平面直角坐标系和一次函数

合集下载

一次函数与平面直角坐标系的关系

一次函数与平面直角坐标系的关系

一次函数与平面直角坐标系的关系好吧,今天咱们聊聊一次函数和那个平面直角坐标系的关系。

哎呀,听起来有点儿枯燥对吧?其实一点儿都不!咱们把这事儿说得简单点,让你听得明明白白,乐得不行。

什么是一条一次函数的直线呢?其实它就像生活中的很多事情,有个开始,然后一路往前走。

就像你和朋友约好去吃饭,从家里出发,一步一步走到餐厅。

这里的起点,就是你家。

然后,你走的每一步,代表着你离目标的距离。

简单吧?一次函数就是这样一种关系,表示着一种线性变化。

它的标准形式是 (y = mx + b),听起来有点儿学术,但别担心,咱们只要记住这几个字母就行了。

在这公式里,(m) 是斜率,咱们可以想象成你上坡的陡峭程度。

坡度越大,走起来就越累,就像你爬山的时候,越是陡的地方,越让人喘不过气来。

反过来,(b) 就是 y轴上的截距,简单说就是你在 y 轴上的起点。

如果把这条直线画出来,哇塞,就像一条划过纸上的闪电,真的很帅气。

现在,想象一下,你在坐标系上画一条线。

横着的是 x 轴,竖着的是 y 轴。

你在这两条轴上,随便选个点。

那就是你的出发点,接着根据一次函数的公式,画出这条线。

它就是你在生活中的各种选择,或者说是梦想的道路。

每一步,都是向着目标迈进。

再看看这条线,它可能很平滑,也可能有点儿波折,这就像人生,有高兴也有低谷。

直线的方向告诉你很多事儿。

比如说,它向上走,那就是事业顺风顺水,生活红红火火。

如果线条向下走,那可能就是最近有点不顺,心情也跟着低落。

看吧,这些看似简单的线条,背后藏着的可是大智慧呢!而且啊,不同的直线代表了不同的关系。

你和朋友的关系、家庭的关系,甚至工作上的合作,都是通过这条线的斜率和截距在反映。

不过呢,这些公式和线条可不是死板的东西。

它们是活生生的,跟我们的生活息息相关。

比如说,想象你要开一家小店,售卖你最爱的零食。

你投入的资金就是 y 轴,销售额就是 x 轴。

你可以通过一次函数来预测你可能的收入,这可比盲目猜测靠谱多了。

平面直角坐标系.一次函数知识概念

平面直角坐标系.一次函数知识概念

平面直角坐标系.一次函数知识概念平面直角坐标系一.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y 轴上,对应的数a,b分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

平面直角坐标系是数轴由一维到二维的过渡,同时它又是学习函数的基础,起到承上启下的作用。

另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。

掌握本节内容对以后学习和生活有着积极的意义。

教师在讲授本章内容时应多从实际情形出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。

一次函数一.知识概念1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当b=0时,称y是x的正比例函数。

2.(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx 经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y 随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。

在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。

培养学生良好的变化与对应意识,体会数形结合的思想。

中考数学真题专项汇编解析—平面直角坐标系与一次函数

中考数学真题专项汇编解析—平面直角坐标系与一次函数

中考数学真题专项汇编解析—平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,4【答案】C【分析】根据小丽的座位坐标为()3,2,根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.【详解】解:∵只有()4,2与()3,2是相邻的,∵与小丽相邻且能比较方便地讨论交流的同学的座位是()4,2,故C 正确.故选:C .【点睛】本题主要考查坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.3.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∵210m ->解得:12m >∵(,)P m m -在第二象限故选:B【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校【答案】A 【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案. 【详解】解:根据学校和体育场的坐标建立直角坐标系,超市到原点的距离为==A .【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【详解】∵a 2∵0,∵a 2+1∵1,∵点P(−3,a 2+1)所在的象限是第二象限.故选B. 6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( )A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1 【答案】D【分析】令x =0,求出函数值,即可求解.【详解】解:令x =0, 1y =,∵一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.7.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩ 【答案】C【分析】先把点P 代入直线4y x =-+求出n ,再根据二元一次方程组与一次函数的关系求解即可;【详解】解:∵直线4y x =-+与直线2y x m =+交于点P (3,n ),∵34n =-+,∵1n =,∵()3,1P ,∵1=3×2+m ,∵m =-5,∵关于x ,y 的方程组40250x y x y +-=⎧⎨--=⎩的解31x y =⎧⎨=⎩;故选:C . 【点睛】本题主要考查了一次函数的性质,二元一次方程与一次函数的关系,准确计算是解题的关键.8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( ) A .向左平移2个单位 B .向左平移1个单位 C .向右平移2个单位 D .向右平移1个单位【答案】B【分析】函数图象的平移规律:左加右减,上加下减,根据规律逐一分析即可得到答案.【详解】解:将直线21y x =+向上平移2个单位,可得函数解析式为:23,y x 直线21y x =+向左平移2个单位,可得22125,y x x 故A 不符合题意; 直线21y x =+向左平移1个单位,可得21123,y x x 故B 符合题意; 直线21y x =+向右平移2个单位,可得22123,y x x 故C 不符合题意; 直线21y x =+向右平移1个单位,可得21121,y x x 故D 不符合题意;故选B【点睛】本题考查的是一次函数图象的平移,掌握一次函数图象的平移规律是解本题的关键.9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2022·天津)如图,∵OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB∵x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明∵ACO∵∵BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB∵x轴,∵∵ACO=∵BCO=90°,AB=3,∵OA=OB,OC=OC,∵∵ACO∵∵BCO(HL),∵AC=BC=12∵OA=5,∵OC=4,∵点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【答案】D【分析】结合函数关系图逐项判断即可.【详解】A项,前10分钟,甲走了0.8千米,乙走了1.2千米,则甲比乙的速度慢,故A项正确;B项,前20分钟,根据函数关系图可知,甲、乙都走了1.6千米,故B正确;C项,甲40分钟走了3.2千米,则其平均速度为:3.2÷40=0.08千米/分钟,故C 项正确;D项,经过30分钟,甲走了2.4千米,乙走了2.0千米,则甲比乙多走了0.4千米,故D项错误;故选:D.【点睛】本题考查了一次函数的图像及其在行程问题中的应用,理解函数关系图是解答本题的关键.12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁【答案】A【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A 【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.13.(2022·江西)甲、乙两种物质的溶解度(g)t℃之间的对应关系如图y与温度()所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至2t℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【答案】D【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误,故选:D.【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.h随飞14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m行时间()s t的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【答案】D【分析】根据函数图象可直接得出答案.【详解】解:∵函数图象的纵坐标表示一只蝴蝶在飞行过程中离地面的高度()m h , ∵由函数图象可知这只蝴蝶飞行的最高高度约为13m ,故选:D .【点睛】本题考查了从函数图象获取信息的能力,准确识图是解题的关键. 15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【分析】根据含30°角的直角三角形的性质可得B (2,,利用待定系数法可得直线PB 的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y x +2中可解答.【详解】解:∵点A (4,2),点P (0,2),∵P A ∵y 轴,P A =4,由旋转得:∵APB =60°,AP =PB =4, 如图,过点B 作BC ∵y 轴于C ,∵∵BPC =30°,∵BC =2,PC ∵B (2,, 设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∵2k b ⎧=⎪⎨=⎪⎩∵直线PB 的解析式为:y +2,当y =0+2=0,x =∵点M 1(0)不在直线PB 上,当x =y =-3+2=1,∵M 2(-1)在直线PB 上,当x =1时,y ,∵M 3(1,4)不在直线PB 上,当x =2时,y ,∵M 4(2,112)不在直线PB 上.故选:B . 【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B 的坐标是解本题的关键.16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤【答案】A【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∵y 随着x 的增大而减小,∵32>2,∵32>∵m <n ,故选:A . 【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∵y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3 ∵若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意; 若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意. 故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1【答案】B【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∵2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9∵0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =-∵直线解析式为134=-+y x把(4,)B c 代入134=-+y x 得14324c =-⨯+=故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.19.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .【答案】D【分析】分为0a >和0a <两种情况,利用一次函数图像的性质进行判断即可. 【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a +,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意; 当0a <时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.一次函数y kx b =+的图像有四种情况:∵当0k >,0b >时,函数y kx b =+的图像经过第一、二、三象限;∵当0k >,0b <时,函数y kx b =+的图像经过第一、三、四象限; ∵当0k <,0b >时,函数y kx b =+的图像经过第一、二、四象限; ∵当0k <,0b <时,函数y kx b =+的图像经过第二、三、四象限.20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】根据一次函数的性质可得其经过的象限,进而可得答案. 【详解】解:一次函数()30y x b b =+≥, ∵30k =>∵图象一定经过一、三象限,∵当0b >时,函数图象一定经过一、二、三象限, 当0b =时,函数图象经过一、三象限,∵函数图象一定不经过第四象限,故D 正确.故选:D .【点睛】本题主要考查了一次函数的性质,属于基础题型,熟练掌握一次函数的性质是解题关键.21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为即可.【详解】解:在菱形ABCD 中,∵A =60°,∵∵ABD 为等边三角形, 设AB =a ,由图2可知,∵ABD 的面积为∵∵ABD的面积2==解得:a = 故选B 【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键. 二、填空题22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________. 【答案】y x =(答案不唯一)【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x =,y 随x 的增大而增大.故答案为:y x =(答案不唯一). 【点睛】此题属于开放型试题,答案不唯一,考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1 第2行的第一个数字:()22121=+- 第3行的第一个数字:()25131=+- 第4行的第一个数字:()210141=+- 第5行的第一个数字:()217151=+- …..,设第n 行的第一个数字为x ,得()211x n =+- 设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∵22(1)98n n -≤< ∵n 为整数 ∵10n =∵21182x n =+-=()∵9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论. 【详解】解:四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致, 将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.【答案】3A【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点, ,120,BMMO OHAH BMOOHA,BMO OHA ≌,OB OA11209030,18012030,2MOE BMOMOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON ,,A O B ∴三点共线,,A B ∴关于O 对称, 3,3.A故答案为:3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.【答案】22y x =-+(答案不唯一)【分析】根据题意的要求,结合常见的函数,写出函数解析式即可,最好找有代表性的、特殊的函数,如一次函数、二次函数、反比例函数等.【详解】解:根据题意,甲:“函数值y 随自变量x 增大而减小”;可设函数为:2,y x b =-+又满足乙:“函数图像经过点(0,2)”,则函数关系式为22y x =-+,故答案为:22y x =-+(答案不唯一)【点睛】本题考查学生对函数图象的掌握程度与灵活运用的能力,属于开放性题.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 【答案】1(答案不唯一,满足0b >即可)【分析】根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限, ∵0b >故答案为:1答案不唯一,满足0b >即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.【答案】1x <-【分析】观察一次函数图象,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.【详解】由一次函数图象得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.29.(2022·浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∵联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.30.(2022·甘肃武威)若一次函数y=kx−2的函数值y随着自变量x值的增大而增大,则k=_________(写出一个满足条件的值).【答案】2(答案不唯一)【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【详解】解:∵函数值y随着自变量x值的增大而增大,∵k>0,∵k=2(答案不唯一).故答案为:2(答案不唯一).【点睛】本题考查了一次函数的性质,掌握一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小是解题的关键.31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥【分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解.【详解】解:如图,观察图象得:当x =2时,y ≥1,即21k k +≥,解得:13k ≥,当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-,∵k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤-【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.32.(2022·湖北黄冈)如图1,在∵ABC 中,∵B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∵BAC 时,t 的值为________.【答案】2##【分析】根据函数图像可得AB =4=BC ,作∵BAC 的平分线AD ,∵B =36°可得∵B =∵DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB =4,AB +BC =8,∵BC =AB =4,∵∵B =36°,∵72BCA BAC ∠∠︒==,作∵BAC 的平分线AD ,∵∵BAD =∵DAC =36°=∵B ,∵AD =BD ,72BCA DAC ∠∠︒==,∵AD =BD =CD , 设AD BD CD x ===,∵∵DAC =∵B =36°,∵ADC BAC △△,∵AC DC BC AC =,∵x 4x 4x-=,解得: 12x =-+22x =--,∵2AD BD CD ===,此时21AB BD t +==(s),故答案为:2. 【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4; (2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时. 根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∵点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60.(3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =,故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.【答案】(1)60(2) 60y x =甲, 100100y x =-乙(3)点C 的坐标为()2.5,150,点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km【分析】(1)观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,路程除以时间即为速度;(2)利用待定系数法分别求解即可;(3)将,y y 甲乙与x 之间的函数解析式联立,解二元一次方程组即可.(1)解:观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,∵A ,B 两地相距300km ,∵甲的速度为3005=60 (km/h)÷,故答案为:60;(2)解:设y 甲与x 之间的函数解析式为11y k x b =+甲,将点()0,0,()5,300代入得11103005b k b =⎧⎨=+⎩,解得11060b k =⎧⎨=⎩, ∵y 甲与x 之间的函数解析式为60y x =甲,同理,设y 乙与x 之间的函数解析式为22y k x b =+乙,将点()1,0,()4,300代入得222203004k b k b =+⎧⎨=+⎩, 解得22100100b k =-⎧⎨=⎩, ∵y 乙与x 之间的函数解析式为100100y x =-乙;(3)解:将,y y 甲乙与x 之间的函数解析式联立得,60100100y x y x =⎧⎨=-⎩,解得 2.5150x y =⎧⎨=⎩,∵点C 的坐标为()2.5,150, 点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km .【点睛】本题考查一次函数的实际应用,涉及到求一次函数解析式,求直线交点坐标等知识点,读懂题意,从所给图象中找到相关信息是解题的关键.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150(3)1.2【分析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可; (3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩,解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h,6-4.8=1.2h,∵轿车比货车早1.2h时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:∵根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.∵观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?。

平面直角坐标系与一次函数练习

平面直角坐标系与一次函数练习

平面直角坐标系与一次函数练习(1)一、选择题(本大题共10小题,共30.0分)1.点P(1,-2)关于y轴对称的点的坐标是()A.(1,2)B.(-1,2)C.(-1,-2)D.(-2,1)2.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C (2,5),则点B(-4,-1)的对应点D的坐标为()A.(-8,-3)B.(4,2)C.(0,1)D.(1,8)3.在平面直角坐标系中,点A(-3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC 的最小值及此时点C的坐标分别为()A.6,(-3,5)B.10,(3,-5)C.1,(3,4)D.3,(3,2)4.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比()A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以35.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(0,-4)C.(4,0)D.(2,0)6.在平面直角坐标系中,把点M(3,4)向下平移2个单位长度,再向左平移5个单位长度后得到点N,则点N的坐标是()A.(-5,-2)B.(-2,2)C.(1,-1)D.(8,6)7.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正东方向走10m到达点A5,…按如此规律走下去,当机器人走到点A2017时,点A2017的坐标为()A.(2016,2016)B.(2016,-2016)C.(-2018,-2016)D.(-2018,2020)8.点P在x轴的下方,且距离x轴3个单位长度,距离y轴4个单位长度,则点P的坐标为()A.(4,-3)B.(3,-4)C.(-3,-4)或(3,-4)D.(-4,-3)或(4,-3)9.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是()A.(2017,0)B.(2017,1)C.(2017,2)D.(2016,0)10.已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.-3B.-5C.1或-3D.1或-5二、填空题(本大题共8小题,共24.0分)11.如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐12.在直角坐标系中,直线m是经过(-1,0)且平行于y轴的直线,点(2,3)关于直线m的对称点的坐标是 ______ ,点P(a,-3)与点Q(5,b)关于直线m成轴对称,则a= ______ ,b= ______ .13.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫作点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,这样依次得到点A1,A2,A3,A4…,若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为 ______ .14.直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为 ______ .15.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是 ______ .16.点P(2a,1-3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是 ______ .17.如果点P(m+3,m+1)在第二象限的角平分线上,则点P的坐标为 ______ .18.当x是不等式组的解,则点P(x+1,x-1)在 ______ 象限.三、计算题(本大题共9小题,共66.0分)19.若点M(3a-9,10-2a)在第二象限,且点M到x轴与y轴的距离相等,试求(a+2)2008-1的值.20.已知点P(a+1,2a-1)关于x轴的对称点在第一象限,求a的取值范围.21.在如图所示的平面直角坐标系中描出下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0).(1)将点C向x轴的负方向平移6个单位,它与点 ______ ______ 重合.(2)连接CE,则直线CE与y轴是什么关系?(3)顺次连接D、E、G、C、D得到四边形DEGC,求四边形DEGC的面积.22..某一次函数的图象与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,求此函数的关系式.23.一根弹簧的原长是10 cm,且每挂重1kg就伸长0.5 cm,它的挂重不超过10kg.(1)挂重后弹簧的长度y(cm)与挂重x(kg)之间的函数关系式;并写出自变量的取值范围;(2)画出函数图像(3)挂重多少千克时,弹簧长度为12.5cm?24.南山花卉基地出售两种盆栽花卉:太阳花12元/盆,绣球花20元/盆,若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;(2)为了美化环境,春天花园小区计划到该基地购买这两种花卉共120盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?25.已知y=y1+y2,y1与x+1成正比例,y2与x成正比例,且当x=2时,y=6;当x=-1时,y=-4,求y与x之间的函数关系.。

一次函数——平面直角坐标系

一次函数——平面直角坐标系

北京四中编稿:王润岚审稿:谷丹责编:赵云洁平面直角坐标系一、内容综述:1、平面直角坐标系:平面内有公共原点并且互相垂直的两条数轴,构成平面直角坐标系。

在平面直角坐标系内,对于平面内任意一点,都有一对有序实数和它对应,反过来,对于任意一对有序实数,在坐标平面内都有一个确定的点和它对应。

2、各象限内点的坐标的特征:(1)如图,各象限点的符号情况。

(2)设P1(x1, y1), P2(x2, y2),P1、P2关于x轴对称x1=x2且y1=-y2;P1、P2关于y轴对称x1=-x2且y1=y2;P1、P2关于原点对称x1=-x2且y1=-y2.(3)平行于坐标轴直线上两点的坐标:直线P1P2平行于x轴x1≠x2且y2=y1;直线P1P2平行于y轴x1=x2且y2≠y1.3、象限角平分线上点的坐标设P(x, y)若P点在第一、三象限角平分线上x=y,若P点在第二、四象限角平分线上x=-y.4、距离(1)若P(x, y)(xy≠0),则P点到原点距离为。

(2)若P(x, y)(xy≠0),则P点到x轴距离为|y|,则P点到y轴距离为|x|.(3)若P1(x, 0), P2(0, y),则P1与P2的距离为。

(4)若P1(x1, 0), P2(x2, 0)且x1≠x2,则P1、P2两点间距离为|x1-x2|,若P1、P2在平行于x轴的直线上,即P1(x1, y1),P2(x2, y2)且x1≠x2,y1=y2,则P1,P2两点间距离为|x1-x2|。

(若P1,P2两点在y轴上,或在平行于y轴的直线上,P1,P2两点距离为|y1-y2|)。

(5)若P1(x1, y1)且(x1y1≠0), P2(x2, 0)且x1≠x2, 则P1,P2两点距离为。

二、例题分析:例1,已知点M(3a-8, a-1),分别根据下列条件求出M点坐标。

(1)点M在y轴上;(2)点M在第二、四象限角的平分线上;(3)点M在第二象限,并且a为整数;(4)N点坐标(3,-6),并且直线MN//x轴。

平面直角坐标系与一次函数

平面直角坐标系与一次函数

平面直角坐标系与函数知识点一、平面直角坐标系1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2.点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1.各象限内点的坐标的特征(1)点P(x,y)在第一象限0,0>>⇔y x (2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x2.坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数. (2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数. (3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等. (2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.4.和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。

(2)位于平行于y 轴的直线上的各点的横坐标相同。

5.关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数. (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数.6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

平面直角坐标系与一次函数

平面直角坐标系与一次函数

平面直角坐标系 与 一次函数 知识回顾1、四个象限中点的特点:第一象限(),++, 第二象限( ), 第三象限( ) 第四象限( )**已知坐标平面内的点A (m ,n )在第四象限,那么点(n ,m )在第____象限2、坐标轴上的点的特征:x 轴上的点_____坐标为0,y 轴上的点_____坐标为0; **如果点P (),a b 在x 轴上,则b =___;**如果点P (),a b 在y 轴上,则a =______ **如果点P ()5,2a a +-在y 轴上,则a =___;P 的坐标为( ) **当a =__时,点P (),1a a -在横轴上,P 点坐标为( ) **如果点P (),m n 满足0mn =,那么点P 必定在____轴上3、象限角平分线上的点的特征:一三象限角平分线上的点横坐标与纵坐标______ 即y=x ; 二四象限角平分线上的点横坐标与纵坐标__________即y=__; **如果点P (),a b 在原点,则a =_____=____ **已知点A (3,29)b b -++在第二象限的角平分线上,则b =______4、平行于坐标轴的点的特征:平行于x 轴的直线上的所有点的_______坐标相同,平行于y 轴的直线上的所有点的_______坐标相同**如果点A (),3a -,点B ()2,b 且AB//x 轴,则_______ **如果点A ()2,m ,点B (),6n -且AB//y 轴,则_______5、距离问题:点P (),x y 到x 轴的距离为_______,到y 轴的距离为______,到原点的距离为____________;**点A ()2,3--到x 轴的距离为__,到y 轴的距离为__**点B ()7,0-到x 轴的距离为__,到y 轴的距离为____**点P 到x 轴的距离为2,到y 轴的距离为5,则P 点的坐标为____6、对称点的特征:①关于x 轴对称点的特点:_______不变,______互为相反数 ②关于y 轴对称点的特点:_______不变,______互为相反数 ③关于原点对称点的特点:_______、 ______互为相反数 **点A (1,2)-关于y 轴对称点的坐标是______,关于原点对称的点坐标是______,关于x 轴对称点的坐标是______**点M (),2x y -与点N ()3,x y +关于原点对称,则______,______x y ==7、一次函数的解析式:y=_______(k 、b 为常数,k______)。

平面直角坐标系与一次函数检测题(含答案)

平面直角坐标系与一次函数检测题(含答案)

一、选择题(每题2分,共40分)1. 点()35P -,关于x 轴对称的点的坐标为( )A .()35--,B .()53,C .()35-,D .()35,2. 下列图形中的曲线不表示y 是x 的函数的是( ).DC BAyxOyxO yx OyxO3. 如果点()P a b -,在第二象限,那么点()Q a b ab +-,在( )A.第一象限B.第二象限C.第三象限D.第四象限4. 如果点()P x y ,的坐标满足0xy =,0x y +≠,则点P 在( )A.原点B.x 轴上C.y 轴上D.x 轴或y 轴上5. 已知点()P a b ,是第二象限的点,则化简a b b a -+-的结果是( )A.22a b -+B.2aC.22a b -D.06. 已知1(15)P a -,和2(21)P b -,关于x 轴对称,则2003()a b +的值为( )A.0B.1-C.1D.2003(3)-7. 关于函数21y x =-+,下列结论正确的是( ) A.图象必经过点(21)-, B.图象经过第一、二、三象限C.当12x =时,0y = D.y 随x 的增大而增大8. 函数123y x x =-+-中自变量x 的取值范围是( ) A.2x ≤B.3x =C.2x <且3x ≠D.2x ≤且3x ≠基础过关平面直角坐标系与一次函数检测题9. 若0ab >,0bc <,则a ay x b c =-+经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限10. 两直线1l :21y x =-,2l :1y x =+的交点坐标为( )A.(23)-,B.(23)-,C.(23)--,D.(23),11. 如图,过A 点的一次函数的图象与正比例函数2y x =的图象相交于点B ,能表示这个一次函数图象的方程是( ) A.230x y -+= B.30x y --=C.230y x -+=D.30x y +-=12. 下面图象中,不可能是关于x 的一次函数(3)y mx m =--的图象的是( )ABCD13. 若一次函数23y x =-与3y x m =-+的图象相交于y 轴上同一点,则m 等于( )A.1-B.3C.3-D.114. 如图,在矩形ABCD 中,2AB =,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )15. 若一次函数y kx b =+的图象交坐标轴于A 、B 两点,(20)A -,,(03)B ,,则不等式0kx b +>的解集是( ) A.2x >-B.3x >C.2x <-D.3x <16. 两个一次函数142b y x =--和211y x a a =+的图象重合,则一次函数y ax b =+的图象经过的象限为( )A.第一、二、三象限B.第二、三、四象限C.第一、三、四象限D.第一、二、四象限17. 在同一个直角坐标系中,对于①1y x =--;②1y x =+;③1y x =-+;④2(1)y x =-+的图象,下列说法正确的是( ) A.通过点(10)-,的是①和③ B.交点在y 轴上的是②和④C.相互平行的是①和③D.关于x 轴对称的是②和③D C P B AA .B .C .D .18. 已知点A 的坐标为(10)-,,点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为( )A.(00),B.-C.11()22--,D.( 19. 一个一次函数的图象与直线59544y x =+平行,与x 轴,y 轴的交点分别为A 、B ,并且过点(125)--,,则在线段AB 上(包括端点A 、B )横、纵坐标都是整数的点有( )A.4个B.5个C.6个D.7个20. 已知四条直线3y kx =-,1y =-,3y =和1x =所围成的四边形面积是12,则k 的值为( ) A.1或2- B.2或1- C.3 D.4二、填空题(每题3分,共30分)21. 在平面直角坐标系中,点()12A x x --,在第一象限,则x 的取值范围是 ; 22.函数13y x =-的自变量x 的取值范围是 . 23. 已知第二象限内的点P 到x 轴的距离为8,到y 轴的距离为3,则P 点的坐标为_________ 24. 已知a 、b 、c 为非零实数,且满足b c a b a ck a c b+++===,则一次函数(1)y kx k =++的图象一定经过___________象限25. 若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________.26. 若点2(2)P m m -,在第二、四象限的角平分线上,则点1()m m -,关于y 轴的对称点坐标是________ 27. 已知点(323)N a a --,到x 轴的距离等于到y 轴的距离的2倍,则a 的值为_________28. 如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为(100)A ,,(04)C ,,点D 是OA 的中点,点P 在BC 边上运动.当ODP △是腰长为5的等腰三角形时,点P 的坐标为________.29. 把矩形OABC 放在直角坐标系中,OC 在x 轴的负半轴,OA 在y 轴的正半轴,且2OC =,4OA =,把矩形OABC 绕着原点顺时针旋转90︒得到矩形'''OA B C ,则点'B 的坐标为___________30. 已知两直线233y x =-+和21y x =-,则它们与y 轴所围成图形的三角形面积为___________三、计算题(每题5分,共30分)31. 我们知道,海拔高度每上升1千米,温度下降6C ︒,某时刻,益阳地面温度为20C ︒,设高出地面x 千米处的温度为y C ︒ ⑴写出y 与x 之间的函数关系式⑵已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少C ︒⑶此刻,有一家飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为34-C ︒,求飞机离地面的高度为多少千米?32. 如图,在平面直角坐标系中,一次函数121+-=x y 的图象与x 轴、y 轴分别交于A 、B 两点. ⑴求点A 、B 的坐标;⑵点C 在y 轴上,当2ABC AOB S S ∆∆=时,求点C 的坐标.y OB A33. 已知直线33y x =-x 轴,y 轴分别交于A 、B 两点,若把AOB ∆沿直线AB 翻折,点O 落在C 处,求点C 的坐标CBA Oy x34. 已知一次函数y ax b =+的图象经过点(02A ,,(14B ,,()4C c c +,. ⑴求c ;⑵求222a b c ab ac bc ++---的值.35. 如图表示甲、乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答以下问题:⑴求比赛开始多少分钟时,两人第一次相遇? ⑵求这次比赛的全程是多少?⑶求比赛开始多少分钟时,两人第二次相遇?36. 已知,如图,直线PA 是一次函数y x n =+(0n >)的图象,直线PB 是一次函数2y x m =-+(m n >)的图象⑴用m 、n 表示出P 、A 、B 的坐标;⑵若Q 是PA 与y 轴的交点,且四边形PQOB 的面积是56,2AB =,试求直线PA 与PB 的解析式1. 已知:如图,直线343y x =-+与x 轴交于点A ,与直线3y x =相交于点P .⑴求点P 的坐标.⑵请判断OPA ∆的形状并说明理由.⑶动点E 从原点O 出发,以每秒1个单位的速度沿着 O →P →A 的路线向点A 匀速运动(E 与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B .设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S .求: ①S 与t 之间的函数关系式.②当t 为何值时,S 最大,并求S 的最大值.xyB FAE PO能力检测2. 在平面直角坐标系中,直线162y x =-+与x 轴、y 轴分别交于B 、C 两点,⑴ 直接写出B 、C 两点的坐标;⑵ 直线y x =与直线162y x =-+交于点A ,动点P 从点O 沿OA 方向以每秒1个单位的速度运动,设运动时间为t 秒(即OP t =)过点P 作PQ x ∥轴交直线BC 于点Q ,①若点P 在线段OA 上运动时(如图),过P 、Q 分别作x 轴的垂线,垂足分别为N 、M ,设矩形PQMN 的面积为S ,写出S 和t 之间的函数关系式,并求出S 的最大值;②若点P 经过点A 后继续按原方向、原速度运动,当运动时间t 为何值时,过P 、Q 、O 三点的圆与x 轴相切.【基础过关】1 2 3 4 5 6 7 8 9 10 D CCD A B C D D D 11 12 13 14 15 16 17 18 19 20 D CCB A DC C B A 21222324 2526 2728 293012x <<1x >且3x ≠(38)-,第二象限12k <≤(11)-,或1(2)2--,1或15(34),或(24),或(84),(42),331.⑴620y x =-+ ⑵17C ︒ ⑶9千米处32.⑴(20)A ,、(01)B ,;⑵(03)C ,或(01)C -,33.33()2,34.⑴23c =+;⑵935.⑴24分钟;⑵12千米;⑶38分钟 36.⑴2()33m n m n P -+,,(0)A n -,,(0)2mB ,⑵直线PA 的解析式为1y x =+,直线PB 的解析式为22y x =-+参考答案【能力检测】1.⑴点P 的坐标为(2,.⑵POA ∆是等边三角形.证明过程:略⑶①当04t <≤时,212S OF EF =⋅⋅当48t <<时,2S =+-②当04t <≤时,2S =,4t =时,S =最大当48t <≤时,22163S t ⎫=+--+⎪⎭,163t =时,S =最大>∴当163t =时,S =最大2.⑴(120)B ,,(06)C ,⑵ ①∵点P 在y x =上,OP t =,∴点P 坐标为⎫⎪⎪⎝⎭,点12Q ⎛⎫⎪ ⎪⎝⎭∴12PQ OB ON MB PN =--=,,∴232S t =-+,∴当t =max 12S =. ②若点P 经过点A 后继续按原方向、原速度运动,过P 、Q 、O 三点的圆与x 轴相切,则圆心在y 轴 上,且y 轴垂直平分PQ ,45POC ∠=︒, 45QOC ∠=︒, ∴12OB ON QN OM ===,, ∵COB QNB ∠=∠,∴COB QNB △∽△,∴12QN CO NB OB ==,∴2QN NB NO OB ==+,12+,∴t =∴当t =P 、Q 、O 三点的圆与x 轴相切.。

平面直角坐标系与一次函数

平面直角坐标系与一次函数

平面直角坐标系和一次函数对于这一部分知识中考中主要以选择和填空的形式出现,主要考查不同坐标系中点的特点及函数的图象、性质与函数的解析式,在解答题中经常出现用函数知识解决实际问题,在中考中一般占到6-10分左右。

知识梳理知识点1:平面直角坐标系及函数图象例1:已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值围. 解体思路:本题根据点的坐标特征建立起不等式组是解题的关键.对称点在第一象限,则点P 在第四象限.根据各象限点的坐标特征,可以建立关于a 的不等式组,求出a 的取值围.依题意P 点在第四象限,则有⎩⎨⎧<->+01201a a ,解得-1<a <12. 答案:a 的取值围是-1<a <12. 例2:函数y=21x +中,自变量x 的取值围是 . 解体思路:要使代数式211x x +-有意义,必须有21010x x +≥⎧⎨-≠⎩,解得x≥-12 且x≠15. 答案:x≥-12 且x≠15. 例3 :三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4解题思路:结合题意、图象看出,甲队出发2小时后乙队出发,他们同时到达目的地,路程都是24 km ,甲队用了6小时,乙队用了4小时.可以求得,乙队行驶的平均速度是24÷4=6 km/h .所以,第二、第三个同学的叙述正确.又观察图象,甲、乙两队行走的路程、时间的函数图象相交,交点的横坐标是4.5,这说明两个队在行驶途中有一次相遇,是在乙队出发2.5小时后追上甲队,所以,第一个同学的叙述正确.在甲队行走的路程、时间的函数图象中,在3~4小时之间的一段是水平的,意味着这段时间甲队在途中停留,所以第四个同学的叙述是正确的.综上所述,四个同学的叙述都正确。

平面直角坐标系与一次函数

平面直角坐标系与一次函数

课 题 平面直角坐标系与一次函数教学目的1、掌握平面直角坐标系中的点、点到直线的距离以及点到点的距离;2、掌握一次函数的定义、图象与性质;3、学会用待定系数法求一次函数的解析式;4、会解一次函数的实际解答题。

教学内容一、平面直角坐标系中点的位置关系 1、 点的坐标(1)在平面直角坐标系中点的坐标:(2)一些对称点的坐标:若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 2、 平面直角坐标系中点的距离问题①点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; ②任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; ③若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; ④若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;⑤点(,)A A A x y 到原点之间的距离为22A A x y +练习:1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

5、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;6、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;7、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;8、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;9、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;10、已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.二、函数的相关概念1、变量:在一个变化过程中,我们称数值发生变化的量为变量.2、常量:在一个变化过程中,数值始终不变的量为常量。

一次函数在平面直角坐标系中的平移规律

一次函数在平面直角坐标系中的平移规律

一次函数在平面直角坐标系中的平移规律好嘞,今天咱们聊聊一次函数在平面直角坐标系中的平移规律。

这话题听上去有点干巴巴的,不过别担心,我会让它变得轻松有趣,咱们一起来捋一捋这些数学概念。

什么是一次函数呢?哎,就是那种“y = mx + b”的东西。

你看看,m代表的是斜率,b则是y轴上的截距。

简单来说,斜率就像一座山的陡峭程度,b就是山的起点。

在平面直角坐标系里,一次函数的图像是一条直线,简单明了,走到哪都是那样的气派。

说到平移,想象一下你在公园里散步,忽然看到一条小狗跑过来,你的目光就跟着它走。

这小狗的轨迹就像一次函数的图像,可以想象成你在这个坐标系中随意移动。

平移就像是把这条线从一个地方搬到另一个地方,但它的形状可没变哦,依然笔直得很。

先来聊聊横向平移。

横向平移就是像打羽毛球一样,轻轻一拨,这条线就往左或右移动了。

比如说,咱们把一次函数“y = 2x + 3”平移到右边,这可不简单,只需把x加个常数,比如加个2,就变成“y = 2(x 2) + 3”。

这意思就是原来的点全往右挪了两步,结果直线的方程变成了“y = 2x 1”。

看!这条线还是那条线,只是换了个位置,心情可愉悦了。

再说纵向平移,这就像你在大街上碰到朋友,你们一起吃冰淇淋,心情大好,整个人都飞起来了。

纵向平移就是把直线往上或往下移动。

拿刚才的例子来说,咱们把“y = 2x + 3”往上抬一抬,比如加个3,变成“y = 2x + 6”。

这时候,直线的斜率不变,依然是2,但它在y轴上起步的地方就变了,像是给它加了一个全新的起点。

这时候你可能会想,横向和纵向平移有啥区别?其实这就像是你在做瑜伽,身体可以向前弯,也可以向后仰,位置变了,但本质上你依然是你,姿势可不变。

这种平移就让我们在处理问题时更加灵活,不管是要调整图像的位置,还是要修正某个数值,都能游刃有余。

嘿,这个时候你应该有点明白了,不是吗?一次函数的平移就像在生活中随时随地都能找到自己舒适的位置。

平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

平面直角坐标系与一次函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题08.平面直角坐标系与一次函数一、单选题1.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,62.(2021·湖南邵阳市·中考真题)某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )A .小明修车花了15minB .小明家距离学校1100mC .小明修好车后花了30min 到达学校D .小明修好车后骑行到学校的平均速度是3m/s3.(2021·重庆中考真题)小明从家出发沿笔直的公路去图书馆,在图书馆阅读书报后按原路回到家.如图,反映了小明离家的距离y (单位:km )与时间t (单位:h )之间的对应关系.下列描述错误..的是( )A .小明家距图书馆3kmB .小明在图书馆阅读时间为2hC .小明在图书馆阅读书报和往返总时间不足4hD .小明去图书馆的速度比回家时的速度快 4.(2021·陕西中考真题)在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为( )A .-5B .5C .-6D .65.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个6.(2021·江苏苏州市·中考真题)已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是( )A .m n >B .m n =C .m n <D .无法确定7.(2021·四川乐山市·中考真题)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A .12y x =B .y x =C .32y x =D .2y x =8.(2021·江苏扬州市·中考真题)如图,一次函数y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A B.C .2+D 9.(2021·重庆中考真题)甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A .5s 时,两架无人机都上升了40mB .10s 时,两架无人机的高度差为20mC .乙无人机上升的速度为8m /sD .10s 时,甲无人机距离地面的高度是60m10.(2021·甘肃武威市·中考真题)将直线5y x =向下平移2个单位长度,所得直线的表达式为( ) A .52y x =- B .52y x =+ C .()52y x =+ D .()52y x =-11.(2021·安徽中考真题)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A .23cmB .24cmC .25cmD .26cm12.(2021·四川凉山州·中考真题)函数y kx b =+的图象如图所示,则关于x 的一元二次方程210x bx k ++-=的根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定13.(2021·浙江嘉兴市·中考真题)已知点(),P a b 在直线34y x =--上,且250a b -≤( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 14.(2020·贵州毕节市·中考真题)在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是( )A .()5,4B .()4,5C .()4,5-D .()5,4-15.(2020·浙江嘉兴市·中考真题)一次函数y=-2x -1的图象大致是( )A .B .C .D .16.(2020·四川广安市·中考真题)一次函数7y x =--的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限17.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( ) A . B . C . D .18.(2020·四川中考真题)已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值为3时,自变量x 的值为( ) A .﹣2 B .﹣23 C .﹣2或﹣23 D .﹣2或﹣3219.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .220.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .621.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,点1234,,,,A A A A 在x 轴正半轴上,点123,,,B B B在直线(0)3y x x =≥上,若1(1,0)A ,且112223334,,,A B A A B A A B A 均为等边三角形,则线段20192020B B 的长度为( )A.2B.2C.2 D.222.(2020·内蒙古鄂尔多斯市·中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)23.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<24.(2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y < 25.(2020·四川内江市·中考真题)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线22y tx t =++(0t >)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是( )A .122t ≤<B .112t <≤ C .12t <≤ D .122t ≤≤且1t ≠ 26.(2020·山东潍坊市·中考真题)若定义一种新运算:(2)6(2)a ba b a b a b a b 例如:31312⊗=-=;545463⊗=+-=.则函数(2)(1)y x x =+⊗-的图象大致是( )A .B .C .D .27.(2020·湖南湘潭市·中考真题)如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >28.(2020·湖北黄石市·中考真题)函数13y x =+-x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠ D .2x >,且3x ≠29.(2020·湖北武汉市·中考真题)一个容器有进水管和出水管,每分钟的进水和出水是两个常数.从某时刻开始4min 内只进水不出水,从第4min 到第24min 内既进水又出水,从第24min 开始只出水不进水,容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则图中a 的值是( ) A .32 B .34 C .36 D .3830.(2020·湖北宜昌市·中考真题)小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列31.(2020·四川凉山彝族自治州·中考真题)点()2,3A 关于x 轴对称的点的坐标是( )A .()2,3--B .()2,3-C .()2,3D .()2,3-32.(2019·山东中考真题)如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A .(﹣1008,0)B .(﹣1006,0)C .(2,﹣504)D .(1,505)33.(2019·浙江中考真题)如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A 的位置表述正确的是( )A .在南偏东75º方向处B .在5km 处C .在南偏东15º方向5km 处D .在南偏东75º方向5km 处34.(2019·江苏苏州市·中考真题)若一次函数y kx b =+(k b 、为常数,且0k ≠)的图象经过点()01A -,,()11B ,,则不等式1kx b +>的解为( )A .0x <B .0x >C .1x <D .1x >35.(2019·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点1A 、2A 、3A …n A 在x 轴上,1B 、2B 、3B …n B 在直线3y x =上,若()11,0A ,且112A B A ∆、223A B A ∆…1n n n A B A +∆都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为1S 、2S 、3S …n S .则n S 可表示为( )A .22nB .22n -C .22n -D .22n -36.(2019·四川眉山市·中考真题)如图,一束光线从点()4,4A 出发,经y 轴上的点C 反射后经过点()10B ,,则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,2 二、填空题37.(2021·四川成都市·中考真题)在正比例函数y kx =中,y 的值随着x 值的增大而增大,则点()3,P k 在第______象限.38.(2021·上海中考真题)已知6()f x x=,那么f =__________.39.(2021·湖南怀化市·中考真题)在函数 y = 中,自变量x 的取值范围是___________. 40.(2021·四川广安市·中考真题)如图,在平面直角坐标系中,AB y ⊥轴,垂足为B ,将ABO 绕点A 逆时针旋转到11AB O 的位置,使点B 的对应点1B 落在直线34y x =-上,再将11AB O 绕点1B 逆时针旋转到112A B O 的位置,使点1O 的对应点2O 也落在直线34y x =-上,以此进行下去……若点B 的坐标为()0,3,则点21B 的纵坐标...为______.41.(2021·四川眉山市·中考真题)一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.42.(2021·上海中考真题)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚___________元.43.(2021·上海中考真题)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.44.(2021·江苏苏州市·中考真题)若21x y +=,且01y <<,则x 的取值范围为______.45.(2021·四川自贡市·中考真题)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.46.(2020·黑龙江大庆市·中考真题)点(2,3)关于y 轴对称的点的坐标为_____.47.(2020·四川广安市·中考真题)一次函数y=2x +b 的图象过点(0,2),将函数y=2x +b 的图象向上平移5个单位长度,所得函数的解析式为________.48.(2020·贵州黔南布依族苗族自治州·中考真题)如图,在平面直角坐标系中,直线y =﹣43x+4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为___.49.(2020·贵州黔南布依族苗族自治州·中考真题)函数1y x =-的图象一定不经过第_________象限. 50.(2020·辽宁鞍山市·中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)A B -,在x 轴上取两点C ,D (点C 在点D 左侧),且始终保持1CD =,线段CD 在x 轴上平移,当AD BC +的值最小时,点C 的坐标为________.51.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).52.(2020·湖南益阳市·中考真题)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是______元.53.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A 的坐标是_____.54.(2020·辽宁营口市·中考真题)如图,∠MON =60°,点A 1在射线ON 上,且OA 1=1,过点A 1作A 1B 1⊥ON 交射线OM 于点B 1,在射线ON 上截取A 1A 2,使得A 1A 2=A 1B 1;过点A 2作A 2B 2⊥ON 交射线OM 于点B 2,在射线ON 上截取A 2A 3,使得A 2A 3=A 2B 2;…;按照此规律进行下去,则A 2020B 2020长为_____.55.(2020·上海中考真题)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行____米.56.(2020·黑龙江鹤岗市·中考真题)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,,则点2020B 的坐标______.57.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.58.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.59.(2020·四川广安市·中考真题)如图,在平面直角坐标系中,边长为2的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角钱OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2020B 2021C 2021的顶点B 2021的坐标是________.60.(2019·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为()5,0,点B 在x 轴的上方,OAB ∆的面积为152,则OAB ∆内部(不含边界)的整点的个数为_____.61.(2019·江苏中考真题)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A 的坐标可表示为(1,2,5),点B 的坐标可表示为(4,1,3),按此方法,则点C 的坐标可表示为_______.62.(2019·山东济宁市·中考真题)已知点(,)P x y 位于第二象限,并且4y x +≤,,x y 为整数,写出一个符合上述条件的点P 的坐标:______.63.(2019·湖北鄂州市·中考真题)在平面直角坐标系中,点()00,P x y 到直线0Ax By C ++=的距离公式为:d =,则点()3,3P -到直线2533y x =-+的距离为_____.三、解答题64.(2021·浙江绍兴市·中考真题)I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.65.(2021·湖北恩施土家族苗族自治州·中考真题)“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.(1)求每千克花生、茶叶的售价;(2)已知花生的成本为6元/千克,茶叶的成本为36元/千克.甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?66.(2021·湖北宜昌市·中考真题)甲超市在端午节这天进行苹果优惠促销活动,苹果的标价为10元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.x(单位:kg)表示购买苹果的重量,y(单位:元)表示付款金额.(1)文文购买3kg苹果需付款________元,购买5kg苹果需付款_______元;(2)求付款金额y关于购买苹果的重量x的函数解析式;(3)当天,隔壁的乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为10元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?67.(2021·陕西中考真题)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min 后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离()m y 与时间()min x 之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______m /min ;(2)求AB 的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.68.(2021·湖南衡阳市·中考真题)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为cm x ,单层部分的长度为cm y .经测量,得到下表中数据.(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为cm L ,求L 的取值范围.69.(2021·天津中考真题)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学校、书店、陈列馆依次在同一条直线上,书店离学校12km ,陈列馆离学校20km .李华从学校出发,匀速骑行0.6h 到达书店;在书店停留0.4h 后,匀速骑行0.5h 到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行0.5h 后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离km y 与离开学校的时间h x 之间的对应关系. 请根据相关信息,解答下列问题:(Ⅰ)填表(Ⅱ)填空:①书店到陈列馆的距离为________km ;②李华在陈列馆参观学的时间为_______h ; ③李华从陈列馆回学校途中,减速前的骑行速度为______km/h ;④当李华离学校的距离为4km 时,他离开学校的时间为_______h .(Ⅲ)当0 1.5x ≤≤时,请直接写出y 关于x 的函数解析式.70.(2021·浙江丽水市·中考真题)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?71.(2021·浙江宁波市·中考真题)某通讯公司就手机流量套餐推出三种方案,如下表:A ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?72.(2021·甘肃武威市·中考真题)如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离()m y 与他所用的时间()min x 的函数关系如图2所示.(1)小刚家与学校的距离为___________m ,小刚骑自行车的速度为________m/min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?73.(2021·云南中考真题)某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l,射线2l分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y(单位:x )的函数关系.元)和2y(单位:元)与其当月鲜花销售量x(单位:千克)(0(1)分别求1y﹑2y与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?74.(2020·辽宁大连市·中考真题)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.下图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.75.(2020·江苏南通市·中考真题)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.(1)求直线l2的解析式;(2)点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.76.(2020·吉林长春市·中考真题)已知A、B两地之间有一条长240千米的公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(时)之间的函数关系如图所示.(1)甲车的速度为_________千米/时,a的值为____________.(2)求乙车出发后,y与x之间的函数关系式.(3)当甲、乙两车相距100千米时,求甲车行驶的时间.77.(2020·吉林中考真题)某种机器工作前先将空油箱加满,然后停止加油立即开始工作,当停止工作时,油箱中油量为5L.在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为_____L,机器工作的过程中每分钟耗油量为_____L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.78.(2019·江西中考真题)如图,在平面直角坐标系中,点A B ,的坐标分别为(,,连接AB ,以AB 为边向上作等边三角形ABC .(1)求点C 的坐标;(2)求线段BC 所在直线的解析式.79.(2019·重庆中考真题)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数2||y x =-的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数2||2y x =-+和2| 2|y x =-+的图象如图所示.(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数-2|2|y x =+的对称轴.(2)探索思考:平移函数2||y x =-的图象可以得到函数2||2y x =-+和2|2|y x =-+的图象,分别写出平移的方向和距离.(3)拓展应用:在所给的平面直角坐标系内画出函数2|3|1y x =--+的图象.若点()11,x y 和(22,)x y 在该函数图象上,且213x x >>,比较1y ,2y 的大小.80.(2019·江苏淮安市·中考真题)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式; (3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.。

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)

中考数学专题训练第8讲平面直角坐标系一次函数反比例函数(知识点梳理)
⑵分母中含有自变量:分母不为 .
⑶实际问题:符合实际意义.
8.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:
⑴列表.
⑵描点.
⑶连线.
9.函数解析式与函数图象的关系:
⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上.
⑵函数图象上点的坐标满足函数解析式.
考点03一次函数
(3)函数关系式在书写时有顺序性.例如: 是表示 是 的函数,若写成 就表示 是 的函数.
(4)求 与 的函数关系时,必须是只用变量 的代数式表示 ,得到的等式右边只含 的代数式.
自变量的取值范围:
7.自变量取值范围:在初中阶段,自变量的取值范围考虑下面几个方面:
⑴根式:当根指数为偶数时,被开方数为非负数.
10.用坐标表示地理位置:根据已知条件,建立适当的平面直角坐标系,是确定点的位置的必经过程,一般地只有建立了适当的直角坐标系,点的位置才能得以确定,才能使数与形有机地结合在一起。利用平面直角坐标系绘制区域内一些地点分布情况,也就是绘制平面图的过程:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴,y轴的正方向.
3.一次函数的图象及其画法:
(1)一次函数 ( , , 为常数)的图象是一条直线.
(2)由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.如果这个函数是正比例函数,通常取 , 两点.如果这个函数是一般的一次函数( ),通常取 , ,即直线与两坐标轴的交点.
(3)反比例函数与一次函数的联系.
③解方程(组),得到待定系数的值.
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
8.一次函数与一元一次方程的关系:

苏教版初中数学毕业复习:平面直角坐标系和一次函数典型题目分析

苏教版初中数学毕业复习:平面直角坐标系和一次函数典型题目分析

苏教版初中毕业复习:平面直角坐标系和一次函数典型题目分析对于这一部分知识中考中主要以选择和填空的形式出现,主要考查不同坐标系中点的特点及函数的图象、性质与函数的解析式,在解答题中经常出现用函数知识解决实际问题,在中考中一般占到6-10分左右。

知识梳理知识点1:平面直角坐标系及函数图象例1:已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围. 解体思路:本题根据点的坐标特征建立起不等式组是解题的关键.对称点在第一象限,则点P 在第四象限.根据各象限内点的坐标特征,可以建立关于a 的不等式组,求出a 的取值范围.依题意P 点在第四象限,则有⎩⎨⎧<->+01201a a ,解得-1<a <12. 答案:a 的取值范围是-1<a <12.例2:函数x 的取值范围是 .21010x x +≥⎧⎨-≠⎩,解得x≥-12 且x≠15. 答案:x≥-12 且x≠15. 例3 :三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4解题思路:结合题意、图象看出,甲队出发2小时后乙队出发,他们同时到达目的地,路程都是24 km ,甲队用了6小时,乙队用了4小时.可以求得,乙队行驶的平均速度是24÷4=6 km/h .所以,第二、第三个同学的叙述正确.又观察图象,甲、乙两队行走的路程、时间的函数图象相交,交点的横坐标是4.5,这说明两个队在行驶途中有一次相遇,是在乙队出发2.5小时后追上甲队,所以,第一个同学的叙述正确.在甲队行走的路程、时间的函数图象中,在3~4小时之间的一段是水平的,意味着这段时间甲队在途中停留,所以第四个同学的叙述是正确的.综上所述,四个同学的叙述都正确。

2020春北师大版本数学中考一轮-第06讲-平面直角坐标系与一次函数(培优)-讲义(教师版)

2020春北师大版本数学中考一轮-第06讲-平面直角坐标系与一次函数(培优)-讲义(教师版)

学科教师辅导讲义学员编号:年级:中考课时数:3学员姓名:辅导科目:数学学科教师:授课主题第06讲-平面直角坐标系及一次函数授课类型T同步课堂P实战演练S归纳总结教学目标①会画平面直角坐标系,掌握坐标平面内点的坐标特征;②理解一次函数的概念,会利用待定系数法确定一次函数的表达式;③体会一次函数与二元一次方程的关系,能用一次函数解决简单实际问题。

授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理(一)、平面直角坐标系与点的坐标特征1.平面直角坐标系如图,在平面内,两条互相垂直的数轴的交点O称为原点,水平的数轴叫x轴(或横轴)_,竖直的数轴叫y轴(或纵轴)__,整个坐标平面被x轴、y轴分割成四个象限.2.各象限内点的坐标特征点P(x,y)在第一象限x>0,y>0;点P(x,y)在第二象限x<0,y>0;点P(x,y)在第三象限x<0,y<0;点P(x,y)在第四象限x>0,y<0.3.坐标轴上的点的坐标特征点P(x,y)在x轴上y=0,x为任意实数;点P(x,y)在y轴上x=0,y为任意实数;体系搭建点P (x ,y )在坐标原点x =0,y =0.(二)、特殊点的坐标特征1.对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(),x y -;关于y 轴的对称点P 2的坐标为(),x y -;关于原点的对称点P 3的坐标为(),x y --.2.与坐标轴平行的直线上点的坐标特征平行于x 轴:横坐标_不同 _,纵坐标__相同___;平行于y 轴:横坐标__相同__,纵坐标_不同 _. 3.各象限角平分线上点的坐标特征第一、三象限角平分线上的点横坐标与纵坐标___相同_____, 第二、四象限角平分线上的点横坐标与纵坐标___互为相反数_____. 4.点的平移将点P(x ,y)向右(或向左)平移a 个单位,可以得到对应点(x +a ,y)[或(x -a ,y)];将点P(x ,y)向上(或向下)平移b 个单位,可以得到对应点(x ,y +b)[或(x ,y -b)]. (三)、距离与点的坐标的关系1.点与原点、点与坐标轴的距离点P (x ,y )到x 轴和y 轴的距离分别是|y |和|x |,点P (x ,y )到坐标原点的距离为x 2+y 2. 2.坐标轴上两点间的距离(1)在x 轴上两点P 1(x 1,0),P 2(x 2,0)间的距离|P 1P 2|=12x x -. (2)在y 轴上两点Q 1(0,y 1),Q 2(0,y 2)间的距离|Q 1Q 2|=12y y -.(3)在x 轴上的点P 1(x 1,0)与y 轴上的点Q 1(0,y 1)之间的距离|P 1Q 1|=x 12+y 12. (四)、函数有关的概念及图象1.函数的概念一般地,在某一变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有__唯一_确定的值与它对应,那么就说y 是x 的函数,x 是自变量.2.常量和变量在某一变化过程中,保持一定数值不变的量叫做常量;可以取不同数值的量叫做变量. 3.函数的表示方法函数主要的表示方法有三种:(1)解析法;(2)___列表法_____;(3)图象法. 4.函数图象的画法(1) 列表_:在自变量的取值范围内取值,求出相应的函数值;(2) 描点_:以x 的值为横坐标,对应y 的值作为纵坐标,在坐标平面内描出相应的点;(3) _连线_:按自变量从小到大的顺序用光滑曲线连接所描的点.(五)、函数自变量取值范围的确定1.自变量以分式形式出现,它的取值范围是使分母____不为零______的实数. 2.当自变量以二次方根形式出现,它的取值范围是使被开方数为_____非负数_____. 3.当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数.4.在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分.(六)、一次函数和正比例函数的定义一般地,如果y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =_0_时,一次函数y =kx +b 就为y =kx (k 是常数,k ≠0),这时y 叫做x 的正比例函数. (七)、一次函数的图象与性质1.一次函数的图象(1)一次函数y =kx +b(k≠0)的图象是经过点(0,b)和⎝ ⎛⎭⎪⎫-b k ,0的一条直线.(2)正比例函数y =kx(k≠0)的图象是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可. 2.一次函数图象的性质函数系数取值大致图象经过的象限函数性质y=kx(k≠0)k>0 _一_、三_ y随x增大而增大k<0 __二、四_ y随x增大而减小y=kx+b (k≠0)k>0,b>0 一、_二、三y随x增大而增大k>0,b<0 一、三、四k<0,b>0 一、二、四y随x增大而减小k<0,b<0 二、三、四一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.(八)、利用待定系数法求一次函数的解析式因为在一次函数y =kx +b(k≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎪⎨⎪⎧b 1=a 1k +b ,b 2=a 2k +b,求出k ,b 的值即可,这种方法叫做__待定系数法_ .(九)、一次函数与方程、方程组及不等式的关系1.y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标.2.y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.3.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.考点一:平面直角坐标系内点的坐标特征例1、 若点P(a ,a -2)在第四象限,则a 的取值范围是( )A .-2<a <0B .0<a <2C .a >2D .a <0【解析】故选B .例2、在平面直角坐标系中,如果mn >0,那么点(m ,|n|)一定在( )A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第三象限或第四象限【解析】故选A.考点二:图形的变换与坐标例1、 在如图所示的方格纸中,把每个小正方形的顶点称为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题: (1)请描述图中的格点△A′B′C′是由格点△ABC 通过哪些变换方式得到的? (2)若以直线a ,b 为坐标轴建立平面直角坐标系后,点C 的坐标为(-3,1),请写出格点△DEF 各顶点的坐标,并求出△DEF 的面积.【解析】(1)先将△ABC 绕点C 按顺时针方向旋转90°,再向右平移5个单位得到△A′B′C′(或先平移再旋转也可).(2)D(0,-2),E(-4,-4),F(2,-3). S △DEF =6×2-12×4×2-12×2×1-12×6×1=4.例2、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC 关于y 轴对称的△A′B′C′;(3)写出点B′的坐标. 【解析】(1)(2)如图所示.(3)B′(2,1).考点三:函数图象的应用例1、如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O 点的直线距离为s,则s关于t的函数图象大致为( )【解析】 C 本题是典型的数形结合问题,通过对图形的观察,可以看出s与t的函数图象应分为三段:(1)当蚂蚁从点O到点A时,s与t成正比例函数关系;(2)当蚂蚁从点A到点B时,s不变;(3)当蚂蚁从点B回到点O时,s与t成一次函数关系,且回到点O时,s为零.例2、在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A.1个 B.2个C.3个 D.4个【解析】 C 因为利用图象可判断①②④正确,③错误,故选C.考点四:函数自变量取值范围的确定例1、已知函数关系式y=x-1,则自变量x的取值范围是__________.【解析】x≥1 ,由题意得x-1≥0,所以x≥1.例2、函数y=13-x中自变量x的取值范围是( )A.x≤3 B.x<3C.x≠3 D.x>3【解析】B,因为由题意得3-x>0,所以x<3.考点五:一次函数的图象与性质例1、已知一次函数y=mx+n-2的图象如图所示,则m,n的取值范围是( ) A.m>0,n<2 B.m>0,n>2C.m<0,n<2 D.m<0,n>2【解析】 D 因为从图象上知,图象自左而右是“下降”的,交y轴于正半轴,所以m<0,n-2>0,即m<0,n>2.例2、如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为a<c<b.【解析】根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则b>c>a,故答案为:a<c<b.考点六:确定一次函数的解析式例1、如图,已知一次函数y=kx+b的图象经过A(-2,-1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)试求△DOC的面积.【解析】(1)把A ,B 点代入得⎩⎪⎨⎪⎧-1=-2k +b ,3=k +b ,解得⎩⎪⎨⎪⎧k =43,b =53.,∴y=43x +53.(2)由(1)得C ⎝ ⎛⎭⎪⎫-54,0,D ⎝ ⎛⎭⎪⎫0,53,则OC =54,OD =53.∴△DOC 的面积=12×54×53=2524.例2、如图,已知直线y=x +3的图象与x ,y 的轴交于B ,A 两点,直线l 经过A 点,与线段OB 交于点C 且把△AOB 面积分为2:1两部分. (1)求线段OA ,OB 的长; (2)求直线l 的解析式.【解析】(1)∵令x=0,则y=3;令y=0,则x=﹣3,∴A (0,3),B (﹣3,0);(2)∵△ABC 与△AOC 的高相等,B (﹣3,0),线段OB 交于点C 且把△AOB 面积分为2:1两部分, ∴C (﹣1,0)或(﹣2,0). 设直线l 的解析式为y=kx +b (k ≠0),当C (﹣1,0)时,,解得;当C (﹣2,0).时,,解得.故直线l 的解析式为y=3x +3或y=x +3.考点七、一次函数与方程(组)、不等式的关系例1、如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是__________.【解析】⎩⎪⎨⎪⎧x =-4,y =-2如图所示,二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解就是直线y =ax +b 与直线y =kx 的交点,所以点P 的坐标就是方程组的解,即⎩⎪⎨⎪⎧x =-4,y =-2.例2、如图,直线y 1=kx +b 过点A(0,2),且与直线y 2=mx 交于点P(1,m),则不等式组mx >kx +b >mx -2的解集是__________.【解析】 1<x <2,由图象可知,当x >1时,mx >kx +b ,把(1,m)和(0,2)代入y 1=kx +b ,得b =2,m =k +2,解方程组⎩⎪⎨⎪⎧y =kx +b ,y =mx -2,得x =2,因为y 3=mx -2平行于y 2=mx ,所以当x <2时,kx +b >mx -2,故原不等式组的解集为1<x <2.考点八:一次函数的应用例1、小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O —A —B —C 和线段OD 分别表示两人离学校的路程s(千米)与所经过的时间t(分)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为__________千米/分; (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【解析】(1)15,415;(2)由图象可知,s 是t 的正比例函数. 设所求函数的解析式为s =kt(k≠0),代入(45,4),得4=45k ,解得k =445.∴s 与t 的函数关系式为s =445t(0≤t≤45). (3)由图象可知,小聪在30≤t≤45的时段内s 是t 的一次函数,设函数解析式为s =mt +n(m≠0).代入(30,4),(45,0),得⎩⎪⎨⎪⎧30m +n =4,45m +n =0,解得⎩⎪⎨⎪⎧m =-415,n =12.∴s=-415t+12(30≤t≤45).令-415t+12=445t,解得t=1354.当t=1354时,s=445×1354=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.例2、一次函数y=﹣2x+4的图象如图,图象与x轴交于点A,与y轴交于点B.(1)求A、B两点坐标.(2)求图象与坐标轴所围成的三角形的面积是多少.【解析】(1)对于y=﹣2x+4,令y=0,得﹣2x+4=0,∴x=2;∴一次函数y=﹣2x+4的图象与x轴的交点A的坐标为(2,0);令x=0,得y=4.∴一次函数y=﹣2x+4的图象与y轴的交点B的坐标为(0,4);(2)S△AOB=•OA•OB=×2×4=4.∴图象与坐标轴所围成的三角形的面积是4.P(Practice-Oriented)——实战演练➢课堂狙击1.在平面直角坐标系中,点(-3,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】 B2.下列函数中,自变量x的取值范围是x≥3的是( )A.y=1x-3B.y=1x-3实战演练②以B为直角顶点,可过B作直线垂直于AB,与y轴交于一点,这一点也符合P点的要求;③以P为直角顶点,与y轴共有2个交点.所以满足条件的点P共有4个.故选B.6、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A. B. C. D.【解析】∵一次函数y=kx+b,y随着x的增大而减小∴k<0,又∵kb<0,∴b>0,∴此一次函数图象过第一,二,四象限.故选A.7.函数y=x-4的自变量x的取值范围是__________.【解析】x≥4由x-4≥0,得x≥4.8.如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是__________.【解析】m<09.一次函数y=x+2的图象不经过第__________象限.【解析】四∵k=1>0,b=2>0,∴图象经过第一、二、三象限.10.已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.【解析】将点(0,2)代入解析式y=kx+b(k≠0)中,得b=2.则一次函数y =kx +b(k≠0)与x 轴的交点横坐标为-b k =-2k.由题意可得12×⎪⎪⎪⎪⎪⎪-2k ×2=2,则k =±1. 所以一次函数的解析式为y =x +2或y =-x +2.11. 如图,一次函数y=ax +b 的图象经过点(1,2),点(﹣1,6),且与x 轴交于点B ,与y 轴交于点A . (1)求出这个一次函数的解析式;(2)求出一次函数图象与两坐标轴围成的图形的面积.【解析】(1)∵一次函数y=ax +b 的图象经过点(1,2),点(﹣1,6), ∴,解得,∴这个一次函数的解析式为y=﹣2x +4;(2)∵当x=0时,y=4,∴y 轴交于点A (0,4), ∵当y=0时,x=2,∴与x 轴交于点B (2,0), ∴一次函数图象与两坐标轴围成的图形的面积:×2×4=4.➢ 课后反击1.在平面直角坐标系中,点A(2,3)与点B 关于x 轴对称,则点B 的坐标为( )A .(3,2)B .(-2,-3)C .(-2,3)D .(2,-3) 【解析】 D2.下列函数中,自变量x 的取值范围为x <1的是( )A .y =11-xB .y =1-1xC .y =1-xD .y =11-x +1-x【解析】 D3.一次函数y=x﹣1的图象向上平移2个单位后,不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解析】因为一次函数y=x﹣1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D4.若点P(a,a-b)在第四象限,则点Q(b,-a)在( )A.第四象限B.第三象限C.第二象限 D.第一象限【解析】A 由题意,得a>0,a-b<0,所以a<b,所以b>a>0,-a<0.5.在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是10,则“宝藏”点的坐标是( )A.(1,0) B.(5,4)C.(1,0)或(5,4) D.(0,1)或(4,5)【解析】 C6.函数y=|2x|的图象是()A.B.C.D.【解析】函数y=|2x|,当x≥0时,y=2x;当x≤0时,y=﹣2x,故图象C符合,故选C7、若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A.B.C.D.【解析】故选:D.8.已知直线y=kx+b经过点(k,3)和(1,k),则k的值为( )A. 3 B.± 3 C. 2 D.± 2【解析】 B9.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为( ) A.y=x+1 B.y=x-1 C.y=x D.y=x-2【解析】A10.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是( )A.摩托车比汽车晚到1 h B.A,B两地的路程为20 kmC.摩托车的速度为45 km/h D.汽车的速度为60 km/h【解析】C ∵摩托车的速度为(180-20)÷4=40(km/h),∴C错误.11.如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【解析】(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S△AOB=OA•OB=×2×3=3.(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.12.为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费10次再送2次;钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用.(1)李叔叔每年去该健身中心健身6次,他应选择哪种消费方式更合算?(2)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(3)王阿姨每年去该健身中心健身至少18次,请通过计算帮助王阿姨选择最合算的消费方式.【解析】(1)35×6=210(元),210<280<560,∴李叔叔选择普通消费方式更合算.(2)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(3)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.1.在平面直角坐标系中,点P (﹣20,a )与点Q (b ,13)关于原点对称,则a+b 的值为( )A .33B .﹣33C .﹣7D .7【解析】选:D .2.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( )A .﹣1B .﹣3C .3D .7【解析】选:D .3.深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A 、B 两馆,其中运往A 馆18台、运往B 馆14台;运往A 、B 两馆的运费如表1:出发地目的地甲地乙地A 馆 800元/台 700元/台B 馆500元/台600元/台(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费元y (元)与x (台) 的函数关系式; (2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案; (3)当x 为多少时,总运费最小,最小值是多少?【解析】(1)根据题意得:甲运往A 馆有x 台,乙运往A 馆的有(18﹣x )台,甲地运往B 馆的设备有(17﹣x )台,乙地运往B 馆的设备有14﹣(17﹣x )=(x ﹣3)台, ∴y=800x+700(18﹣x )+500(17﹣x )+600(x ﹣3),=200x+19300(3≤x ≤17);出发地目的地甲地乙地A 馆x 台(台)B 馆(台) (台) 直击中考(1)、特殊点的坐标特征1.对称点的坐标特征点P (x ,y )关于x 轴的对称点P 1的坐标为(),x y -;关于y 轴的对称点P 2的坐标为(),x y -;关于原点的对称点P 3的坐标为(),x y --.2.与坐标轴平行的直线上点的坐标特征平行于x 轴:横坐标_不同 _,纵坐标__相同___;平行于y 轴:横坐标__相同__,纵坐标_不同 _. 3.点的平移将点P(x ,y)向右(或向左)平移a 个单位,可以得到对应点(x +a ,y)[或(x -a ,y)];将点P(x ,y)向上(或向下)平移b 个单位,可以得到对应点(x ,y +b)[或(x ,y -b)].(2)、一次函数的图象与性质1.一次函数的图象(1)一次函数y =kx +b(k≠0)的图象是经过点(0,b)和⎝ ⎛⎭⎪⎫-b k ,0的一条直线.(2)正比例函数y =kx(k≠0)的图象是经过点(0,0)和(1,k)的一条直线.重点回顾(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可(3)、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.2.y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x轴上方的图象所对应的x的取值范围.名师点拨1、自变量的取值必须使含自变量的代数式有意义,主要体现在以下几种:①含自变量的解析式是整式:自变量的取值范围是全体实数;②含自变量的解析式是分式:自变量的取值范围是使得分母不为0的实数;③含自变量的解析式是二次根式:自变量的取值范围是使被开方式为非负的实数;④含自变量的解析式既是分式又是二次根式时:自变量的取值范围是它们的公共解,一般列不等式组求解;⑤当函数解析式表示实际问题时:自变量的取值必须使实际问题有意义.2、一次函数的k值决定直线的方向,如果k>0,直线就从左往右上升,y随x的增大而增大;如果k<0,直线就从左往右下降,y随x的增大而减小;而b值决定直线和y轴的交点,如果b>0,则与y轴的正半轴相交;如果b<0,则与y轴交于负半轴;当b=0时,一次函数就变成正比例函数,图象过原点. 学霸经验➢本节课我学到➢我需要努力的地方是。

基础复习 平面直角坐标系、函数、一次函数(8开)

基础复习  平面直角坐标系、函数、一次函数(8开)

1基础复习 一、面直角坐标系1、有序数对有顺序的两个数a 与b 组成的数对,叫做有序数对,记作______.注:(a ,b)与(b ,a)是不同的两个有序数对. 2、平面直角坐标系⑴概念:在平面内,两条互相______、原点______的数轴组成平面直角坐标系,如图1.水平的数轴称为______轴(或______轴),习惯上取向右为______;竖直的数轴称为______轴(或______轴),习惯上取向______为正方向.两坐标轴的交点为平面直角坐标系的______.注:平面直角坐标系的特点:①由两条相互垂直的数轴组成;②两条数轴有公共原点. ⑵象限建立平面直角坐标系,坐标平面被两条坐标轴分成I ,Ⅱ,Ⅲ,Ⅳ四个部分,分别叫做第一象限,第二象限,第三象限,第四象限,如图1.注:______的点不属于任何一个象限.⑶点的坐标.对于坐标平面内的任意一点A ,过A 点分别向x 轴、y 轴作垂线,垂足在x 轴、y 轴上对应的数a 、b 分别叫做点A 的______和______,有序实数对(a ,b)叫做点A 的坐标,记作______,如图2.注:①在表示点的坐标时,横坐标在前,纵坐标在后,中间以逗号分开;②坐标平面内的点与有序实数对之间是____________的,即平面内任意一点,都有一个有序实数对与之对应;反过来,对于任意一个有序实数对,在坐标平面内都有唯一确定的点与之对应.3、平面坐标系的一些常见规律⑴在各个象限内的点的坐标的符号规律见右表.⑵在坐标轴上的点的坐标规律.x 轴上的点的纵坐标为______,y 轴上的点的横坐标为______,原点的坐标为______ . ⑶一些特殊点之间的坐标关系.①对称点的坐标:(a)关于x 轴对称的两点,横坐标______,纵坐标__________;(b)关于y 轴对称的两点,纵坐标______,横坐标________;(c)关于原点对称的两点,横、纵坐标__________.②两坐标轴夹角平分线上的点的坐标:(a)在第一、三象限内两坐标轴夹角的角平分线上的点_____________;(b)在第二、四象限内两坐标轴夹角的角平分线上的点_________________;③与x 轴平行的直线上的点______;与y 轴平行的直线上的点__________.④P(m ,n)到x 轴的距离为______;到y 轴的距离为______;到原点的距离为______.4、用坐标表示地理位置确定位置的方法主要有两种:①横纵交错法:横纵两直线相交,由交点的唯一性确定点的位置;②方位角+距离.注:①在平面内,确定一个点的位置,一般需要两个数据;②利用横纵交错法确定点的位置(在方格纸上),要知道横向、纵向的格数;利用方位角+距离确定点的位置,需知道该点相对于参考点的方位角和距离;③确定位置的方法,除上面所说的两种方法外,还有其他方法,如区域法等.5、用坐标表示平移 ⑴点的平移.在平面直角坐标系中,将点(x ,y )向右或向左平移a 个单位长度,可以得到对应点______或______ ;将点(x ,y)向上或向下平移b 个单位长度,可以得到点______ 或______. 注:点的平移可看成上下平移和左右平移的合成. ⑵图形的平移.对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的某一点的坐标的某种变化也可以看出对这个图形整体进行了怎样的平移.二、函数1、常量、变量、自变量、因变量在一个变化过程中,称数值始终不变的量为______;称数值发生变化的量为______. 如果一个变量总是随着另一个变量的变化而变化,则后一个变量叫自变量,前一个变量叫因变量.注:①常量与变量并不是绝对的,而是相对的,它是相对于某一过程而言的;②判断一个量是常量还是变量,关键要看它在过程中数值是否发生变化.第二象限第三象限第四象限2、函数⑴函数的概念,一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y 都有______的值与其对应,那么我们就说______是自变量,______是x的函数.注:判断两个变量是否有函数关系,关键是看在给定的x的取值范围内,对于每个x的值,y是否有唯一的值与之对应.⑵自变量的取值范围.函数中,自变量的取值范围要根据具体情况来分析:在初中范围内,主要研究以下几方面函数的自变量取值范围.①整式函数:其自变量取值范围是______;②含有分式的函数:其自变量的取值应使______;③有偶次根式的函数:其自变量的取值应使被开方数为______;④与实际问题有关的函数:其自变量的取值应使__________.⑶函数值的概念.对于一个函数,如果当自变量x=a时,因变量y=b,那么b叫做当自变量的值为a时的函数值.3、函数的图象①概念:一般地,对于一个函数,如果把自变量与函数的每个对应值分别作为点的横坐标、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.②描点法画函数图象第一步:______(表中给出一些自变量的取值及对应的函数值).第二步:______(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点).第三步:______(按横坐标由小到大的顺序,把所描出的点用平滑的曲线连接起来).4、函数的表示通常有三种表示函数的方法:①______;②______;③______.表示函数时,要根据具体情况选择适当的方法,有时为全面地认识问题,可同时使用几种方法.三、一次函数1、一次函数与正比例函数的概念一般地,形如______________________的函数,叫做一次函数.特别地,当b=O时,解析式就是______.此时的函数叫做______.注:正比例函数是一次函数的特殊形式,即正比例函数是一次函数;反之,一次函数不一定是正比例函数.2、一次函数与正比例函数的图象⑴一次函数的图象,一次函数的图象都是______,因为一次函数bkxy+=bkk,,(=/是常数)过点(O,______)和(1,______),所以过点(0,______)和(1,______)作直线,即可得一次函数bkkbkxy,,(=/+=为常数)的图象.(这就是两点法画图象)⑵正比例函数的图象.正比例函数kkkxy,(=/=为常数)的图象是一条过点(0,______)和(1,______)的直线,故过点(0,______),(1,______)作直线即可得正比例函数kxy=的图象.注:①当b>O时,将直线kxy=的图象向x轴上方平移b个单位长度,就得到bkxy+=1的图象,②当b<O时,将y=kx的图象向x轴下方平移|b|个单位长度,就得到了bkxy+=2的图象.③对于两条直线111:bxkyl+=和222:bxkyl+=:(a)2121∥kkll=⇔且21bb=/;*(b)12121-=⋅⇔⊥kkll;(c)11与2l重合21kk=⇔且21bb=.3、一次函数与正比例函数的性质⑴一次函数bkxy+=的性质:①0>k时,y随x的增大而______;0<k时,y随x的增大而______;②|k|越大,直线bkxy+=的倾斜程度______.注:一次函数)为常数,,(bkkbkxy=/+=中,k,b符号对图象的影响(如图3)①当0,0>>bk时,直线经过______象限,与y轴交点在x轴上方,如图_____;②当0,0<>bk时,直线经过______象限,与y轴交点在x轴下方,如图_____;③当0,0><bk时,直线经过______象限,与y轴交点在x轴上方,如图_____;④当0,0<<bk时,直线经过______象限,与y轴交点在x轴下方,如图_____.23⑵正比例函数的性质:①当k>O 时,直线kx y =经过一、三象限,且y 随x 的增大而增大; ②当k<O 时,直线kx y =经过二、四象限,且y 随算的增大而减小; ③|k|越大,直线kx y =的倾斜程度越大. 4、求一次函数的解析式常用待定系数法求一次函数的解析式,待定系数法的一般步骤是:①设出函数解析式;②根据已知条件求出未知的系数;③具体写出这个解析式. 注:正比例函数有一个基本量k ,需要一个条件;一次函数有两个基本量k 和b ,需两个条件.5、用函数的观点看方程(组)与不等式⑴一次函数与一元一次方程,由于任何一元一次方程都可以转化为0,ax b a b +=(为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.注:以上转化相当于已知直线b ax y +=,确定它与x 轴交点的横坐标的值. ⑵一次函数与一元一次不等式.由于任何一元一次不等式都可以转化为0>+b ax 或)0,为常数,(0=/<+a b a b ax 的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.⑶一次函数与二元一次方程(组)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线.所以解方程组相当于确定两条直线交点的坐标.图3-1图3-2图3-3 图3-4。

(完整版)平面直角坐标系与一次函数知识点归纳

(完整版)平面直角坐标系与一次函数知识点归纳

平面直角坐标系与一次函数知识点归纳1. 象限内点的坐标特征第一象限(),++ 第二象限(),-+ 第三象限(),-- 第四象限(),+-2. 坐标轴上点的坐标x 轴上点的坐标为(),0a ,即x 轴上点,纵坐标为0y 轴上点的坐标为()0,b ,即y 轴上点,横坐标为03. 点的对称关于x 轴对称的两个点,它们的横坐标相同,纵坐标互为相反数关于y 轴对称的两个点,它们的横坐标互为相反数,纵坐标相等关于原点对称的两个点,它们的横坐标互为相反数,纵坐标互为相反数4. 点到坐标轴的距离点(),P a b 到x 轴的距离为b ,到y 轴的距离为a ,到原点的距离为22a b + 5. 点的平移(),P a b 向上平移m 个单位所得点的坐标为(),a b m +(),P a b 向下平移m 个单位所得点的坐标为(),a b m -(),P a b 向右平移m 个单位所得点的坐标为(),a m b +(),P a b 向左平移m 个单位所得点的坐标为(),a m b -6. 直线的平移直线(0)y kx b k =+≠向上平移m 个单位所得直线的解析式为y kx b m =++ 直线(0)y kx b k =+≠向下平移m 个单位所得直线的解析式为y kx b m =+- 直线(0)y kx b k =+≠向右平移m 个单位所得直线的解析式为()y k x m b =-+ 直线(0)y kx b k =+≠向左平移m 个单位所得直线的解析式为()y k x m b =++ (即直线平移规律:上加下减,左加右减)7. 直线11y k x b =+与直线22y k x b =+平行的条件是:1212k k b b =≠且8. 一次函数(0)y kx b k =+≠与轴的交点坐标是,与轴的交点坐标是,与两坐标轴围成的面积是12b S b k=-9. 正比例函数()0y kx k =≠常过点()()0,0,1,k 来画直线,10. 一次函数(0)y kx b k =+≠常通过点来画直线11. 函数的表示方法:图像法;列表法;公式法12. 作函数图像的一般步骤:①列表②描点③连线13. 一次函数的图像性质 正比例函数(时,图像过一三象限;时,图像过二四象限)口诀:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系与一次函数--知识讲解
【考纲要求】
⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;
⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;
⒊理解正比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.
【知识网络】
【考点梳理】
考点一、平面直角坐标系
1.平面直角坐标系
平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.
2.各象限内点的坐标的特点、坐标轴上点的坐标的特点
点P(x,y)在第一象限0,0>>⇔y x ;
点P(x,y)在第二象限0,0><⇔y x ;
点P(x,y)在第三象限0,0<<⇔y x ;
点P(x,y)在第四象限0,0<>⇔y x ;
点P(x,y)在x 轴上0=⇔y ,x 为任意实数;
点P(x,y)在y 轴上0=⇔x ,y 为任意实数;
点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).
3.两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;
点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.
4.和坐标轴平行的直线上点的坐标的特征
位于平行于x 轴的直线上的各点的纵坐标相同;
位于平行于y 轴的直线上的各点的横坐标相同.
5.关于x 轴、y 轴或原点对称的点的坐标的特征
点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数;
点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数;
点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数.
6.点P(x,y)到坐标轴及原点的距离
(1)点P(x,y)到x 轴的距离等于y ;
(2)点P(x,y)到y 轴的距离等于x ;
(3)点P(x,y)到原点的距离等于22y x +.
7.在平面直角坐标系内两点之间的距离公式
如果直角坐标平面内有两点()()2211,,y x B y x A 、,那么A 、B 两点的距离为: ()()221221y y x x AB -+-=.
两种特殊情况:
(1)在直角坐标平面内,x 轴或平行于x 轴的直线上的两点()()y x B y x A ,,21、的距离为: ()()()212212221x x x x y y x x AB -=-=-+-=
(2)在直角坐标平面内,y 轴或平行于y 轴的直线上的两点()()21,,y x B y x A 、的距离为: ()()()212212212y y y y y y x x AB -=-=-+-=
要点诠释:
(1)注意:x 轴和y 轴上的点,不属于任何象限;
(2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数
1.函数的概念
设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.
2.自变量的取值范围
对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有
意义.
3.表示方法
⑴解析法;⑵列表法;⑶图象法.
4.画函数图象
(1)列表:列表给出自变量与函数的一些对应值;
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
要点诠释:
(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;
(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.
考点三、几种基本函数(定义→图象→性质)
1.正比例函数及其图象性质
(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.
(2)正比例函数y=kx( k≠0)的图象:
过(0,0),(1,K)两点的一条直线.
(3)正比例函数y=kx(k≠0)的性质
①当k>0时,图象经过第一、三象限,y随x的增大而增大;
②当k<0时,图象经过第二、四象限,y随x的增大而减小 .
2.一次函数及其图象性质
(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.
(2)一次函数y=kx+b(k≠0)的图象
(3)一次函数y=kx+b (k ≠0)的图象的性质
一次函数y =kx +b 的图象是经过(0,b )点和)0,(k b -点的一条直线. ①当k>0时,y 随x 的增大而增大;
②当k<0时,y 随x 的增大而减小.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:一次函数y =kx +b (k ,b 为常数,k ≠0),当y =0时,求相应的自变量的值,从图象上看,相当于已知直线y =kx +b ,确定它与x 轴交点的横坐标.
②二元一次方程组⎩⎨⎧+=+=2
211b x k y b x k y 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解
方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
要点诠释:
(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;
(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.
确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.
解这类问题的一般方法是待定系数法.
(3)直线y 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系.
①k 1≠k 2⇔y 1与y 2相交;
②⎩⎨⎧=≠2
121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨
⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==21
21,b b k k ⇔y 1与y 2重合.。

相关文档
最新文档