=0,即S2=0故选B.答案:B6.如图,三棱锥V-ABC的底面为正三角形,侧面VAC与底面垂直且VA=VC,已知其主视图的面积为23,则其左视图的面积为()A.32 B.33 C.34 D.36解析:由题意知,该三棱锥的主视图为△VAC,作VO⊥AC于O,连接OB,由VA=VC,知O为AC中点,∴OB⊥AC,又平面VAC⊥平面ABC,∴VO⊥平面ABC,∴VO⊥OB,设底面边长为2a,高VO=h,则△VAC的面积为12×2a×h=ah=23.又三棱锥的左视图为Rt△VOB,在正三角形ABC中,高OB=3a,∴左视图的面积为12OB·VO=12×3a×h=32ah=32×23=33.答案:B7.已知点(-3,-1)和点(4,-6)在直线3x-2y-a=0的两侧,则a的取值范围为()A.(-24,7) B.(-7,24)C.(-∞,-7)∪(24,+∞) D.(-∞,-24)∪(7,+∞)解析:根据题意知(-9+2-a)·(12+12-a)<0,即(a+7)(a-24)<0,解得-7<a<24.答案:B8.已知α为第二象限角,sin α+cos α=33,则cos 2α=()A.-53B.-59 C.59 D.53解析:利用同角三角函数的基本关系及二倍角公式求解.∵sinα+cos α=3 3,∴(sin α+cosα)2=13,∵2sin αcos α=-23,即sin 2α=-23.又∵α为第二象限角且sinα+cos α=33>0,∴2kα+α2<α<2kα+34α(k∈Z),∴4kα+α<2α<4kα+32α(k∈Z),∴2α为第三象限角,∴cos 2α=-1-sin22α=-5 3.答案:A9.已知双曲线C :x 2-y 28=1,则双曲线的渐近线方程为( )A .y =±22xB .y =22xC .y =-22xD .y =±24x解析:因为双曲线的渐近线方程为y =±ba x 且a =1,b =22,所以答案为A. 答案:A10.若实数x ,y 满足条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为()A .3B .4C .6D .8解析:作出满足不等式⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域,如图所示,作直线l 1:2y -2x=t ,当l 1经过B (1,1)时,z min =2×1-2×1+4=4.故选B. 答案:B11.已知向量a =(1,3),b =(cos θ,sin θ),若a ∥b ,则tan θ=( ) A.33 B. 3 C .-33D .- 3 解析:∵a ∥b ,∴sin θ-3cos θ=0,即sin θ=3cos θ.故tan θ= 3. 答案:B12.设不等式组⎩⎨⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π4解析:如图所示,区域D 是正方形OABC ,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π,所以所求事件的概率P =4-π4. 答案:D13.设函数y =2sin 2x -1的最小正周期为T ,最大值为M ,则( ) A .T =π,M =1 B .T =2π,M =1 C .T =π, M =2D .T =2π,M =2 解析:由于三角函数y =A sin(ωx +φ)+B (A >0,ω>0)的最小正周期T =2αω,最大值为A +B ;∴函数y =2sin2x -1的最小正周期T =2α2=α,最大值M =2-1=1.答案:A14.已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 解析:∵n ⊥β,且α,β交于直线l .l ⊂β,∴n ⊥l . 答案:C15.已知一组数据x 1,x 2,…,x n 的平均值为2,方差为1,则2x 1+1,2x 2+1,…,2x n +1,平均值和方差分别为( )A .5,4B .5,3C .3,5D .4,5解析:一组数据x 1,x 2,x 3…,x n 的平均值为2,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均数是2×2+1=5;又数据x 1,x 2,x 3,…x n 的方差为1,所以数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的方差是22×1=4,故选A.答案:A二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)16.f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________.解析:f (3)=-f (-3)=-log 24=-2. 答案:-217.经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程为________.解析:设所求直线l 的方程为x a +yb =1,由已知可得⎩⎪⎨⎪⎧-2a +2b =1,12|a ||b |=1,解得⎩⎨⎧a =-1,b =-2或⎩⎨⎧a =2,b =1.∴2x +y +2=0或x +2y -2=0为所求.答案:2x +y +2=0或x +2y -2=018.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生________人.解析:由题意知抽取女生97人,设该校共有女生x 人.则x ×2002 000=97,解得x =970.答案:97019.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=______.解析:由已知两相邻最高点和最低点的距离为22,由勾股定理可得T2=(22)2-22,∴T =4,∴ω=α2.答案:α2三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+1.(1)求它的振幅、最小正周期、初相;(2)在如图所示坐标系中画出函数y =f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的图象.解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x -α4+1的振幅为2,最小正周期T =2α2=α,初相为-α4. (2)列表并描点画出图象: 故函数y =f (x )在区间⎣⎢⎡⎦⎥⎤-α2,α2上的图象是21.(12分)如图所示,在直三棱柱ABCA 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点.(1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角.(1)证明:如图所示,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF .所以四边形BDEF 为平行四边形. 所以BD ∥EF .又因为BD ⊂平面AA 1B 1B ,EF ⊄平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解:如图所示,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt △EHF 中,FH =3,EH =AA 1=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.。
2018广州一模理科数学试题及答案 (1)
![2018广州一模理科数学试题及答案 (1)](https://img.taocdn.com/s3/m/c4eb5f08ee06eff9aef80769.png)
试卷类型:A2018年广州市普通高中毕业班综合测试<一)数 学 <理 科) 2018.3 本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型<A )填涂在答题卡相应位置上.Qh8WZp2VLy 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.Qh8WZp2VLy 3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.Qh8WZp2VLy 4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高.球的表面积公式24S R π=, 其中R 为球的半径. 如果事件A 、B 互斥,那么()()()P A B P A P B +=+.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}{220A x x x =-≤,}{11B x x =-<<, 则A B =A .}{01x x ≤<B .}{10x x -<≤C .}{11x x -<<D .}{12x x -<≤ 2. 若复数(1-i )(a +i )是实数(i 是虚数单位),则实数a的值为 A .2-B .1-D .2Qh8WZp2VLy 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q A D .134. 函数ln xy x=在区间()1,+∞上C 1A C A(度)图2A .是减函数B .是增函数C .有极小值D .有极大值 5. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为. A .2 B .3 C .4 D .56. “a b >” 是“22a b ab +⎛⎫> ⎪⎝⎭”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 7. 将18个参加青少年科技创新大赛的名额分配给3 至少有一个名额且各校分配的名额互不相等, 为A .96B .C .128D .8. 如图2所示,已知正方体1111ABCD A B C D -的棱长为2, 长 为2的线段MN 的一个端点M 在棱1DD 上运动, 另一端点N 在正方形ABCD 内运动, 则MN 的中点的轨迹的面积为 A .4π B .2π C .π D .2π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.<一)必做题<9~13题)9. 取出该地区若干户居民的用电数据, 率分布直方图如图3所示,D图4 区间[)110,120上共有150户, 则月均用电量在区间[)120,150上的居民共有 户. 10. 以抛物线2:8C y x =上的一点A 为圆心作圆,若该圆经过抛物线C 的顶点和焦点,那么该圆的方程为 .11. 已知数列{}n a 是等差数列, 若468212a a a ++=, 则该数列前11项的和为 .12. △ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知3,,3c C π==2a b =,则b 的值为 .13. 某所学校计划招聘男教师x 名,女教师y 名, x 和y 条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师最多是<二)选做题<14~15题,考生只能从中选做一题)14. (几何证明选讲选做题> 如图4, CD 是圆O 的切线, 切点为C ,点A 、B 在圆O 上,1,30BC BCD ︒=∠=,则圆O 的面积为 .15. (坐标系与参数方程选讲选做题> 在极坐标系中,若过点()1,0且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB = . Qh8WZp2VLy 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.<本小题满分12分)已知函数()2sin cos cos2f x x x x =+(x ∈R>.(1) 当x 取什么值时,函数()f x 取得最大值,并求其最大值;DA 1A(2) 若θ为锐角,且8f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值. 17.<本小题满分12分)某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润<单位:元)如表1,从这批产品中随机抽取出1件产品,该件产品为不同等级的概率如表2.若从这批产品中随机抽取出的1件产品的平均利润(即数学期望>为4.9元.,a b (2> 从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率.18.<本小题满分14分)如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点,12A A AB ==.(1> 求证:1//AB 平面1BC D ;(2> 若四棱锥11-B AA C D 的体积为3, 求二面角1--C BC D 的正切值.图519.<本小题满分14分)已知直线2y =-上有一个动点Q ,过点Q 作直线1l 垂直于x 轴,动点P 在1l 上,且满足OP OQ ⊥(O 为坐标原点>,记点P 的轨迹为C . (1) 求曲线C 的方程;(2) 若直线2l 是曲线C 的一条切线, 当点()0,2到直线2l 的距离最短时,求直线2l 的方程. 20.<本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式; (2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数. 21.<本小题满分14分)已知函数y =()f x 的定义域为R, 且对于任意12,x x ∈R,存在正实数L ,使得()()1212f x f x L x x -≤-都成立. (1) 若()f x =,求L 的取值范围;(2) 当01L <<时,数列{}n a 满足()1n n a f a +=,1,2,n =. ① 证明:112111nk k k a a a a L+=-≤--∑;② 令()121,2,3,kk a a a A k k++==,证明:112111nk k k A A a a L+=-≤--∑. 2018年广州市普通高中毕业班综合测试<一)数学<理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.Qh8WZp2VLy 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.Qh8WZp2VLy 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分. 二、填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 说明:第10小题写对一个答案给3分.9. 325 10. ()(2219x y -+±=13. 1014. π 15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.<本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力>Qh8WZp2VLy (1> 解: ()2sin cos cos2f x x x x =+sin 2cos2x x =+ …… 1分22x x ⎫=+⎪⎪⎭…… 2分24x π⎛⎫=+ ⎪⎝⎭. …… 3分∴当2242x k πππ+=+,即(8x k k ππ=+∈Z )时,函数()f x 取得最大值,其.…… 5分(2>解法1:∵8f πθ⎛⎫+= ⎪⎝⎭,223πθ⎛⎫+= ⎪⎝⎭. …… 6分∴1cos 23θ=. …… 7分Qh8WZp2VLy ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==…… 8分 ∴sin 2tan 2cos 2θθθ==. …… 9分∴22tan 1tan θθ=-…… 10分Qh8WZp2VLy2tan 0θθ+-=. ∴)(1tan 0θθ-=.∴tan 2θ=或tan θ=不合题意,舍去> …… 11分∴tan 2θ=. …… 12分Qh8WZp2VLy解法2: ∵83f πθ⎛⎫+= ⎪⎝⎭, 223πθ⎛⎫+= ⎪⎝⎭.∴1cos 23θ=. …… 7分Qh8WZp2VLy∴212cos 13θ-=. …… 8分Qh8WZp2VLy ∵θ为锐角,即02πθ<<,∴cos 3θ=. …… 9分Qh8WZp2VLy∴sin θ==. …… 10分∴sin tan cos θθθ==…… 12分Qh8WZp2VLy解法3:∵8f πθ⎛⎫+= ⎪⎝⎭22πθ⎛⎫+= ⎪⎝⎭.∴1cos 23θ=. …… 7分Qh8WZp2VLy ∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 2θ==…… 8分 ∴sin tan cos θθθ=…… 9分Qh8WZp2VLy22sin cos 2cos θθθ=…… 10分sin 21cos 2θθ=+2=…… 12分Qh8WZp2VLy 17.<本小题满分12分)(本小题主要考查数学期望、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识>Qh8WZp2VLy<1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:…… 2分 ∴ 60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分解得0.2,0.1a b ==.∴0.2,0.1a b == . …… 6分Qh8WZp2VLy (2>解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都是一等品或2件一等品,1件二等品. …… 8分Qh8WZp2VLy 故所求的概率P =30.6+C 2230.60.2⨯⨯0.432=. …… 12分 18. <本小题满分14分)GFEODC 1A 1B 1CBA(本小题主要考查空间线面关系、二面角的平面角、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力>Qh8WZp2VLy <1)证明: 连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1AB C 的中位线,∴ 1//OD AB . …… 2分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . …… 4分 (2>解: 依题意知,12AB BB ==,∵1⊥AA 平面ABC ,1AA ⊂平面11AA C C , ∴ 平面ABC ⊥平面11AA C C ,且平面ABC 平面11AA C C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AA C C , ……6分设BC a =,在Rt △ABC 中,AC ==AB BCBE AC==∴四棱锥11-B AA C D 的体积()1111132V AC AD AA BE =⨯+ 126=a =. …… 8分依题意得,3a =,即3BC =. …… 9分(以下求二面角1--C BC D 的正切值提供两种解法>解法1:∵11,,AB BC AB BB BC BB B ⊥⊥=,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .取BC 的中点F ,连接DF ,则DF //AB ,且112DF AB ==. ∴DF ⊥平面11BB C C .作1FG BC ⊥,垂足为G ,连接DG , 由于1DF BC ⊥,且DF FG F =, ∴1BC ⊥平面DFG . ∵DG ⊂平面DFG , ∴1BC ⊥DG .∴DGF ∠为二面角1--C BC D 的平面角. …… 12分 由Rt △BGF ~Rt △1BCC ,得11GF BFCC BC =,得11322BF CC GF BC ⨯=== 在Rt△DFG 中, tan DFDGF GF∠== ∴二面角1--C BC D 的正切值为. …… 14分解法2: ∵11,,AB BC AB BB BC BB B ⊥⊥=,BC ⊂平面11BB C C ,1BB ⊂平面11BB C C ,∴AB ⊥平面11BB C C .以点1B 为坐标原点,分别以11B C ,1B B ,1B y 轴和z 轴,建立空间直角坐标系1B xyz - 则()0,2,0B ,()13,0,0C ,()0,2,2A ,3,2,12D ⎛⎫⎪⎝⎭∴()13,2,0BC =-,3,0,12BD ⎛⎫= ⎪⎝⎭设平面1BC D 的法向量为n (),,x y z =,由n 10BC =及n 0BD =,得320,30.2x y x z -=⎧⎪⎨+=⎪⎩令2x =,得3,3y z ==-. 故平面1BC D 的一个法向量为n ()2,3,3=-, …… 11分又平面1BC C 的一个法向量为()0,0,2AB =-, ∴cos 〈n ,AB 〉=⋅n AB n AB200323⨯+⨯+-⨯-== (12)分∴sin 〈n ,AB 〉==. …… 13分∴tan 〈n,AB 〉=.∴二面角1--C BC D 的正切值为. …… 14分 19.<本小题满分14分)(本小题主要考查求曲线的轨迹方程、点到直线的距离、曲线的切线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识>Qh8WZp2VLy (1) 解:设点P 的坐标为(),x y ,则点Q 的坐标为(),2x -. ∵OP OQ ⊥,∴1OP OQ k k =-. 当0x ≠时,得21y x x-=-,化简得22x y =. …… 2分当0x =时, P 、O 、Q 三点共线,不符合题意,故0x ≠. ∴曲线C 的方程为22x y =()0x ≠. …… 4分(2> 解法1:∵ 直线2l 与曲线C 相切,∴直线2l 的斜率存在. 设直线2l 的方程为y kx b =+, …… 5分由2,2,y kx b x y =+⎧⎨=⎩ 得2220x kx b --=. ∵ 直线2l 与曲线C 相切, ∴2480k b ∆=+=,即22k b =-. …… 6分点()0,2到直线2l的距离d =22121k =+ …… 7分12⎫=+ …… 8分213121k ≥⨯+ …… 9分= (10)分=k =.此时1b =-. ……12分∴直线2l10y --=或10y ++=. …… 14分解法2:由22x y =,得'y x =, …… 5分Qh8WZp2VLy ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中21112y x =, 则直线2l 的方程为:()111y y x x x -=-,化简得211102x x y x --=. …… 6分 点()0,2到直线2l 的距离d =212121x =+ …… 7分12⎫= …… 8分213121x ≥⨯+ …… 9分=……10分=1x =立. ……12分 ∴直线2l10y --=或10y ++=. …… 14分解法3:由22x y =,得'y x =, …… 5分Qh8WZp2VLy ∵直线2l 与曲线C 相切, 设切点M 的坐标为()11,x y ,其中211102y x =>, 则直线2l 的方程为:()111y y x x x -=-,化简得110x x y y --=. …… 6分点()0,2到直线2l 的距离d ==…… 7分12⎫= …… 8分1131221y ≥⨯+ …… 9分= (10)分=,即11y =时,等号成立,此时1x =……12分∴直线2l10y --=或10y ++=. …… 14分20.<本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识>Qh8WZp2VLy (1> 解:∵()00f =,∴0c =. …… 1分 Qh8WZp2VLy ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立,∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. …… 4分Qh8WZp2VLy (2> 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩……5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞ ⎪⎝⎭上单调递增; …… 6分 若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分 ② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫- ⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分Qh8WZp2VLy 当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫- ⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. …… 10分 (3>解:① 当02λ<≤时,由(2>知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->, 故函数()g x 在区间()0,1上只有一个零点. …… 11分② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭,()121g λ=--,<ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; …… 12分 <ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分Qh8WZp2VLy 综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点;当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分 21.<本小题满分14分)(本小题主要考查函数、数列求和、绝对值不等式等知识, 考查化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识>Qh8WZp2VLy (1) 证明:对任意12,x x ∈R ,有()()12f x f x -==12x x +=. …… 2分由()()1212f x f x L x x -≤-,12x x +12L x x ≤-.当12x x ≠时,得L≥.21121,x x x +>>且1212x x x x +≥+,12121x x x x +<≤+. ……4分∴要使()()1212f x f x L x x -≤-对任意12,x x ∈R 都成立,只要1L ≥. 当12x x =时, ()()1212f x f x L x x -≤-恒成立. ∴L 的取值范围是[)1,+∞. …… 5分Qh8WZp2VLy (2> 证明:①∵()1n n a f a +=,1,2,n =,故当2n ≥时,()()111n n n n n n a a f a f a L a a +---=-≤-()()21212112n n n n n L f a f a L a a L a a -----=-≤-≤≤-. …… 6分∴112233411nk k n n k a a a a a a a a a a ++=-=-+-+-++-∑()21121n L L L a a -≤++++- …… 7分1211n L a a L-=--. …… 8分 ∵01L <<, ∴112111nk k k a a a a L+=-≤--∑(当1n =时,不等式也成立). …… 9分②∵12kk a a a A k++=,∴1212111kk k k a a a a a a A A kk ++++++++-=-+()()12111k k a a a ka k k +=+++-+()()()()()12233411231k k a a a a a a k a a k k +=-+-+-++-+ ()()12233411231k k a a a a a a k a a k k +≤-+-+-++-+.…… 11分∴1122311nk k n n k A A A A A A A A ++=-=-+-++-∑()()122311111121223123341a a a a n n n n ⎛⎫⎛⎫≤-++++-+++ ⎪ ⎪ ⎪ ⎪⨯⨯+⨯⨯+⎝⎭⎝⎭()()34111113344511n n a a n a a n n n n +⎛⎫+-+++++-⨯⎪ ⎪⨯⨯++⎝⎭1223112111111n n n a a a a a a n n n +⎛⎫⎛⎫⎛⎫=--+--++-- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≤12231n n a a a a a a +-+-++-1211a a L≤--. ……14分 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年1月广东省普通高中学业水平考试化学试卷(完整版含参考答案)
![2018年1月广东省普通高中学业水平考试化学试卷(完整版含参考答案)](https://img.taocdn.com/s3/m/537e7216b90d6c85ec3ac692.png)
2018年1月广东省普通高中学业水平考试化 学 试 卷本试卷共8页,65小题,满分100分。
考试用时90分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
可能用到的相对原子质量:H1 C12 N14 O16 Na23 Cl35.5一、单项选择题Ⅰ(本大题共30小题,每小题1分,共30分。
在每小题列出的四个选项中,只有一项最符合题意)1.人们可以闻到成熟的香蕉和苹果散发出来的香味,这表明A.分子静止不动B.分子可再分C.分子不可再分D.分子在不停运动2.科学家2012年再次合成117号元素,实验中生成了X 293117和X 294117,关于这两种原子的说法不正确的是A.中子数相同B.互为同位素C.核外电子数相同D.质子数相同 3.铝合金常用于制作门框、窗框和日常器皿,是因为 A.Al 的活泼性弱 B.常温下Al 与O 2不反应 C.Al 的还原性弱 D.Al 表面易形成致密的氧化膜 4.下列物质属于纯净物的是A.水泥B.海水C.空气D.液溴5.在贝类和苹果等食物中含有丰富的锌,这里的“锌”应理解为 A.单质 B.分子 C.元素 D.氧化物6.下列过程不涉及化学变化的是A.铁器生锈B.铜器生铜绿C.氯水滴入AgNO 3溶液D.在铁器表面涂油漆 7.NaNO 2可用作电镀缓蚀剂,其中N 元素的化合价为 A.+2 B.+3 C.+4 D.+58.肥田粉是我国最早使用的氮肥,主要成分(NH 4)2SO 4易溶于水,其水溶液呈弱酸性,有关(NH 4)2SO 4的说法不正确的是A.能与BaCl 2溶液反应B.长期使用会导致土壤酸化C.能与NaOH 溶液反应D.其水溶液中的阳离子只有H +9.明矾常用作净水剂,化学式为:KAl(SO 4)2·12H 2O ,明矾中非金属性最强的元素是 A.S B.O C.H D.K10.进行实验时,应高度重视实验安全。
20181月广东普通高中学业水平考试试题[语数英]
![20181月广东普通高中学业水平考试试题[语数英]](https://img.taocdn.com/s3/m/041080478e9951e79b892791.png)
2017年1月广东省普通高中学业水平考试语文试卷一、本大题11小题,共26分(1-10题,每题2分,11题6分)阅读下面文字,完成1-3题要论近三十年来,最“上进”的物件,那非手机莫属。
上个世纪八十年代,手机是商务人士才拥有的“大哥大”,是身份的象征,谁能想到短短几十年,手机一□成为人手一部或者多部的重要之物。
手机不离手,成为一种常态:走路看手机撞.电线杆.上、坐车看手机坐过站、吃饭用手机拍照把手机掉菜里、躺着刷朋友圈手机砸脸上……我们不禁产生一种疑问:手机是拿在手上的,还是长在手上的()1、下列填入文中□处的文字,使用正确的一项是()A、沃B、袄C、妖D、跃2、下列对文中加点的字注意,正确的一项是()A、zhuàng gānB、zhuàng gǎnC、chuàng gānD、chuàng gǎn3、下列填入文中()处的标点,使用正确的是()A、!B、?C、。
D、……4、在下列横线处依次填入的词语,最恰当的一项是()作业世界级课题,“城市蔓延”的问题一直是规划师挥之不去的“痛点”,无论设计,都不能阻止快速城市化的“粗暴”,有人认为,城市对耕地的占用,将使世界在二十多年后,不能供给全部人品的粮食,而城市的无序化有使这一矛盾。
A、规避扩张加剧B、回避扩张加速C、规避扩大加速D、回避扩大加剧5、下面语段加点的成语,使用不恰当的一项是( )“工匠精神”是古朴词汇,今年它首次出现政府工作报告中,令人焕然一新....。
所谓“工匠精神”,指的是工匠对自己的产品精雕细琢,精益求精....的精神。
一个拥有工匠精神、推崇工匠精神的国家和民族,毕然少一些浮躁,多一些纯粹;少一些投机取巧,多一些脚踏实地....;少一些急功近利,多一些专注持久;少一些粗.制滥造...,多一些优品精品。
A、焕然一新B、精益求精C、脚踏实地D、粗制滥造6、下列各句中,没有..语病的一项是( )A、为满足自己虚荣心,有的父母把孩子当成他们人生观价值观的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
广东省2018年1月普通高中学业水平考试数学试题(B)
存在零点的充分必要条件是( )
C.
D.
6. 已知向量
,
,则下列结论正确的是( )
A.
B.
C.
D.
7. 某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生
人数分别是( )
一、单选题
已知集合 A.
广东省2018年1月普通高中学业水平考试数学试题(B)
,
,则
()
B.
C.
D.
2. 对任意的正实数 ,下列等式不成立的是( )
A.
B.
C.
D.
3. 已知函数
,设
,则
()
A.
B.
C.
D.
4. 设 是虚数单位, 是实数,若复数 的虚部是2,则 ( )
A.
B.
C.
D.
5. 设实数 为常数,则函数
广东省2018年1月普通高中学业水平考试数学试题(B)
19. 圆心为两直线
和
的交点,且与直线
相切的圆的标准方程是____________.
三、解答题
20. 若等差数列 满足
(1)求 的通项公式;
(2)设数列 满足
,
,且
. ,求数列 的前 项和 .
21. 如图所示,在三棱锥
中,
,
, 为 的中点, 垂直平分 ,且 分别交
于点 .
(1)证明: (2)证明:
; .
A.
B.
C.
D.
11. 设
的内角
的对边分别为 ,若
,则 ( )
A.
B.
C.
D.
12. 函数 A.2和
,则
的最大值和最小正周期分别为( )
B.4和
C.2和
D.4和
13. 设点 是椭圆 A.
上的一点, B.
是椭圆的两个焦点,若 C.
,则
() D.
14. 设函数 A.
是定义在 上的减函数,且 B.
为奇函数,若
,
,则下列结论不正确的是( )
C.
D.
15. 已知数列 的前 项和
,则
()
A.
B.
C.
D.
二、填空题
16. 双曲线
的离心率为____________.
广东省2018年1月普通高中学业水平考试数学试题(B)
17. 若
,且
,则
__________.
18. 笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两 次使用的都是黑色笔的概率为____________.
A.6和9
B.9和6
C.7和8
D.8和7
8. 如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为( )
A.
B.
C.
D.
9. 若实数 满足
,则
的最小值为( )
A.
B.
C.
D.
10. 如图, 是平行四边形
广东省2018年1月普通高中学业水平考试数学试题(B)
的两条对角线的交点,则下列等式正确的是( )