专题3巧证比例式或等积式(三)等比代换法(找中间比)

合集下载

相似热门题型解题技巧整理(解析版)

相似热门题型解题技巧整理(解析版)

相似热门题型解题技巧整理类型1 证比例式或等积式的技巧方法指导:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.题型1 构造平行线法1.如图,在△ABC 中,D 为A 中点,DF 交AC 于点E ,交BC 的延长线于点F ,求证:AE ·CF =BF ·EC .1.证明:如图,过点C 作CM ∥AB 交DF 于点M . ∵CM ∥AB ,∴△CMF ∽△BDF . ∴BF CF =BD CM. 又∵CM ∥AD ,∴△ADE ∽△CME .∴AE EC =ADCM .∵D 为AB 的中点,∴BD CM =AD CM .∴BF CF =AE EC,即AE ·CF =BF ·EC . 2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF .2.证明:过点D 作DG ∥BC ,交AC 于点G , ∴△DGF ∽△ECF ,△ADG ∽△ABC . ∴EF DF =CE DG ,AB BC =AD DG. ∵AD =CE ,∴CE DG =AD DG .∴AB BC =EFDF,即AB ·DF =BC ·EF .点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.题型2 三点找三角形相似法1.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F .求证:DC AE =CFAD .1.证明:∵四边形ABCD 是平行四边形. ∴AE ∥DC ,∠A =∠C .∴∠CDF =∠E , ∴△DAE ∽△FCD ,∴DC AE =CFAD.2.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E .求证:AM 2=MD ·ME .2.证明:∵DM ⊥BC ,∠BAC =90°, ∴∠B +∠BEM =90°,∠D +∠DEA =90°. ∵∠BEM =∠DEA ,∴∠B =∠D . 又∵M 为BC 的中点,∠BAC =90°,∴BM =AM . ∴∠B =∠BAM .∴∠BAM =∠D .又∵∠AME =∠DMA .∴△AME ∽△DMA . ∴AM MD =MEAM.∴AM 2=MD ·ME .题型3 构造相似三角形法1.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N .求证:BP ·CP =BM ·CN .1.证明:如图,连接PM ,PN . ∵MN 是AP 的垂直平分线, ∴MA =MP ,NA =NP . ∴∠1=∠2,∠3=∠4. 又∵△ABC 是等边三角形, ∴∠B =∠C =∠1+∠3=60°. ∴∠2+∠4=60°. ∴∠5+∠6=120°. 又∵∠6+∠7=180°-∠C =120°. ∴∠5=∠7.∴△BPM ∽△CNP . ∴BP CN =BM CP,即BP ·CP =BM ·CN .题型4 等比过渡法1.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE .求证:(1)△DEF ∽△BDE ; (2)DG ·DF =DB ·EF .1.证明:(1)∵AB =AC ,∴∠ABC =∠ACB .∵DE ∥BC ,∴∠ABC +∠BDE =180°,∠ACB +∠CED =180°,∴∠CED =∠BDE .又∵∠EDF =∠ABE ,∴△DEF ∽△BDE .(2)由△DEF ∽△BDE 得DE BD =EFDE,∴DE 2=DB ·EF .又由△DEF ∽△BDE ,得∠BED =∠DFE .∵∠GDE =∠EDF ,∴△GDE ∽△EDF .∴DG DE =DEDF,∴DE 2=DG ·DF ,∴DG ·DF =DB ·EF .2.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP 于点G ,交CE 于点D .求证:CE 2=DE ·PE .2.证明:∵BG ⊥AP ,PE ⊥AB , ∴∠AEP =∠BED =∠AGB =90°. ∴∠P +∠PAB =90°,∠PAB +∠ABG =90°. ∴∠P =∠ABG .∴△AEP ∽△DEB . ∴AE DE =PEBE,即AE ·BE =PE ·DE . 又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°. 又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE .∴△AEC ∽△CEB . ∴AE CE =CEBE,即CE 2=AE ·BE .∴CE 2=DE ·PE . 题型5 两次相似法1.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F .求证:BF BE =ABBC .1.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BFBE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA . ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =AB BC.2.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N .求证:(1)△AMB ∽△AND ; (2)AM AB =MN AC .2.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D . ∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°, ∴△AMB ∽△AND .(2)由△AMB ∽△AND 得AM AN =ABAD ,∠BAM =∠DAN .又AD =BC ,∴AM AN =ABBC.∵AM ⊥BC ,AD ∥BC ,∴∠AMB =∠MAD =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°, ∴∠B =∠MAN .∴△AMN ∽△BAC ,∴AM AB =MNAC. 题型6 等积代换法1.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F .求证:AE AF =ACAB .1.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°. 又∵∠BAD =∠DAE ,∴△ADE ∽△ABD ,得AD 2=AE ·AB ,同理可得AD 2=AF ·AC ,∴AE ·AB =AF ·AC ,∴AE AF =AC AB.题型7 等线段代换法1.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF .1.证明:连接PC ,如图.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB ,∴BP =CP ,∴∠1=∠2,∴∠ABC -∠1=∠ACB -∠2,即∠3=∠4.∵CF ∥AB ,∴∠3=∠F ,∴∠4=∠F .又∵∠CPF =∠CPE ,∴△CPF ∽△EPC ,∴CP PE =PFCP ,即CP 2=PF ·PE .∵BP=CP ,∴BP 2=PE ·PF .2.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P .求证:PD 2=PB ·PC .2.证明:如图,连接PA ,则PA =PD ,∴∠PDA =∠PAD . ∴∠B +∠BAD =∠DAC +∠CAP .又∵AD 平分∠BAC ,∴∠BAD =∠DAC .∴∠B =∠CAP . 又∵∠APC =∠BPA ,∴△PAC ∽△PBA ,∴PA PB =PCPA ,即PA 2=PB ·PC ,∴PD 2=PB ·PC .类型2 巧用“基本图形”探索相似条件方法指导:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.母子型型.4.旋转型.1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE ·BC =BD ·AC ;(2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.1.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC .∴AE AC =DEBC .∵BE 平分∠ABC ,∴∠DBE =∠EBC . ∵ED ∥BC ,∴∠DEB =∠EBC . ∴∠DBE =∠DEB .∴DE =BD .∴AE AC =BD BC, 即AE ·BC =BD ·AC .(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S △ADE S △BDE =h △ADE h △BDE =32.∴h △ADE h △ABC =35.∵△ADE ∽△ABC ,∴DE BC =h △ADE h △ABC =35. ∵DE =6,∴BC =10.题型2 相交线型1.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.2.解:相似.理由如下:因为EO BO =DO CO,∠BOE =∠COD ,∠DOE =∠COB ,所以△BOE ∽△COD ,△DOE ∽△COB .所以∠EBO =∠DCO ,∠DEO =∠CBO .因为∠ADE =∠DCO +∠DEO ,∠ABC =∠EBO +∠CBO .所以∠ADE =∠ABC .又因为∠A =∠A ,所以△ADE ∽△ABC .1.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F .求证:AB AC =DFAF .1.证明:∵∠BAC =90°,AD ⊥BC 于点D , ∴∠BAC =∠ADB =90°.又∵∠CBA =∠ABD (公共角),∴△ABC ∽△DBA .∴AB AC =DBDA ,∠BAD =∠C .∵AD ⊥BC 于点D ,E 为AC 的中点,∴DE =EC . ∴∠BDF =∠CDE =∠C .∴∠BDF =∠BAD . 又∵∠F =∠F , ∴△DBF ∽△ADF .∴DB AD =DF AF .∴AB AC =DF AF.点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC 中,AD ⊥BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:AE ·AB =AF ·AC .可由两组“射影图”得AE ·AB =AD 2,AF ·AC =AD 2,∴AE ·AB =AF ·AC .题型4 旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC . 求证:(1)△ADE ∽△ABC ; (2)AD AE =BD CE .4.证明:(1)∵∠DAB =∠EAC ,∴∠DAE =∠BAC . 又∵∠ADE =∠ABC ,∴△ADE ∽△ABC . (2)∵△ADE ∽△ABC ,∴AD AE =ABAC.∵∠DAB =∠EAC ,∴△ADB ∽△AEC .∴AD AE =BDCE.类型3 利用相似三角形巧证线段的数量和位置关系方法指导:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.题型1 证明两线段的数量关系 类型1:证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N .求证:BM =MC .1.证明:∵DE ∥BC .∴△NEO ∽△MBO .∴NE MB =ON OM. 同理可得DN MC =ON OM .∴DN MC =NE BM .∴DN NE =MCBM .∵DE ∥BC ,∴△ANE ∽△AMC .∴AN AM =NEMC .同理可得AN AM =DN BM ,∴DN BM =NE MC .∴DN NE =BMMC .∴MC BM =BM MC.∴MC 2=BM 2.∴BM =MC .2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE CE =BF CF .求证:AD =DB .2.证明:如图,过C 作CG ∥AB 交DF 于G 点. ∵CG ∥AB ,∴AD CG =AE CE ,BD CG =BFCF,∵AE CE =BF CF ,∴AD CG =BD CG, ∴AD =BD .类型2:证明两线段的倍分关系1.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC .2.证明:∵BD ⊥AC ,CE ⊥AB ,∠A =60°,∠ABD =∠ACE =30°,∴AD AB =12,AEAC =12,∴AD AB =AE AC .又∠A =∠A ,∴△AD E ∽△ABC ,∴DE BC =AD AB =12,∴DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E .求证:AC =2CE .4.证明:如图,延长CE ,交AM 的延长线于F .∵AB ∥CF ,∴∠BAM =∠F ,△BDM ∽△CEM ,△BAM ∽△CFM ,∴BD CE =BM MC ,BA CF =BM MC ,∴BD CE =BA CF.又∵BA =2BD ,∴CF =2CE .又AM 平分∠BAC ,∴∠BAM =∠CAM ,∴∠CAM =∠F ,∴AC =CF ,∴AC =2CE .题型2 证明两线段的位置关系 类型1:证明两线段平行1.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE .求证:AE ∥BC .1.证明:如图,过点C 作CO ⊥AB 于点O .∵DE =CD ,DE ⊥CD , ∴∠ECD =∠CED =45°.∵△ABC 是等腰直角三角形,∴∠CAB =∠B =45°.∴∠CAB =∠CED .又∵∠AOC =∠EDC =90°,∴△ACO ∽△ECD .∴AC CO =EC CD .又∵∠ACE +∠ECO =∠OCD +∠ECO =45°,∴∠ACE=∠OCD .∴△ACE ∽△OCD .∴∠CAE =∠COD =90°.又∵∠ACB =90°,∴∠CAE +∠ACB =180°.∴AE ∥BC .2.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M .(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论;(2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.2.解:(1)MN ∥AC ∥ED .证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AM AD =MF DC .∵E 为AB 的中点,EF ∥BC ,∴F 为AC 的中点.又∵DF ∥AB ,∴D 为BC 的中点,∴EM =MF .∵F 为AC 的中点,FN ∥AE ,∴N 为EC 的中点,从而MN ∥AC .又∵D 为BC 的中点,E 为AB 的中点,∴ED ∥AC ,∴MN ∥AC ∥ED .(2)MN ∥AC .证明如下:∵EF ∥BC ,∴△AEM ∽△ABD ,△AMF ∽△ADC ,∴EM BD =AMAD =MF DC ,∴EM MF =BD DC .又∵DF ∥AB ,∴BD DC =EN NC ,∴EM MF =EN NC ,∴EM EF =EN EC.又∵∠MEN =∠FEC ,∴△MEN ∽△FEC .∴∠EMN =∠EFC .∴MN ∥AC .类型2:证明两线垂直1.如图,在△ABC 中,D 是AB 上一点,且AC 2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB .1.证明:∵AC 2=AB ·AD ,∴AC AD =ABAC .又∵∠A =∠A ,∴△ACD ∽△ABC .∴∠ADC =∠ACB .又∵BC 2=BA ·BD ,∴BC BD =BABC .又∵∠B =∠B ,∴△BCD ∽△BAC .∴∠BDC =∠BCA . ∴∠ADC =∠BDC .∵∠BDC +∠ADC =180°,∴∠ADC =∠BDC =90°. ∴CD ⊥AB .2.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF .2.证明:∵AD =13AB ,点E ,F 把AB 三等分,∴设AE =EF =FB =AD =k ,则AB =CD =3k .∵CD ∥AB ,∴∠DCG =∠FAG ,∠CDG =∠AFG . ∴△AFG ∽△CDG ,∴FG DG =AF CD =23.设FG =2m ,则DG =3m ,∴DF =FG +DG =2m +3m =5m . 在Rt △AFD 中,DF 2=AD 2+AF 2=5k 2,∴DF =5k . ∴5m =5k .∴m =55k .∴FG =255k . ∴AF FG =2k 255k =5,DF EF =5k k = 5.∴AF FG =DFEF. 又∠AFD =∠GFE ,∴△AFD ∽△GFE . ∴∠EGF =∠DAF =90°.∴EG ⊥DF .类型4 相似三角形与函数的综合应用方法指导:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.题型1 相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.1.解:(1)设直线AD 的解析式为y =kx +b (k ≠0) 将D (0,1) A ⎝⎛⎭⎫43,53代入解析式得: ⎩⎪⎨⎪⎧b =153=43k +b 解得⎩⎪⎨⎪⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B (-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C (3,0),即BC =5 设E ⎝⎛⎭⎫x ,12x +1 ①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC .∴△BOD ∽△BCE 1. 此时点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝⎛⎭⎫3,52. ②当CE 2⊥AD 时,如图, ∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C .过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°.∴∠E 2BF =∠CE 2F .∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F .即E 2F 2=CF ·BF .⎝⎛⎭⎫12x +12=(3-x )(x +2)解得:x 1=2,x 2=-2(舍去)∴E 2(2,2) 当∠EBC =90°时,此情况不存在. 综上所述:E 1⎝⎛⎭⎫3,52或E 2(2,2).题型2 相似三角形与二次函数1.如图,直线y =-x +3交x 轴于点A ,交y 轴于点B ,抛物线y =ax 2+bx +c 经过A ,B ,C (1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D 的坐标为(-1,0),在直线y =-x +3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标.2.解:(1)由题意得A (3,0),B (0,3),∵抛物线经过A ,B ,C 三点,∴把A (3,0),B (0,3),C (1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎪⎨⎪⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3.(2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AO AD =OBDP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).2.如图,直线y =2x +2与x 轴交于点A ,与y 轴交于点B ,把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线y =-x 2+bx +c 与直线BC 交于点D (3,-4).(1)求直线BD 和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M ,O ,N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.2.解:(1)易得A (-1,0),B (0,2),C (1,0). 设直线BD 对应的函数解析式为y =kx +m .把B (0,2),C (1,0)的坐标分别代入y =kx +m ,得⎩⎪⎨⎪⎧m =2,k +m =0,解得⎩⎪⎨⎪⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c .∴把B (0,2),D (3,-4)的坐标分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧c =2,-9+3b +c =-4,解得⎩⎪⎨⎪⎧b =1,c =2. ∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN 2,∴MN =2ON .设ON =a ,则M (a ,2a ),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M (1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO ,即ON 2=MN 1,∴MN =12ON .设ON =n ,则M ⎝⎛⎭⎫n ,12n ,∴-n 2+n +2=n2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M (1+334,1+338).∴存在这样的点M (1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.题型3 相似三角形与反比例函数1.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x >0)经过BC 的中点D ,且与AB 交于点E ,连接DE .(1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且△FBC ∽△DEB ,求直线FB 对应的函数解析式.1.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =k x 经过点D (1,3),∴3=k 1,∴k =3,∴y =3x .∵点E 在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y =32,∴点E 的坐标为⎝⎛⎭⎫2,32. (2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BD CF =BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝⎛⎭⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B (2,3),F ⎝⎛⎭⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.类型5 全章达标综合检测方法指导:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.题型1 3个概念 概念1:成比例线段1.下列各组线段,是成比例线段的是( C ) A .3 cm ,6 cm ,7 cm ,9 cm B .2 cm ,5 cm ,0.6 dm ,8 cm C .3 cm ,9 cm ,1.8 dm ,6 cm D .1 cm ,2 cm ,3 cm ,4 cm2.有一块三角形的草地,它的一条边长为25 m ,在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是__20__m .概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D ′=∠D ,试判断四边形A ′B ′C ′D ′与四边形ABCD 是否相似,并说明理由.3.解:四边形ABCD 与四边形A ′B ′C ′D ′相似.由已知条件知,∠DAB =∠D ′A ′B ′,∠B =∠B ′,∠BCD =∠B ′C ′D ′,∠D =∠D ′,且AB A′B′=BC B′C′=CD C′D′=DA D′A′=56,所以四边形ABCD 与四边形A ′B ′C ′D ′相似.概念3:位似图形4.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边放大到原来的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的坐标是(a ,b ),求点B 的坐标.4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B ′作B ′N ⊥x 轴于点N ,则△CBM ∽△CB ′N .所以MC NC =BM B ′N =BC B ′C .又由已知条件知NC =a +1,B ′N =-b ,BC B ′C =,所以MCa +1)=BM-b )=所以MC =12(a +1),BM =-b 2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎫-a +32,-b2.题型2 2个性质平行线分线段成比例的性质5.如图,在Rt △ABC 中,∠A =90°,AB =8,AC =6.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE ∥BC 交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数解析式,并写出自变量x 的取值范围; (2)当x 为何值时,△BDE 的面积有最大值,最大值为多少?5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y 6,∴y =-32x +6(0≤x ≤4).(2)∵S △BDE =12·2x ·y =12·2x ·⎝⎛⎭⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE 有最大值,最大值为6.性质2:相似三角形的性质6.如图,已知D 是BC 边上的中点,且AD =AC ,DE ⊥BC ,DE 与BA 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD . (2)解:如图,过点A 作AM ⊥CB 于点M . ∵D 是BC 边上的中点,∴BC =2CD .由(1)知△ABC ∽△FCD ,∴S △ABC S △FCD =⎝ ⎛⎭⎪⎫BC CD 2=41.又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC ·AM ,∴AM =2S △ABC BC =2×2010=4. ∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM ,∴△BDE ∽△BMA .∴DE AM =BDBM .由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52. ∴DE 4=55+52,∴DE =83. 点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.题型3 1个判定——相似三角形的判定7.如图,△ACB 为等腰直角三角形,点D 为斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接AE ,过C 作CO ⊥AB 于O .求证:△ACE ∽△OCD.7.证明:∵△ACB 为等腰直角三角形,AB 为斜边, ∴∠CAB =45°.∵CO ⊥AB .∴∠AOC =90°.又∵DE ⊥CD ,DE =CD ,∴∠CED =45°,∠CDE =90°. ∴∠CAO =∠CED ,∠AOC =∠EDC .∴△ACO ∽△ECD .∴∠ACO =∠ECD ,AC CO =CECD .∴∠ACE =∠OCD .∴△ACE ∽△OCD .8.如图,在⊙O 的内接△ABC 中,∠ACB =90°,AC =2BC ,过点C 作AB 的垂线l 交⊙O 于另一点D ,垂足为点E .设P 是AC ︵上异于点A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G .(1)求证:△PAC ∽△PDF ;(2)若AB =5,AP ︵=BP ︵,求PD 的长.8.(1)证明:由四边形APCB 内接于圆O ,得∠FPC =∠B . 又∠B =∠ACE =90°-∠BCE ,∠ACE =∠APD ,所以∠APD =∠FPC ,所以∠APD +∠DPC =∠FPC +∠DPC , 即∠APC =∠FPD . 又∠PAC =∠PDC , 所以△PAC ∽△PDF .(2)解:由(1)知△PAC ∽△PDF ,所以∠PCA =∠PFD . 又∠PAC =∠CAF ,所以△PAC ∽△CAF ,所以△CAF ∽△PDF , 所以PD AC =DFAF,则PD ·AF =AC ·DF .由AB =5,AC =2BC ,∠ACB =90°,知BC =5,AC =2 5. 由OE ⊥CD ,∠ACB =90°知CB 2=BE ·AB ,CE =DE . 所以B E =CB 2AB =55=1.所以AE =4,CE =CB 2-BE 2=5-1=2, 所以DE =2.又AP ︵=BP ︵,∠AFD =∠PCA ,所以∠AFD =∠PCA =45°. 所以FE =AE =4,AF =42,所以PD =AC·DF AF =25×(4+2)42=3102.题型4 2个应用 应用1:测高的应用9.如图,在离某建筑物CE 4 m 处有一棵树AB ,在某时刻,1.2 m 的竹竿FG 垂直地面放置,影子GH 长为2 m ,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD 高为2 m ,那么这棵树的高度是多少?9.解:(方法一:作延长线)延长AD ,与地面交于点M ,如图①.由AM ∥FH 知∠AMB =∠FHG .又因为AB ⊥BG ,FG ⊥BG ,DC ⊥BG ,所以△ABM ∽△DCM ∽△FGH ,所以AB BM =CD CM =FG GH. 因为CD =2 m ,FG =1.2 m ,GH =2 m ,所以2CM =1.22,解得CM =103m . 因为BC =4 m ,所以BM =BC +CM =4+103=223(m ). 所以AB 223=1.22,解得AB =4.4 m . 故这棵树的高度是4.4 m .(方法二:作垂线)过点D 作DM ⊥AB 于点M ,如图②.所以AM DM =FG GH. 而DM =BC =4 m ,AM =AB -CD =AB -2(m ),FG =1.2 m ,GH =2 m ,所以AB -24=1.22,解得AB =4.4 m . 故这棵树的高度是4.4 m .应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m 有一棵树,在河的对岸每隔60 m 有一根电线杆,在有树的一岸离岸边30 m 处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.10.解:如图,过点A 作AF ⊥DE ,垂足为F ,并延长交BC 于点G .∵DE ∥BC ,∴△ADE ∽△ABC .∵AF ⊥DE ,DE ∥BC ,∴AG ⊥BC ,∴AF AG =DE BC ,∴30AG =2460. 解得AG =75,∴FG =AG -AF =75-30=45,即河的宽度为45 m .题型5 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O 和△ABC .请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),画出△ABC 的位似图形.(第11题) 11.思路导引:本题位似中心为O ,先连接CO ,因为要把原三角形缩小为原来的一半,可确定C ′O =12CO ,由其确定出C ′的位置,再根据同样的方法确定出另外两个点. 解:画出图形,如图中的△A ′B ′C ′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.题型6 1个技巧 ——证明四条线段成比例的技巧12.如图,已知△ABC ,∠BAC 的平分线与∠DAC 的平分线分别交BC 及BC 的延长线于点P ,Q .(1)求∠PAQ 的度数;(2)若点M 为PQ 的中点,求证:PM 2=CM ·BM .12.思路导引:(1)由角平分线的定义及∠BAD 为平角直接可得.(2)由于线段PM ,CM ,BM 在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM =AM ,从而证明△ACM 与△ABM 相似即可.(1)解:∵AP 平分∠BAC ,∴∠PAC =12∠BAC . 又∵AQ 平分∠CAD ,∴∠CAQ =12∠CAD . ∴∠PAC +∠CAQ =12∠BAC +12∠CAD =12(∠BAC +∠CAD ). 又∵∠BAC +∠CAD =180°,∴∠PAC +∠CAQ =90°,即∠PAQ =90°.(2)证明:由(1)知∠PAQ =90°,又∵M 是线段PQ 的中点,∴PM =AM ,∴∠APM =∠PAM .∵∠APM =∠B +∠BAP ,∠PAM =∠CAM +∠PAC ,∠BAP =∠PAC ,∴∠B =∠CAM .又∵∠AMC =∠BMA ,∴△ACM ∽△BAM .∴CM AM =AM BM,∴AM 2=CM ·BM ,即PM 2=CM ·BM . 点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。

巧用“等比(等积)”证明比例式和等积式

巧用“等比(等积)”证明比例式和等积式


‘ AE — A C 。 。

由() , C 1知 A B

BD c =

DE

,.

BD

AE . RD = DE.
数 学 学 习与 研 究
2 1 。4 0 12
_ .

I 技巧 与责 法 。 I 。
m 一 … … … … 一 —
Y A 解 u


等 积 式 的思 路 和 方 法 .
例 1 如 图 1 0 0 与 O A 相 .
熬 值 盛等 盛 剿 静积
◎方 建 敏 ( 肃 省 庆 阳市 宁县 铁 王初 中 甘 7 5 1 4 2l ) 例 3 如 图 3, 知 D, F 已 E, 分 别 在 △ B 的 边 AB, AC C BC,
利 息 =本 金 X利 率 X存 期 , 本 利 和 =本 金 ×( +利 率 ×存 期 ) 1 . 如 果 用 P,, ,. 别 表 示 本 金 、 率 、 期 、 息 与 本 rn is分 利 存 利
币 和 , 有 i r S=p 1+r ) 0 秀么 =p n, ( n. 例 1 设 年 利 率 为 00 71 某 人 存 入 银 行 2 0 .1 , 0 0元 , 3年 后
D.E,A D ,C 求证 : 丽 AU =面 C E




例 2 如 图 2. 的 内 接 四边 圆
形 AD F 的 对 角 线 D 与 AC相 C F
交 于 E. 平 行 于 DF, 交 AD 的 BC
延 长 线 于 B.
分析
证明

由射 影 定 理 可 找 到 等 比 A D

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。

专题训练:证比例式或等积式的技巧(含答案)

专题训练:证比例式或等积式的技巧(含答案)

专训2证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法△1.如图,在ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·C F=BF·E C.△2.如图,已知ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,求证:AB·D F=BC·E F.求证:=.三点定型法3.如图,在ABCD中,E是AB延长线上的一点,DE交BC于F.DC CFAE AD△4.如图,在ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·M E.构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·C P=BM·C N.等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·D F=DB·E F.求证:=.7.如图,CE是△Rt ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·P E.两次相似法8.如图,在△Rt ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F.BF ABBE BC(2)=.求证:=.9.如图,在ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;AM MNAB AC等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.AE ACAF AB等线段代换法11.如图,在等腰三角形ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·P F.12.如图,已知AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·P C.∴BF BD=.∴△ADE∽△CME.∴=.∴BD=.∴=.∴EF=,=.∵AD=CE,∴=.∴=.∴△FCD∽△DAE.∴=.参考答案1.证明:如图,过点C作CM∥AB交DF于点M.∵CM∥AB,∴∠FCM=∠B,∠FMC=∠FDB△.∴CMF∽△BDF.CF CM又∵CM∥AD,∴∠A=∠ECM,∠ADE=∠CME.AE ADEC CM∵D为AB的中点,∴BD=AD.AD BF AECM CM CF EC即AE·C F=BF·E C.2.证明:过点D作DG∥BC,交AC于点G,易知△DGF∽△ECF△,ADG∽△ABC.CE AB ADDF DG BC DGCE AD AB EFDG DG BC DF即AB·D F=BC·E F.点拨:过某一点作平行线,构造出“A”型或“X”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形,∴AE∥DC,∠A=∠C.∴∠CDF=∠E.DC CFAE AD4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM.∴∠B=∠BAM.∴AMME = .即 AM 2=MD · M E.∴BPBM = .即 BP · C P =BM · C N.(2)由△ DEF ∽△BDE 得 DE= .即 DE 2=DB · E F.又由 △ DEF ∽△BDE ,得∠G ED = ∴DGDE = .即 DE 2=DG · D F.∴∠BAM =∠D.即∠EAM =∠D .又∵∠AME =∠DMA.∴△AME ∽△DMA.MD AM5.证明:如图,连接 PM ,PN.∵MN 是 AP 的垂直平分线,∴MA =MP ,NA =NP .∴∠1=∠2,∠3=∠4.又∵△ ABC 是等边三角形,∴∠B =∠C =∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C =120°,∴∠5=∠△7.∴ BPM ∽△CNP .CN CP 6.证明:(1)∵AB =AC ,∴∠ABC =∠ACB.∵DE ∥BC ,∴∠ABC +∠EDB =180°,∠ACB +∠FED =180°.∴∠FED =∠EDB.又∵∠EDF =∠DBE ,∴△DEF ∽△BDE.EF BD DE∠EFD.∵∠GDE =∠EDF ,∴△GDE ∽△EDF.DE DF∴DG · D F =DB · E F.7.证明:∵BG ⊥AP ,PE ⊥AB ,∴∠AEP =∠DEB =∠AGB =90°.∴∠P +∠P AB =90°,∠P AB +∠ABG =90°.∴AE PE = .即 AE · B E =PE · D E.∴AE CE = .即 CE 2=AE · B E.∴△BDF ∽△BAE.∴ = . ∴△ABC ∽△DBA.∴ = . ∴ BF AB =.(2)△由 AMB ∽△AND 得 = ,∠BAM =∠DAN. 又 AD =BC ,∴ = . ∴△AMN ∽△BAC.∴ = .∴∠P =∠ABG △.∴ AEP ∽△DEB.DE BE 又∵∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE △.∴ AEC ∽△CEB.CE BE∴CE 2=DE · P E.8.证明:由题意得∠BDF =∠BAE =90°.∵BE 平分∠ABC ,∴∠DBF =∠ABE.BD BF AB BE∵∠BAC =∠BDA =90°,∠ABC =∠DBA.AB BD BC ABBE BC9.证明:(1)∵四边形 ABCD 为平行四边形,∴∠B =∠D . ∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.∴△AMB ∽△AND .AM AB AN ADAM AB AN BC∵AM ⊥BC ,AD ∥BC ,∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN . AM MN AB AC10.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.又∵∠BAD =∠DAE ,∴△ABD ∽△ADE.∴AD AE=.即AD2=AE·A B.∴AE·A B=AF·A C.∴=.∴CP PF=,即CP2=PF·P E.∴△P AC∽△PBA.∴=.AB AD同理可得AD2=AF·A C.AE ACAF AB 11.证明:连接PC,如图所示.∵AB=AC,AD⊥BC,∴AD垂直平分BC,∠ABC=∠ACB.∴BP=CP.∴∠1=∠2.∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4.∵CF∥AB,∴∠3=∠F.∴∠4=∠F.又∵∠CPF=∠CPE,∴△CPF∽△EPC.PE CP∵BP=CP,∴BP2=PE·P F. 12.证明:如图,连接P A,∵EP是AD的垂直平分线,∴PA=PD.∴∠PDA=∠P AD.∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BP A,PA PCPB PA即PA2=PB·P C.沈进老师专用资料∵PA=PD,∴PD2=PB·P C.- 11 -。

相似三角形专题 巧用“三点定型法”证明相似问题中的比例式与等积式

相似三角形专题 巧用“三点定型法”证明相似问题中的比例式与等积式

相似三角形专题
——巧用“三点定型法”证明相似问题中的比例式与等积式
(配套练习)
1、如图,∠ACB=90°,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F ,请证明AE
AB AF AC =。

2、如图,在正方形ABCD 中,E 是CD 的中点,EF ⊥AE . 求证:2AE AD AF =.
3、如图,在正方形ABCD 中,F 是边BC 上一点(点F 与点B 、点C 均不重合),AE ⊥AF ,AE 交CD 的延长线于点E ,连接EF 交AD 于点G .求证:BF •FC=DG •EC ;
4、已知;在Rt △ABC 中,∠A=900,四边形DEFG 为正方形。

求证:EF 2
=BE •FC
5、已知;AD 平分∠BAC ,EF 垂直平分AD 与BC 的延长线交于F 。

求证:DF 2=BF •CF
6、已知:在ABC ∆中,D 、E 分别在AB 、AC 上,BC DE //,BE 、CD 相交于点O ,AO 与DE 、BC 分别交于点N 、M 。

求证:AN ON AM OM
=。

例说证明线段比例式或等积式的方法与技巧

例说证明线段比例式或等积式的方法与技巧

例说证明线段比例式或等积式的方法与技巧何美兰证明线段比例式或等积式的常用方法之一是利用相似三角形,而相似三角形是初中数学中的一个非常重要的知识点,它也是历年中考的热点内容,通常考查以下三个部分:(1)考查相似三角形的判定;(2)考查利用相似三角形的性质解题;(3)考查与相似三角形有关的综合内容。

以上试题的考查既能体现开放探究性,又能加深知识之间的综合性。

但不少学生证题却是不会寻找相似三角形,特别是对比较复杂的图形,感到眼花缭乱,无从下手。

为了帮助学生们扩大解题思路,迅速而正确地解题。

下面以一些例题来说明解答策略及规律。

一三点定形法利用两个三角形相似去解决比例式或等积式证明的方法。

解决问题的基本思想是:先找出与结论中的线段有关的两个三角形,然后根据原题所给条件,对照图形分析,寻找这两个三角形的相似条件,再证明这两个三角形相似,利用“相似三角形对应边成比例”推出结论。

寻找并证明两个三角形相似是解题的关键,寻找相似三角形的基本方法是“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

例1:如图1,ABCD是⊙O的内接四边形,过C作DB的平行线,交AB的延长线于E。

求证BE·AD=BC·CD。

分析:要证BE·AD=BC·CD,即=。

横定:这个比例式的前项中的线段BE、CD共有四个不同的端点,不能确定一个三角形;竖定:这个比例式的比中的线段BE、BC它们有三个不同的端点,可以确定一个△BEC,另一个比中的线段CD、AD的三个不同的端点也可以确定一个△ACD,于是只要证明△BEC∽△DCA,这样,证明所需添加的辅助线AC也就显示在眼前了。

典中点图形的相似专训4 证比例式或等积式的技巧

典中点图形的相似专训4   证比例式或等积式的技巧

典中点图形的相似专训4 证比例式或等积式的技巧◐名师点金◑证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似;若在两个明显不相似的三角形中,可运用中间比代换。

技巧1:构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E,交BC 的延长线于点F 。

求证:AE ·CF=BF ·EC.2.如图,已知△ABC 的边AB 上有一点D,边BC 的延长线上有一点E,且AD=CE,DE 交AC 于点F 。

求证:AB ·DF=BC.EF技巧2:三点定型法3.如图,在□ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F 。

求证:AD CF AE DC4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CMA的延长线于D,交AB于E。

AM=MD·ME.求证:2技巧3:构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意点,AP的垂直平分线分别交AB,AC于点M,N。

求证:BP·CP=BM·CN技巧4:等积代换法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE。

求证:(1)△DEF∽△BDE; (2)DG·DF=DB·EF7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P,连结AP,作BC ⊥AP 于点C,交CE 于 点D 。

求证:2CE =DE ·PE8.如图,在△ABC 中,AD ⊥BC 于D,DE ⊥AB 于E,DF ⊥AC 于F 。

求证:AB AC AE =AF技巧5:两次相似法9.如图,在□ABCD 中,AM ⊥BC,AN ⊥CD,垂足分别为M,N.求证:(1)△AMB ∽△AND (2)AC MN AB AM =技巧6:等比代换法10.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E,交AD 于F 。

15.比例式、等积式的常见证明方法

15.比例式、等积式的常见证明方法

典例精解

类型三:找中间比利用等积式代换
如图,在△ABC中,已知∠BAC=90 °,AD⊥BC于D,E为直角边AC 的中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
1
E
B
3
2D
C
F
如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的 中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
1
E
B
3
2D
C
F
证明:∵∠A=90°,AD⊥BC ∴∠1=∠C=90°-∠ABC 而∠BDA=∠ADC =90° ∴△ABD∽△CAD
∴ AB BD AC AD
∵AD⊥BC,E为直角边AC中点 ∴DE=EC ∴∠3=∠C 又∵∠3=∠2,∠1=∠C ∴∠1=∠2 而∠F是△FBD与△FDA的公共角 ∴△FBD∽△FDA
初中数学知识点精讲课程
比例式、等积式的常见证明方法
比例式、等积式的证明是初中几何非常常见的题型,同时也是令许多学 生头疼的一种题型,特别是在一些图形复杂、线段较多的题目中,往往令人 眼花瞭乱无从下手.
等积式的证明有没有技巧呢?其实只要我们冷静分析,我们将会发现许 多等积式的证明也是有规律可循的。
典例精解
F
∴∠CDF=∠E
A
B
∴△DCF∽△EAD E
∴ DC CF AE AD
变式题
如图,△ABC 中,∠BAC=90°,M 为 BC 的中点,DM⊥BC 交 CA 的延长
线于 D,交 AB 于 E,求证:AM2=MD·ME.
D
证明:
∴∠D=∠B=90°-∠C
∵∠BAC=90°,

九年级数学上册解题技巧专题比例式、等积式的常见证明方法(新版)北师大版

九年级数学上册解题技巧专题比例式、等积式的常见证明方法(新版)北师大版

1解题技巧专题:比例式、等积式的常见证明方法直接法、间接法一网搜罗1. 如图,四边形ABCD 的对角线 AC, BD 交于点F ,点E 是BD 上一点,并且/ BAC=3. ^如图,已知 AD 是厶ABC 的角平分线,EF 垂直平分AD,交BC 的延长线于E , 交 AD 于 F.求证:DE = BE- CE.♦类型二利用等线段代换2. 如图,在四边形 ABCD 中, AB= AD,AC 与BD 交于点E ,Z ADB=Z ACB 求证:ABAEAC AD♦类型一 找线段对应的三角形, 利用 相似证明/ BDC=Z DAE 求证:AB AEAC T ADDA解题技巧专题:比例式、等积式的常见证明2♦类型三 找中间比利用等积式代换 4. 如图,在△ ABC 中,点D 为BC 的中 点,AE// BC ED 交AB 于P,交AC 的延长线 于 Q.求证:PD- EQ= PE- DQ.1.证明:证法一:•••/ BAC=Z DAE•••/ BAO Z CAE=Z DAEF Z CAE 即/ BAE =ZCAD •••/ BAC=Z BDC / BFA=Z CFD• 180°—/ BAC-Z BFA= 180°—/ BDC- / CFD 即Z ABE=Z ACD •△ AB0A ACD • AB AE • A C T AD .证法二:•••/ BAC=Z DAE BAO/ CAE = / DAE + / CAE ,即 / BAE =/ CAD T Z BEA=Z DAE^Z ADE Z ADC= / BDO Z ADE Z DAE=Z BDC •Z AEB= AB AEZ ADCABE^A ACD •- T .AC AD2 .证明:•/ AB = AD , •Z ADB =Z ABE T Z ADB=Z ACB •Z ACB=Z ABEAB 又 T Z CAB=Z BAE •△ ACB P A ABE •屁3.证明:如图,连接 AE T EF 垂直平分 AD • AE = DE •Z DAE=Z 4. T AD 是 △ ABC 的角平分线,•Z 1 = Z 2. T Z DAE=Z 2+Z 3, Z 4=Z B +Z 1, •Z B=Z 3.又方法ACAB 又 T AB= ADAB _AC AE =AD3•••/ BEA=Z AEC •••△ BEA^A AEC /•圧• A E = BE- CE • D E = BE- CE 4.证明:T AE// DCQDC=/ E ,/ QCD=Z QAEQCX QAE • EQCD,T AE// BD,PD BD _ f PE =AE T 点PD- EQ= PE- DQ为BC 的中点, B[> CD ,PD DQPE = EQBE AE。

1、三角形等积式与比例式的证明

1、三角形等积式与比例式的证明

小专题(十) 等积式与比例式的证明方法1 三点定型法要证明的比例式的四条线段恰好是两个三角形的对应边时,可直接用三点定型法找相似三角形.1.已知:如图,∠ABC =∠ADE.求证:AB ·AE =AC ·AD.2.(滨州中考)如图,△ABC 中,∠ABC =2∠C ,BD 平分∠ABC 交AC 于D.求证:AB ·BC =AC ·BD.方法2 等线段代换法从要证的结论难以找到相似三角形时,往往可用相等的线段去替换结论中的某些线段,再用三点定型法找相似三角形.3.已知:如图,▱ABCD 中,E 是CB 延长线上一点,DE 交AB 于F.求证:AD ·AB =AF ·CE.4.如图,在△ABC 中,点D ,E 在边BC 上,且△ADE 是等边三角形,∠BAC =120°,求证:DE 2=BD ·CE.5.如图,已知在△ABC 中,AB =AC ,AD 是BC 边上的中线,CF ∥BA ,BF 交AD 于P 点,交AC 于E 点.求证:PB 2=PE ·PF.方法3 等比代换法(找中间比)要证明的比例式无法直接通过平行或相似证出时,往往要找中间比进行过渡.6.如图,在△ABC 中,点D 、E 、Q 分别在AB 、AC 、BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:DP BQ =PEQC.7.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 为AC 的中点,ED 、CB 的延长线交于点F.求证:DF CF =BCAC.8.(选做)如图,已知D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF =DE ,连接BF ,交边AC 于点G ,连接CF. (1)求证:AE AC =EGCG;(2)如果CF 2=FG ·FB ,求证:CG ·CE =BC ·DE.方法4 等积代换法(找中间积)常用到基本图形的结论找中间积.9.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:AE ·AB =AF ·AC.10.(崇明中考)如图,△ABC 中,点D 、E 分别在BC 和AC 边上,点G 是BE 边上一点,且∠BAD =∠BGD =∠C ,连接AG ,求证:BG AB =ABBE.11.如图,在△ABC 中,AD ,BF 分别是BC ,AC 边上的高,过D 作AB 的垂线交AB 于E ,交BF 于G ,交AC 的延长线于H ,求证:DE 2=EG ·EH.。

人教版九年级数学下册复习类比归纳专题:比例式、等积式的常见证明方法

人教版九年级数学下册复习类比归纳专题:比例式、等积式的常见证明方法

类比归纳专题:比例式、等积式的常见证明方法——直接法、间接法一网搜罗◆类型一 三点定型法:找线段对应的三角形,利用相似证明1.如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E ,连接AG .(1)求证:AG =CG ; (2)求证:AG 2=GE ·GF .2.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)若FD =2FB ,求FDFC的值;(2)若AC =215,BC =15,求S △FDC 的值.◆类型二 利用等线段代换3.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB .求证:ABAE =AC AD.◆类型三 找中间比利用等积式代换4.如图,已知CE 是Rt △ABC 斜边AB 上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP ,垂足为G ,交CE 于D ,求证:CE 2=PE ·DE .参考答案与解析1.证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB ,∴∠F=∠FCD .在△ADG 与△CDG 中,⎩⎪⎨⎪⎧AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△ADG ≌△CDG ,∴∠EAG =∠DCG ,AG =CG .(2)∵∠EAG =∠DCG ,∠F =∠DCG ,∴∠EAG =∠F .又∵∠AGE =∠FGA ,∴△AGE ∽△FGA ,∴AG FG =EGAG,∴AG 2=GE ·GF .2.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ABC =∠DCB +∠ABC ,∴∠A =∠DCB .∵E 是AC 的中点,∠ADC =90°,∴ED =EA ,∴∠A =∠EDA .∵∠BDF =∠EDA ,∴∠DCB =∠BDF .又∵∠F =∠F ,∴△BDF ∽△DCF ,∴FD ∶CF =BF ∶FD =1∶2.(2)∵∠ACB =90°,CD ⊥AB ,∴∠BDC =∠ACB .∵∠ABC =∠CBD ,∴△BDC ∽△BCA ,∴BD ∶CD =BC ∶AC =15∶215=1∶2.在Rt △BAC 中,由勾股定理可得AB =53,∴S △BDC S △BCA =BC 2AB 2=15,∴S △BDC =15×12×215×15=3.∵△BDF ∽△DCF ,∴S △FBD S △FDC =⎝⎛⎭⎫BD CD 2=14,即S △BDC S △FDC =34.∵S △BDC =3,∴S △FDC =4. 3.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =ACAD.4.证明:∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠BCE =90°,∠ACE +∠CAE =90°,∴∠CAE =∠BCE ,∴Rt △ACE ∽Rt △CBE ,∴CE BE =AECE,∴CE 2=AE ·BE .又∵BG ⊥AP ,CE ⊥AB ,∴∠DEB =∠DGP =∠PEA =90°.∵∠1=∠2,∴∠P =∠3,∴△AEP ∽△DEB ,∴PE BE =AEDE,∴PE ·DE =AE ·BE ,∴CE 2=PE ·DE .。

19.类比归纳专题:比例式、等积式的常见证明或求值方法

19.类比归纳专题:比例式、等积式的常见证明或求值方法

类比归纳专题:比例式、等积式的常见证明或求值方法——直接法、间接法一网搜罗◆类型一 三点定型法:找线段对应的三角形,利用相似证明1.(2016·大庆中考)如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E .(1)求证:AG =CG ; (2)求证:AG 2=GE ·GF.2.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)若FD =2FB ,求FDFC的值;(2)如果AC =6,BC =4,S △FBD =3.84,求S △FDC 的值.◆类型二 利用等线段代换3.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB .求证:ABAE=AC AD.◆类型三 找中间比利用等积式代换4.如图,已知CE 是Rt △ABC 斜边AB 上的高,在EC 的延长线上任取一点P ,连接AP ,BG ⊥AP ,垂足为G ,交CE 于D ,求证:CE 2=PE ·DE.类比归纳专题:比例式、等积式的常见证明或求值方法1.证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB ,∴∠F =∠FCD .在△ADG 与△CDG 中,⎩⎪⎨⎪⎧AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△ADG ≌△CDG ,∴∠EAG =∠DCG ,AG =CG ;(2)∵∠EAG =∠DCG ,∠F =∠DCG ,∴∠EAG =∠F .又∵∠AGE =∠FGA ,∴△AGE ∽△FGA ,∴AG FG =EGAG,∴AG 2=GE ·GF .2.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ABC =∠DCB +∠ABC ,∴∠A =∠DCB .∵E 是AC 的中点,∴ED =EA ,∠A =∠EDA .∵∠BDF =∠EDA ,∴∠DCB =∠BDF .又∵∠F =∠F ,∴△BDF ∽△DCF ,∴FD ∶CF =BF ∶FD =1∶2;(2)∵∠ACB =90°,CD ⊥AB ,∴∠BDC =∠ACB .∵∠A =∠DCB ,∴△BDC ∽△BCA ,∴BD ∶CD =BC ∶AC =4∶6=2∶3.∵△BDF ∽△DCF ,∴S △FBD S △FDC =⎝⎛⎭⎫BD CD 2=49.∵S △FBD =2,∴S △FDC =4.5.3.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =ACAD.4.证明:∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠BCE =90°,∠ACE +∠CAE =90°,∴∠CAE =∠BCE ,∴Rt △ACE ∽Rt △CBE ,∴CE BE =AECE,∴CE 2=AE ·BE .又∵BG ⊥AP ,CE ⊥AB ,∴∠DEB =∠DGP =∠PEA =90°.∵∠1=∠2,∴∠P =∠3,∴△AEP ∽△DEB ,∴PE BE =AEDE,∴PE ·DE =AE ·BE ,∴CE 2=PE ·DE.。

华师版九年级数学上册复习-解题技巧专题:比例式、等积式的常见证明方法

华师版九年级数学上册复习-解题技巧专题:比例式、等积式的常见证明方法

解题技巧专题:比例式、等积式的常见证明方法——直接法、间接法—网搜罗◆类型一 找线段对应的三角形,利用相似证明 1.(虹口区模拟)如图,在△ABC 中,∠C =90°,AD 是∠CAB 的平分线,BE ⊥AE ,垂足为点E ,求证:BE 2=DE ·AE .2.如图,四边形ABCD 的对角线AC ,BD 交于点F ,点E 是BD 上一点,且∠BAC =∠BDC =∠DAE .求证:AB AC =AEAD.3.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,M ,N 分别为垂足.求证:AM AB =MNAC.◆类型二 利用等线段代换证明4.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB .求证:ABAE =AC AD.5.如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F .求证:DE 2=BE ·CE .6.如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 且交AC 于F ,过F 作FG ∥AB ,交AE 于G .求证:AG 2=AF ·CF .◆类型三 找中间比利用等积式代换7.如图,在△ABC 中,点D 为BC 的中点,AE ∥BC ,ED 交AB 于P ,交AC 的延长线于Q .求证:PD ·EQ =PE ·DQ .8.★如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 于F .求证:AC ·CF =BC ·DF .9.★如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,点E 为AC 的中点,ED 的延长线交AB 于F .求证:AB AC =DF AF.解题技巧专题:比例式、等积式的常见证明方法1.证明:∵AD 平分∠CAB ,∴∠CAD =∠BAD .∵∠C =90°,AE ⊥BE ,∴∠ADC +∠CAD =∠BDE +∠DBE .∵∠ADC =∠BDE ,∴∠CAD =∠DBE ,∴∠BAD =∠DBE ,∴Rt △ABE ∽Rt △BDE ,∴BE DE =AEBE,∴BE 2=DE ·AE .2.证明:证法一:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BAC =∠BDC ,∠BF A =∠CFD ,∴180°-∠BAC -∠BF A =180°-∠BDC -∠CFD ,即∠ABE =∠ACD ,∴△ABE ∽△ACD ,∴AB AC =AEAD. 证法二:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵∠BEA =∠DAE +∠ADE ,∠ADC =∠BDC +∠ADE ,∠DAE =∠BDC ,∴∠AEB =∠ADC ,∴△ABE ∽△ACD ,∴AB AC =AEAD.3.证明:在▱ABCD 中,∠B =∠D ,AD =BC ,又∵∠AMB =∠AND =90°,∴Rt △AMB ∽Rt △AND ,∴AM AN =AB AD =ABBC.又∵AB ∥CD ,AN ⊥CD ,∴AN ⊥AB .∴∠BAM +∠MAN =∠BAM +∠B =90°,∴∠B =∠MAN ,∴△AMN ∽△BAC ,∴AM AB =MNAC.4.证明:∵AB =AD ,∴∠ADB =∠ABE .又∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AC =AE AB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =ACAD .5.证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA =∠AEC ,∴△BEA ∽△AEC ,∴AE CE =BEAE,∴AE 2=BE ·CE ,∴DE 2=BE ·CE .6.证明:∵BE ⊥AC ,∴∠AFB =∠BFC =90°,∴∠ABF +∠BAF =90°.∵四边形ABCD 是矩形,∴∠ABC =90°,∴∠ABF +∠CBF =90°,∴∠BAF =∠CBF ,∴△ABF ∽△BCF ,∴BF CF =AFBF,∴BF 2=AF ·CF .∵四边形ABCD 是矩形,∴AD =BC ,∠D =∠BCE =90°.又∵点E 是CD 的中点,∴DE =CE ,∴△ADE ≌△BCE ,∴AE =BE .∵GF ∥AB ,∴AG AE =BF BE,∴AG =BF ,∴AG 2=AF ·CF .7.证明:∵AE ∥DC ,∴△QCD ∽△QAE ,∴DQ EQ =CDAE .∵AE ∥BD ,∴△BDP ∽△AEP ,∴PD PE =BD AE .∵点D 为BC 的中点,∴BD =CD ,∴PD PE =DQEQ,即PD ·EQ =PE ·DQ . 8.证明:∵CD 是Rt △ABC 斜边AB 上的高,∴∠ACB =∠ADC =∠CDB =90°,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,∴△ADC ∽△CDB ,∴AD CD =AC BC .∵E 为BC的中点,∴DE =CE ,∴∠EDC =∠DCE =∠DAC ,∴∠FDC =∠F AD .又∵∠F =∠F ,∴△FDC ∽△F AD ,∴CF DF =CD AD ,∴DF CF =AD DC ,∴AC BC =DFCF,∴AC ·CF =BC ·DF .9.证明:∵∠BAC =90°,AD ⊥BC ,∴∠ADB =∠CDA =90°,∠BAD +∠CAD =90°,∴∠CAD +∠C =90°,∴∠BAD =∠C ,∴△ABD ∽△CAD ,∴AB AC =BDAD .在Rt △ADC 中,∵点E 为AC 的中点,∴DE =CE ,∴∠C =∠EDC ,∴∠BAD =∠EDC .又∵∠EDC =∠FDB ,∴∠FDB =∠BAD ,即∠FDB =∠F AD .又∵∠F =∠F ,∴△DFB ∽△AFD ,∴DF AF =BD AD .∴ABAC =DF AF.。

比例式、等积式证明常用方法

比例式、等积式证明常用方法

比例式、等积式证明的常用方法一、三点定形法例1如图,在Rt△ ABC中,£ ACB =90 ° , CD _ AB于D, E为AC的中点,ED的延长线交CB 的延长线于点P,求证:PD?二PB PCE例2如图,在ABC中,AB _ AC,D为BC中点, DE _ BC交AC于F,交BA延长线于E .求证:AD^ DE DF注:三点定形法证明等积式的一般步骤:1.先把等积式转化为比例式;2•观察比例式的线段确定可能相似的两个三角形;3•再找这两个三角形相似所需的条件• 二、找相等的量(比、线段、等积式)替换1、等线段替换2AC 于 E 、F ,求证:BE = EF EG例1 已知等腰 ABC 中,AB 二AC , AD _ BC 于D , CG // AB , BG 分别交AD 、 例 2 如图,在.:ABC 中,AB = AC , AD _ BC 于 D , BE _ AC 于 E , EG _ BC 于G , L 是AF 的中点•求证:CD 2二EGDL2、等比替换例3已知梯形 ABCD 中,AB // CD , AC 、BD 交于点 O ,BE // AD 交AC 的延长线于点 E , 求证:OA 2 =OC OE.ED延长线交AB延例4如图,在「ABC中,AB_ AC , AD—BC , E为AC中点, 长线于F •求证:AB AF =AC DF3、等积替换例5如图,在「ABC中,AD、BF分别是BC、AC边上的高,过D作AB的垂线交AB于E ,交BF于G,交AC延长线于H •求证:DE EG EH •例6如图,已知CE是Rt△ ABC斜边AB上的高,在EC的延长线上取一点P,连结AP,BG _ AP垂足为G,交CE于D,求证:CE?二PE DE •注:当要证明的比例式中的线段在同一条直线上时,可以用相等的比、相等的线段、相等的等积式来替换相应的量,把看似无路可走的题目盘活,从而达到“车到山前疑无路,柳暗花明又一村”的效果• 三、把求证等积式、比例式转化为求证垂直、求证角、线段相等,使证明简化1例1 已知在正方形ABCD中,E是AB的中点,F是AD上的一点,且AF AD ,42EG _ CF,垂足为G,求证:EG =CG FG •\ G四、利用相似三角形的性质例1 如图,BC 中,.ACB =90 ° , CD _ AB 于点D , CAB 的平分AE 交CD 于点F,交CB于点E •求证:AF CB =CD AE .A D B注:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比,我们可以利用这些性质来证明有关的等积式往往会起到事半功倍的效果!练习巩固:1如图,点D、E分别在边AB、AC上,且• ADE C求证:(1) . ADE s :ACB ;(2) AD AB = AE AC .2 •如图,ABC中,点DE在边BC上,且ADE是等边三角形,• BAC =120 求证:(1) ADB sCEA ; (2) DE2二BD CE ; (3)AB AC 二AD BC .3•如图,求证:在平行四边形ABCD中,E为BA延长线上一点,ECA.AD EC =AC EB4 •如图,AD为ABC中.BAC的平分线,EF是AD的垂直平分线.5 •如图,E是平行四边形ABCD的边DA延长线上一点,EC交AB于点G,交BD于点F,求证:FC? =FG EF .求证:FD $ = FC FB。

123.15.比例式、等积式的常见证明方法

123.15.比例式、等积式的常见证明方法

∴∠4=∠F 而 ∠ CPE 是 △ CPE 和
△FPC的公共角 ∴△CPE∽△FPC ∴PE∶PC=PC∶PF ∴PC2=PE·PF ∴BP2=PE·PF
∵CF∥AB
∴∠3=∠F
方法总结
运用类型一的方法证明线段的比例式或等积式时,如果相关的线段不在 某两个三角形中,则需要将其中的某条线段用与之相等的另一条线段替换, 再按类型一 的方法证明.
∴ DF BD AF AD
∴ AB DF AC AF
∴AB·AF=AC·DF.
方法总结
证明线段比例式或等积式时,如果按类型一、类型二的方法仍无法证 明,可以尝试将等积式化为比例式,结合图形找到能够与比例式中的两个 比分别相等的中间比,从而证明所求证的结果成立.
XXX X
古 X
X X X
风 设
一 岁 只 叹 伊
, 饮 罢 飞 雪 ,
负 了 青 春 举
泪 溶 了 雪 , 恰
光 ? 谁 酒 三 尺
颜 刹 那 ? 谁 饮
拾 弹 指 雪 花 ?
今 夜 无 月 亦 无
纷 纷 飘 香 。 雪
一 回 。 忆 苍 茫
前 尘 旧 梦 , 不
, 怎 敌 我 浊 酒
古 韵 清

中 幽 舞
梦明
国 落 月
花, 间 。
类型三:找中间比利用等积式代换
如图,在△ABC中,已知∠BAC=90 °,AD⊥BC于D,E为直角边AC的 中点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.
A
1
E
B
3
2D
C
F
如图,在△ABC中,已知∠A=90°,AD⊥BC于D,E为直角边AC的中 点,过D、E作直线交AB的延长线于F.求证:AB·AF=AC·DF.

专题训练:证比例式或等积式的技巧(含答案)

专题训练:证比例式或等积式的技巧(含答案)

专训2 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,求证:AB·DF=BC·EF.三点定型法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F . 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E .求证:AM 2=MD ·ME .构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP 于点G ,交CE 于点D .求证:CE 2=DE ·PE .两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F .求证:BF BE =AB BC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N .求证: (1)△AMB ∽△AND ; (2)AM AB =MN AC.等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F . 求证:AE AF =AC AB.等线段代换法11.如图,在等腰三角形ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF于点F,求证:BP2=PE·PF.12.如图,已知AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.参考答案1.证明:如图,过点C 作CM ∥AB 交DF 于点M .∵CM ∥AB ,∴∠FCM =∠B ,∠FMC =∠FDB .∴△CMF ∽△BDF . ∴BF CF =BD CM. 又∵CM ∥AD ,∴∠A =∠ECM ,∠ADE =∠CME . ∴△ADE ∽△CME .∴AE EC =ADCM .∵D 为AB 的中点,∴BD =AD . ∴BD CM =AD CM .∴BF CF =AE EC. 即AE ·CF =BF ·EC .2.证明:过点D 作DG ∥BC ,交AC 于点G , 易知△DGF ∽△ECF ,△ADG ∽△ABC . ∴EF DF =CE DG ,AB BC =ADDG. ∵AD =CE ,∴CE DG =AD DG .∴AB BC =EFDF .即AB ·DF =BC ·EF .点拨:过某一点作平行线,构造出“A ”型或“X ”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD 是平行四边形, ∴AE ∥DC ,∠A =∠C . ∴∠CDF =∠E .∴△FCD ∽△DAE .∴DC AE =CF AD .4.证明:∵DM ⊥BC ,∠BAC =90°, ∴∠B +∠BEM =90°,∠D +∠DEA =90°. ∵∠BEM =∠DEA ,∴∠B =∠D . 又∵M 为BC 的中点,∠BAC =90°, ∴BM =AM . ∴∠B =∠BAM .∴∠BAM=∠D.即∠EAM=∠D. 又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.即AM2=MD·ME.5.证明:如图,连接PM,PN.∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°,∴∠5=∠7.∴△BPM∽△CNP.∴BPCN=BMCP.即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠EDB=180°,∠ACB+∠FED=180°.∴∠FED=∠EDB. 又∵∠EDF=∠DBE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE.即DE2=DB·EF.又由△DEF∽△BDE,得∠GED=∠EFD.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DGDE=DEDF.即DE2=DG·DF.∴DG·DF=DB·EF.7.证明:∵BG⊥AP,PE⊥AB,∴∠AEP=∠DEB=∠AGB=90°. ∴∠P+∠P AB=90°,∠P AB+∠ABG=90°.∴∠P =∠ABG .∴△AEP ∽△DEB . ∴AE DE =PEBE.即AE ·BE =PE ·DE . 又∵∠CEA =∠BEC =90°, ∴∠CAB +∠ACE =90°. 又∵∠ACB =90°, ∴∠CAB +∠CBE =90°.∴∠ACE =∠CBE .∴△AEC ∽△CEB . ∴AE CE =CEBE.即CE 2=AE ·BE . ∴CE 2=DE ·PE .8.证明:由题意得∠BDF =∠BAE =90°. ∵BE 平分∠ABC ,∴∠DBF =∠ABE . ∴△BDF ∽△BAE .∴BD AB =BF BE .∵∠BAC =∠BDA =90°, ∠ABC =∠DBA .∴△ABC ∽△DBA .∴AB BC =BD AB .∴BF BE =AB BC. 9.证明:(1)∵四边形ABCD 为平行四边形,∴∠B =∠D . ∵AM ⊥BC ,AN ⊥CD , ∴∠AMB =∠AND =90°. ∴△AMB ∽△AND .(2)由△AMB ∽△AND 得AM AN =AB AD ,∠BAM =∠DAN .又AD =BC ,∴AM AN =ABBC .∵AM ⊥BC ,AD ∥BC , ∴∠MAD =∠AMB =90°.∴∠B +∠BAM =∠MAN +∠NAD =90°.∴∠B =∠MAN . ∴△AMN ∽△BAC .∴AM AB =MN AC .10.证明:∵AD ⊥BC ,DE ⊥AB , ∴∠ADB =∠AED =90°. 又∵∠BAD =∠DAE , ∴△ABD ∽△ADE .∴AD AB =AEAD.即AD 2=AE ·AB . 同理可得AD 2=AF ·AC . ∴AE ·AB =AF ·AC .∴AE AF =AC AB .11.证明:连接PC ,如图所示.∵AB =AC ,AD ⊥BC ,∴AD 垂直平分BC ,∠ABC =∠ACB . ∴BP =CP .∴∠1=∠2. ∴∠ABC -∠1=∠ACB -∠2, 即∠3=∠4.∵CF ∥AB ,∴∠3=∠F .∴∠4=∠F . 又∵∠CPF =∠CPE , ∴△CPF ∽△EPC . ∴CP PE =PFCP,即CP 2=PF ·PE . ∵BP =CP ,∴BP 2=PE ·PF .12.证明:如图,连接P A ,∵EP 是AD 的垂直平分线, ∴P A =PD . ∴∠PDA =∠P AD .∴∠B +∠BAD =∠DAC +∠CAP . 又∵AD 平分∠BAC ,∴∠BAD =∠DAC .∴∠B =∠CAP . 又∵∠APC =∠BP A , ∴△P AC ∽△PBA .∴PA PB =PC PA .即P A 2=PB ·PC .∵P A=PD,∴PD2=PB·PC.11。

北师大版 九年级数学上册:小专题(十) 等积式与比例式的证明

北师大版 九年级数学上册:小专题(十) 等积式与比例式的证明

小专题(十)等积式与比例式的证明方法1三点定型法要证明的比例式的四条线段恰好是两个三角形的对应边时,可直接用三点定型法找相似三角形.1.已知:如图,∠ABC=∠ADE.求证:AB·AE=AC·AD.2.(滨州中考)如图,△ABC中,∠ABC=2∠C,BD平分∠ABC交AC于D.求证:AB·BC=AC·BD.方法2等线段代换法从要证的结论难以找到相似三角形时,往往可用相等的线段去替换结论中的某些线段,再用三点定型法找相似三角形.3.已知:如图,ABCD中,E是CB延长线上一点,DE交AB于F.求证:AD·AB=AF·CE.4.如图,在△ABC中,点D,E在边BC上,且△ADE是等边三角形,∠BAC=120°,求证:DE2=BD·CE.5.如图,已知在△ABC中,AB=AC,AD是BC边上的中线,CF∥BA,BF交AD于P点,交AC于E点.求证:BP2=PE·PF.方法3等比代换法(找中间比)要证明的比例式无法直接通过平行或相似证出时,往往要找中间比进行过渡.6.如图,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P.求证:DPBQ=PE QC.7.如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 为AC 的中点,ED 、CB 的延长线交于点F ,求证:DF CF =BCAC.8.已知如图,D 是△ABC 的边AB 上一点,DE ∥BC ,交边AC 于点E ,延长DE 至点F ,使EF =DE ,连接BF ,交边AC 于点G ,连接CF. (1)求证:AE AC =EGCG;(2)如果CF 2=FG·FB ,求证:CG·CE =BC·DE.方法4 等积代换法(找中间积)常用到基本图形的结论找中间积.9.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:AE·AB =AF·AC.10.(崇明中考)如图,△ABC 中,点D 、E 分别在BC 和AC 边上,点G 是BE 边上一点,且∠BAD =∠BGD =∠C ,连接AG ,求证:BG AB =ABBE.11.如图,在△ABC 中,AD ,BF 分别是BC ,AC 边上的高,过D 作AB 的垂线交AB 于E ,交BF 于G ,交AC 的延长线于H ,求证:DE 2=EG·EH.参考答案小专题(十) 等积式与比例式的证明针对训练1.证明:∵∠ABC =∠ADE ,∠A =∠A ,∴△ABC ∽△ADE.∴AB AC =ADAE ,即AB·AE =AC·AD. 2.证明:∵∠ABC=2∠C ,BD 平分∠ABC ,∴∠ABD =∠DBC =∠C.又∵∠A 为公共角,∴△ABC ∽△ADB.∴AC AB =BCBD ,即AB·BC=AC·BD. 3.证明:在ABCD 中,∠A =∠C ,AB =CD ,AD ∥BC ,∴∠ADF =∠E.∴△ADF ∽△CED.∴ADCE=AF CD .∴AD CE =AFAB,即AD·AB =AF·CE. 4.证明:∵△ADE 是等边三角形,∴DE =AD =AE ,∠ADE =∠AED =60°.∴∠ADB =∠AEC =120°,∠B +∠BAD =60°.又∵∠BAC =120°,∴∠B +∠C =60°.∴∠BAD =∠C.∴△ABD ∽△CAE.∴BD AE =AD CE .∴BD DE =DECE ,即DE 2=BD·CE. 5.证明:连接PC.在△ABC 中,AB =AC ,D 为BC 中点,∴AD 垂直平分BC.∴PB =PC.∴∠PBC =∠PCB.∵AB =AC ,∴∠ABC =∠ACB.∴∠ABC -∠PBC =∠ACB -∠PCB ,即∠ABP =∠ACP.∵CF ∥AB ,∴∠ABP =∠F.∴∠ACP =∠F.又∵∠EPC =∠CPF ,∴△PCE ∽△PFC.∴PC PE =PF PC .∵PC =PB ,∴PB PE =PFPB,即PB 2=PE·PF. 6.证明:在△ABQ 中,由于DP ∥BQ ,∴∠ADP =∠B.又∠DAP =∠BAQ ,∴△ADP ∽△ABQ.∴DP ∶BQ =AP ∶AQ.同理△AEP ∽△ACQ ,∴PE ∶QC =AP ∶AQ.∴DP ∶BQ =PE ∶QC. 7.证明:∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =∠ACD +∠BCD ,∠ACB =∠BDC =90°.∴∠A =∠BCD.∴△ABC ∽△CBD.∴BC BD =AC CD ,即BC AC =BDCD.又∵E 为AC 中点,∴AE =CE =ED.∴∠A =∠EDA.∵∠EDA =∠BDF ,∴∠FCD =∠BDF.又∠F 为公共角,∴△FDB ∽△FCD.∴DF CF =BD CD .∴DFCF =BC AC . 8.证明:(1)∵DE ∥BC ,∴△ADE ∽△ABC ,△EFG ∽△CBG.∴AE AC =DE BC ,EF BC =EG CG .又∵DE =EF ,∴DE BC =EF BC .∴AE AC =EG CG .(2)∵CF 2=FG·FB ,∴CF FG =FB CF .又∵∠CFG =∠CFB ,∴△CFG ∽△BFC.∴CG BC =FGFC,∠FCE =∠CBF.又∵DF ∥BC ,∴∠EFG =∠CBF.∴∠FCE =∠EFG .又∵∠FEG =∠CEF ,∴△EFG ∽△ECF.∴EF EC =FG FC =DE EC .∴CGBC=DEEC,即CG·CE =BC·DE. 9.证明:∵AD ⊥BC ,DE ⊥AB ,∴∠ADB =∠AED =90°.∴∠ADE +∠BDE =∠ADE +∠DAE.∴∠BDE =∠DAE.∴△ADE ∽△ABD.∴AD AB =AEAD ,即AE·AB =AD 2.同理:△ADF ∽△ACD.∴AF·AC =AD 2.∴AE ·AB =AF·AC. 10.证明:∵∠BGD =∠C ,∠GBD =∠CBE ,∴△BGD ∽△BCE.∴BG BC =BDBE ,即BG·BE=BC·BD.又∵∠BAD =∠C ,∠ABD =∠CBA ,∴△ABD ∽△CBA.∴AB BC =BDAB ,即BC·BD =AB 2.∴BG ·BE =AB 2,即BG AB =ABBE. 11.证明:∵AD ,BF 分别是BC ,AC 边上的高,DE ⊥AB ,∴∠ADB =∠BED =90°.∴∠ADE +∠BDE =90°,∠ADE +∠EAD =90°.∴∠BDE =∠EAD.∴△AED ∽△DEB.∴DE 2=AE·BE.又∵∠HFG =90°,∠BGE =∠HGF ,∴∠EBG =∠H.∵∠BEG =∠HEA =90°,∴△BEG ∽△HEA.∴EG AE =BEEH,即EG·EH =AE·BE.∴DE 2=EG·EH.。

相似三角形复习——比例式、等积式的几种常见证明方法

相似三角形复习——比例式、等积式的几种常见证明方法

图3 例3如图3,△ABC中,DE∥BC,BE与CD交于点O, AO与DE、BC分别交于点N、M,试说明:. 利用等
比式代 换
AN AD DE AM AB BC
AN ON AM OM
图3
ON OE DE OM OB BC
例3.如图,已知:在△ABC中,∠BAC=900, AD⊥BC,E是AC的中点,ED交AB的延长线于F
A
BDEຫໍສະໝຸດ C如上图, ∠BAC=120°, △ADE是 等边三角形,小丽发现图中有些线 段是其他两条线段的比例中项,你 知道小丽说的是哪些线段吗? 它们 分别是哪些线段的比例中项吗?
比例式得:
,由等式左边得
到△CDF,由等式右边得到△EDC,
这样只要证明这两个三角形相似就
可以得到要证的等积式了。因为
∠CDE是公共角,只需证明
∠DCE=∠F就可证明两个三角形相
似。
例2如图2,在△ABC中,AB=AC,直线DF与AB交于D,与
BC交于E,与AC的延长线交于F.图2 试说明:. DE EF
求证:

分 析:比例式左边AB,AC 在△ABC中,右边DF、AF在 △ADF中,这两个三角形不相 似,因此本题需经过中间比进 行代换。通过证明两套三角形 分别相似证得结论。
“双垂直”指:
“Rt△ABC中,
∠BCA=900,
CD⊥AB于D”,(如
图)在这样的条件下
有下列结论:
A
C
D
B
(1)△ADC∽△CDB∽△ACB (2)由△ADC∽△CDB得CD2=AD·BD (3)由△ADC∽△ACB得AC2=AD·AB (4)由△CDB∽△ACB得BC2=BD·AB (5)由面积得AC·BC=AB·CD (6)勾股定理 我们应熟记这些结论,并能灵活运用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档