溶胶-凝胶原理与技术

合集下载

溶胶凝胶法的原理及应用

溶胶凝胶法的原理及应用

溶胶凝胶法的原理及应用溶胶凝胶法(Sol-Gel法)是一种将溶胶逐渐转变为凝胶的化学方法。

溶胶是由在溶剂中分散的颗粒或分子组成的胶体溶液,而凝胶则是一种具有网络结构的固体物质。

溶胶凝胶法的主要原理是通过适当的溶胶制备条件,如pH值、温度、溶液浓度、添加剂等,使溶胶逐渐从液态溶胶转变为固态凝胶。

溶胶凝胶法的基本步骤包括溶胶的制备,溶胶的成胶,成胶后的调控和凝胶的干燥。

首先,根据所需材料的化学性质和用途要求,选择合适的溶剂、溶质和催化剂来制备溶胶。

然后,在适当的条件下,如控制pH值、温度等,使溶胶逐渐形成凝胶结构。

成胶后,可以进行进一步的调控,如调节凝胶的孔隙结构、粒径大小等。

最后,通过合适的干燥方法,将凝胶转变为固体材料。

溶胶凝胶法具有以下几个优点。

首先,它是一种简单、灵活、可控的制备方法,可以制备出具有复杂结构和多孔性的材料。

其次,溶胶凝胶法可以制备出微米甚至纳米级别的材料,具有较高的化学纯度和均匀性。

此外,溶胶凝胶法还可以制备出具有良好机械性能、光学性能和热稳定性的材料。

溶胶凝胶法在许多领域中得到广泛应用。

其中一个主要应用领域是材料科学。

通过溶胶凝胶法可以制备出各种功能材料,如纳米材料、陶瓷材料、生物材料等。

这些材料在电子、光学、化学、医学等领域具有广泛的应用前景。

另一个应用领域是薄膜技术。

溶胶凝胶法可以制备出均匀、致密和具有优良性能的薄膜,常用于光学涂层、防腐涂层、传感器等领域。

此外,溶胶凝胶法还可以制备出具有特殊结构和功能的微纳米结构材料,如光子晶体、纳米线阵列、多孔膜等,这些材料在纳米科技、生物医学和光电子技术等领域有重要应用。

总之,溶胶凝胶法是一种灵活、可控的制备方法,具有制备复杂结构、多孔性和纳米级别材料的能力。

在材料科学、薄膜技术和微纳米结构材料领域有广泛的应用。

随着科学技术的不断进步,溶胶凝胶法将在更多领域中发展出新的应用。

溶胶。凝胶法的基本原理及应用

溶胶。凝胶法的基本原理及应用

溶胶.凝胶法的基本原理及应用现状溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

近年来,溶胶-凝胶技术在玻璃、氧化物涂层和功能陶瓷粉料,尤其是传统方法难以制备的复合氧化物材料、高临界温度(P)氧化物超导材料的合成中均得到成功的应1.基本原理S01.Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M”吸引水分子形成溶剂单元M(H20):+,为保持其配位数,具有强烈释放H+的趋势。

2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)。

与水反应。

3)缩聚反应:按其所脱去分子种类,可分为两类a)失水缩聚b)失醇缩聚2.应用由于溶胶.凝胶技术在控制产品的成分及均匀性方面具有独特的优越性,近年来已用该技术制成Li’ra02、“NbO,、PbTjO,、Pb(Zj孙)03和BaTjO,,等各种电子陶瓷材料。

特别是制备出形状各异的超导薄膜n0],高温超导纤维¨¨等。

在光学方面该技术已被用于制备各种光学膜如高反射膜、减反射膜等和光导纤维、折射率梯度材料、有机染料掺杂型非线性光学材料等以及波导光栅、稀土发光材料等。

在热学方面用该技术制备的SiO:一Ti0:玻璃非常均匀,热膨胀系数很小,化学稳定性也很好;已制成的InO,.SnO:(ITO)大面积透明导电薄膜具有很好的热镜性能;制成的si02气凝胶具有超绝热性能等特点。

4研究展望3.目前,对溶胶一凝胶法的研究主要集中在以下几个方面:1)在工艺方面值得进一步探索的问题:较长的制备周期;应力松弛,毛细管力的产生和消除,孔隙尺寸及其分布对凝胶干燥方法的影响;在凝胶干燥过程中加入化学添加剂的考察,非传统干燥方法探索;凝胶烧结理论与动力学以及对最佳工艺(干燥、烧结工艺)的探索。

溶胶凝胶原理及技术03 溶胶凝胶过程的主要反应

溶胶凝胶原理及技术03 溶胶凝胶过程的主要反应
水解低ph溶胶颗粒尺寸100200m浓缩h2o酸mxn沉淀70酸溶液低ph溶胶颗粒尺寸2040m凝胶悬浮分散凝胶化分散h2o酸mxn沉淀室温酸溶液低ph溶胶颗粒尺寸4080m凝胶分离水解室温低ph溶胶颗粒尺寸20m图41浓缩和分散方法的工艺流程图二醇金属醇盐体系的水解反应rohx?ormohohx?morxnx2n?rohororsiorsiohr???34rohohsiroohhorsiro?????183183脱水凝胶化
凝胶包含了很多种物质构造,Flory把它们分成四 种:
(1)短程有序结构,非常有序的层状结构;长程均 一结构; (2)完全无序的共价聚合物网络; (3)主要是无序的以物理聚集形成的高分子网络; (4)特殊的无序结构。
凝胶经干燥、烧结转变成固体材料的过程是 溶胶-凝胶法的重要步骤,由多孔疏松凝胶转 变成致密玻璃至少有四个历程:毛细收缩、缩 合一聚合、结构弛豫和粘滞烧结。
M x O u ( OH ) y 2 u ( H 2 O ) n A a
( xz y a )
( xn u n ) H 2 O
其中:A-为胶溶过程中所加入的酸根离子。 当x=1时,形成单核聚合物;当x>1时,形成多核聚 合物。可通过、、或与配体桥联。
碱性凝胶化的影响因素:主要是pH值(受x和y影 响)。其次还有温度、浓度及的性质。
三、润湿凝胶体的干燥过程变化 (一)凝胶干燥的几个阶段 通过对Al2O3凝胶的干燥进行研究,发现孔径大 于20nm的Al2O3凝胶在80℃干燥时,干燥速率与凝 胶含水量-1
水蒸发 速率
0.20
0.15
0.10



0.05
0.00
0
20
40
60

溶胶-凝胶原理及技术

溶胶-凝胶原理及技术

玻璃陶瓷制备
玻璃陶瓷是一种无机非金属材料,通过溶胶-凝胶技术可以制备出具有优异性能的玻 璃陶瓷。
在制备过程中,溶胶-凝胶技术可以控制玻璃陶瓷的微观结构和相组成,从而获得具 有高强度、高硬度和优良热稳定性的玻璃陶瓷。
此外,通过溶胶-凝胶技术还可以制备出具有特定光学、电学和磁学性能的玻璃陶瓷, 广泛应用于光学仪器、电子器件和磁性材料等领域。
纳米材料和复合材料。
21世纪
溶胶-凝胶技术不断优化和发 展,在材料科学、化学、生物
学等领域得到广泛应用。
02 溶胶-凝胶原理
溶胶的制备
01
02
03
金属醇盐的水解
将金属醇盐与水进行反应, 生成相应的溶胶。
非金属醇盐的水解
非金属醇盐也可以通过水 解反应生成溶胶。
氧化还原反应
通过氧化还原反应制备溶 胶。
凝胶具有孔洞结构、高比表面积、良好的吸附性 能等性质。
应用领域
溶胶-凝胶技术广泛应用于材料科学、化学、生物 学等领域。
03 溶胶-凝胶技术制备材料
无机材料
陶瓷材料
通过溶胶-凝胶技术可以制备出高 纯度、高致密度的陶瓷材料,如
氧化物、氮化物、碳化物等。
玻璃材料
利用溶胶-凝胶技术可以制备出具 有特殊性能的玻璃材料,如光子玻 璃、微晶玻璃等。
催化剂载体制备
催化剂是一种能够加速化学反应的物质,而催化剂载体则是承载催化剂 的物质,通过溶胶-凝胶技术可以制备出具有优异性能的催化剂载体。
在制备过程中,溶胶-凝胶技术可以控制催化剂载体的孔结构、比表面积 和热稳定性等性能,从而获得具有高活性、高稳定性和优良再生性的催 化剂载体。
此外,通过溶胶-凝胶技术还可以制备出具有特定光学、电学和磁学性能 的催化剂载体,广泛应用于化工、环保和能源等领域。

溶胶凝胶法

溶胶凝胶法

溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。

一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。

胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。

凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。

分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。

溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。

在溶液中前驱物进行水解、缩合反应,形成凝胶。

传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。

但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。

因此在很多领域中应用较多的是络合溶胶-凝胶法。

该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。

溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。

溶胶-凝胶法的原理和应用

溶胶-凝胶法的原理和应用

溶胶-凝胶法的原理和应用1. 溶胶-凝胶法的概述溶胶-凝胶法是一种常用的制备纳米颗粒材料的方法。

它通过将溶胶转化为凝胶,再通过热处理或其他方式将凝胶转化为纳米颗粒材料。

这种方法可以制备出具有高比表面积和孔隙结构的材料,具有广泛的应用前景。

2. 溶胶-凝胶法的原理溶胶-凝胶法的制备过程一般包括四个步骤:溶胶的制备、凝胶的形成、凝胶的加工和热处理。

以下是具体的原理介绍:2.1 溶胶的制备溶胶是指由固体颗粒悬浮在液体中形成的胶体系统。

在溶胶制备过程中,需要选择合适的溶剂和溶质,并通过物理或化学方法将其混合均匀,形成胶体系统。

2.2 凝胶的形成凝胶是指溶胶中颗粒聚集形成的凝胶网状结构。

在凝胶形成过程中,需要调节溶胶中的各种参数,如pH值、温度、浓度等,以促使颗粒聚集并形成凝胶。

2.3 凝胶的加工凝胶形成后,需要对凝胶进行进一步的加工处理。

加工的方式可以是冷冻干燥、超临界流体萃取等,目的是去除溶剂,使凝胶更加稳定。

2.4 热处理经过凝胶加工后,需要将凝胶进行热处理,将凝胶转化为纳米颗粒材料。

热处理过程中,需要控制温度和时间等参数,以保证颗粒的形成和结构的稳定。

3. 溶胶-凝胶法的应用溶胶-凝胶法具有广泛的应用前景,以下是该方法在一些领域的应用示例:3.1 纳米材料制备溶胶-凝胶法可以用于制备各种纳米颗粒材料,如二氧化硅、氧化铁等。

这些纳米材料具有高比表面积和孔隙结构,广泛应用于催化、传感、光学等领域。

3.2 传感器制备利用溶胶-凝胶法可以制备出高灵敏度和高选择性的传感器。

通过调节溶胶-凝胶过程中的参数和材料组成,可以实现对特定物质的检测和识别。

3.3 催化剂制备溶胶-凝胶法制备的纳米颗粒材料具有较大的比表面积和孔隙结构,非常适合用作催化剂。

这些催化剂可以应用于化学反应、汽车尾气净化等领域,具有高效率和长寿命的特点。

3.4 能源存储材料制备溶胶-凝胶法可以制备出具有高比表面积和孔隙结构的能源存储材料,如超级电容器材料、锂离子电池材料等。

第五章 溶胶凝胶

第五章 溶胶凝胶


前式表示水解反应的结果。后式则只是反映系统 内发生了脱水和脱醇反应。
脱水缩聚反应: -M-OH+HO-M M-O-M + H2O 脱醇缩聚反应: -M-OH+RO-M M-O-M + ROH
2. 水解-聚合反应的机理过程:
(1)水解反应 水解一般在水、水和醇的溶剂中进行并生成活性 的M-OH,反应可分为三步:
如何解释在酸碱催化条件下的水解过程和结果?
(1)在酸催化条件下,TEOS的水解属亲电子反应机理。 首先,TEOS的一个Si一OR基团迅速质子化,造成Si原 子上的电子云向该一OR基团偏移而呈亲电性,易受水分子 的进攻。水分子从另一侧进攻Si原子,H2O分子上的电子 云向Si偏移而带一正电荷,此时Si原子电子云继续向质子 化一OR基团偏移造成该Si一OR键减弱进而脱离,这样一个 OH一基团便取代了一OR基团。
醇盐溶胶一凝胶法制备玻璃制品的工艺流程
图5.3 醇盐溶胶-凝胶法制备玻璃制品工艺流程
溶胶-凝胶技术的三个基本步骤总结:
(1)将低粘度的金属的醇盐或金属盐(有机或无机) 等先驱体(precursors)均匀混合。先驱体可以提 供最终所需要的金属离子。在某些情况下,先驱体 的一个组分可能就是一种氧化物颗粒溶胶 (colloidal sol)。 (2)制成均匀的溶胶,并使之凝胶。这是决定最终 陶瓷材料化学均匀性的关键步骤。 (3)在凝胶过程中或在凝胶后成型、干燥,然后煅 烧或烧结
5.5.2 催化剂的作用
为调节溶液的酸度而加入的酸或碱实际上起催化 剂的作用。它对溶胶-凝胶反应过程和生成凝胶的结 构都有重要影响。 宏观上表现为对反应溶液体系的粘度随放置时间变化 及凝胶化时间的影响。 如何从溶液粘度与溶液中聚合物的浓度之间的关系来 揭示聚合物的结构特点?

溶胶-凝胶原理及技术(前沿)

溶胶-凝胶原理及技术(前沿)
凝胶的分类
根据分散相粒子的大小和聚集程度,可将凝胶分为不 同类型,如颗粒状凝胶、纤维状凝胶等。
凝胶的结构与性质
凝胶的结构和性质取决于分散相粒子的性质、浓度和 交联程度,以及介质性质等。
溶胶-凝胶的相变过程
相变的热力学基础
01
溶胶-凝胶相变过程是热力学不稳定体系自发形成有序结构的过
程,涉及多种相互作用和相变机制。
化学稳定性差
溶胶-凝胶材料容易受到酸、碱等化学物质的侵蚀,影响了其稳 定性和使用寿命。
生产成本高
溶胶-凝胶技术需要使用大量的有机溶剂,增加了生产成本和环 境污染风险。
溶胶-凝胶技术的未来发展方向
低温制备
通过改进溶胶-凝胶反应 条件,降低反应温度, 实现低温下制备高性能 的溶胶-凝胶材料。
高稳定性材料
生物医学领域
利用溶胶-凝胶技术制备生物相容 性好、药物控释性能优良的生物 医学材料,如药物载体、组织工 程支架等。
纳米科技领域
通过溶胶-凝胶技术实现纳米材料 的可控制备和组装,为纳米科技 的发展提供新的思路和方法。
THANKS
感谢观看
溶胶-凝胶技术的应用领域
陶瓷领域
利用溶胶-凝胶技术可以制备出 高性能的陶瓷材料,如高温陶
瓷、功能陶瓷等。
玻璃领域
通过溶胶-凝胶技术可以制备出 高性能的玻璃材料,如光学玻 璃、电子玻璃等。
金属领域
利用溶胶-凝胶技术可以制备出 高性能的金属材料,如合金、 金属复合材料等。
复合材料领域
通过溶胶-凝胶技术可以制备出 高性能的复合材料,如树脂基 复合材料、碳纤维复合材料等
3
稳定性与性能关系
溶胶-凝胶的稳定性与其性能密切相关,提高稳 定性有助于提高材料的性能和应用范围。

溶胶凝胶法

溶胶凝胶法

溶胶凝胶法1 溶胶,凝胶法溶胶,凝胶(Sol-Gel)技术是指金属有机或无机化合物经过溶胶,凝胶化和热处理形成氧化物或其他固体化合物的方法。

其过程:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。

2 溶胶凝胶法基本原理溶胶,凝胶法的主要步骤为将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。

2.1 水解反应金属盐在水中的性质受金属离子半径,电负性,配位数等因素影响,如Si、Al 盐,它们溶解于纯水中常电离出Mn+,并溶剂化[3]。

水解反应平衡关系随溶液的酸度,相应的电荷转移量等条件的不同而不同。

有时电离析出的Mn+又可以形成氢氧桥键合。

水解反应是可逆反应,如果在反应时排除掉水和醇的共沸物,则可以阻止逆反应进行,如果溶剂的烷基不同于醇盐的烷剂,则会产生转移酯化反应,这些反应对合成多组分氧化物是非常重要的。

2.2 聚合反应硅、磷、硼以及许多金属元素,如铝、钛、铁等的醇盐或无机盐在水解的同时均会发生聚合反应,如失水、失醇、缩聚、醇氧化、氧化、氢氧桥键合等都属于聚合反应,性质上都属于取代反应或加成反应。

主要反应:,M,OH ,HO,M, ? ,M,O,M,+H2O ;,M,OR + HO,M, ? ,M,O,M,+ROH 等。

Okkerse等提出硅酸在碱性条件聚合成六配位过渡态,Swain等则提出形成稳定的五配位的过渡态,由于硅酸盐的水解和聚合作用几乎同时进行,它的总反应过程动力学将决定于3个反应速率常数,使得在最临近的尺度范围内,中心Si原子可以有15种不同的化学环境,R.A.Assink等曾描述了这15种配位方式的关系。

可见聚合后的状态是很复杂的[4-6]。

溶胶凝胶原理及技术07 杂化材料

溶胶凝胶原理及技术07 杂化材料

PDMS-OH
三乙氧基硅基功能化 的聚二甲基硅氧烷 三乙氧基硅基封端的 聚氧化四亚甲基
PDMS(IPDI)APS
PTMO-Si(OEt)3
三乙氧基硅基改性的聚氧 化的四亚甲基 三乙氧基硅基封端的聚氧 化丙撑 三乙氧基硅基功能化的聚 甲基丙烯酸甲酯 (三乙氧基硅基)苯基封端 的聚苯乙烯 三乙氧基硅基封端的聚噁 唑啉 三乙氧基硅基功能化的聚 酞亚胺 三乙氧基硅基封端的聚苯 醚酮 羧基封端的聚丁二烯
表9-3 相间 以次 价力 作用 的聚 合物/ 无机 杂化 材料
聚酰亚胺 聚酰胺 聚丁二烯 聚碳酸酯 聚乙烯醇 聚醋酸乙烯酯 聚丙烯酸聚2-乙烯基吡啶 聚对苯乙炔 聚N 乙烯基吡咯 聚己内酰胺
聚氨酯
聚N,N'一二甲基丙烯酰胺 纤维素 聚硅酸乙酯
UP
Pdmac Cell Pase
1.小分子掺杂有机-无机杂化材料 (1)掺杂在溶胶凝胶基质中的有机小分子主要是 各种有机染料,包括激光染料、荧光染料、光致变 色染料、烧孔活性染料及非线性光学染料。
二、溶胶-凝胶法制备有机-无机复合材料的进展
(一)相间以化学键作用的有机-无机杂化材料
要合成相间以化学键作用的有机-无机杂化材料,起 始组分之一至少具有两种以上的功能性。具有双官 能性的起始组分可以是有机改性凝胶前驱体(有机改 性醇盐),无机官能化有机大分子或有机官能化无机 纳米分子簇。
组分间的化学键可以是M-C,M-O-Si-C或M- L。M-C键的水解稳定性取决于金属原子的种类, 当M为Si,Sn,Hg,Pb或P时M-C键对水解稳定; 而M为其它金属时,对水解不稳定,此时只能利用 对水解稳定的M-O-Si-C或M-L(L为有机配体如 多羟基配体、有机羟酸、α,β-羟基酸和β-二酮及其 衍生物)作为有机-无机间的连接的桥梁。

溶胶凝胶法

溶胶凝胶法

溶胶-凝胶法溶胶-凝胶法(Sol-Gel法,简称S-G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

溶胶-凝胶法由于其前驱物及其反映条件的不同可以分为以下几种制备方法。

l、金属醇盐水解法该方法的基本过程是将醇盐溶于有机溶剂,然后在搅拌的同时缓慢加入蒸馏水的醇溶液,控制一定的pH值,经反应一定时间即可得到溶胶。

溶胶的化学均匀程度一方面受到前驱液中各醇盐混合水平的影响,这与醇盐之间的化学反应情况密切相关;另一方面,每种醇盐对水的活性也有很大的差异。

当金属醇盐之间不发生反应时,各种金属醇盐对水的活性起决定作用,反应活性的不同导致溶胶不均匀。

添加有机络合剂是克服这些问题切实可行的办法,常用的络合剂有羧酸或β-二酮等添加剂。

2、强制水解法该方法的基本过程是将将所要制备的金属氯化物加到氯化氢的水溶液中,将其加热到沸腾反应一段时间即得到对应的溶胶。

这种方法在制备氧化物在氧化物阳极材料的制备中也得到了较为广泛的应用。

3.金属醇盐氨解法4、原位聚合法及聚合螫合法这种方法的作用机理是有机单体聚合形成不断生长的刚性有机聚合网络,包围稳定的金属螫合物,从而减弱各种不同离子的差异性,减少各金属在高温分解中的偏析溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

⑴Sol-Gel法的基本原理及特点S01-Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M z+吸引水分子形成溶剂单元M(H2O)nx+,为保持其配位数,具有强烈释放H+的趋势。

M(H2O)nx+→M(H2O)n-1(OH)(x-1)+H+2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n与水反应。

第二章 溶胶-凝胶法

第二章 溶胶-凝胶法

二、溶胶与凝胶的联系
1)溶胶-凝胶转变;
2)凝胶具有触变性; (凝胶能转化为溶胶) 3)凝胶和溶胶可共存,组成复杂的胶态体系。
10
三、溶胶稳定理论
3.1 溶胶体系的相互作用力
范德华力
库伦力
空间阻力 溶胶的相对稳定性或聚沉取决于斥力势能和引 力势能的相对大小 11
3.2 DLVO理论(静电稳定理论、双电层排斥理论)
光源 凸透镜 光锥 丁达尔效应示意图
2
Fe(OH)3胶体
2. 溶胶(sol)
具有液体特征的胶体体系,在液体介质中分散了 1~100nm粒子(基本单元)。
溶胶的特点:
(1)溶胶不是物质而是一种“状态”
3
(2)溶胶与溶液的相似之处 溶质+溶剂→溶液 分散相+分散介质→溶胶(分散系)
分散相 液体 固体 气体 液体 固体 液体 气体 分散介质 气体 气体 液体 液体 液体 固体 固体 示例 雾 烟 泡沫 牛乳 胶态石墨 矿石中的液态夹杂物 矿石中的气态夹杂物
(1)微粒间的吸引能(ΦA)
(2)微粒间的排斥作用能( ΦR)
(3)微粒间总相互作用能( ΦT)
14

ΦT
微粒的物理稳定性取决于 总势能曲线上势垒的大小
第二极小值

第一极小值
特点: 粒子间存在阻止粒子接触的势垒 存在第一极小值(键合的团聚粒子) 存在第二极小值(可逆絮凝)
15
3.3 提高溶胶稳定性的途径:
第二章 溶胶-凝胶法
溶胶-凝胶法基本概念 溶胶稳定理论 溶胶-凝胶合成原理 溶胶-凝胶合成工艺 溶胶-凝胶合成法的应用
1
第一节
溶胶-凝胶法基本概念
一、溶胶-凝胶法基本名词术语

溶胶凝胶法的基本原理、发展及应用现状

溶胶凝胶法的基本原理、发展及应用现状

溶胶凝胶法的基本原理、发展及应用现状一、本文概述1、溶胶凝胶法的定义溶胶凝胶法(Sol-Gel Method)是一种广泛应用于材料科学领域的湿化学合成方法。

该方法基于溶胶(sol)和凝胶(gel)两个关键阶段的转换,通过控制化学反应条件,使前驱体在溶液中发生水解和缩聚反应,形成稳定的溶胶体系。

随着反应的进行,溶胶粒子逐渐增大并相互连接,形成三维网络结构的凝胶。

最终,通过热处理等后处理手段,凝胶转化为所需的纳米材料或涂层。

溶胶凝胶法的基本原理在于利用前驱体在溶液中的化学反应活性,通过控制反应条件如温度、pH值、浓度等,使前驱体在分子或离子水平上均匀混合,并发生水解和缩聚反应。

这些反应使得前驱体之间形成化学键合,进而形成稳定的溶胶体系。

随着反应的进行,溶胶粒子逐渐增大并相互连接,形成三维网络结构的凝胶。

这种凝胶具有高度的多孔性和比表面积,为后续的材料处理和应用提供了良好的基础。

溶胶凝胶法的发展可以追溯到20世纪初,但直到近年来,随着纳米科技的兴起和人们对材料性能要求的不断提高,溶胶凝胶法才得到了广泛的应用和研究。

目前,溶胶凝胶法已经成为制备纳米材料、薄膜、涂层和复合材料等的重要方法之一。

同时,随着科学技术的不断进步,溶胶凝胶法在反应机理、材料设计、工艺优化等方面也取得了显著的进展。

在应用方面,溶胶凝胶法已经广泛应用于陶瓷、玻璃、金属氧化物、复合材料等多个领域。

例如,在陶瓷领域,溶胶凝胶法被用于制备高性能的陶瓷材料,如氧化铝、氧化锆等。

在金属氧化物领域,该方法被用于制备纳米金属氧化物颗粒,如二氧化钛、氧化铁等,这些颗粒在光催化、气敏传感器等领域具有广泛的应用前景。

溶胶凝胶法还在涂层和复合材料的制备中发挥着重要作用,如制备防腐涂层、功能薄膜等。

溶胶凝胶法作为一种重要的湿化学合成方法,在材料科学领域具有广泛的应用前景。

随着科学技术的不断进步和人们对材料性能要求的不断提高,溶胶凝胶法将在更多领域发挥重要作用。

溶胶-凝胶法

溶胶-凝胶法

成混合溶液,经凝胶化、热处理后,一般都能
获得性能指标较好的粉末。这是由于凝胶中含
有大量液相或气孔,使得在热处理过程中不易
使粉末颗粒产生严重团聚,同时此法易在制备
过程中控制粉末颗粒度。
溶胶-凝胶法制 备氧化铝纤维
实验方法
通过混合铝三异丙醇 和蒸馏水在酸性催化 剂存在的条件下回流 制备溶胶。
在溶胶中添加不同量的粘 结剂可获得可纺性,在适 当的粘度下,将溶胶装入 注射器中,在氨溶液的条 件下可制得纤维。
气氛炉合成
微波合成
烧结方式
超细ZrB2粉体
超细ZrB2粉体合成工艺流程图
使用溶胶-凝胶法 制备ZrB2粉体, 不但样品的粒径 达到了纳米级的 要求,而且样品 的纯度也比其他 方法要高的多。
样 品
粒径(nm) 纯度(%)
Zr:4B:25C
34.76 91.17
• 运用溶胶—凝胶法,将所需成分的前驱物配制
等离子体扫描烧结铝酸盐前驱体, 可得到适当厚度的无裂纹的薄膜, 而且等离子体扫描烧结所需的热量 要显著低于常规炉烧结的热量。
• 制备涂层和薄膜材料是溶胶—凝胶法最
有前途的应用方向。其制备过程为: 将溶 液或溶胶通过浸渍法或转盘法在基板上 形成液膜,经凝胶化后通过热处理可转 变成无定形态(或多晶态)的膜或涂层。 膜层与基体的适当结合可获得基体材料 原来没有的电学、光学、化学和力学等 方面的特殊性能。
互连接的坚实的网络。
原理
• 不论所用的前驱物(起始原料) 为无机盐或金属
醇盐,其主要反应步骤都是前驱物溶于溶剂(
水或有机溶剂) 中形成均匀的溶液,溶质与溶
剂产生水解或醇解反应,反应生成物聚集成1
nm 左右的粒子并组成溶胶,溶胶经蒸发干燥

溶胶-凝胶原理及技术

溶胶-凝胶原理及技术

1.溶胶-凝胶法的优点
组分体系的化学 均匀性。 (3)溶胶-凝胶反应过程易于控制,可以实现 过程的完全而精确的控制,可以调控凝胶的 微观结构。 (4)该法制备材料掺杂的范围宽(包括掺杂的 量和种类),化学计量准确且易于改性。 (5)Sol-Gel制备技术制备的材料组分均匀、 产物的纯度很高。
四、溶胶-凝胶法的基本过程
金属醇盐、溶
1.醇盐水解方法
剂(甲醇、乙 醇等)、水和
催化剂(酸或 弱碱)
水解聚 缩

溶胶
化 涂层、成纤、成

湿凝胶
干 燥
成品
热处 理
干凝胶
图1-1 醇盐溶胶-凝胶法基本工艺过程示意 图
五、溶胶-凝胶法的特点
溶胶-凝胶法:是一种可以制备从零维到三维材料的 全维材料湿化学制备反应方法。
(7)在一定条件下,溶胶液的成纤性能很好, 因此可以用以生产氧化物,特别是难熔氧化物 纤维。
2.溶胶-凝胶法的缺点
(1)所用原料可能有害。
(2)反应影响因素较多。 (3)工艺过程时间较长。 (4)所得到半成品制品容易产生开裂。 (5)所得制品若烧成不够完善,制品中会残 留细孔及OH-或C,后者易使制品带黑色。 (6)采用溶胶-凝胶法制备薄膜或涂层时,薄 膜或涂层的厚度难以准确控制,另外薄膜的 厚度均匀性也很难控制。
七十年代初德国科学家报道了通过金属醉盐水解得
到溶胶,经过凝胶化得到多组分的凝胶,引起了材 料科学界的极大兴趣.这被认为是溶胶—凝胶技术 的真正开端.现代溶胶—凝胶技术的发展在于,得 到凝胶材料干燥时间是以天来计算,而不象从前那 样以年计算。
三、溶胶-凝胶法的应用领域
溶胶凝胶技术目前已经广泛应用于 电子、复合材料、生物、陶瓷、光学、 电磁学、热学、化学以及环境处理等 各个科学技术领域和材料科学的诸多 领域。

溶胶-凝胶成膜原理与分析原理

溶胶-凝胶成膜原理与分析原理

溶胶-凝胶成膜原理与分析原理1溶胶-凝胶技术的概述溶胶-凝胶工艺是通过溶胶-凝胶转变过程制备玻璃、陶瓷以及其它一些无机材料或复合材料的一种工艺。

一般的说,易水解的金属化合物,如氯化物、硝酸盐、金属醇盐等都适用于溶胶-凝胶工艺。

关于溶胶-凝胶法的定义范围有两种不同的看法,有人认为溶胶-凝胶过程包括液体溶液、硅胶、金属酸、金属氯化物等胶体悬浮液和金属醇盐溶液中所有的凝胶生长过程。

定义的关键是过程中有凝胶生成,而不强调凝胶生成的过程中是否形成了溶胶。

而一些人则认为溶胶-凝胶技术应体现出溶胶的性质,溶胶-凝胶技术指的是采用金属氧化物等的溶液制备胶态溶液,在加入稳定剂和调节剂的条件下控制凝胶过程。

溶胶-凝胶技术还包括凝胶的干燥和煅烧过程。

现在一般的看法倾向于前者的观点,认为 Sol-gel技术的特点在于凝胶的形成,而不在于是否经过了溶胶(sol)的过程。

1.1 溶胶-凝胶技术的发展过程采用溶胶-凝胶技术制备薄膜的历史相当悠久。

1939 年 W.Geffcken 和E.Berger 首次采用溶胶-凝胶浸渍法涂覆玻璃板,制备了改变玻璃光学反射性质的涂层,并取得了专利,在专利文献中首次提出溶胶-凝胶浸渍涂层工艺。

1959年德国特种玻璃股份公司采用溶胶凝胶浸渍涂层工艺开始批量生产汽车后视镜。

1962 年 H.Schroeder 在广泛研究光学涂层的基础上,发展了氧化物的薄膜物理。

随后 Dislich 和Leven等分别阐述了应用sol-gel 技术制备多组份氧化物的化学原理。

1969 年 Schott 玻璃公司以金属醇盐为原料,采用浸渍涂覆工艺生产出遮阳TiO2 涂层,应用于建筑物装潢用太阳能反射玻璃。

同年美国 Oak-Ridge 国家实验室(ORNL)应用 sol-gel 技术在无机溶液体系内制备出球状铀-钍核燃料,不仅使sol-gel 原料的成本大为降低,而且拓宽了 sol-gel 法的应用范围,使溶胶-凝胶法与实际工业过程联系更为密切,标志着溶胶-凝胶技术制备特性材料的真正开始。

溶胶凝胶法的名词解释

溶胶凝胶法的名词解释

溶胶凝胶法的名词解释溶胶凝胶法是一种常用于材料科学和化学工程领域的制备方法,它通过将溶胶转化为凝胶的过程来制备具有特殊结构和性质的材料。

本文将对溶胶凝胶法的原理、应用和制备过程进行详细解释。

一、溶胶和凝胶的定义在理解溶胶凝胶法之前,我们首先需要了解溶胶和凝胶的定义。

溶胶是指在溶剂中形成均匀分散的微粒或分子团,这些分散相通常是纳米级粒子或胶体。

凝胶则是指在溶剂中形成的三维网络结构,其内部充满连续的介孔结构。

二、溶胶凝胶法的原理溶胶凝胶法的核心原理是通过在溶液中形成溶胶体系,然后通过物理或化学手段使其转变为凝胶体系。

其中,凝胶的形成可以通过滴定、水解、凝聚、溶胶冻结和溶剂蒸发等方法实现。

溶胶凝胶法的原理基于溶胶和凝胶的多相平衡、物理化学交换和聚集机制,从而实现特定结构和性能材料的合成。

三、溶胶凝胶法的应用领域由于其灵活性和可控性,溶胶凝胶法在材料科学和化学工程领域具有广泛的应用。

以下是一些常见的溶胶凝胶法的应用领域:1. 催化剂制备:溶胶凝胶法可用于制备具有高比表面积和孔隙结构的催化剂,以提高反应效率和选择性。

2. 电池材料:溶胶凝胶法可以制备用于锂离子电池、燃料电池和超级电容器等能量存储材料,以提高其循环稳定性和容量。

3. 光催化材料:溶胶凝胶法可用于合成纳米尺度的光催化剂,用于水分解、有机污染物降解和人工光合作用等领域。

4. 生物医学材料:溶胶凝胶法可以制备具有特殊生物相容性和生物活性的材料,用于组织工程、药物传递和生物传感器等应用。

四、溶胶凝胶法的制备过程具体的溶胶凝胶法的制备过程会因不同材料和应用而有所差异,但通常包括以下基本步骤:1. 溶胶制备:将所需物质溶解在适当的溶剂中,形成均匀的溶液。

2. 凝胶形成:通过加热、冷却、溶剂蒸发或添加凝胶剂等方法,使溶胶转变为凝胶。

3. 凝胶成型:将凝胶体系进行成型,例如通过注射、浇铸或模压等方法。

4. 凝胶干燥:对凝胶进行适当的干燥处理,以去除溶剂并稳定凝胶结构。

溶胶凝胶原理及技术08 薄膜材料

溶胶凝胶原理及技术08 薄膜材料

(2)干燥制度
0
重量变 化/%
-20
G
-40
20℃
-60 0 10 20 30
60℃
40
图7-2 ZrO2(Y2O3)-Al2O3膜的早期干燥曲线
时 间/h
(3)烧结制度 (4)基体
(二)醇盐法制备薄膜的溶胶-凝胶工艺特征
1.反应体系的确定 包含金属醇盐、溶剂(甲醇、乙醇等)、水、催 化剂(酸、弱碱)、水解速度控制剂(乙酰丙酮 等)、以及成膜控制剂(如聚乙烯醇(PVA)、 二甲基甲酰胺(DMF)以及聚乙二醇等)。 表7-2列出了采用几种典型醇盐法制备薄膜的溶胶凝胶反应体系的组成
NH4OH H2C2O4
聚乙烯醇(PVA)
NH4OH 聚乙烯醇(PVA)、 (NH4)2C 阴离子表面活性剂 O3
Mg (NO3)2 、Al (NO3)3、 Fe(NO3)3
(NH4)2C O3
阴离子表面活性剂 聚乙二醇、甘油
Ca10(OH)2(PO4) Ca (NO3)2、(NH4)2HPO4、 (Ca, ZrCl4、Mg(NO3)2 Mg)Zr4(PO4)6
6.5~8 3.5~4.5 0.05~0. 1.0~1.7 .5 15
(1)石英玻璃基板 表7-4几种石英玻璃基板中的杂质含量/×10-6
原料种类 A12O3 SiCl4 <3 Fe2O3 <1 TiO2 <1 Na2O K2 O <1
水晶
硅石 硅砂
30~100
200~500
1-5
20~100
1~10
二、溶胶-凝胶法制备薄膜的工艺方法 薄膜制备过程有二大关键环节:溶胶制备和薄膜涂覆。
基板清洗
溶胶的配制
溶胶的陈化

溶胶-凝胶技术

溶胶-凝胶技术

溶胶-凝胶技术溶胶-凝胶技术是一种新型的材料制备技术,该技术可以制备出具有细微结构和高度均匀性的材料。

溶胶-凝胶技术最早在20世纪60年代被提出,目前已经成为一种重要的化工技术之一。

它广泛应用于生物医学、能源储存、光电子材料等领域。

本文将对溶胶-凝胶技术进行详细介绍。

溶胶-凝胶技术利用可溶性物质和凝胶剂反应,在液相中生成微粒子,实现了材料的控制制备。

其基本原理是:将适当的化学物质(如金属盐、硅酸盐等)在溶剂中加热溶解,得到溶胶,然后加入凝胶剂,使其逐渐凝胶化。

在此过程中,化学反应加速,微粒子逐渐形成,并排列有序。

最后,将凝胶体放到高温中,使水分蒸发,从而形成预定形状的材料。

整个过程类似于一种“凝胶-浸渍-烘干-煅烧”的过程,一般需要多次往复操作。

1. 结构控制能力强溶胶-凝胶技术可以在微观和宏观上对材料的结构进行精细的控制。

在制备过程中,生成的溶胶和凝胶体都具有可调控的晶粒尺寸和形态,因此,制备出来的材料不仅具有高表面积、多孔化以及高度的均匀性,同时还具有特定的化学成分和结构,可以满足不同应用领域的需求。

2. 制备成本低与传统的材料制备方法相比,溶胶-凝胶技术具有制备成本低、工艺简单、操作方便等优点。

这种方法无需昂贵的设备和大量的能源,也不需要在加工过程中使用有害物质。

3. 应用领域广泛溶胶-凝胶技术可以制备出不同性质和用途的材料,适用于生物医学、能源储存、光电子材料等领域。

例如在生物医学领域,可以利用溶胶-凝胶技术来制备出具有高度药物释放性能的生物材料,可以大大提高药物治疗效果。

在能源储存领域,可以利用溶胶-凝胶技术来制备出高性能的电池材料,可以提高电池的使用寿命和能量密度。

1. 生物医学材料溶胶-凝胶技术可以制备出具有高度药物释放性能的生物医学材料。

这种材料具有高度可控的表面和孔隙结构,可以为药物提供更大的表面积和更多的承载量,从而提高药物生物利用度。

此外,溶胶-凝胶技术还可以用于制备骨增生材料、人工关节材料、组织工程材料等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)粒子的无序结构。
溶胶-凝胶技术是溶胶的凝胶化过程,即液 体介质中的基本单元粒子发展为三维网络结 构——凝胶的过程。
(3)凝胶与溶胶是两种互有联系的状态。
1)乳胶冷却后即可得到凝胶;加电解质于悬胶后也可 得到凝胶。
2)凝胶可能具有触变性:在振摇、超声波或其他能产 生内应力的特定作用下,凝胶能转化为溶胶。
溶胶-凝胶技术 原理及其应用
The mechanism and application of Sol-Gel technique
第一章 溶胶-凝胶法的基本概念和特点 第二章 溶胶-凝胶法采用的原料 第三章 溶胶-凝胶过程的主要反应 第四章 溶胶-凝胶法制备块体材料 第五章 溶胶-凝胶法制备的纤维材料 第六章 溶胶-凝胶法制备纳米粉体 第七章 溶胶-凝胶法制备有机-无机复合材料 第八章 溶胶-凝胶法制备薄膜及涂层材料
第一章 溶胶-凝胶法的基本概念和特点
一、溶胶-凝胶法基本名词术语
1.前驱物(precursor):所用的起始原料。
2.金属醇盐(metal alkoxide):有机醇-OH上的H为金 属所取代的有机化合物。它与一般金属有机化合物 的差别在于金属醇盐是以M-O-C键的形式结合, 金属有机化合物则是M-C键结合。
3)溶胶向凝胶转变过程主要是溶胶粒子聚集成键的聚 合过程。
4)上述作用一经停止,则凝胶又恢复原状,凝胶和溶 胶也可共存,组成一更为复杂的胶态体系。
5)溶胶是否向凝胶发展,决定于胶粒间的作用力是否 能够克服凝聚时的势垒作用。因此,增加胶粒的电荷 量,利用位阻效应和利用溶剂化效应等,都可以使溶 胶更稳定,凝胶更困难;反之,则更容易形成凝胶。
亲液溶胶虽然具有某些溶胶特性,但本质
上与普通溶胶一样属于热力学稳定体系。
憎液溶胶:分散相与分散介质之间亲和力
较弱,有明显的相界面,属于热力学不稳定体
系。
4.凝胶(gel):亦称冻胶,是溶胶失去流动性后,一 种富含液体的半固态物质,其中液体含量有时可高 达99.5%,固体粒子则呈连续的网络体。它是指胶 体颗粒或高聚物分子相互交联,空间网络状结构不 断发展,最终使得溶胶液逐步失去流动性,在网状 结构的孔隙中充满液体的非流动半固态的分散体系, 它是含有亚微米孔和聚合链的相互连接的坚实的网 络。
胶体分散体系:是指分散相的大小在1nm~100nm之 间的分散体系。
在此范围内的粒子,具有特殊的物理化学性质。
分散相的粒子可以是气体、液体或固体,比较重要 的是固体分散在液体中的胶体分散体系——溶胶
(sol)。
9.溶胶-凝胶技术:是一种由金属有机化合物、金属无 机化合物或上述两者混合物经过水解缩聚过程,逐渐 凝胶化及相应的后处理,而获得氧化物或其它化合物 的新工艺。
7.聚合物(polymer):从至少含两个功能团的单体经聚合 反应成为很大分子的化合物,它至少含有几百乃至几百 万个单体,故常常又称它为大分子。
8.溶胶-凝胶法:是制备材料的湿化学方法中一种崭新的 方法。 (包括化学共沉淀法,水热法,微乳液法等)
溶胶-凝胶法:研究的主要是胶体分散体系的一些物 化性能。
(4)凝胶可分为:易胀型(如明胶)和非易胀型(如硅 胶)两类; 凝胶又分为弹性凝胶和脆性凝胶。
(5)凝胶在干燥后:形成干凝胶或气凝胶,这 时,它是一种充满孔隙的多孔结构。
5.胶凝时间(gel point time):在完成凝胶的大分子聚合 过程中最后键合的时间。
6.单体(monomer):一种简单的化合物,它的分子间通 过功能团起聚合反应得到分子量较高的化合物(聚合物)。 单体一般是不饱和的或含有两个或更多功能团的小分子 化合物。
Hale Waihona Puke 分散相液体 固体 气体 液体 固体 液体 气体
分散介质分散介质
气体 气体 液体 液体 液体 固体 固体
示例
雾 烟 泡沫 牛乳 胶态石墨 矿石中的液态夹杂物 矿石中的气态夹杂物
(4)根据分散相对分散介质的亲、疏倾向,将溶胶分 成两类。
1)分散相具有亲近分散介质倾向的:称作亲液 (lyophilic)溶胶或乳胶,所谓水乳交融;
2)分散相具有疏远分散介质倾向的:则称作憎液 (lyophobic)溶胶或悬胶。
亲液(lyophilic)溶胶:分散相和分散介质 之间有很好的亲和能力,很强的溶剂化作用。 因此,将这类大块分散相,放在分散介质中往 往会自动散开,成为亲液溶胶。
它们的固-液之间没有明显的相界面,例如
蛋白质、淀粉水溶液及其它高分子溶液等。
(1)凝胶是一种柔软的半固体,由大量胶束组成 三维网络,胶束之间为分散介质的极薄的薄层
所谓“半固体”是指表面上是固体、而内部仍 含液体。后者的一部分可通过凝胶的毛细管作用从 其细孔逐渐排出。
(2)凝胶结构可分为四种:
1)有序的层状结构;
2)完全无序的共价聚合网络;
3)由无序控制,通过聚合形成的聚合物网络;
3.溶胶(sol):又称胶体溶液。指在液体介质(主要是液 体)中分散了1~100nm粒子(基本单元),且在分散体系 中保持固体物质不沉淀的胶体体系。溶胶也是指微小 的固体颗粒悬浮分散在液相中,并且不停地进行布朗 运动的体系。
溶胶(sol)是 (1)溶胶不是物质而是一种“状态”。
溶胶中的固体粒子大小常在1~5nm,也就是在胶体 粒中的最小尺寸,因此比表面积十分大。
能使蛋白质变性的化学方法和物理方法 很多,主要的有:1.加热,2.机械力
(冷冻、声波振荡、机械振荡、搅拌和 研磨、加压等),3.紫外线照射,4.辐 照,5,有机试剂(酒精、丙酮、尿素、 苯酚及其衍生物),6.无机试剂(强酸、 强碱、重金属盐、碘化物、硫氰酸盐等), 7.蛋白酶等。
6)通常由溶胶制备凝胶的方法有溶剂挥发、冷冻 法、加入非溶剂法、加入电解质法和利用化学反应 产生不溶物法等。
(2)最简单的溶胶与溶液在某些方面有相似之处: 溶质+溶剂→溶液
分散相+分散介质→溶胶(分散系)
(3)溶胶态的分散系由分散相和分散介质组成 1)分散介质:气体,即为气溶胶; 水,即水溶胶; 乙醇等有机液体; 也可以是固体。 2)分散相:可以是气体、液体或固体,
3)表1-1说明溶胶态分散系情况:
表1-1 溶胶态分散系示例
相关文档
最新文档