FRANC3D中文手册
三维裂纹扩展分析软件FRANC3D V6.1介绍
5 FRANC3D 中国网站请访问:/
地址:上海市徐汇区宜山路 900 号科技产业化大厦 A 区 411-413 室 邮编:200233 电话:+Байду номын сангаас6 21 51090998
操作界面及工作流程
FRANC3D V6.1 采用流程向导的方式进行操作, 且每一步均采用图形和对话框的用户界 面,极大方便了用户的操作,具有良好的用户体验。这些向导包括: 微动疲劳裂纹萌生分析向导 裂纹引入向导 裂纹扩展分析向导 疲劳裂纹扩展寿命计算向导
FAC 公司( Fracture Analysis Consultants, Inc.)成立于 1988 年,起源于美国康奈尔大学断 裂力学组(Cornell Fracture Group),该公司开 发的 FRANC3D V6.1 继承于康奈尔大学于上世 纪 80 年代开发的 FRANC3D 软件,即现在的 FRANC3D/Classic。虽然两者共享同一个名称, 但 V6.1 版本综合了 Classic 版本 20 多年的开发 和应用经验,用 C++语言进行全新内核编写,将 原来基于边界元的方法更改为利用有限元法, 用 python 语言开发全新界面并采用不同方法来进 行模型处理和断裂力学计算, 无论是界面还是算 法,都有根本不同。
KC-135 疲劳失效
存在的问题
在一般情况下,裂纹是引起各种结构、零部件失效及工程中的各类重大事故的根源。因 此,发现各种裂纹现象、了解裂纹扩展及失稳扩展的条件、掌握裂纹扩展的规律及控制裂纹 的扩展非常有必要。但目前,我们往往还没有对裂纹进行有效的研究和分析,主要表现在以 下几个方面: 1) 2) 3) 4) 5) 目前的设计主要采用强度设计方法,不能对结构件的寿命和失效进行有效的评估, 而失效分析是强度分析的深入和延伸; 对已破坏或出现裂纹的零部件只是凭经验或不断的尝试来进行改进, 没有科学严谨 的方法来进行评测和把控,有的设计改进甚至会减少产品的寿命,加速破坏; 没有专门的专家团队或部门进行可靠性和疲劳寿命评估; 真实的裂纹形态往往是三维的, 要深入进行研究的话还缺乏专业的断裂和失效分析 工具; 如果进行疲劳试验,则实验周期长、耗资大,同时也存在大量随机性和不确定性。
DEFORM-3D基本操作指南
五、模拟参数的定义
这里定义的参数,主要是为了进行有效的数值 模拟。因为成形分析是一个连续的过程,分许多时 间步来计算,所以需要用户定义一些基本的参数: 1、总步数:决定了模拟的总时间和行程。 2、步长:有两种选择,可以用时间或每步的行程。 3、主模具:选择主运动模具。 4、存储步长:决定每多少步存一次,不要太小, 否则文件太大。
四、导入模具文件
1. 导入上下模具的几何文件。在前处理控制窗口中点击增加物体按钮 Inter Objects…进入物体窗口。可以看到在Objects列表中增加了 一个名为Top Die的物体。 2.在当前选择默认Top Die 物体的情况下,直接 选择 然后选 3.本例中选择安装目录下 DEFORM3D\V6.1\ Labs的 Block_Top Die .STL
九、定义物间关系
1.在前处理控制窗口的右上角点击 按钮,会出现一个提示,选择 Yes弹出Inter Object窗口。 2.定义物间从属关系:在v6.1中,系统会自动将物体1和后面的物体定 为从属关系(Slave-Master),即软的物体为Slave,硬的物体设为 Master。
1.点击按钮 ,进入新的窗口 2.选择剪切摩擦方式Shear,输入常摩擦系数constant,如果你对具体 的摩擦系数没有概念,可以选择工艺种类,例如,本例中的冷Cold Forming用的是Steel Die,摩擦系数系统会设为0.12,点击Close按 钮,关闭窗口。 3.回到Inter Object 窗口后选择第二 组。 4.重复1-2的操作, 将Bottom Die 和Workpiece的 摩擦系数也设 为0.12(也可以 在第2步后,点 击按钮 )
deform2d二维deform3d二维deformht热处理deformpc微机版deformf22d简化版本deformf33d简化版本deform系列软件简介deformdeform3d是一套基于工艺模拟系统的有限元系统fem专门设计用于分析各种金属成形过程中的三维3d流动提供极有价值的工艺分析数据及有关成形过程中的材料和温度的流动
三维裂纹扩展分析软件FRANC3D V6.1介绍
FRANC3D V6.1 的工作流程
7 FRANC3D 中国网站请访问:/
地址:上海市徐汇区宜山路 900 号科技产业化大厦 A 区 411-413 室 邮编:200233 电话:+86 21 51090998
建模方法和特点
子模型
FRANC3D V6.1 支持子模型技术,裂纹扩展时仅限于在子模型内进行网格重划,所有 FRANC3D V6.1 支持的有限元软件均支持定义子模型。 实际分析时, 裂纹尺寸相对于结构来说往往很小, FRANC3D V6.1 将网格重划区域限定 在子模型内,可以大大减少数据的传送和处理量,从而提高裂纹扩展分析效率。其余部分的 模型可以包含简化的结构(如 shell 单元)、复杂边界条件(如接触)或完全六面体的网格 模型。重划的子模型会被重新“放入”全局模型,然后对整个模型进行分析。 子模型仅仅用于网格重划,不影响分析的策略,这种方法不同于子结构或局部/全局分 析,它可以在裂纹扩展分析的任何一步重新定义子模型。
全新一代FRANC3D V6.1
微动疲劳与任意三维裂纹扩展分析
上海量维信息科技有限公司
地址:上海市徐汇区宜山路 900 号科技产业化大厦 A 区 411-413 室 邮编:200233 电话:+86 21 51090998
现状分析
在工业中,真实的结构总是存在众多缺陷或裂纹,对于一个含裂纹或缺陷的构件,多在 其服役荷载远低于容许强度的情况下就发生了破坏。 实际工程结构在经受长时间多因素综合 作用下,产生变形、裂纹等缺陷,从而导致整个结构的失效。结构的失效主要由疲劳引起, 其最终失效形式即为断裂,有大约 80%以上的工程结构的断裂与疲劳有关,由疲劳引起的 巨大经济损失及灾难性的后果不胜枚举。 美国的一项调查指出, “每年, 因材料的断裂失效引起的经济损失大概有 1,190 亿美元, 是全美 GNP 的 4%。其中,这些损失中估计有 350 亿美元可以通过应用断裂力学来避免, 又有 280 亿美元可以通过相关的研究避免。”巨大的直接和间接经济损失固然惊人,但是由 于断裂失效引起的人身伤害和生命损失更令人扼腕叹息。
三维断裂分析软件FRANC3D
应变方程确定这些点的扩展方向,它们的扩展尺寸 则由各点相对应力强度因子的大小和用户确定的 最大扩展尺寸共同决定。这些扩展后的点连线后重 新组成新的裂纹面。用户可以重新分析扩展后裂纹 前缘的应力强度因子分布情况。FRANC3D还有一 个优点就是,在裂纹扩展后,只需对很小的一部分 区域重新划分网格,这大大减少了网格划分时间。
断裂分析器FRANC3D(图2)是整个系统的核 心部分。它具有以下功能: 2.2.1 几何模型完善
对于从OSM读入的几何模型,FRANC3D可 以对之进行修改,比如增加点、线、面等。同时,
第6期
贾学明,等:三维断裂分析软件FRANC3D
图1立体对象建模器0sM示意图 Fig.1 Sketch map of 0SM
蕊万K翥7一一丽丽1[lsSi1n旷z∥口十+I㈡了Jz cos2 0]J{ (1)
式中0为决定裂纹前缘点位置的方位角,E(Ⅳ)为 第二类椭圆积分
第6期
贾学明,等:三维断裂分析软件FRANC3D
E(Ⅳ)一I /1一Ⅳ2 sin2 0d0, 舻一L—F∑ (2)
J0
C。
对于给定的a和C值,E(托)一1.211096。
万方数据
在划分好网格以后,把结果写入.bes文件,就 可以进行求解了。求解使用边界元系统BES系统进 行。边界元计算是整个分析中最耗时的。随着单元数 的增加,求解时间也显著增加。用户可以根据需要选 择所需的求解器(QR分解,Gauss消元法、迭代 法),用户可以根据问题的规模选择使用内存(in core)或者外存(out of core)来计算;甚至可以使用 BES的并行计算程序在多台机器上同时计算。 2.2.3 应力强度因子计算和裂纹自动扩展
大的点裂纹的扩展速度相应的也要大。最终的扩展 趋势是裂纹各点的应力强度因子相等。对于无限大 体内埋裂纹,只有圆形裂纹的各点应力强度因子相 等。 3.2 CCNBD试样的应力强度因子计算
FRANC3D-V8.1-用户指南
用户指南Version 8.12022年5月目录1简介 (1)2FRANC3D启动初始化 (1)3FRANC3D文件和数据存档 (6)3.1文件类型 (6)3.2数据存档 (7)4裂纹与模型表面几何 (9)4.1几何重构 (9)4.2裂纹引入 (11)4.2.1裂纹前缘网格模板 (12)4.2.2裂纹引入的表面带有边界条件 (14)4.3裂纹网格划分 (16)4.4边的提取 (18)5局部模型的提取 (20)5.1有限元模型的导入和提取 (20)5.2提取更大的局部模型 (22)5.3提取可以重新划分网格的局部模型 (23)5.4导入有限元模型时的潜在错误 (24)5.4.1重复的网格 (25)5.4.2形状不良的单元 (25)5.4.3远离局部模型的自由节点 (26)5.4.4悬空或孤立单元 (26)5.5不保留表面网格 (26)5.6具有额外分析步的ANSYS模型 (28)6定义初始裂纹 (30)6.1User-Points裂纹 (30)6.2User-Mesh裂纹 (32)6.3多重裂纹 (34)6.4裂纹引入时的潜在问题 (35)6.4.1裂纹位于单个单元面中 (36)6.4.2模型表面几何拐角处的裂纹 (38)6.4.3界面裂纹 (40)6.4.4跨界面裂纹 (42)6.5裂纹的局部坐标系 (43)6.5.1裂纹的平移和旋转 (44)6.5.2定义局部坐标系 (45)7网格划分 (48)7.1表面网格和体网格设置 (48)7.2裂纹前缘模板 (55)8裂纹扩展的潜在困难 (58)8.1几何拐角处的裂纹扩展 (58)8.1.1两个拐角附近的裂纹扩展 (65)8.1.2拐角处未裂开 (67)8.2穿透表面的裂纹扩展 (68)8.3扭转/转动裂纹扩展 (73)8.4裂纹前缘合并 (76)9裂纹前缘拟合 (78)9.1板中的边缘贯穿裂纹–三阶多项式曲线拟合失败 (78)9.2长浅裂纹–多重多项式曲线(Multiple Poly Through Points) (82)9.3移动多项式曲线(Moving Polynomial) (84)9.4凹形裂纹前缘 (89)9.5部分裂纹扩展 (91)9.6裂纹前缘模板问题 (92)9.7看不见的错误 (94)9.7.1振荡裂纹前缘形状 (94)9.7.2重叠裂纹几何 (95)9.7.3部分裂纹扩展 (96)10多载荷工况下的裂纹扩展 (97)11局部模型与全局模型的连接 (111)11.1无裂纹的ANSYS模型 (111)11.2裂纹模型 (112)11.3比较ANSYS全局二阶与一阶单元的SIF (113)11.4局部+全局模型连接 (116)12裂纹面牵引(CFT) (120)12.1裂纹面牵引作为节点力 (120)12.1.1半圆形表面裂纹(弯曲的裂纹前缘) (121)12.1.2贯穿裂纹(直的裂纹前缘) (126)12.2将裂纹面牵引力添加到现有分析步 (130)12.3CFT与ABAQUS幅值数据 (138)12.4带有温度载荷的CFT (138)12.4.1在已有分析步中添加CFT (141)12.4.2在额外的分析步中添加CFT (142)12.4.3在额外的分析步中添加CFT–无热膨胀 (144)13裂纹面接触(CFC) (148)13.1ANSYS厚板 (148)13.1.1无裂纹面接触 (150)13.1.2默认的裂纹面接触 (151)13.1.3修改的裂纹面接触 (157)13.1.4修改后的裂纹前缘模板 (160)13.2ABAQUS厚板 (161)13.2.1无裂纹面接触 (161)13.2.2默认的裂纹面接触 (163)13.2.3默认的裂纹面接触和粗糙网格 (165)13.2.4修改的裂纹前缘模板 (165)13.2.5裂纹面绑定接触 (167)14ABAQUS初始应力 (169)14.1ABAQUS残余应力 (169)14.2残余应力作为初始应力 (170)14.3FRANC3D中包含的残余应力 (173)15使用Python扩展FRANC3D功能:分离约束板与粘接板比较 (177)15.1无裂纹模型 (177)15.1.1ABAQUS集合和曲面 (177)15.1.2粘接板 (178)15.2无裂纹板分析 (179)15.3初始裂纹分析 (180)15.3.1分离板 (180)15.3.2粘接板 (182)15.3.3变形形状 (183)16减少分析时间 (185)16.1使用较小的局部模型 (185)16.1.1多个局部模型区域 (185)16.1.2合理的初始裂纹形状 (185)16.2仅模板节点/单元的结果 (186)16.3减少时间增量步/分析步 (187)16.4时间输出 (187)17FRANC3D错误信息和可能的解决方案 (188)17.1访问文件和文件夹时的通用错误 (188)17.2导入模型和FRANC3D重启动文件时的错误 (188)17.3裂纹引入时的错误 (190)17.4SIF计算和裂纹扩展时的错误 (194)17.5有限元求解器错误 (196)17.5.1有限元输入(关键字)文件 (197)17.5.2分析命令行 (197)17.5.3有限元求解器或许可证 (197)18定义任意载荷或设置 (198)19其它事项 (202)19.1工作目录的设定 (202)19.2Abaqus设置 (202)19.3裂纹扩展步长和裂纹前缘单元环半径 (202)19.4有限元求解错误 (203)19.5FRANC3D计算弹塑性J-积分 (204)19.6制作裂纹扩展动画 (206)19.7如何使用COD或VCCT计算裂纹扩展 (207)1简介本指南是《参考手册》(Reference Manual)和《案例教程》(Tutorial)的补充,描述了FRANC3D软件的一些基础功能,旨在帮助更有经验的用户。
FRANC3D_用户文献
学术论文
学术论文
• A 2d Multiscale Procedure For Fatigue Crack Nucleation(127页)
– 利用 FRANC3D 对微观模型进行任意形状三位裂 纹扩展模拟,并获得三种断裂模式的应力强度因 子。他的导师为康奈尔大学断裂力学组最权威的 教授——Anthony R. Ingraffea。
• Effects of Combined Loads on the Nonlinear Response and Residual Strength of Damaged Stiffened Shells(183-196页)
– NASA Langley Research Center – Lockheed Palo Alto Research Laboratory – 会 议 名 称 : FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures
• Determination Of Mixed-mode Stress Intensity Factors, Fracture Toughness, And Crack Turning Angle For Anisotropic Foam Mater ( 4936/4939/4941/4943/4950 页)
• Sub-modeling of Thermal Mechanical Fatigue Crack Propagation (55-85页)
– 使用 FRANC3D 对发动机涡轮叶片结构壁上贯穿 裂纹的损伤容限进行评估,使用了 FRANC3D 的 子模型技术,并考虑了温度的影响。
发动机应用案例
FRANC3D_V7.0新版本功能介绍
N
j 1
n
i, j
20
Multiple/Variable DOF Approach (Cont.)
The approach generates a unique cycle count for each of the crack fronts.
21
Features of the New Approach
6
Sub-Model Generation Tool
7
Sub-Model Generation Tool
8
Sub-Model Generation Tool
9
ABAQUS/ANSYS Emulation
FRANC3D can be run in emulation mode, which mimics the model display and view manipulation “look & feel” used by ABAQUS/CAE or ANSYS/Classic
14
Thick-walled Cylinder Model (Cont.)
As the crack grows into the central bore FRANC3D automatically transitions from a single to multiple crack fronts.
Ignore cases where a projected point cannot be found
stepi 1
stepi 1
stepi
stepi
Average the computed cycles for all crack front nodes to find one value for the cycles required to grow from crack front i to crack front i+1
Deform3D操作手册中文翻译
Deform3D操作手册中文翻译Chapter 1 DEFORM概述1.5 幾何表現Deform可以在進行2D或者3D的模擬,,通常,2D的模型較小,更容易設置且計算較快.一般的,如果一個模型可以用2D來模擬就不需要使用3D來模擬,因為3D模型所增加的細節而耗費的運算時間是不必要的.在2D模擬中有兩種幾何形式:軸對稱和平面應變.軸對稱模型認為滿每一個面的幾何特征都是從同一個中心線發射出來的. 平面應變認為沒有材料在平面垂直方向,上流動,並且在每個平面的方向上的流動是一致的.圖2所示為軸對稱及平面應變的實例. 近似與軸對稱或平面應變的物體也可以通過忽略其微小的差異而使用2D進行模擬. 例如.一個頭部不是規則六邊型的螺栓可以通過將頭部近似為半徑為0.525*(頭部兩邊之間的距離)的圓柱來簡化為軸對稱模型; 一個不斷變薄的葉輪的葉片可以近似成幾個平面應變截面的組合.一個圓柱的buckling完全是一個3D的過程.如果需要預測就必須進行3D的建模.盡管模型的確是軸對稱的,但是軸對稱的模擬不能顯示buckling(圖三).這樣的模型不能將3D簡化為2D來模擬.1.6. Deform系統Deform系統包括以下3個主要組成部分:1.前處理器: 用來新建,組裝,修改分析模擬或者生成數據文件需要的數據.2.模擬求解器:用來進行數字計算和寫結果文件.求解器讀數據文件,然後進行求解計算,最後將相應的結果數據寫到結果數據文件中.同時,求解器也用來在運算過程中對需要重新劃分網格的工件進行無縫的重劃網格式而生成新的有限元網格.當計算進行時,其還將包括錯誤信息在內的狀態信息寫入信息文件(.msg)和日志(.log文件).3.後處理器:用來讀取和以圖形的方式顯示求解器計算出來的結果文件,同時可以用來提取數字資料.1.7.前處理器DEFOR 前處理器使用一個用戶圖形界面來整理模擬需要的數據,同時其也用來輸出數據.工件描述(Object description)與工件相關的所有數據,包括幾何形狀,網格,溫度,材料等等.材料參數描述材料在經歷合理變形過程中需要的各種數據。
FRANC3D_V7.0新版本功能介绍
6
Sub-Model Generation Tool
7
Sub-Model Generation Tool
8
Sub-Model Generation Tool
9
ABAQUS/ANSYS Emulation
FRANC3D can be run in emulation mode, which mimics the model display and view manipulation “look & feel” used by ABAQUS/CAE or ANSYS/Classic
Ignore cases where a projected point cannot be found
stepi 1
stepi 1
stepi
stepi
Average the computed cycles for all crack front nodes to find one value for the cycles required to grow from crack front i to crack front i+1
Default center of rotation is the center of the model
Recenter
Version 7 New Features
• New geometric intersection engine for crack insertion (increased robustness)
10
Fatigue Crack Growth Rate Model Library
• Separate growth rate and R-ratio models (except NASGRO eqn.) • All model can be specified as temperature dependent Growth rate models: Sigmoidal Paris • Paris Bi-Linear Paris • Bi-Linear Paris • Sigmoidal • Hyperbolic Sine • Tabular • NASGRO Tabular Hyperbolic Sine R-ratio models: NASGRO • None • Walker • Closure • Tabular
FRANC3D-V8.1-ABAQUS教程
2. 案例 1:立方体中的裂纹引入和扩展
在本案例中,我们模拟了远场张力下立方体中的单个表面裂纹。假设用户熟 悉 ABAQUS 的前处理操作,我们使用 ABAQUS CAE 创建有限元模型,接下来 介绍 FRANC3D 所需的步骤:1)读取模型;2)引入裂纹;3)执行 ABAQUS 分 析;4)计算应力强度因子。所有这些步骤都会在下方描述。
步骤 2.1:导入完整的 ABAQUS 有限元模型 ...........................................5 步骤 2.2:选择有限元模型中的保留项......................................................6 步骤 2.3:显示有限元模型..........................................................................8 2.3. 步骤 3:导入并剖分模型 ...........................................................................9 2.4. 步骤 4:引入裂纹 .....................................................................................14 步骤 4.1:定义一个新的裂纹....................................................................14 步骤 4.2:从文件中导入裂纹....................................................................19 2.5. 步骤 5:静态裂纹分析 .............................................................................21 步骤 5.1:静态裂纹分析............................................................................22 步骤 5.2:选择有限元求解器....................................................................23 步骤 5.3:指定 ABAQUS 分析选项 .........................................................23 2.6. 步骤 6:计算应力强度因子 .....................................................................25 2.7. 步骤 7:手动裂纹扩展 .............................................................................27 步骤 7.1:扩展裂纹....................................................................................27 步骤 7.2:指定拟合和外推........................................................................30 步骤 7.3:指定裂纹前缘模板....................................................................31 2.8. 步骤 8:自动裂纹扩展 .............................................................................33 步骤 8.1:打开 FRANC3D 重启文件 .......................................................33 步骤 8.2:裂纹扩展分析............................................................................33 步骤 8.3:指定扩展规则............................................................................34 步骤 8.4:指定拟合和模板参数................................................................36 步骤 8.5:指定扩展计划............................................................................37 步骤 8.6:指定求解器................................................................................37 2.9. 步骤 9:SIF 历史和疲劳寿命 ..................................................................39 步骤 9.1:沿路径的 SIF.............................................................................39 步骤 9.2:所有前缘的 SIF.........................................................................41 步骤 9.3:预测疲劳寿命............................................................................42 2.10. 步骤 10:用更大的局部模型继续扩展................................................49 步骤 10.1:提取并保存裂纹几何..............................................................49 步骤 10.2:从保存的裂纹几何重新启动..................................................50 步骤 10.3:合并 SIF 历史..........................................................................54 附录 A:Tie 约束的 ABAQUS 局部模型 .................................................................60 附录 B:实体和壳 Tie 连接的 ABAQUS 模型 ........................................................71 附录 C:ABAQUS 关键字 ........................................................................................77
FRANC3D中文手册
FRANC3D中⽂⼿册1.产品介绍FRANC3D是⼀个在已有的有限元⽹格中插⼊和扩展裂纹或空隙的程序。
本⼿册描述了程序的图形⽤户界⾯的组件,特别是版本7。
它在适当的地⽅还包括⼀些基础理论和概念,但FRANC3D理论参考提供了更多这些细节。
单独的FRANC3D命令语⾔和Python扩展参考提供了所有命令和相应Python函数的列表。
有三个独⽴的FRANC3D教程⽂档描述了程序的使⽤情况,并结合了三种⽀持的商业FE程序:ANSYS、ABAQUS和NASTRAN。
此外,还有⼀个FRANC3D Benchmark⽂档描述了许多具有应⼒强度因⼦(SIF)解析或⼿册解决⽅案的裂缝配置,并将FRANC3D SIF与这些值进⾏⽐较。
要开始使⽤FRANC3D,你可以选择其中的⼀个教程并遵循步骤。
可以在本教程的任何FRANC3D建模步骤中查阅此参考⽂档以获取更多详细信息。
还应该尝试复制⼀些基准⽰例,或选择⾃⼰的模型进⾏验证。
在本⽂档中,⾯板上的菜单按钮,对话框或向导⾯板标题以及按钮⽤粗体⽂字表⽰。
下划线⽂本表⽰对话框或向导⾯板中的字段,标签和可选选项。
模型和⽂件名将以斜体⽂字表⽰。
这种格式应该与教程⼀致。
2.通⽤操作和3D视图操作FRANC3D主窗⼝的图像如图2.0.1所⽰。
⼤部分屏幕由显⽰当前模型的3D图形窗⼝使⽤。
⾸次显⽰模型时,3D视图将设置为使观察者从正z⽅向的位置朝向模型中⼼。
观看者与模型之间的距离设置为使整个模型可见。
对于⼤多数操作,⼈们可能希望改变视图以查看模型的不同侧⾯和/或更仔细地查看细节。
与许多其他程序⼀样,通过按下⿏标按键和键盘按键的适当组合,在3D图形窗⼝中移动⿏标,可以更改视图。
视图处理有五个基本功能。
为每个功能定义了⿏标按键和键盘按键的独特组合。
可以使⽤“⾸选项”对话框中的3D视图选项卡更改按钮和键分配(在第5.4节中介绍)。
视图功能是(使⽤FRANC3D默认⿏标和键盘键分配):旋转(⿏标左键,没有键盘按键):⿏标移动旋转屏幕上的模型。
FRANC3D教程
2012
–
6
FRANC3D Development History
• Development of FRANC3D was funded by:
– USA Air Force
– USA Navy
– NASA
– Others
7
What Does FRANC3D Do?
FRANC3D Modifies the Sub-model
uncracked model after crack insertion
FRANC3D
FRANC3D modifies the sub-model, inserting a crack and remeshing the model locally. It outputs an input file that combines the global and sub-model (ABAQUS) or it outputs the sub-model and a macro command file that will combine the models (ANSYS).
2
Agenda
• Introduction to FRANC3D
• Demo/Hands-on: build an uncracked model
• Overview of the crack insertion process • Demo/Hands-on: insert initial crack and run analysis • Stress Intensity Factor (SIF) computation - theory • Demo/Hands-on: SIF computation - practice • Crack growth - theory • Demo/Hands-on: Crack growth - practice • Demo/Hands-on: Student generated models
FRANC3DV4微动疲劳、三维裂纹扩展和损伤容限分析软件
FRANC3D V7.4微动疲劳、三维裂纹扩展和损伤容限分析软件新一代FRANC3D(FRacture ANalysis Code for 3D)是美国FAC公司开发的新一代裂纹分析软件,用来计算微动疲劳裂纹萌生寿命(包括裂纹萌生位置和起裂方向)以及工程结构在任意复杂的几何形状、载荷条件和裂纹形态下的三维裂纹扩展和寿命。
FAC公司(Fracture Analysis Consultants, Inc.)成立于1988年,起源于国际权威的断裂力学研究机构-康奈尔大学断裂工作组,与美国军方和政府组织长期进行项目合作研究和软件联合开发。
FRANC3D是由FAC公司联合美国空军研究实验室(AFRL)、NASA马歇尔太空飞行中心、美国海军航空系统司令部(NAVAIR)及波音、普惠等公司开发的新一代裂纹分析软件,是目前全球最专业、最流行的任意三维裂纹扩展分析与损伤容限评估软件。
FRANC3D的工作流程FRANC3D采用有限元法计算断裂力学参数和任意三维裂纹扩展,与ANSYS、ABAQUS、NASTRAN 等有接口。
其工作流程如下图所示:FRANC3D的工作流程FRANC3D的功能及特点参数化裂纹库FRANC3D具备参数化裂纹库,可引入任意形状的初始裂纹:●零体积缺陷(裂纹)✓椭圆形/圆形裂纹(包括埋藏裂纹)✓穿透型单裂纹前缘裂纹✓穿透型双裂纹前缘裂纹✓长条形浅表裂纹✓圆形周向裂纹(内环、外环)✓跑道型裂纹✓用户自定义平面/近似平面内任意形状裂纹✓用户自定义空间非平面任意三维裂纹●空腔(模拟材料中的气孔、夹渣、缩孔、缩松等)●引入多重裂纹●从外部文件读入裂纹数据自适应网格划分FRANC3D采用自适应网格重新划分技术来引入和更新三维裂纹网格,并采用网格划分模板保证裂纹尖端高质量的网格,是公认的同类软件中计算精度最高的断裂力学软件。
裂纹尖端高质量的网格裂纹尖端使用1/4节点的奇异单元裂纹尖端局部网格对称来减少离散误差裂纹区域网格自动细化以保证足够的精度裂纹面划分粗大的网格以减少单元数量利用M-积分计算断裂力学参数FRANC3D默认采用M-积分来计算应力强度因子,分可分别计算出各向同性和各向异性材料中KI、KII、KIII的结果,能考虑温度、裂纹面接触、裂纹面牵引及残余应力等因素的影响。
DEFORM_3D 中文实例手册
DEFORM 3D 中文实例
1 长方体锻造……前处理................................................ 5 1.1.创建新问题.........................................................6 1.2.设置模拟控制参数...................................................6 1.3.加载模型对象数据...................................................7 1.4.设置材料属性.......................................................7 1.5.添加上模...........................................................7 1.6.添加下模...........................................................7 1.7.设置上下模的移动...................................................7 1.8.设置作业温度.......................................................8 1.9.设置模拟条件.......................................................8 1.10.添加接触关系(INTEROBJECT RELATIONSHIPS) .......................................................................9 1.11.生成数据数据。....................................................9 1.12.保存并退出前处理界面..............................................9 1.13.开始计算..........................................................9 1.14.后处理...........................................................10 2.操作使用说明....................................................... 13 2.1.模型导入..........................................................13 2.2.网格划分..........................................................13 2.3.材料添加..........................................................14 2.4.模型定位..........................................................14 2.5.接触关系定义......................................................15 2.6.模拟控制设置......................................................15 2.7.数据文件生成......................................................15 2.8.保存前处理设置....................................................16 2.9.启动模拟计算器....................................................16 2.10.后处理操作.......................................................17 3.方块锻造模拟&后处理................................................ 17 3.1.介绍..............................................................17 3.2.打开之前存储过的问题..............................................18 3.3.开始模拟..........................................................18 3.4.结果的后处理......................................................19 3.5.退出..............................................................23 4.立方环............................................................. 24 4.1.介绍..............................................................24 4.2.创建一个新问题....................................................34 4.3.创建对象..........................................................34 4.4.坯料的网格化......................................................25 4.5.设置边界条件......................................................25 4.6.对象间的关系设置..................................................27 4.7. 完成前处理并进行模拟运算.........................................27 4.8. 后处理.............................................D 中文实例
FRANC3D教程(PPT文档)
• Present theory and approaches to computational fracture mechanics built into the program.
• Hands-on sessions give participants a chance to try the code with tutors here to help.
• Opportunity for participants to ask questions.
2
Agenda
• Introduction to FRANC3D • Demo/Hands-on: build an uncracked model • Overview of the crack insertion process • Demo/Hands-on: insert initial crack and run analysis • Stress Intensity Factor (SIF) computation - theory • Demo/Hands-on: SIF computation - practice • Crack growth - theory • Demo/Hands-on: Crack growth - practice • Demo/Hands-on: Student generated models
3
FRANC3D Product
• FRANC3D (FRacture ANalysis Code 3-D) uses finite element method to simulate crack growth analysis
FRANC3D安装说明
FRANC3D安装说明
FRANC3D V6.0试用版安装说明
双击Franc3D_x64.msi(64位版本)或Franc3D_x86.msi(32位版本)文件,按照提示安装到本地计算机上
1)服务器端设置
步骤1:将安装目录下的License文件夹拷贝到服务器任意目录下,如C:\FRANC3D;
步骤2:将franc3d.lic文件中的“hostname”改为服务器名,拷贝到License文件夹下;
步骤3:双击License文件夹下的rlm.exe文件,出现FRANC3D License的DOS 窗口,显示license服务已启动。
注:可以将rlm.exe文件设置为桌面快捷方式,每次从桌面双击打开。
也可以设置为开机自动打开,如将rlm.exe文件拖动到“开始->所有程序->启动”目录下,或设置一个自启动服务。
2) 客户端设置
步骤1:设置环境变量:RLM_LICENSE,变量值为:5053@hostname,其中hostname为服务器的计算机名(如果为Win7系统,则需要具有管理员权限);
步骤1:双击桌面上Franc3d快捷方式,打开FRANC3D界面。
FRANC3D-V7-Training-Part-4
Anchor at Node
Set crack position and orientation.
Set crack-front template mesh parameters.
Part IV 6
Crack Insertion Wizard – Library Shapes
Part IV
2
Workshop Agenda
• • • • • • Part I: Introduction to Fracture Mechanics Analysis Part II: Introduction to FRANC3D Part III: FRANC3D FE model import - demo & hands-on Part IV: Crack Insertion Process – demo & hands-on Part V: Crack Growth and Fatigue Life – Theory, Rules & Models Part VI: FRANC3D crack growth, SIF history & fatigue life - demo & hands-on • Part VII: FRANC3D Session Log, Playback, Command Line & Python • Part VIII: Known issues & what to do if something goes wrong • Part IX: Capabilities coming soon
quarter-point singular wedge crack-front elements tetrahedral elements used for most of volume mesh
Franc3D_Weld_Tie_Tutorial
FRANC3D V6.0 withABAQUS V6.11.1 Analysis of a Welded Connection Using *Tie ConstraintsWritten by:Bruce Carter ( bruce@ )Fracture Analysis Consultants, Inc ()Written: March 2012Table of Contents:1.0Introduction (3)2.0 Building the Model in ANSYS for Heat Transfer Analysis (3)3.0 Performing a Structural Analysis .......................................................... 错误!未定义书签。
4.0 Performing the Fracture Analysis (4)Appendix .......................................................................................................... 错误!未定义书签。
1.0 IntroductionThis tutorial describes the steps needed to analyze cracking in a model of a weld connection using FRANC3D V6.0 and ABAQUS V6.11.1. This tutorial does not describe how to build the ABAQUS model of the weld connection; but images of the model and some of the *Tie constraints are provided for reference. Note that we maintain all the *Part/*Instance/*Assembly information during the fracture simulation process.2.0 Illustrating the ABAQUS Model of a Weld ConnectionThe ABAQUS model of the simple welded connection is shown in Figure 1. Two plates are welded together. The model is composed of the following parts: flange, frame, bottom weld, and the top weld. The top weld is broken into three pieces and the central portion of the top weld will be extracted from ABAQUS for use with FRANC3D. Global and local portions of the mesh are defined, Figure 2, and .inp files are written for each portion. Various parts of the model are held together using ABAQUS’s *Tie constraints. Figure 3 shows some of the surfaces that are involved; the welds are tied to the column (as well as the flange) – left image in Figure 3. The top weld is made of three pieces that are tied together – right image in Figure 3.Figure 1. ABAQUS model of a simple weld connection.Figure 2. ABAQUS global and local models of a simple weld connection.Figure 3. ABAQUS *Tie constraint surfaces for a simple weld connection.Once the two .inp files have been exported from ABAQUS, we can proceed with the fracture analysis using FRANC3D.3.0 Performing the Fracture AnalysisIn this section, a crack is inserted and then propagated. First, we read the local .inp file that was created in Section 2. Start FRANC3D and then Open File, switching the File Filter to ABAQUS inp Files, and then select the appropriate .inp file. We wish to retain all of the material properties; we will select the mesh facets to retain as well as selecting the contact/constraint surfaces, Figure 4. We select the two surfaces that represent the ends of the piece of weld and we retain the mesh facets for these surfaces (middle panel of Figure 4). We select the four constraint surfaces (right panel of Figure 4) without retaining the mesh; note that two of these surfaces have already beenselected in the previous panel.The above selections allow us to insert the crack in the weld and remesh around it while maintaining a record of the surfaces that are involved in the original *Tie definitions. The resulting model with retained mesh facets for one end of the weld is shown in Figure 5.Figure 4: FE Mesh File select items to retain dialogs.Figure 5: Local portion of weld with mesh facets retained on the ends.We will insert a through crack, Figure 6, which is 2 mm wide and penetrates the weld. The template radius is set to 0.1, Figure 7, so that the template mesh fits within the bottom narrow surface of the weld geometry. ABAQUS is used to do the volume meshing.Figure 6: Through crack dimension and position/orientation dialogs.Figure 7: Through crack template radius dialog along with the meshing parameter dialog.The resulting cracked and remeshed model is shown in Figure 8. Note that ends of the weld have the original mesh facets retained while the surfaces that were tied to the frame and the flange have been remeshed.Figure 8: Final meshed crack model.We will perform a ‘static’ analysis using ABAQUS. Choose Analysis and Static Crack Analysis from the menu bar. Provide a file name (weld_step_000.fdb) and choose ABAQUS as the finite element analysis program. The analysis options are shown in Figure 9. We select theglobal model .inp file to connect to this local portion, and then select Next.Figure 9. Static analysis options for ANSYS.The next dialog box provides the user with options for connecting the local and global portions. We will use the existing *Tie definitions. When we select this radio button, the MergeParts/Instances check box, Figure 10, is automatically selected. Select Finish to start theABAQUS analysis of the combined local/global model.Figure 10: Static analysis ABAQUS local/global model connection dialog.Once ABAQUS has finished running, we can compute the SIFs; choose Cracks and Compute SIFs from the menu. In the dialog that is presented, Figure 11, select M-integral and then select Finish to plot the SIFs, Figure 12. Note that there are two crack fronts, so two plots will be displayed and the SIFs vary along the crack front as identified by the red A – B on the plot.ABAQUS should automatically write the results to a .fil file that FRANC3D automatically reads. You can view the deformed shape, Figure 13, or other field variables using ABAQUS by readingthe .odb file that ABAQUS should generate.Figure 11: Compute SIFs dialog.Figure 12: M-Integral based SIFs.Figure 13: Compute SIFs dialog.11。
[Franc3D_Abaqus_Tutorial]
ABAQUSTutorialVersion 5Fracture Analysis Consultants, IncRevised: September 2010Table of Contents:1.0Introduction (2)2.0Tutorial 1: Crack Insertion and Growth in a Cube (2)2.1Step 1: Creating the ABAQUS Model (3)2.2Step 2: FRANC3D Crack Insertion and Analysis (9)3.0Tutorial 2: Center Through-Crack in a Plate Sub-Domain (23)3.1Step 1: Creating the uncracked model using ABAQUS (24)3.2Step 2: Crack insertion and remeshing with FRANC3D (30)3.3Step 3a: Merging the cracked, local part with the global part using FRANC3D and analysis using ABAQUS (35)3.4Step 3b: Merging the cracked, local part with the global part in ABAQUS and analysis using ABAQUS (38)3.5Step 4: Calculate fracture parameters using FRANC3D (42)4.0Tutorial 3: Automated Crack Growth in a Plate, with Crack Face Tractions (43)4.1Step 1: Creating the uncracked model using ABAQUS (43)4.2Step 2: Crack insertion with FRANC3D (47)4.3Step 3: Applying crack face traction (51)4.4Step 4: Automated crack growth analyses (53)1.0 IntroductionThis manual contains tutorials that introduce the modeling capabilities available through the interface of FRANC3D Version 5 and ABAQUS Version 6.6 (or later). The first tutorial describes a model where the entire domain is remeshed during crack insertion and crack growth. The second tutorial describes a model where only a local subdomain is remeshed during crack insertion and growth. The second tutorial provides somewhat more detailed instructions for the ABAQUS portion because of the increased modeling effort. The third tutorial describes the process of applying crack face tractions along with the process of automated crack growth. It is intended that the user perform the operations as they are presented, but you should feel free to experiment and consult the other reference documentation whenever necessary.Menu and dialog box selections are indicated by bold text, such as File. Model and corresponding file names will be indicated by italic text and window names and window regions are underlined. So, selections that need to be made are indicated by bold text and the windows and regions of windows where these selections are made are underlined.2.0 Tutorial 1: Crack Insertion and Growth in a CubeThis tutorial contains an example for FRANC3D with ABAQUS 6.6. The capabilities of the program are illustrated by analyzing a surface crack in a simple component (a cube). Note that the ABAQUS CAE user interface generally changes with each new version, so the images of icons or the menu layout might be different if you are using later versions (6.7 - 6.10).First, all the steps needed to create the model geometry using ABAQUS are briefly described in Section 2.1. It is assumed that the user is somewhat familiar with ABAQUS. Once the model is created in ABAQUS, the FRANC3D steps necessary to read the mesh information, insert a crack, rebuild the mesh, perform the ABAQUS analysis, and compute stress intensity factors are described in Section 2.2.Note that ABAQUS generally provides a number of different ways to access menu and dialog entries; you can use your favorite shortcuts or follow the tutorial.2.1 Step 1: Creating the ABAQUS ModelFirst, we create a cube model using ABAQUS. We assume that the user knows how to use ABAQUS, but we provide enough details in the steps below for a novice user to create the simple cube model.1.Start with the ABAQUS graphical user interface (ABAQUS CAE). In the Module listlocated under the toolbar (Fig 2.1), select Part to enter the Part Module:; this is the default when you start ABAQUS CAE. From the main menu (the top menu bar), select Part and then select Create (or select Create from thePart Manager dialog); alternatively right-click on Parts in the model tree window and select Create. The Create Part dialog box will appear (Fig 2.2); provide a name (e.g.cube) and set Approximate size to 10. The Modeling Space should be 3D, the Typeshould be Deformable and the Shape should be Solid. Select Continue… and a grid will be displayed in the main CAE window – this is the Sketcher Window.Figure 2.1: ABAQUS/CAE tool bar and main menu.2.The cube is created by first creating a square in the Sketcher Window. Select theRectangle tool from the toolbar on the left side of the Sketcher Window, and create a square that goes from (-1,-1) to (1,1) (you can start at any of the corners). The partshould appear as in Fig 2.3.Figure 2.2: Create Part dialog.Figure 2.3: ABAQUS Sketcher with a square3.Click on the red X or middle-click in the Sketcher Window so that the Done buttonappears in the lower prompt area: . The Edit Base Extrusion window will be presented after pressing Done (Fig 2.4); enter 2 for the depth and select OK. The square will be extruded to create a cube.Figure 2.4: Edit Base Extrusion dialog.4.Save the model by selecting File and Save As. Enter a file name (e.g. cube) and selectOK to save the .cae file.5.From the Module list, select Property. From the main menu, selectMaterial and then select Create; or select the Create Material icon. The Edit Material dialog box is displayed (Fig 2.5). Provide a name for the material (e.g. steel) and then select Mechanical – Elasticity – Elastic from the list. Enter values for the Youn g‟s modulus and Poisson ratio (e.g. 10000 and 0.3) and select OK.6.From the main menu, select Section and Create; or select the Create Section icon.The Create Section dialog will be presented; enter a name for the section (e.g.cube_section) and select Continue. The Edit Section window is displayed next. The Material should be the material created in Step 5 (e.g. steel). Select OK to finish.Figure 2.5: Edit Material dialog.7.Assign the section properties to the cube by selecting Assign from the main menu andthen Section from the available options. Move the mouse over the cube and click the left mouse button. Select Done from the lower prompt area once the cube has beenhighlighted. The Edit Section Assignment window is displayed; select OK to finish. 8.From the Module list, select Assembly. From the main menu, select Instance and selectCreate. The Create Instance window is displayed, select OK to finish.9.From the Module list, select Step. From the main menu, select Step and Create. TheCreate Step window is displayed, provide a name (e.g. CubeLoad) and choose Static, General select Continue... The Edit Step window is then displayed. Type in adescription of the loading and select OK to finish. (You can examine the other tabs and fields at your leisure.)10.The default ABAQUS output is okay, but if you want to see which results are availablefollow these steps. From the main menu, select Output and then Field Output Requests and then Manager. The Field Output Requests Manager window is displayed. Click on the cell labeled Created and select Edit from the right side to view the output options.Select OK or Cancel to close the Edit dialog and then select Dismiss to finish with the Output Request Manager.11.From the Module list, select Load. From the main menu, select Load and Create. TheCreate Load window is displayed. Provide a name and choose Pressure and selectContinue. Pick the top surface of the cube and select Done from the lower prompt area.The Edit Load window is displayed; set the uniform pressure magnitude to be -1.0. The resulting model should appear as in Fig 2.6; the symbols for the boundary conditions are shown.12.From the Module list, select Load (if you changed modules after Step 11). From themain menu, select BC and then select Create. The Create Boundary Condition window is displayed. Provide a name and choose Symmetry/Antisymmetry/Encastre and select Continue. Pick the bottom face of the cube and select Done from the lower prompt area;you will need to rotate the model to see the bottom face. The Edit Boundary Condition window will be presented, choose PINNED and select OK. The boundary condition symbols are shown on the model.13.From the Module list, select Mesh. Choose Part from the Object list:. Alternatively, you can create an independent instance in Step 8. Structured hexahedral meshing is the default, but if you want to make sure, follow these steps. From the main menu, select Mesh and then Controls. The Mesh Controls window is displayed. Choose Hex and Structured and select OK to finish.14.From the main menu, select Mesh and then select Element Type. The Element Typedialog is displayed; leave Standard for Element Library, choose Quadratic forGeometric Order and leave 3D Stress for the Family. Select OK to finish.15.From the main menu, select Seed and then select Part. Leave the default Approximateglobal size at 0.2 and select OK to finish.16.From the main menu, select Mesh and then select Part. Select Yes from the commandprompt area to the question: "Ok to mesh the part?". The part will be meshed with brick elements, Fig 2.7.17.From the Module list, select Job. From the main menu, select Job and Create. TheCreate Job dialog is displayed; provide a job name (cube_in_tension for example) andselect Continue. The Edit Job window is displayed. Type in a description and select OK to finish. (You can peruse the other tabs and fields at your leisure.)Figure 2.6: ABAQUS cube with boundary conditionsFigure 2.7: ABAQUS brick mesh for a cubeSpecial Note: Click on the tab below the Modeling Window (at the very bottom) and type: mdb.models['model_name'].setValues(noPartsInputFile=ON)where …model_name‟ is the actual model name you are using, and then press “Enter”.This is required because FRANC3D doesn‟t read Parts.18.From the main menu, select Job and Manager. The Job Manager window is displayed.Select Submit on the right side. The analysis will start and should complete successfully.Select the Results option on the right side to view the results.19.Save the model using the File and Save As menu options. Note that a number of fileswill be created automatically as ABAQUS runs. Included in the set of files should be an .inp file with the Job name as the prefix. This is the file that will be read by FRANC3D.This initial analysis provides baseline results and ensures that we have created a correctmodel.Note that the purpose of Steps 18 and 19 is not merely to create the .inp file that FRANC3D requires, but to perform an analysis and look at the results to make sure the displacement and stress results are as expected. You can skip these steps and simply Write Input by right-clicking on the job name under Analysis and Jobs in the model tree window. Don‟t forget to save the .cae model file in case you wish to return to this model and modify properties, etc.You can Exit from ABAQUS CAE now.2.2 Step 2: FRANC3D Crack Insertion and AnalysisWe need to start with a pre-existing mesh for FRANC3D. We will use the .inp file created by ABAQUS during Step 1.19.1.Start with the FRANC3D graphical user interface, Fig2.8, and select File and Open.2.Switch File Filter in the Open Model File window, Fig 2.9, to Abaqus Files (*.inp) andselect the file name for the model, called cube.inp here. Select OK or double click on the file name. The next set of wizard panels allows you to choose the data that will beretained from the ABAQUS .inp file, in addition to the nodes and elements. The first panel, Fig 2.10, lets you choose to select all or individual items, choose selected items and select Next to get to the panel shown in Fig 2.11. We will retain all the material and boundary conditions as this is a full-model and both the material and boundary conditions will be transferred to the new mesh once the crack is inserted. Select Next and then select Finish in the final wizard panel (Fig 2.12).Figure 2.8: FRANC3D graphical user interfaceFigure 2.9: Open Model File dialog boxFigure 2.10: ABAQUS Model retain wizard panel.Figure 2.11: Select items to retain wizard panel.Figure 2.12: Finish to proceed wizard panel.The model will be read and displayed in the modeling window. You can turn on the surface mesh and manipulate the view. The model should appear as in Figs. 2.13 and 2.14, which shows that the mesh on the upper surface is retained because we chose to retain the pressure boundary conditions; the mesh on the bottom surface should also be retained.We will now insert a half-penny surface crack into the model.3.From the FRANC3D menu, select Cracks and New Flaw Wizard. The first panel of thewizard should appear as in Fig 2.15. The default flaw type is Crack (zero volume flaw) and this is what we want, so select Next.4.The next panel of the wizard, Fig 2.16, allows us to choose the type of crack, either anelliptical crack, a through-crack, or a user-defined shape. The default shape is the ellipse, which is what we want, so select Next.Figure 2.13: ABAQUS model converted to FRANC3D showing retained facets on the pressuresurfacefixed surfaceFigure 2.15: New flaw wizard first panel to choose flaw typeFigure 2.16: Flaw wizard panel to choose zero volume flaw type5.The next panel of the wizard, Fig 2.17, allows us to specify the size of the ellipse. Enter0.2 for both a and b and select Next.6.The next panel of the wizard, Fig 2.18, allows us to specify location and orientation ofthe flaw. Enter 90 for the 1st Rotation Angle and set the rotation axis to X and set the Z axis Translation to 2. The flaw is displayed along with the model and should appear as in Fig 2.18; select Next when ready.Figure 2.17: Flaw wizard panel to set size of ellipseFigure 2.18: Flaw wizard panel to set location and orientation7.The next panel of the wizard, Fig 2.19, allows us to specify the crack front templateparameters. We will leave all values at their defaults; select Finish when ready. The program begins the process of inserting the flaw into the original model and then meshes the resulting cracked model. The progress of the operations is displayed on the screen, Fig 2.20. When the meshing is completed, the Flaw Insertion Status window willdisappear and the newly meshed cracked model will be displayed, Fig 2.21.Figure 2.19: Flaw wizard panel to set crack front template parametersFigure 2.20: Flaw Insertion Status windowNote that the default mesh that is generated will have about 16,500 elements. The number of elements can be reduced by increasing the Surface Refinement Factor from 1.2 to 1.3 and increasing the Surface Boundary Factor from 0.3 to 0.4. These factors are displayed in the Meshing Parameters dialog box that is displayed by selecting Meshing Parameters button in the flaw template wizard panel (Fig 2.19).Figure 2.21: Meshed model with crackWe will now perform the stress analysis using ABAQUS.8.From the FRANC3D menu, select Analysis and Static Crack Analysis. The first panelof the wizard should appear as in Fig 2.22. We will specify the file name for theFRANC3D database first. We called it cracked_cube.fdb here; select Next once you enter a File Name.9.The next panel of the wizard, Fig 2.23, allows us to specify the solver; choose ABAQUS.10.The next panel of the wizard, Fig 2.24, allows us to specify some of the ABAQUS outputoptions. We want to use all quadratic elements, we do not have nodal temperatures, and the model is a full-model and will NOT be combined with a global model; uncheck the Connect to global model and select Next.11.The next panel of the wizard, Fig 2.25, allows us to specify the boundary conditions.This is a full model and we will transfer all boundary conditions from the original model to the crack model; the other options should remain unchecked.12.The next panel of the wizard, Fig 2.26, allows us to specify the ABAQUS executable. Ifyou wish to only check the data in the resulting .inp file, choose datacheck. Select Next.13.The next panel of the wizard, Fig 2.27, allows us to add additional ABAQUS commandsto the .inp file. Select Next.14.The final panel of the wizard, Fig 2.28, displays the command line that will be used toinvoke ABAQUS. The line can be edited. Select Finish when ready. If ABAQUS is available and the settings are correct, ABAQUS should start in batch mode. If ABAQUS fails to start, the command line is saved in a .txt file and can be used to start the analysis outside of FRANC3D (from a cmd/terminal window). You should check the FRANC3D terminal window for the runtime status.If you cannot run ABAQUS from FRANC3D, then you will have to submit your job from a cmd/terminal window before proceeding to step 15.Figure 2.22: Static Analysis wizard first panel – File NameFigure 2.23: Static Analysis wizard second panel – solverFigure 2.24: Static Analysis wizard third panel – ABAQUS output optionsFigure 2.25: Static Analysis wizard third panel – ABAQUS boundary conditionsFigure 2.26: Static Analysis wizard fourth panel – ABAQUS executableFigure 2.27: Static Analysis wizard fourth panel – ABAQUS inp scriptFigure 2.28: Static Analysis wizard fifth panel – ABAQUS command lineSpecial Note: if ABAQUS fails to run due to error messages related to poor element quality, you can add the following to your .env file (this worked up to Version 6.6):import osos.environment['ABA_SKIPSTRICTGEOMCHECK']='YES'del osWe will now compute the stress intensity factors for this crack. If you are able to run ABAQUS from FRANC3D, then the model already exists and the displacement file will be read automatically and you can skip to Step 16.15.From the FRANC3D menu, select File and Open. Choose the cracked_cube.fdb file, Fig2.29, and select OK. Note that if you close the previous model or restart FRANC3D, youcan start from this step.16.From the FRANC3D menu, select Cracks and Compute SIFs. The Stress IntensityFactor wizard is displayed, Fig 2.30. You should use the M-integral, but you can check that the Displacement Correlation results are similar. There are no thermal or crack face pressure terms. When you select Finish, the SIFs Plot window is displayed, Fig 2.31.You can view the three stress intensity factor (SIF) modes and export the data.Figure 2.29: Open Model File dialogFigure 2.30: Compute SIFs panelFigure 2.31: Stress Intensity Factor dialogNote that the SIF values are computed at the midpoints as specified in Fig 2.30. The curve is plotted from A to B along the crack front.We will now grow the crack one step.17.From the FRANC3D menu, select Cracks and Grow Crack… The wizard panel shownin Fig 2.32 is displayed. We use all the defaults for this model and select Next. Note that the Advanced Propagation options are not needed for this model, but one can stepthrough these panels also.18. The next two panels shown in Fig 2.33allow one to specify the crack front point fittingand mesh template parameters. We specify a Fixed Order Poly nomial fit with order set to 4 and extrapolation set to 5 and 6%. The crack front mesh template shown in the right panel extends beyond the model surface, which is necessary. Select Finish when ready.Figure 2.32: Crack growth wizard panelsFigure 2.33: Crack growth wizard panelsThe resulting new mesh model can be analyzed as was done for the initial crack (see Step 8 above). Note that you will want to give this model a different name, perhaps cube_step_2, so that you don‟t overwrite the initial crack model files.Automated crack growth analyses are described in Tutorial 3.3.0 Tutorial 2: Center Through-Crack in a Plate Sub-DomainIn this tutorial, we detail the steps to complete a global/local crack growth analysis usingFRANC3D and ABAQUS. This analysis technique exploits the fact that the cracked region of a model (local model) is generally small compared to the entire model (global model) byminimizing the part of the model that undergoes remeshing during crack insertion and growth. For this approach, global and local models will be created in ABAQUS; only the local model will be remeshed in FRANC3D. The tutorial is divided into 4 major steps:1. Creating the uncracked global/local geometry and mesh using ABAQUS;2. Importing the local model to FRANC3D for crack insertion and remeshing;3. Merging the cracked, local part with the global part for analysis in ABAQUS;4. Loading analysis results to calculate fracture parameters in FRANC3D.Although it is not explicitly stated in the steps below, make sure to SAVE your work throughout the modeling process. In particular, save the .cae file throughout and at the end of Step 1. Also, it is assumed that the user has some basic knowledge of ABAQUS. The unfamiliar user is referred to “Getting Started With ABAQUS” (part of the ABAQUS documentation).3.1 Step 1: Creating the uncracked model using ABAQUSStart by creating a simple plate model using ABAQUS:1.Open the ABAQUS CAE and select Create Model Database.2.Create a new part named cracked_part by clicking the icon in the Part Module andspecifying the options shown in Fig 3.1 (set approximate size to 100). Click Continue…3.When the Sketch Window appears, create a rectangle with dimensions: x = 20 and y =50 with the bottom left corner at (-10,-25).4.Click Done at the bottom of the sketch window and Extrude a depth of5.5.Switch to the Property Module and select the icon to define the material properties;Young‟s Modulus = 2.0E6 and Poisson‟s Ratio = 0.30. Click OK.6.Select the icon and define a Solid, Homogeneous section with the material created inthe previous step. Click Continue… In the Edit Section window, click OK.7.Select the icon and assign the section to the cracked_part by selecting it in themodeling window. Click Done. In the Edit Section window, click OK.8.Expand cracked_part in the Model Tree (as shown in Fig 3.2) and double-click Mesh.9.Select the icon to assign a global mesh seed size of 2. Click OK.10.Select the icon and specify quadratic hex elements (ABAQUS element typeC3D20R). Click OK. (Note that if linear elements are used, extra work is required of the user – see Step 22.)11.Select the icon to mesh cracked_part. Click Yes at the bottom of the ModelingWindow. The meshed cracked_part is shown in Fig 3.3.Figure 3.1: Create part optionsFigure 3.2: Model tree expanded under cracked partFigure 3.3: Meshed plate model in ABAQUS12.Switch to the Assembly Module and select the icon to instance cracked_part. ClickOK in the Create Instance window.13. Access the command line interface by clicking on the tab below the ModelingWindow (at the very bottom). At the command prompt, entermdb.models['model_name'].setValues(noPartsInputFile=ON)and press “Enter”. This is required because FRANC3D doesn‟t read Parts.Special Note: model_name should be replaced with whatever you chose to name the model. Ifyou didn‟t rename, ABAQUS names the model Model-1 by default.14.Switch to the Job Module and select the icon to create a job. Name the job orphanand click Continue… Click OK in the Edit Job window.15.Select the icon to display the Job Manager. Select orphan and click Write Input atthe right. Click Dismiss.Special Note: ABAQUS doesn‟t allow creation of node sets from a part created in CAE. We need some node set definitions to inform FRANC3D which surfaces will be used to glue the local model back into the global model so that the mesh on those surfaces will remain unaltered. So, we must now read in the orphan mesh created in the previous steps to define the local and global models.16.From the File menu, select Import and Model and then select orphan.inp. Click OK.17.A new model is created in the Model Tree at the left. Right click on the orphan modeland select Copy Model … and name the new model global. Click OK.18.Repeat the previous step and name the copied model local. Click OK.19.Switch to the Mesh Module, global Model, and Object: Part at the top of the modelingwindow and select Mesh and Edit from the upper toolbar. In the Edit Mesh window,select Element in the Category region and select Delete in the Method region.Special Note: since the global model region is being defined first, the portion of the model that will be used for local crack insertion needs to be deleted first.20.As shown in Fig 3.4, select the portion of the model that corresponds to the local model,leaving only the global portion unselected (most easily done by viewing the 1-2 plane).At the bottom of the Modeling Window, with Delete associated unreferenced nodesselected, click Done. Switch to the Assembly Module, which will automaticallyregenerate the instance.Figure 3.4: Selection of local portion of the model to be deleted21.Repeat the previous two steps for the local model with the exception of deleting exactlythe opposite of what was deleted in the global model.22.In the Model Tree, expand the local model as shown in Fig 3.5 and double-click Sets tocreate a node set named Cut_Surf_Local, which will define the local surface that merges the local model to the global model. Any sets that already exist can be ignored. Click Continue…Special Note: if you use linear elements, you must specify a Cut-Surf node set for the local AND for the global model and you will need to specify these surfaces later in FRANC3D when merging the local and global pieces back together.23.Select by angle in the drop-down selector at the bottom of the Modeling Window andthen gather the nodes on the top and bottom surface of local (hold down the shift key tocontinue adding to selected nodes). Click Done.24.Switch to the Step Module and global Model and click the icon to generate a loadstep. The default values are ok, so click Continue… and OK.Figure 3.5: Model tree expanded under local25.Switch to the Load Module and global Model to begin applying loads and boundaryconditions.26.Select the icon and select Pressure in the Types for Selected Step region. ClickContinue.27.At the bottom of the Modeling Window, select by angle in the drop-down menu and thenselect the top surface of the model as shown in Fig 3.6. Click Done. In the Edit Load window, enter -10 in the Magnitude box and click OK.Figure 3.6: Loaded surface selection28.Click the icon and rotate the model so that the bottom surface is visible. In theCreate Boundary Condition pop-up window enter: face_y for the Name, Step-1 for the step, Mechanical in the Category region and Displacement/Rotation in the Types forSelected Step region. Click Continue… With by angle selected at the bottom of theModeling Window, select the bottom face of the model. Click Done.29.In the Edit Boundary Condition window, select U2 and enter 0. Click OK.30.Once again, click the icon. In the Create Boundary Condition window enter:point_xz for the Name, Step-1 for the step, Mechanical in the Category region andDisplacement/Rotation in the Types for Selected Step region. Click Continue… With individual selected in the drop-down selector at the bottom of the Modeling Window,select the middle node on the bottom face. Click Done.31.In the Edit Boundary Condition window, select U1, U3 and enter 0 in both. Click OK.32.Switch to the Job Module and select the icon to create a job. With globalhighlighted, name the job global and click Continue… and OK. Repeat for local withlocal highlighted in the Create Job window.33.Select the icon to display the Job Manager. Select global and click Write Input atthe right. Repeat for local. Click Dismiss.34.Before exiting ABAQUS CAE, save your work.At this point in the tutorial, we have finished Step 1 in which the global and local portions of the model have been defined. In the next step, we will use the local model for crackinsertion/remeshing in FRANC3D.3.2 Step 2: Crack insertion and remeshing with FRANC3DThe next step is to read the local model into FRANC3D and insert a crack. We have saved the two inp files as: local .inp and global .inp. Inside the local file, there is a node set calledCut_Surf_Local that defines the nodes of the mesh facets in local that are to be retained.1.Copy the local .inp and global .inp files from the ABAQUS working directory to theFRANC3D working directory.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.产品介绍FRANC3D是一个在已有的有限元网格中插入和扩展裂纹或空隙的程序。
本手册描述了程序的图形用户界面的组件,特别是版本7。
它在适当的地方还包括一些基础理论和概念,但FRANC3D理论参考提供了更多这些细节。
单独的FRANC3D命令语言和Python扩展参考提供了所有命令和相应Python函数的列表。
有三个独立的FRANC3D教程文档描述了程序的使用情况,并结合了三种支持的商业FE程序:ANSYS、ABAQUS和NASTRAN。
此外,还有一个FRANC3D Benchmark文档描述了许多具有应力强度因子(SIF)解析或手册解决方案的裂缝配置,并将FRANC3D SIF与这些值进行比较。
要开始使用FRANC3D,你可以选择其中的一个教程并遵循步骤。
可以在本教程的任何FRANC3D建模步骤中查阅此参考文档以获取更多详细信息。
还应该尝试复制一些基准示例,或选择自己的模型进行验证。
在本文档中,面板上的菜单按钮,对话框或向导面板标题以及按钮用粗体文字表示。
下划线文本表示对话框或向导面板中的字段,标签和可选选项。
模型和文件名将以斜体文字表示。
这种格式应该与教程一致。
2.通用操作和3D视图操作FRANC3D主窗口的图像如图2.0.1所示。
大部分屏幕由显示当前模型的3D图形窗口使用。
首次显示模型时,3D视图将设置为使观察者从正z方向的位置朝向模型中心。
观看者与模型之间的距离设置为使整个模型可见。
对于大多数操作,人们可能希望改变视图以查看模型的不同侧面和/或更仔细地查看细节。
与许多其他程序一样,通过按下鼠标按键和键盘按键的适当组合,在3D图形窗口中移动鼠标,可以更改视图。
视图处理有五个基本功能。
为每个功能定义了鼠标按键和键盘按键的独特组合。
可以使用“首选项”对话框中的3D视图选项卡更改按钮和键分配(在第5.4节中介绍)。
视图功能是(使用FRANC3D默认鼠标和键盘键分配):旋转(鼠标左键,没有键盘按键):鼠标移动旋转屏幕上的模型。
鼠标可以在任何方向移动。
旋转轴被定义为垂直于鼠标运动并穿过当前的旋转中心。
旋转中心被定义为在前后剪切平面之间的中间位置处的图形窗口的水平和垂直中心(如下所述)。
平移(中心鼠标按钮或滚轮,无键盘按键):鼠标移动平移或在屏幕上拖动模型。
鼠标可以在任何方向移动,模型就像移动鼠标一样移动。
缩放/旋转(鼠标右键,没有键盘按键):这些实际上是由同一个鼠标键激活的两种不同类型的更新。
如果鼠标向上或向下移动,则看起来好像观察者分别距离模型越来越近。
如果鼠标向左或向右移动,则模型围绕垂直于屏幕平面的轴旋转,并穿过窗口的水平和垂直中心。
前部剖切(中心鼠标按钮或轮子加换档键):剪切或剪辑平面可以从观察者向模型平行移动。
例如,这可以用来夹住模型的前部以查看内部特征,例如裂缝。
向上移动鼠标将剪切平面从观察者推向模型,将模型的最接近观察者的部分切除。
向下移动鼠标将平面从模型拉向观察者。
后部剖切(鼠标右键或滚轮加Shift键):剪切或裁剪平面可以从模型后面向观察者平行移动。
例如,这可以用于剪去可能使视图混淆的部分模型(当模型在没有多边形的“线框”模式下显示时,这非常有用)。
向上移动鼠标将剪切平面推离观察者。
向下移动鼠标将剪切平面向观察者“拉动”,这将切割模型的后部。
2.1视图控制FRANC3D主窗口右侧的View Controls框提供了用于操作模型视图的附加选项,如图2.1.1所示。
图形元素切换:3D显示窗口中的图形由以下组合组成——标记,矢量,多边形和文本。
此框中的切换将独立打开或关闭这些项目。
增益控制:Set Speed按钮将显示如图2.1.2所示的对话框。
滑块允许独立控制旋转,平移和缩放速度。
Axes Toggle轴切换:这将打开或关闭笛卡尔轴显示。
F/B Colors Toggle F / B颜色切换:打开或关闭前/后颜色。
默认情况下,表面的正面和背面的着色方式不同。
当查看两个曲面重合的裂纹表面时,此切换器非常有用。
命名的摄像头位置:列表框中显示了命名的摄像头位置列表。
应始终提供一个重置视图作为默认(d)视图。
插入裂缝后,裂缝视图将自动保存。
其他相机位置可以保存到文件或从文件读取。
预设控制:这些图标可以快速访问将查看器沿着一个笛卡尔坐标轴放置的预设视图。
右侧的两个图标将透视图(默认)切换为正确的。
裁剪:此按钮显示“裁剪视图”对话框,如图2.1.3所示。
可以通过向左或向右拖动红色框来移动前后裁剪平面。
这是前面介绍的鼠标键盘组合的另一种选择。
重定位:该按钮显示重定位视图对话框,如图2.1.4所示。
旋转的中心可以通过左右或上下拖动红色框来设置。
新的旋转中心是具有红色手柄的3条线的交点。
切割平面:该按钮显示“切割平面”对话框,如图2.1.5所示。
可以设置垂直于全局笛卡尔坐标轴的切割平面; 这些将切掉一部分模型。
这些独立于前后裁剪平面。
Box Zoom:这允许用户通过拖动一个框来放大模型的一部分,如图2.1.6所示。
按Box Zoom 按钮,然后使用鼠标左键单击,按住并拖动鼠标创建该框。
网格切换:打开和关闭表面网格。
3.菜单这里提供了图2.0.1所示菜单栏中的菜单摘要。
一般来说,选择一个菜单项会导致一个向导或对话框。
此处介绍了“帮助”菜单,其他菜单选项在第4至12节中有更详细的描述。
3.1 Help“帮助”菜单(图 3.1.1)位于菜单栏的最右侧,并具有选项,在本地(如果已安装)或从FAC网站(http:\\ /software.html)上在线访问FRANC3D文档。
如果用户选择参考、Tutorial for ...或Benchmark菜单选项,如果文件已经在本地安装并设置了文件路径,相应的文档将显示在Web浏览器窗口中。
如果文件路径尚未设置,用户将看到图3.1.2所示的对话框,并可以选择适当的PDF文件。
或者,如果选择在线文档菜单选项,则可以访问FAC的网站,并在那里选择相应的文档。
3.2 File文件菜单如图3.2.1所示。
下面列出了每个菜单项。
open打开——显示一个打开文件对话框,允许用户读取FRANC3D重新启动文件;参见4.1节。
Set work directory设置工作目录——显示允许用户设置工作目录的对话框;见第4.2节。
Close关闭——关闭当前模型,以便可以读取或导入新模型; 见4.3节。
Save as另存为——显示“另存文件为”对话框,该对话框允许用户将当前模型保存到FRANC3D重新启动文件;见第4.4节。
Import导入——允许用户导入未破解的有限元模型文件。
可以读取许多不同类型的文件,包括:.cdb,.inp,.bdf。
.cdb文件是ASCII格式的ANSYS数据库文件。
.inp文件是ABAQUS 输入文件。
.bdf(或.nas)文件是NASTRAN数据库文件;参见4.5节。
Export导出——允许用户导出FE模型文件。
可以编写ANSYS.cdb,ABAQUS.inp和NASTRAN.bdf 文件格式;见4.6节。
Readresult读取结果——调用“读取结果文件”对话框;见第4.7节。
Playback回放——调用“回放会话文件”对话框,该对话框允许用户读取会话日志文件并重新生成该文件中的命令;见4.8节。
Quit退出——关闭模型并退出程序;见4.9节。
3.3 Edit编辑菜单如图3.3.1所示。
下面列出了每个菜单项。
Undo撤消——撤销上次执行的命令。
此功能尚未完成。
redo重做——重做最后一个被撤销的命令。
此功能尚未完成。
执行注意事项:该机制支持撤消和重做,但细节尚未实现。
设置单位——调用“模型单位”对话框;见5.3节。
首选项——调用“首选项”对话框; 见5.4节。
3.4 CracksCracks菜单如图3.4.1所示。
下面列出了每个菜单项。
新的缺陷向导——调用新的缺陷向导;参见6.1节。
缺陷来自文件——调用6.2节中描述的定位缺陷文件对话框,然后是新建缺陷向导的子集。
该选项允许用户从一个文件或来自多个文件中选择缺陷描述,并将其插入当前模型中。
请注意,不能在已经破解的模型中插入裂缝。
多重缺陷插入——调用多重缺陷向导;参见第6.3节。
计算SIF——调用计算SIF的向导;参见第6.4节。
请注意,完成分析的位移必须可用于启用此选项。
裂纹扩展——调用Crack Growth向导;见6.5节。
请注意,完成分析的位移必须可用于启用此选项。
读取裂纹扩展——调用Read Crack Growth向导;见6.6节。
扩展/合并裂缝——调用Crack Growth / Merge向导;参见6.7节。
此功能尚未完成。
沿路径的SIF——沿路径对话框调用SIF;见6.8节。
所有前沿的SIF ... - 为所有前沿调用SIF对话框;见6.9节。
3.5 Loads载荷菜单如图3.5.1所示。
下面列出了每个菜单项。
映射当前状态——调用映射当前状态对话框;参见7.1节。
请注意,必须启用以前的模型和先前的结果才能启用此选项。
该选项尚未完成,菜单选项处于非活动状态。
裂纹面压力/牵引力——调用裂纹面牵引力对话框;见第7.2节。
3.6 Analysis分析菜单如图3.6.1所示。
下面列出了每个菜单项。
静态裂纹分析——调用静态裂纹分析向导;参见第8.1节。
裂纹扩展分析——调用裂纹扩展分析向导;参见第8.2节。
3.7 Fatigue疲劳寿命预测——调用疲劳寿命对话框;参见9.1节。
3.8 Fretting微调菜单如图3.8.1所示。
下面列出了每个菜单项。
读取模型和结果——调用微动模型导入向导;参见10.1节。
导入成核数据——调用微动的数据导入/分析向导; 见10.2节。
微动裂纹成核——调用微动裂纹成核向导;参见10.3节。
关闭区域颜色——调用区域颜色对话框;参见10.4节。
3.9 Advanced高级菜单如图3.9.1所示。
下面列出了每个菜单项。
边缘向导——调用边缘提取向导;见第11.1节。
无裂缝区域——调用无裂纹区域对话框;参见11.2节。
写入COD数据——调用写入COD数据向导;见第11.3节。
写入模板数据——调用写模板数据对话框;参见第11.4节。
查看响应——调用查看响应对话框;参见第11.5节。
创建扩展历史记录——调用创建增长历史记录对话框; 见11.6节。
裂纹增长顺序——调用裂纹增长序列对话框;参见第11.7节。
导出裂纹数据——调用导出裂纹数据对话框;见11.8节。
4. File Menu Wizards and Dialog Boxes本节介绍文件菜单选项的向导和对话框。
4.1 Open…Ctrl-O文件打开菜单选项允许用户读取扩展名为.fdb的FRANC3D重新启动文件。
重新启动文件对话框允许选择一个.fdb文件,如图4.1.1所示。
4.1.1 FRANC3D Restart (.fdb) FilesFRANC3D读取.fdb文件的内容,并读取其中引用的任何文件。