慕课 离散数学 电子科技大学 课后习题九 答案
离散数学(第二版)课后习题答案详解(完整版)
![离散数学(第二版)课后习题答案详解(完整版)](https://img.taocdn.com/s3/m/b20470d609a1284ac850ad02de80d4d8d15a01b4.png)
离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。
离散数学课后习题及答案
![离散数学课后习题及答案](https://img.taocdn.com/s3/m/0f2aed0c842458fb770bf78a6529647d26283411.png)
离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。
为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。
本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。
答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。
b) 若今天下雨,则我会带伞。
c) 若x>0,则x^2>0。
答案:a)假,b)真,c)真。
2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。
三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。
答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。
答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。
答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。
五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。
答案:C(10,3)=120种选法。
2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。
慕课 离散数学 电子科技大学 课后习题十 答案
![慕课 离散数学 电子科技大学 课后习题十 答案](https://img.taocdn.com/s3/m/b3aa17adbd64783e09122b89.png)
作业参考答案——10-特殊图1.(a)(c)(d)是欧拉图,(a)(b)(c)(d)(e)可以一笔画,(a)(b)(c)(d)(e)(f)(g)是哈密顿图。
2.根据给定条件建立一个无向图G=<V,E>,其中:V={a,b,c,d,e,f,g}E={(u,v)|u,v∈V,且u和v有共同语言}从而图G如下图所示。
abcd e fg将这7个人围圆桌排位,使得每个人都能与他两边的人交谈,就是在图G 中找哈密顿回路,经观察上图可得到两条可能的哈密顿回路,即两种方案:abdfgeca和acbdfgea。
3.证明(法一):根据已知条件,每个结点的度数均为n,则任何两个不相邻的结点v i,v j的度数之和为2n,而图中总共有2n个结点,即deg(v i)+ deg(v j)⩾2n,满足哈密顿图的充分条件,从而图中存在一条哈密顿回路,当然,这就说明图G是连通图。
证明(法二):用反证法,假设G不是连通图,设H是G的一个连通分支,由于图G是简单图且每个结点的度数为n,则子图H与G-H中均至少有n+1个结点。
所以G的结点数大于等于2n+2,这与G中结点数为2n矛盾。
所以假设不成立,从而G是连通图。
4.将n位男士和n位女士分别用结点表示,若某位男士认识某位女士,则在代表他们的结点之间连一条线,得到一个偶图G,假设它的互补结点子集V1、V2分别表示n位男士和n位女士,由题意可知V1中的每个结点度1数至少为2,而V2中的每个结点度数至多为2,从而它满足t条件t=1,因此存在从V1到V2的匹配,故可分配。
5.此平面图具有五个面,如下图所示。
ab c d ef gr1r2r3r4r5•r1,边界为abca,D(r1)=3;•r2,边界为acga,D(r2)=3;•r3,边界为cegc,D(r3)=3;•r4,边界为cdec,D(r4)=3;•r5,边界为abcdefega,D(r5)=8;无限面6.设该连通简单平面图的面数为r,由欧拉公式可得,6−12+r=2,所以r=8,其8个面分别设为r1,r2,r3,r4,r5,r6,r7,r8。
离散数学(刘任任版)第9章答案
![离散数学(刘任任版)第9章答案](https://img.taocdn.com/s3/m/13165d4dfe4733687e21aa09.png)
d
abcdea = c 1 ,Q c1 = 5(奇数) ∴至少要用3种颜色
由对称性可考虑 3种色的任一种方案, 如图.于是联结内外两 个回路的五条边(af , bg , ch, di, ej )也就随之确定了它们的颜 色, 如图。从而必有if着α色, 而fg不能着α、β和γ .故只有着 颜色δ .
2011-5-27 10
p2 k ≥ 2 p − 2q
2
2011-5-27
2. 证明: χ ( K 1 ) = 1 ,且 χ ( K 1 − v ) = 0 < 1 。故 K 1 是 1 临 (1) 界图。反之 , 设 G 是 1临界图 , 若 | V ( G ) |> 1,则 G 是零图。 但 χ ( G − V ) = χ ( G ) = 1, 即 G 不是临界图,故 从而 | V ( G ) |= 1,故 G = K 1 ( 2 ) χ ( K 2 ) = 2,且 χ ( K 2 − v ) = 1 < χ ( K 2 ). 故 K 2 是 2临界图 .。 反之,设 G 是 2临界图,即 χ ( G ) = 2。于是可划分 成两个极大独立集 V 1 和 V 2 ( 二分图 )。若 | V 1 |> 1,则任 | V 2 |= 1。 取 u ∈ V ,有 χ ( G − u ) = 2 = χ ( G )。此与 G 是 2临界图矛盾, 故 | V 1 |= 1。同理可证 设 V 1 = {u }, V 2 = { v },显然 uv ∈ E ( G ),故 G = K 2。
2011-5-27 14
= t (t − 3t + 2)(t − 4t + 5)
2 2
= (t 5 − 3t 2 + 2t )(t 2 − 4t + 5) = t − 4t + 5t − 3t + 12t − 15t + 2t − 8t + 10t
离散数学课后习题答案(最新)
![离散数学课后习题答案(最新)](https://img.taocdn.com/s3/m/b9ff3d39647d27284b735180.png)
习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。
离散数学--第九章--作业答案
![离散数学--第九章--作业答案](https://img.taocdn.com/s3/m/817c8b0eeefdc8d376ee3291.png)
习题9 1-71、答、运算表如下表所示:2、答、(1),;,;,;,(2)、运算标如下表:3、答、(1)可以,(2)不可以4、答、(1)封闭(2)不封闭(3)加法、乘法都封闭(4)加法不封闭,乘法封闭(5)不封闭(6)加法、乘法都封闭(7)封闭(8)加法不封闭,乘法封闭(9)加法不封闭,乘法封闭(10)加法不封闭,乘法封闭5、答、(1)没有交换律、结合律,对于一个运算不能考虑分配率(3)加法满足交换律、结合律,乘法满足结合律,乘法对加法满足分配率(4)乘法满足结合律(6)加法和乘法都满足交换律、结合律,乘法对加法满足分配率(7)满足结合律(8)乘法满足交换律、结合律(9)乘法满足交换律、结合律(10)乘法满足交换律、结合律6、答、(1)没有单位元、零元,没有可逆元素(3)n阶全0矩阵是加法单位元,也是乘法的零元;n阶单位矩阵是乘法单位元;加法没有零元。
任意n阶矩阵M对于加法都是可逆元素,其逆元为-M;只有n阶可你矩阵(行列式不为0)对乘法是可逆元素,其逆元为(4)乘法单位元为n阶单位矩阵,没有零元。
每个矩阵M都是逆元(6)加法单位元0,没有零元,每个元素x都可逆,其逆元是它的相反数-x,当n=1时,乘法有单位元1,只有两个可逆元素:,。
当>时乘法没有单位元和可逆元素。
(7)没有单位元和零元,也没有可逆元素(8)乘法单位元为1,只有1是可逆元素,(9)乘法单位元为1,只有1是可逆元素,,乘法零元是0(10)乘法没有单位元、零元以及可逆元素7、答、(1)4*6=4,7*3=3(2)满足交换律、结合律、幂等律(3)没有单位元,1是零元,没有可逆元素。
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案
![(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案](https://img.taocdn.com/s3/m/e0037d7826284b73f242336c1eb91a37f111327e.png)
(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。
做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核及教学考一体化答案,敬请查看。
课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。
离散数学第9章习题答案
![离散数学第9章习题答案](https://img.taocdn.com/s3/m/7b9a3d87d4d8d15abe234ea5.png)
习题91. 设G 是一个(n ,m)简单图。
证明:,等号成立当且仅当G 是完全图。
证明:(1)先证结论:因为G 是简单图,所以G 的结点度上限 max(d(v)) ≤ n-1, G 图的总点度上限为 max(Σ(d(v)) ≤ n ﹒max(d(v)) ≤ n(n-1) 。
根据握手定理,G 图边的上限为 max(m) ≤ n(n-1)/2,所以。
(2) =〉G 是完全图 因为G 具有上限边数,假设有结点的点度小于n-1,那么G 的总度数就小于上限值,边数就小于上限值,与条件矛盾。
所以,G 的每个结点的点度都为n-1,G 为完全图。
G 是完全图 =〉 因为G 是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G 的边数 。
■2. 设G 是一个(n ,n +1)的无向图,证明G 中存在顶点u ,d (u )≥3。
证明:反证法,假设,则G 的总点度上限为max(Σ(d(u)) ≤2 n ,根据握手定理,图边的上限为max(m) ≤ 2n/2=n 。
与题设m = n+1,矛盾。
因此,G 中存在顶点u ,d (u )≥3。
■3.确定下面的序列中哪些是图的序列,若是图的序列,画出一个对应的图来: (1)(3,2,0,1,5); (2)(6,3,3,2,2) (3)(4,4,2,2,4); (4)(7,6,8,3,9,5)解:除序列(1)不是图序列外,其余的都是图序列。
因为在(1)中,总和为奇数,不满足图总度数为偶数的握手定理。
可以按如下方法构造满足要求的图:序列中每个数字ai 对应一个点,如果序列数字是偶数,那么就在对应的点上画ai/2个环,如果序列是奇数,那么在对应的点上画(ai-1)/2个环。
最后,将奇数序列对应的点两两一组,添加连线即可。
下面以(2)为例说明:(6 , 3, 3, 2, 2 ) 对应图G 的点集合V= { v 1,v 2,v 3,v 4,v 5}每个结点对应的环数(6/2, (3-1)/2, (3-1)/2, 2/2,2/2) = (3,1,1,1,1)将奇数3,3 对应的结点v 2,v 3一组,画一条连线其他序列可以类式作图,当然大家也可以画图其它不同的图形。
离散数学习题答案解析
![离散数学习题答案解析](https://img.taocdn.com/s3/m/23a6e733a58da0116d174977.png)
离散数学习题答案解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语∧解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是p q(9)只有天下大雨,他才乘班车上班→解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是q p (11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是()∧→p q r 15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(4)()(())∧∧⌝↔⌝∨⌝→p q r p q r解:p=1,q=1,r=0,∧∧⌝⇔∧∧⌝⇔,p q r()(110)1p q r⌝∨⌝→⇔⌝∨⌝→⇔→⇔(())((11)0)(00)1∴∧∧⌝↔⌝∨⌝→⇔↔⇔()(())111p q r p q r19、用真值表判断下列公式的类型:(2)()→⌝→⌝p p q解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式, 所以成假赋值为100。
离散数学第四版课后答案(第9章)
![离散数学第四版课后答案(第9章)](https://img.taocdn.com/s3/m/8318b552be23482fb4da4ccd.png)
第9章 习题解答9.1 有5片树叶.分析 设T 有x 个1度顶点(即树叶).则T 的顶点数Tx x n ,523+=++=的边数.41x n m +=-=由握手定理得方程.∑=+=⋅+⨯+⨯==+=ni ix x vd x m 1.1312233)()4(22由方程解出.5=x所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.分析 设T 中有x 个3度顶点,则T 中的顶点数,7x n +=边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122由方程解出x=5.所求无向树T 的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T 中有5个3度顶点.要析 设T 中有x 个3度顶点,则T 中的顶点数x n +=7,边数x n m +=-=61,由握手定理得方程.∑=+==+=ni ix v d x m 173)(2122.由此解出5=x ,即T 中有5个3度顶.T 的度数列为1,1,1,1,1,1,1,3,3,3,3,3.由于T 中只有树叶和3度顶点,因而3度顶点可依次相邻,见图9.7所示. 还有一棵与它非同构的树,请读者自己画出.9.3 加1-k 条新边才能使所得图为无向树.分析 设具有k 个连通分支的森林为G,则G 有k 个连通分支i K T T TT ,,,21全为树,.,,2,1k i =加新边不能在i T 内部加,否则必产生回路.因而必须在不同的小树之间加新边. 每加一条新边后,所得到的森林就减少一个连通分支. 恰好加1-k 条新边,就使得图连通且无回路,因而是树.在加边过程中,只需注意,不在同一人连通分支中加边. 下面给出一种加边方法,取iv 为iT 中顶点,加新边1,,2,1),(1-=+k i vv i i,则所得图为树,见图9.8 给出的一个特例.图中虚线边为新加的边.9.4 不一定.分析 n 阶无向树T 具有1-n 条边,这是无向树T 的必要条件,但不是充公条件.例如, 阶圈(即1-n 个顶点的初级回路)和一个孤立点组成无向简单图具有1-n 条边, 但它显然不是树.9.5 非同构的无向树共有2棵,如图 9.9所示.分析由度数列1,1,1,1,2,2,4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况.因而是两棵非同构的树.9.6 有两棵非同构的生成树,见图9.10所示.分析图9.10 是5阶图(5个顶点的图), 5阶非同构的无向树只有3棵,理由如下. 5阶无向树中,顶点数5=n,边数4=m,各顶点度数之和为8,度数分配方案有3种,分别为①1,1,1,1,4;②1,1,1,2,3;③1,1,2,2.2.每种方案只有一棵非同构的树.图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树, 但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树. 但在图9.10 中已经找出了两个非同构的生成树,其中(1)的度数列为③,(2) 的度数列为②,因而该图准确地有两棵非同构的生成树.9.7 基本回路为: .,,,hfab C gfa C ead C cbad C h g e c====基本回路系统为}.,,,{h g e cC C C C基本割集为:},,{},,{},,,{},,,,,{h g f Sc ed S h c b S h g ce a S fd b a ====基本回路系统为},,,{f d b aS S S S.分析 1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2° 基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的: 设弦),(j iv ve =,则jiv v,在生成树T 中,且在T 中,ji v v ,之间存在唯一的路径ji ,Γ与),(j iv ve =组成的回路为G 中对应弦e 的基本回路.3° 基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝),(j iv ve =,则e 为T 中桥,于是eT-(将e 从T中支掉),产生两棵小树1T 和2T ,则}|{21'''中和的两端点分别在中且在T T e G e e S e =e S 为树枝e 对应的基本割集. 显然ee S S e ,∈中另外的边全是弦. 注意,两棵小树1T 和2T ,中很可能有平凡的树(一个顶点).aT -得两棵小树如图9.11中(1) 所示. G 中一个端点在i T 中,另一个端点在2T 中的边为a(树枝), h g c e ,,,,它们全是弦,于是},,,,{h g c e a Sa=bT - 得两棵小树如图9.11中(2) 所示, 其中有一棵为平凡树. G 中一个端点在1T 中,另一个端点在2T 中的边数除树枝b 外,还有弦,,h c 所以, },,{h c b Sb=dT -产生的两棵小树如图9.11中(3) 所示 . G 中一个端点在1T 中,另中一个端点在2T 中的边,除树枝d 外,还有两条弦e c ,,所示, },,{e c d Sd=fT -产生的两棵小树如图9.11中(4) 所示. 由它产生的基本割集为},,{h g f Sf=9.8 按Kruskal 求最小生成树的算法,求出的图9.3(1)的最小生成树T 为图9.12中(1) 所示, 其7)(=T W .(2) 的最小生成树T 为图9.12中(2)所示,其.11)(=T W9.9 421,,B B B为前缀码.分析 在421,,B B B中任何符号串都不是另外符号串的前串,因而它们都是前缀码.而在3B 中, 1是11,101的前缀,因而3B不是前缀码. 在5B 中,,a 是ac aa ,等的前缀,因而5B 也不是前缀码.9.10 由图9.4 (1) 给出的2元前缀码.}11,011,01010,0100,00{1=B由(2) 给出的3元前缀码为.}.2,1,022,0202,0201,0200,01,00{2=B分析 1B 是2元树产生的2元前缀码(因为码中的符号串由两个符号0,1组成),类似地,2B 是由3元树产生的3元前缀码(因为码中符号串由3个符号0,1,2组成).一般地,由r 元树产生r 元前缀码.9.11 (1) 算式的表达式为ji h g f e d c b a *)*()()*)*((((++÷-+.由于使其成为因而可以省去一些括号优先于,,,*,-+÷ji h g f e d c b a **)()*)*((++÷-+.(2) 算式的波兰符号法表达式为.****hij fg bcde a ++-÷+(3) 算式的逆波兰符号法表达式为.****+÷+-+jI hi fg e d abc9.12 答案 A:①; B ②; C:④; D:⑨.分析 对于每种情况都先求出非同构的无向树,然后求出每棵非同构的无向树派生出来的所有非同构的根树.图9.13 中,(1),(2),(3),(4)分别画出了2阶,3阶,4阶,5阶所有非同构的无向树,分别为1棵,1棵,2棵和3棵无向树.2阶无向树只有1棵,它有两个1度顶点,见图9.13中(1)所示,以1个顶点为树根,1个顶点为树叶,得到1棵根树.3阶非同的无向树也只有1棵,见图9.13中(2)所示.它有两个1度顶点,1个2度顶点,以1度顶点为根的根树与以2度顶点为根的树显然是非同构的根树,所以2个阶非同构的根树有两棵.4阶非同构的无向树有两棵,见图9.13中(3)所示. 第一棵树有3片树叶,1个3度顶点, 以树叶为根的根树与以3度顶点为根的树非同构.所以,由第一棵树能生成两个非同构的根树, 见图9.14 中(1)所示. 第二棵树有两片树叶,两个2度顶点,由对称性,以树叶为根的根树与2度顶点为根的根树非同构,见图9.14中(2) 所示. 所以,4阶非同构的根树有4棵.5阶非同构的无向树有3棵,见图9.13中(4)所示. 由第一棵能派生两棵非同构的根树, 由第二棵能派生4棵非同构的根树,由第三棵能派生3棵非同构的根树,所以,5阶非同构的根树共有9棵,请读者将它们都画出来.9.13 答案 A:②; B:②; C:③; D:③; E:③;F:④; G: ④; H:③.分析 将所有频率都乘100,所得结果按从小到大顺序排列:.35,20,15,10,10,5,5=======a b c d e f g w w w w w w w以以上各数为权,用Huffman 算法求一棵最优树,见图9.15所示.对照各个权可知各字母的前缀码如下:a ——10,b ——01,c ——111,d ——110,e ——001,f ——0001,g ——0000.于是,a,b 的码长为e d c ,,,2的码长为g f ,,3的码长为4. W(T)=255(各分支点的权之和),W(T)是传输100按给定频率出现的字母所用的二进制数字,因则传输104个按上述频率出现的字母要用25500⨯个二进制数字..24=1055最后还应指出一点,在画最优树叶, 由于顶点位置的不同,所得缀码可能不同,即有些字母的码子在不同的最优树中可能不同,但一般说来码长不改变.特别是,不同的最优树,它们的权是固定不变的.9.14 答案 A:②; B:④分析用2元有序正则树表示算式,树叶表示参加运算的数,分支点上放运算符,并将被减数(被除数)放在左子树上,所得2元树如图9.16所示.用前序行遍法访问此树,得波兰符号表示法为abc-++de-*.**ghf用后序行遍法访问此树,得逆波兰符号表示法为dec*fghab--++**。
离散数学_电子科技大学中国大学mooc课后章节答案期末考试题库2023年
![离散数学_电子科技大学中国大学mooc课后章节答案期末考试题库2023年](https://img.taocdn.com/s3/m/6aa17021a9114431b90d6c85ec3a87c240288ab8.png)
离散数学_电子科技大学中国大学mooc课后章节答案期末考试题库2023年1.公式的主合取范式为以下哪一个?(以编码形式表达)答案:2.若有前提集合,则可推出以下哪个结论?答案:3.给定论域,在该赋值下,公式的真值为?答案:14.根据自然演绎法,以下选项哪一个是公式的有效结论?答案:5.以下哪一个不是集合A = {∅,1,{b}} 的幂集 P(A)中的元素?答案:{b}6.设 R = {< 1,4 >,< 2,1 >,< 2,3 >,< 3,1 >,< 4,2 >,< 4,3 >} 是集合A = {1,2,3,4} 上的二元关系。
则R不具备哪种性质?答案:传递7.设 A = {< a,b > |a,b 均为正整数} , 在 A 上定义二元关系∼ 为:< a,b >∼< c,d >当且仅当 ad = bc,则此二元关系为( )?答案:等价关系8.集合 A = {1,6,9,12,18,36},⩽为整除关系。
则其子集 B={6,12,18} 的极大元,极小元,上界,下界分别为?(以;分隔)答案:12,18;6;36;1,69.设函数, 则以下哪一项是复合函数答案:10.设图 G 有 n 个结点,n+1 条边,且每个结点的度数都不超过 3,则G中至少有()个度数等于 3 的结点?答案:211.有向图G如下图所示,则图G中长度为4的通路和回路数各为多少条?答案:15;312.某城市拟在六个区之间架设有线电话网,其网点间的距离如下列有权矩阵给出,则架设线路的最优方案的线路总长度为()。
答案:1813.判断以下命题哪个为真?答案:若A-B=B-A,则有A=B14.设,下列哪个是A的划分?答案:{{1,2,7},{3,5,10},{4,6,8},{9}}15.“今有 a,b,c,d,e,f,g 共 7 人,已知下列事实:a 会讲英语;b 会讲英语和汉语;c 会讲英语,意大利语;d 会讲日语和汉语;e 会讲德语和意大利语;f会讲法语和日语;g 会讲法语和德语。
《离散数学》题库大全及答案
![《离散数学》题库大全及答案](https://img.taocdn.com/s3/m/d5e2de3ffd4ffe4733687e21af45b307e871f9fb.png)
《离散数学》题库大全及答案为离散数学领域的经典教材,全世界几乎所有知名的院校都曾经使用本书作为教材.以我个人观点看来,这本书可以称之为离散数学百科.书中不但介绍了离散数学的理论和方法,还有丰富的历史资料和相关学习网站资源.更为令人激动的便是这本书少有的将离散数学理论与应用结合得如此的好.你可以看到离散数学理论在逻辑电路,程序设计,商业和互联网等诸多领域的应用实例.本书的英文版(第六版)当中更增添了相当多的数学和计算机科学家的传记,是计算机科学历史不可多得的参考资料.作为教材这本书配有相当数量的练习.每一章后面还有一组课题,把学生已经学到的计算和离散数学的内容结合在一起进行训练.这本书也是我个人在学习离散数学时读的唯一的英文教材,实为一本值得推荐的好书。
《离散数学》题库答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2),(3),(4),(5),(6)4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
离散数学习题答案1-2-6-7-8-9章-2009-12-17
![离散数学习题答案1-2-6-7-8-9章-2009-12-17](https://img.taocdn.com/s3/m/040d0e3deefdc8d376ee3235.png)
习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。
由子集的定义。
(2) 不一定。
如:A={1},B={{1}},C={{1}}。
(3)不一定。
如:A={1},B={1,2},C={{1,2}}(4)不一定。
如:A={1},B={1,2},C={{1,2}}。
7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。
A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。
8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。
离散数学第9章习题解答
![离散数学第9章习题解答](https://img.taocdn.com/s3/m/4bef8358cc22bcd126ff0cd9.png)
第9章习题解答9.1 有5片树叶.分析设T有x个1度顶点(即树叶).则T的顶点数的边数由握手定理得方程.由方程解出所求无向树T的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.分析设T中有个3度顶点,则T中的顶点数边数,由握手定理得方程.由方程解出x=5.所求无向树T的度数列为1,1,1,1,1,2,2,3,3,3.由这个度数列可以画多棵非同构的无向树,图9.6给出的4棵都具有上述度数列,且它们是非同构的.9.2 T中有5个3度顶点.要析设T中有x个3度顶点,则T中的顶点数,边数,由握手定理得方程..由此解出,即T中有5个3度顶.T的度数列为1,1,1,1,1,1,1,3,3,3,3,3.由于T中只有树叶和3度顶点,因而3度顶点可依次相邻,见图9.7所示. 还有一棵与它非同构的树,请读者自己画出.9.3 加条新边才能使所得图为无向树.分析设具有个连通分支的森林为G,则G有个连通分支全为树,加新边不能在内部加,否则必产生回路.因而必须在不同的小树之间加新边. 每加一条新边后,所得到的森林就减少一个连通分支. 恰好加条新边,就使得图连通且无回路,因而是树.在加边过程中,只需注意,不在同一人连通分支中加边. 下面给出一种加边方法,取为中顶点,加新边,则所得图为树,见图9.8 给出的一个特例.图中虚线边为新加的边.9.4 不一定.分析 n阶无向树T具有条边,这是无向树T的必要条件,但不是充公条件.例如, 阶圈(即个顶点的初级回路)和一个孤立点组成无向简单图具有条边, 但它显然不是树.9.5 非同构的无向树共有2棵,如图 9.9所示.分析由度数列1,1,1,1,2,2,4不难看出,唯一的4度顶点必须与2度顶点相邻,它与1个2度顶点相邻,还是与两个2度顶点都相邻,所得树是非同构的,再没有其他情况.因而是两棵非同构的树.9.6 有两棵非同构的生成树,见图9.10所示.分析图9.10 是5阶图(5个顶点的图), 5阶非同构的无向树只有3棵,理由如下. 5阶无向树中,顶点数,边数,各顶点度数之和为8,度数分配方案有3种,分别为①1,1,1,1,4;②1,1,1,2,3;③1,1,2,2.2.每种方案只有一棵非同构的树.图9.10所示的5阶图的非同构的生成树的度数列不能超出以上3种,也就是说,它至多有3棵非同构的生成树, 但由于图中无4度顶点,所示,不可能有度数列为①的生成树,于是该图最多有两棵非同构的生成树. 但在图9.10 中已经找出了两个非同构的生成树,其中(1)的度数列为③,(2) 的度数列为②,因而该图准确地有两棵非同构的生成树.9.7 基本回路为:基本回路系统为基本割集为:基本回路系统为.分析1°注意基本回路用边的序列表示,而基本割集用边的集合表示.2° 基本回路中,只含一条弦,其余的边全为树枝,其求法是这样的: 设弦,则在生成树T中,且在T中,之间存在唯一的路径与组成的回路为G中对应弦的基本回路.3° 基本割集中,只含一条树枝,其余的边都是弦,其求法是这样的:设树枝,则为T中桥,于是(将从T中支掉),产生两棵小树和,则为树枝对应的基本割集. 显然中另外的边全是弦. 注意,两棵小树和,中很可能有平凡的树(一个顶点).得两棵小树如图9.11中(1) 所示. G中一个端点在中,另一个端点在中的边为(树枝),,它们全是弦,于是得两棵小树如图9.11中(2) 所示, 其中有一棵为平凡树. G中一个端点在中,另一个端点在中的边数除树枝外,还有弦所以,产生的两棵小树如图9.11中(3) 所示 . G中一个端点在中,另中一个端点在中的边,除树枝外,还有两条弦,所示,产生的两棵小树如图9.11中(4) 所示. 由它产生的基本割集为.9.8 按Kruskal求最小生成树的算法,求出的图9.3(1)的最小生成树T为图9.12中(1) 所示, 其.(2) 的最小生成树T为图9.12中(2)所示,其9.9为前缀码.分析在中任何符号串都不是另外符号串的前串,因而它们都是前缀码.而在中, 1是11,101的前缀,因而不是前缀码. 在中,是等的前缀,因而也不是前缀码.9.10 由图9.4 (1) 给出的2元前缀码.由(2) 给出的3元前缀码为.分析是2元树产生的2元前缀码(因为码中的符号串由两个符号0,1组成),类似地,是由3元树产生的3元前缀码(因为码中符号串由3个符号0,1,2组成).一般地,由元树产生元前缀码.9.11 (1) 算式的表达式为.由于.(2) 算式的波兰符号法表达式为(3) 算式的逆波兰符号法表达式为9.12 答案A:①; B②; C:④; D:⑨.分析对于每种情况都先求出非同构的无向树,然后求出每棵非同构的无向树派生出来的所有非同构的根树.图9.13 中,(1),(2),(3),(4)分别画出了2阶,3阶,4阶,5阶所有非同构的无向树,分别为1棵,1棵,2棵和3棵无向树.2阶无向树只有1棵,它有两个1度顶点,见图9.13中(1)所示,以1个顶点为树根,1个顶点为树叶,得到1棵根树.3阶非同的无向树也只有1棵,见图9.13中(2)所示.它有两个1度顶点,1个2度顶点,以1度顶点为根的根树与以2度顶点为根的树显然是非同构的根树,所以2个阶非同构的根树有两棵.4阶非同构的无向树有两棵,见图9.13中(3)所示. 第一棵树有3片树叶,1个3度顶点, 以树叶为根的根树与以3度顶点为根的树非同构.所以,由第一棵树能生成两个非同构的根树, 见图9.14 中(1)所示. 第二棵树有两片树叶,两个2度顶点,由对称性,以树叶为根的根树与2度顶点为根的根树非同构,见图9.14中(2) 所示. 所以,4阶非同构的根树有4棵.5阶非同构的无向树有3棵,见图9.13中(4)所示. 由第一棵能派生两棵非同构的根树, 由第二棵能派生4棵非同构的根树,由第三棵能派生3棵非同构的根树,所以,5阶非同构的根树共有9棵,请读者将它们都画出来.9.13 答案A:②; B:②; C:③; D:③; E:③;F:④; G: ④; H:③.分析将所有频率都乘100,所得结果按从小到大顺序排列:以以上各数为权,用Huffman算法求一棵最优树,见图9.15所示.对照各个权可知各字母的前缀码如下:a——10, b——01, c——111, d——110,e——001, f——0001,g——0000.于是,a,b的码长为的码长为的码长为4.W(T)=255(各分支点的权之和),W(T)是传输100按给定频率出现的字母所用的二进制数字,因则传输104个按上述频率出现的字母要用个二进制数字.最后还应指出一点,在画最优树叶, 由于顶点位置的不同,所得缀码可能不同,即有些字母的码子在不同的最优树中可能不同,但一般说来码长不改变.特别是,不同的最优树,它们的权是固定不变的.9.14 答案 A:②; B:④分析用2元有序正则树表示算式,树叶表示参加运算的数,分支点上放运算符,并将被减数(被除数)放在左子树上,所得2元树如图9.16所示.用前序行遍法访问此树,得波兰符号表示法为用后序行遍法访问此树,得逆波兰符号表示法为。
离散数学第四版 课后答案
![离散数学第四版 课后答案](https://img.taocdn.com/s3/m/03c5a9f1941ea76e58fa0440.png)
离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
大学离散数学课后答案
![大学离散数学课后答案](https://img.taocdn.com/s3/m/4026a65f804d2b160b4ec00b.png)
9.1.1 解:⑴ 几何图表示如右。
⑵ deg(v 1)=3 deg(v 2)=4 deg(v 3)=3 deg(v 4)=3 deg(v 5)=1 deg(v 6)=0 奇度数结点数为 4。
⑶ (v 2,v 2) 为自环;(v 1,v 3) 与 (v 3,v 1) 为平行边;(v 4,v 5) 为悬挂边;v 5 为悬挂点;v 6 为孤立点。
该图为伪图。
9.1.2 证:⑴ n 个结点的所有图中,完全图边数最多。
每点n-1度,n 个点的总度数为:2m=∑=n i i v 1)deg(=n(n-1) ∴ m=n(n-1)/2n 个结点的任一图的边数≤完全图的边数,∴ m ≤n(n-1)/2 ※ ⑵ ∵ 在简单有向完全图中,任二点之间有两条方向相反的边,∴ 每点的度数为 2(n-1),∴ 总度数为 2m=2(n-1)n ,∴ m=n(n-1)。
※ 9.1.3 解:⑴ 去掉 v 点后,有 n-1个结点,m-d 条边。
⑵ 去掉 e 边后,有 n 个结点,m-1条边。
9.1.4 证:假设n 个结点的度数皆不相同∵ 在简单无向图中,一个结点的最大度数为n-1,最小度数为0。
∴ 它们只能为 0,1,…,n-1 n 个值。
∵ 0度点不与其它任何结点相邻,而n-1度点与其它任何结点相邻,∴ 二者产生一个矛盾。
※ 9.1.5 解:仅考虑无向图。
⑴ 可构成图,图如右。
⑵ 否。
奇度数结点数为奇数。
⑶ 否。
n 个结点的简单无向图中,结点的最大度数为n-1,5不可。
⑷ 否。
后三点均与其它各点有边,故第一点也应三度。
⑸ 否。
后二点均与其它各点有边,故第一点至少应为二度。
9.1.6 解:2m=nk m=nk/2 。
9.1.7 证:⑴ 当图G 中n 个点的度数都为 δ(G)时,总度数为 2m=n δ(G)。
但一般情况下,δ(G) 为最小度数,而并非所有结点的度数都为 δ(G)时, 必有 2m ≥n δ(G), ∴ 2m/n ≥δ(G) 。
离散数学课后作业参考答案慕课电子科技大学
![离散数学课后作业参考答案慕课电子科技大学](https://img.taocdn.com/s3/m/d228b66d856a561252d36f96.png)
by 王丽杰
1. 用描述法写出下列集合。 (1) 从 0 到 1000 的整数; (2) 所有实数集上一元一次方程的解组成的集合; (3) 能被 100 整除的整数集合; (4) 直角坐标系中,单位元 (不包括单位圆周) 的点集。
2. 试用 ∈,⊂,⊆ 和 = 来描述以下各组两个集合间的关系。 (1)A = {2},B = {2x|(1 ⩽ x ⩽ 3)} (2)C = {2, 3},D = {{2, 3}} (3)E = {x|x ∈ Z, x2 + x + 1 = 0},F = {{2, 3}} (4)G = {3, 3, 2, 1, 2},H = {x|x3 − 6x2 + 11x − 6 = 0}
2. 设命题 P :天在下雪;Q:我将进城;R:我有空。符号化下列命题。 (1) 我将进城去当且仅当我有空且天不下雪。 (2) 虽然天在下雪,但我将进城去。 (3) 如果天不下雪且我有空,我将进城去。 (4) 除非天不下雪,否则我将不进城。
3. 利用真值表或公式转换方法,判断下列公式的类型(永真公式,永假公式, 可满足公式)。 (1)P → (P ∨ Q ∨ R) (2)((P ∨ Q) ∧ R) ↔ Q (3)(P ∨ Q) ∧ (¬P ∨ Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨ ¬Q)
Q : 小李的通行发生困难;
R : 小李按指定的时间到达.
则推理符号化成:P → Q, R → ¬Q, R ⇒ ¬P
(1) R → ¬Q
P
(2) R
P
(3) ¬Q
T, (1), (2), I
(4) P → Q
P
(5) ¬P
T, (3), (4), I
第 (2) 小题
离散数学课后答案全集
![离散数学课后答案全集](https://img.taocdn.com/s3/m/d718463276eeaeaad0f330c3.png)
第1章 命题逻辑P7 习题1. 给出下列命题的否定命题: (1)大连的每条街道都临海。
否命题:不是大连的每条街道都临海。
(2)每一个素数都是奇数。
否命题: 并非每一个素数都是奇数。
2. 对下述命题用中文写出语句: (1)()P R Q ⌝∧→如果非P 与R ,那么Q 。
(2)Q R ∧Q 并且R 。
3. 给出命题P Q →,我们把Q P →、P Q ⌝→⌝、Q P ⌝→⌝分别称为命题P Q →的逆命题、反命题、逆反命题。
(1)如果天不下雨,我将去公园。
解:逆命题:如果我去公园,则天不下雨; 反命题:如果天下雨,则我不去公园;逆反命题:如果我不去公园,则天下雨了。
(2)仅当你去我才逗留。
解:(此题注意:p 仅当q 翻译成p q →) 逆命题:如果你去,那么我逗留。
反命题:如果我不逗留,那么你没去。
逆反命题:如果你没去,那么我不逗留。
(3)如果n 是大于2的正整数,那么方程nn n xy z +=无整数解。
解:逆命题:如果方程nn n xy z +=无整数解,那么n 是大于2的正整数。
反命题:如果n 不是大于2的正整数,那么方程nn n x y z +=有整数解。
逆反命题:如果方程nn n xy z +=有整数解,那么n 不是大于2的正整数。
(4)如果我不获得更多的帮助,那么我不能完成这项任务。
解:逆命题:如果我不完成任务,那么我不获得更多的帮助。
反命题:如果我获得了更多的帮助,那么我能完成任务。
逆反命题:如果我能完成任务,那么我获得了更多的帮助。
4. 给P 和Q 指派真值T ,给R 和S 指派真值F ,求出下列命题的真值。
(1)(()(()()))P Q R Q P R S ⌝∧∨⌝∨↔⌝→∨⌝=(()(()()))T T F T T F F ⌝∧∨⌝∨↔⌝→∨⌝ =()T F T ⌝∨→ =T F ∨ =T(2)()Q P Q P ∧→→ =()T T T T ∧→→ =T T T ∧→ =T T →=T(3)((()))()P Q R P Q S ∨→∧⌝↔∨⌝=((()))()T T F T T F ∨→∧⌝↔∨⌝ =(())T T F T ∨→↔ =T T ↔ =T(4)()()P R Q S →∧⌝→ =()()T F T F →∧⌝→=()F F F ∧→=F5. 构成下来公式的真值表: (1)()Q P Q P ∧→→(2)()()()P Q R P Q P R ⌝∨∧↔∨∧∨(3)()P Q Q P P R ∨→∧→∧⌝(4)()P P Q R Q R ⌝→∧⌝→∧∨⌝6. 使用真值表证明:如果P Q ↔为T ,那么P Q →和Q P →都是T ,反之亦然。