有限元试题
有限单元法考试题及答案
![有限单元法考试题及答案](https://img.taocdn.com/s3/m/c424d84d4a73f242336c1eb91a37f111f1850dee.png)
有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。
A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。
答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。
答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。
有限元试题
![有限元试题](https://img.taocdn.com/s3/m/1974669ddd88d0d233d46aad.png)
一判断题 ×1. 节点的位置依赖于形态 而并不依赖于载荷的位置√2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元×3. 不能把梁单元、壳单元和实体单元混合在一起作成模型√4. 四边形的平面单元尽可能作成接近正方形形状的单元×5. 平面应变单元也好平面应力单元也好如果以单位厚来作模型化处理的话会得到一样的答案×6. 用有限元法不可以对运动的物体的结构进行静力分析√7. 一般应力变化大的地方单元尺寸要划的小才好×8. 所谓全约束只要将位移自由度约束住 而不必约束转动自由度√9. 同一载荷作用下的结构 所给材料的弹性模量越大则变形值越小√10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空 1 平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板 但前者受力特点是 平行于板面且沿厚度均布载荷作用 变形发生在板面内 后者受力特点是 垂直于板面的力的作用 板将变成有弯有扭的曲面。
2 平面应力问题与平面应变问题都具有三个独立的应力分量 σx σy τxy 三个独立的应变分量 εx εy γxy 但对应的弹性体几何形状前者为薄板 后者为长柱体。
3 位移模式需反映刚体位移 反映常变形 满足单元边界上位移连续。
4 单元刚度矩阵的特点有 对称性 奇异性 还可按节点分块。
5 轴对称问题单元形状为 三角形或四边形截面的空间环形单元 由于轴对称的特性 任意一点变形只发生在子午面上 因此可以作为二维问题处理。
6 等参数单元指的是 描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是 可以采用高阶次位移模式 能够模拟复杂几何边界 方便单元刚度矩阵和等效节点载荷的积分运算。
7 有限单元法首先求出的解是节点位移 单元应力可由它求得 其计算公式为______________ 。
8、一个空间块体单元的节点有3 个节点位移u v w .9 变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题 14分 1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。
有限单元法考试题及答案
![有限单元法考试题及答案](https://img.taocdn.com/s3/m/fed5404553d380eb6294dd88d0d233d4b04e3f47.png)
有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。
这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。
2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。
首先,根据单元的形函数和材料属性,计算单元的应变和应力。
然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。
三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。
请使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。
然后,为每个单元定义形函数,通常是线性形函数。
接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。
将所有单元的局部刚度矩阵组装成全局刚度矩阵。
由于杆两端固定,边界条件为位移为零。
最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。
应力可以通过位移和形函数计算得到。
有限元复习试题库完整
![有限元复习试题库完整](https://img.taocdn.com/s3/m/b9c197dff524ccbff0218456.png)
有限元复习一、选择题(每题1分,共10分)二、判断题(每空1分,共10分)三、填空题(每空1分,共10分)三、简答题(共44分)共6题四、综述题(共26分)两题一.基本概念1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题平面应力问题(1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。
一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必考虑。
于是只需要考虑x y xy εεγ、、三个应变分量即可。
平面应变问题(1) 纵向很长,且横截面沿纵向不变。
(2)载荷平行于横截面且沿纵向均匀分布z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。
也只需要考虑x y xy σστ、、三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。
轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。
在轴对称问题中,周向应变分量θε是与r 有关。
板壳问题一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。
如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。
杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。
在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。
平面(应力应变)问题与板壳问题的区别与联系平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。
而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/029d5c7253d380eb6294dd88d0d233d4b04e3f06.png)
有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。
以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。
答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。
答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。
答案:迭代三、简答题1. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。
- 将几何域划分为有限数量的小单元。
- 为每个单元定义形状函数。
- 计算单元刚度矩阵和载荷向量。
- 组装全局刚度矩阵和载荷向量。
- 施加边界条件。
- 求解线性方程组,得到节点位移。
- 计算单元应力和应变。
2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。
通过网格划分,可以: - 简化复杂几何形状的分析。
- 适应不同的材料属性和边界条件。
- 提供足够的细节以捕捉应力和位移的局部变化。
- 减少计算复杂度,提高求解效率。
四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。
请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。
答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/48ea9e3603768e9951e79b89680203d8cf2f6a7c.png)
有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。
下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。
答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。
答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。
答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。
假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。
结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。
分析载荷为2000 N,施加在结构的中心节点上。
(完整版)有限元考试试题及答案
![(完整版)有限元考试试题及答案](https://img.taocdn.com/s3/m/8809087a6137ee06eff918c7.png)
e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
有限元期末考试题及答案
![有限元期末考试题及答案](https://img.taocdn.com/s3/m/7304c248a31614791711cc7931b765ce05087ac5.png)
有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。
答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。
答案:泊松比三、简答题6. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。
7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。
答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。
影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。
四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。
如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。
答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。
对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。
有限元试题及答案
![有限元试题及答案](https://img.taocdn.com/s3/m/c1f8945078563c1ec5da50e2524de518964bd3cc.png)
有限元试题及答案一、选择题1. 有限元法是一种数值方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 偏微分方程答案:D2. 在有限元分析中,以下哪项不是网格划分的基本原则?A. 网格应尽量均匀B. 网格应避免交叉C. 网格应尽量小D. 网格应适应几何形状答案:C3. 有限元方法中,单元的局部刚度矩阵可以通过以下哪种方式获得?A. 直接积分B. 矩阵乘法C. 线性插值D. 经验公式答案:A二、填空题1. 有限元方法中,______ 是指将连续的域离散化成有限数量的小单元。
答案:离散化2. 在进行有限元分析时,______ 是指在单元内部使用插值函数来近似求解场变量。
答案:近似3. 有限元法中,______ 是指在单元边界上满足的连续性条件。
答案:边界条件三、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:(1)定义问题域;(2)离散化问题域,生成网格;(3)为每个单元定义局部坐标系和形状函数;(4)组装全局刚度矩阵和载荷向量;(5)施加边界条件;(6)求解线性代数方程;(7)提取结果并进行后处理。
2. 描述有限元分析中的单元类型有哪些,并简述每种单元的特点。
答案:常见的单元类型包括:(1)一维单元,如杆单元和梁单元,特点是沿一个方向传递力;(2)二维单元,如三角形和四边形单元,特点是在平面内传递力;(3)三维单元,如四面体和六面体单元,特点是在空间内传递力。
每种单元都有其特定的形状函数和刚度矩阵。
四、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间施加集中力P。
使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆离散化为一个单元。
使用一维杆单元的局部刚度矩阵和形状函数,可以推导出全局刚度矩阵。
然后,施加边界条件,即杆的两端位移为零。
最后,将集中力P转换为等效节点载荷,求解线性代数方程,得到节点位移。
应力可以通过位移和杆的截面特性计算得出。
有限元试卷和答案
![有限元试卷和答案](https://img.taocdn.com/s3/m/851f874c767f5acfa1c7cd09.png)
a
图1
1、解: 设图 1 所示的各点坐标为 点 1( a, 0) ,点 2(a,a) ,点 3(0,0) 于是,可得单元的面积为 (1) 形函数矩阵 N 为
1 (0 + ax − ay ) a2 1 N1 = 2 (0 + 0gx + ay ) a 1 N1 = 2 (a 2 − ax + 0gy ) a N1 =
判断正误 (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (×)9. 线性应力分析也可以得到极大的变形 (√)10. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (1)用加权余量法求解微分方程,其权函数 V 和场函数 u 的选择没有任何限 制。 ( × ) (2)四结点四边形等参单元的位移插值函数是坐标 x、y 的一次函数。 (√ ) (3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值 相等。 续。 (√ ) (× ) (× ) (6)等参单元中 Jacobi 行列式的值不能等于零。 (√) (7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。 (× ) (4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数 C1 连 (5)有限元位移法求得的应力结果通常比应变结果精度低。
《有限元》期末考题
![《有限元》期末考题](https://img.taocdn.com/s3/m/6215e8073169a4517723a372.png)
一、填空(共10个空,每空2分,共20分)11、有限元法是近似求解连续场问题的数值方法。
2、有限元法将连续的求解域离散,得到有限个单元,单元和单元之间用节点相连。
3、直梁在外力作用下,横截面上的内力有剪力和弯矩两个。
4、平面刚架结构在外力作用下,横截面上的内力有剪力、弯矩和轴力。
5、进行直梁的有限元分析,梁单元上每个节点的节点位移为挠度和转角。
、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及局部坐标系x´O´y ´下的单元刚度矩阵[K´]e,则单元在整体坐标系xOy下的单元刚度矩阵为 P31 。
7、平面刚架结构中,已知单元e的坐标变换矩阵[T e]及整体坐标系xOy下的单元节点力矩阵{p}e,则单元在局部坐标系x´O´y´下的单元节点力矩阵为 P30 。
8、在弹性范围和小变形的前提下,节点力和节点位移之间是线性系。
9、弹性力学问题的方程个数有 15个,未知量个数有 15 个。
10、弹性力学平面问题的方程个数有个,未知量个数有个。
11、把经过物体内任意一点各个截面的应力状况叫做一点的应力状态。
12、形函数在单元节点上的值,具有本点为 1 、它点为零的性质,并且在三角形单元的任一节点上,三个形函数之和为 1 。
13、形函数是定义于元内部坐标连续函数。
14、在进行节点编号时,要尽量使同一单元的相邻节点的号码差尽可能小,以便最大限度地缩小刚度矩阵带宽,节省存储、提高计算效率。
15、三角形单元的位移模式为。
16、矩形单元的位移模式为。
17、在选择多项式位移模式的阶次时,要求所选的位移模式应该与局部坐标系的方位无关,这一性质称为几何各向同性。
18、单元刚度矩阵描述了节点力和节点位移之间的关系。
19、在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的完备性和协调性的要求。
20、三节点三角形单元内的应力和应变是常数,四节点矩形单元内的应力和应变是线性变化的。
有限元期末考试试题
![有限元期末考试试题](https://img.taocdn.com/s3/m/021b412600f69e3143323968011ca300a6c3f625.png)
有限元期末考试试题一、选择题(每题2分,共20分)1. 在有限元分析中,单元的刚度矩阵通常通过以下哪种方式计算?A. 直接积分B. 线性插值C. 经验公式D. 试验数据2. 以下哪个选项不是有限元分析中的边界条件?A. 固定边界B. 自由边界C. 周期边界D. 热边界3. 有限元方法中,节点的自由度数量取决于什么?A. 单元类型B. 材料属性C. 几何形状D. 载荷类型4. 在进行热传导问题的有限元分析时,以下哪个方程是正确的?A. 牛顿第二定律B. 热平衡方程C. 动量守恒定律D. 质量守恒定律5. 以下哪个不是有限元分析中常用的单元类型?A. 四节点矩形单元B. 三角形单元C. 六面体单元D. 八节点等参单元二、简答题(每题10分,共30分)1. 简述有限元方法的基本步骤,并举例说明其在工程中的应用。
2. 解释什么是等参单元,并说明它在有限元分析中的重要性。
3. 描述在有限元分析中如何处理非线性问题,并给出一个具体的例子。
三、计算题(每题25分,共50分)1. 给定一个由四个节点构成的二维平面应力问题,节点坐标如下:节点1: (0, 0)节点2: (1, 0)节点3: (1, 1)节点4: (0, 1)已知材料的弹性模量E=210 GPa,泊松比ν=0.3。
若在节点1和节点3上施加单位力(1 N),试求该结构的位移场和应力场。
2. 考虑一个长方体热传导问题,其尺寸为Lx=0.5m,Ly=0.3m,Lz=0.2m。
该长方体的热导率为k=50 W/m·K,初始温度分布为T(x, y, z, 0) = 300 K。
若在x=0和x=Lx的面上施加恒定的边界温度T=400 K,试求经过时间t=10s后长方体内部的温度分布。
四、论述题(共30分)1. 论述有限元分析在结构优化设计中的作用,并讨论其在现代工程设计中的重要性。
有限元考试题
![有限元考试题](https://img.taocdn.com/s3/m/de65fdffb9f67c1cfad6195f312b3169a451eaf7.png)
判断题1.单元刚度矩阵是奇异的,其行列式等于零。
1单元刚度矩阵一定是奇异的,其矩阵行列式等于零。
1.单元刚度矩阵一定是方阵。
2.等参元是指单元坐标变换和函数插值采用相同的结点和相同的插值函数。
3.对三角形单元来说,节点数目越多,精度越高。
4.对四边形单元来讲,节点数目越多,精度越高5.后处理法得到的总体刚度矩阵较前处理法大。
6.矩形单元是常应力单元,在单元内部各点的应力相等。
7.可以利用虚功原理或几何法推到单元刚度矩阵。
8.可以利用虚功原理推到单元刚度矩阵。
9.利用矩形单元求解平面应变问题和平面应力问题。
10.利用矩阵位移法求解连续梁得到的一定是精确解。
11.利用矩阵位移法求解平面刚架得到的一定是精确解。
12.利用矩阵位移法求解平面刚架得到的一定可以得到精确解。
13.平面桁架平行移动而不转动,单元刚度矩阵要发生改变。
14.平面桁架单元旋转后,整体坐标系下的单元刚度矩阵要改变。
15.三角形单元中其面积坐标的值与三结点三角行单元的结点形函数值相等。
16.四边形等参单元的jacobi行列式是常数。
17.一般应力变化大的地方单元尺寸要划的小才好。
18.三角形六节点单元的单元刚度矩阵为12*12阶的。
19.三角形六节点单元的单元刚度矩阵为6X6阶的。
选择题1.n个积分点的高斯积分的精度可达到2n阶。
2.单元刚度方程是表示一个单元的结点外力和结点位移的相互关系。
3.对称荷载在对称面上引起的反对称位移的分量为零4.对分析物体划分好单元后,节点编号会对单元刚度矩阵的半宽带产生影响。
5.根据反力互等定理得到单元刚度矩阵是对称的。
6.空间刚架单元的单元刚度矩阵12*12 阶的。
7.空间问题的八结点六面体单元其单元刚度矩阵是24*24阶的。
8.利用矩阵位移法求解平面桁架,得到的是精确解。
9.利用四边形单元求解应力应变问题,得到的是近似解。
10.平面刚架单元其单元刚度矩阵是对称,奇异的。
11.平面刚架单元其单元刚度矩阵是6*6 阶的。
有限元试题和答案
![有限元试题和答案](https://img.taocdn.com/s3/m/eb774c17f18583d049645942.png)
一。
简答题:1.轴对称体上作用正对称形式的载荷时,沿坐标,,r z θ的三个分量(,,)r P r z θ,z (,,)P r z θ和(,,)P r z θθ有何特点?(P85)(,,)r P r z θ和z (,,)P r z θ是偶函数,傅里叶级数展开式中不含sin k θ,(,,)P r z θθ是奇函数,傅里叶级数展开式中不含cos k θ。
2.某单元的节点上,既有位移自由度又有转动自由度,试述此单元的协调性要求?(P27) 在交界面上满足变形协调条件,变形后既不分裂,也不重叠,从而保证了整个结构的位移连续。
3.用泛函变分求解弹性力学的场问题时,为什么只需要考虑几何边界条件?(P179) 泛函求极值与求满足位移及力边界条件的平衡方程的解是完全等价的。
利用变分求解只需要满足位移边界条件,而力边界条件是在求解泛函的极值中自动满足的。
4.写出用位移梯度表示的格林应变张量和阿尔曼西应变张量,并证明他们的参考变形?(P201)格林应变张量1=+2j i k k ij j i i j u u u u E x x x x ∂∂∂∂∂∂∂∂(+) 阿尔曼西应变张量1=+2j i k k ij j i i ju u u u e x x x x ∂∂∂∂∂∂∂∂(-) 5.写出接触问题中的运动学条件和动力学条件?(P225)运动学条件:满足不可贯穿条件,对于两个接触物体,可表示为0ABV V ⋂=动力学条件:要求连个物体接触面的合力为零0ABq q += 二、三角形单元的位移为:012012(cos 1)(sin )(sin )(cos 1)u u x x v v x x θθθθ=+-+-=++-式中0u 和0v 分别为1x 和2x 方向的刚体位移,θ为逆时针绕原点的刚体转角。
计算单元的柯西应变和格林应变。
证明此位移为刚体运动。
(P201) 解:柯西应变:11=cos 1u x εθ∂=-∂,22=cos 1v x εθ∂=-∂,12212=+sin sin 0u v x x εθθ∂∂=-+=∂∂ 格林应变:1111111111=+(cos 1cos 1(cos 1)(cos 1)sin sin )022u u u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=122121121211==+(sin sin (cos 1)(sin )sin (cos 1))022u v u u v v E E x x x x x x θθθθθθ∂∂∂∂∂∂+-++--+-=∂∂∂∂∂∂(+)=2222222211=+(cos 1cos 1(cos 1)(cos 1)sin sin )022v v u u v v E x x x x x x θθθθθθ∂∂∂∂∂∂+-+-+--+=∂∂∂∂∂∂(+)=三 周向有集中载荷作用的悬臂梁,弯曲刚度为EI ,(1)建立梁的总势能表达式,(2)假定瑞利-里茨能为2323w C x C x =+,计算梁的挠度表达式。
有限元题库
![有限元题库](https://img.taocdn.com/s3/m/bd36f86da45177232f60a227.png)
一、名词解释1、单元:在有限元中将这些简单形状的单元体称为单元。
2、节点:把单元与单元之间设置的相互连接点,称为节点。
3、圣维南原理的描述是:如果把物体的一小部分边界的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
4、系统的能量极值原理指出:在所有满足内部连续条件和运动学边界条件的位移中,满足平衡方程的位移使系统的总势能取驻值。
5、等效节点力:作业在物体上的各种外力也必须用作用在节点上的力表示,这一过程称为外力的静力等效移置,所得到的节点力称为等效节点力。
6、完备单元:在有限单元法中,把能够满足位移模式必须包含单元的刚体位移和位移模式必须包含单元的常应变的单元,称为完备单元。
7、协调单元:满足位移模式在单元内要连续、且在相邻单元之间的位移必须协调的单元称为完备单元或保续单元。
8、不满足位移模式在单元内要连续、且在相邻单元之间的位移必须协调的单元称为不协调单元。
9、满足6,不满足7的单元称为完备不协调单元。
二、填空1、在单元的公共边界上应力和应变的值将会有突变,但位移却是连续的。
2、(空间轴对称)刚度矩阵常采用三种办法进行计算:显示积分、数值积分、简单的近似积分。
3、形函数在各单元节点上的值,具有“本点是1、它点为零”的性质。
4、有限元由单元和节点组成。
5、单元的刚度矩阵取决于单元的形状、大小、方向和弹性系数,而与单元的位置无关,即不随单元或坐标轴的平行移动而改变。
三、判断四、简答1、弹性力学的5个基本假设?答:假定物体是连续的、假定物体是完全弹性的、假定物体是均匀的、假定物体是各向同性的、假定位移和形变是微小的。
2、弹性力学的三类方程和两个条件?答:三类方程:平衡方程、几何方程、本构方程两个条件:变形协调条件、边界条件3、有限元法的基本步骤?答:结构离散化、单元分析、整体分析4、平面应力与平面应变的区别?答:(1)平面应力几何特征:一个方向的尺寸比另两个方向的尺寸小得很多;受力特征:外力和约束,仅平行于板面作用,沿z方向不变化;(二维)应力特征:有三个应力分量,即是三维的。
有限元考试试题
![有限元考试试题](https://img.taocdn.com/s3/m/6966796ee3bd960590c69ec3d5bbfd0a7956d59c.png)
有限元考试试题一、选择题(每题5分,共30分)1、在有限元分析中,我们通常使用什么方法来求解偏微分方程?A.积分法B.差分法C.有限差分法D.有限元法2、下列哪个不是有限元法的优点?A.可以处理复杂几何形状B.可以处理非线性问题C.可以处理大规模问题D.可以处理不稳定问题3、在有限元分析中,我们通常将连续的物理场离散化为一系列的什么?A.有限个点B.无限个小段C.有限个小段D.无限个点4、下列哪个不是有限元分析的基本步骤?A.划分网格B.建立模型C.执行计算D.编写代码5、在有限元分析中,我们通常使用什么来描述物理场的性质?A.偏微分方程B.泛函方程C.常微分方程D.边界条件6、下列哪个不是有限元分析的应用领域?A.结构分析B.流体动力学C.电磁学D.社会科学二、填空题(每题10分,共40分)7、______是一种将连续的物理场离散化为一系列有限个点的方法,是有限元分析的基础。
8、在有限元分析中,我们通常使用______来对物理场进行离散化处理。
9、______是一种求解偏微分方程的数值方法,广泛应用于有限元分析。
10、在有限元分析中,我们通常使用______来描述物理场的性质。
三、解答题(每题20分,共60分)11、请简述有限元分析的基本步骤,并解释其在结构分析中的应用。
12、请说明在有限元分析中,如何处理边界条件,并举例说明。
13、请简述有限元分析的优点和局限性。
有限空间培训考试试题及答案一、选择题1、在有限空间内,以下哪个行为是危险的?A.带压操作B.穿著宽松衣服C.使用电动工具D.所有上述答案:D.所有上述。
在有限空间内,带压操作、穿著宽松衣服和使用电动工具都是危险的。
2、当进入有限空间前,应该进行哪项操作?A.排放内部气体B.测试内部气体C.对内部进行冲洗D.所有上述答案:D.所有上述。
在进入有限空间前,应该进行排放内部气体、测试内部气体并对内部进行冲洗。
3、有限空间内的危险因素不包括以下哪个?A.缺氧B.有毒气体C.电击D.所有上述答案:C.电击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一判断题节点的位置依赖于形态而并不依赖于载荷的位置√2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元×3. 不能把梁单元、壳单元和实体单元混合在一起作成模型√4. 四边形的平面单元尽可能作成接近正方形形状的单元×5. 平面应变单元也好平面应力单元也好如果以单位厚来作模型化处理的话会得到一样的答案×6. 用有限元法不可以对运动的物体的结构进行静力分析√7. 一般应力变化大的地方单元尺寸要划的小才好×8. 所谓全约束只要将位移自由度约束住而不必约束转动自由度√9. 同一载荷作用下的结构所给材料的弹性模量越大则变形值越小√10一维变带宽存储通常比二维等带宽存储更节省存储量。
二、填空平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板但前者受力特点是平行于板面且沿厚度均布载荷作用变形发生在板面内后者受力特点是垂直于板面的力的作用板将变成有弯有扭的曲面。
平面应力问题与平面应变问题都具有三个独立的应力分量三个独立的应变分量但对应的弹性体几何形状前者为薄板后者为长柱体。
位移模式需反映刚体位移反映常变形满足单元边界上位移连续。
单元刚度矩阵的特点有对称性奇异性还可按节点分块。
轴对称问题单元形状为三角形或四边形截面的空间环形单元由于轴对称的特性任意一点变形只发生在子午面上因此可以作为二维问题处理。
等参数单元指的是描述位移和描述坐标采用相同的形函数形式。
等参数单元优点是可以采用高阶次位移模式能够模拟复杂几何边界方便单元刚度矩阵和等效节点载荷的积分运算。
有限单元法首先求出的解是节点位移单元应力可由它求得其计算公式为。
8、一个空间块体单元的节点有 3 个节点位移变形体基本变量有位移应变应力基本方程平衡方程物理方程几何方程10.实现有限元分析标准化和规范化的载体就是单元三选择题分等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。
不相同不相同相同相同相同不相同不相同相同2 有限元位移模式中广义坐标的个数应与_______B____相等。
单元结点个数单元结点自由度数场变量个数 3 如果出现在泛函中场函数的最高阶导数是m阶单元的完备性是指试探函数必须至少是___B___完全多项式。
-1次次-1次 4 与高斯消去法相比高斯约当消去法将系数矩阵化成了____C_____形式因此不用进行回代计算。
上三角矩阵下三角矩阵对角矩阵5 对分析物体划分好单元后会对刚度矩阵的半带宽产生影响。
单元编号单元组集次序结点编号6 n个积分点的高斯积分的精度可达到__C____阶。
--引入位移边界条件是为了消除有限元整体刚度矩阵的_____C_____。
对称性稀疏性奇异性三简答题共20分每题5分、简述有限单元法结构刚度矩阵的特点。
2、简述有限元法中选取单元位移函数多项式的一般原则。
1、答答对前3个给4分对称性奇异性主对角元恒正稀疏性非零元素带状分布2、答一般原则有(1) 广义坐标的个数应该与结点自由度数相等选取多项式时常数项和坐标的一次项必须完备多项式的选取应由低阶到高阶尽量选取完全多项式以提高单元的精度。
有限元方法分析的目的对变形体中的位移、应力、应变进行定义和表达进而建立平衡方程、几何方程和物理方程。
2)针对具有任意复杂几何形状的变形体完整得获取在复杂外力作用下它内部的准确力学信息。
3)力学分析的基础上对设计对象进行强度(strength)、刚度评判修改、优化参数。
有限单元法分析步骤1、结构的离散化2、选择位移模式3 、分析单元的力学特性4、集合所有单元平衡方程得到整体结构的平衡方程5、由平衡方程求解未知节点位移6、单元应变和应力的计算4连续体结构分析的基本假定连续性假设完全弹性假设均匀性假设各向同性假设小变形假设。
离散的目的是什么?答案要点:将无穷自由度问题转换成有限个自由度问题,从而将连续的微分方程转换为有限个代数方程求解。
2、总刚矩阵是一个奇异阵,其物理意义是什么?答案要点:结构在无约束或约束不足时,结构可以可以发生刚体运动,从而在结构的位移中包含刚体位移,而不是变形位位。
3、建立有限元模型应遵循哪两个基本原则?答案要点:1)保证计算结果的精度;(2)控制模型的规模。
4、结构有限元静力分析主要计算什么内容?答案要点:1)结构变形;(2)结构应变;(3 结构应力。
(5)变差缩减性;(6)仿射不变性。
5、比较体素构造法和边界表示法的优缺点,并给出混合表示方法的特点。
答案要点:1)边界表示法边界表示法在图形处理上有明显的优点,因为这种方法与工程图的表示法相近,根据其数据可以迅速转化为线框模型和面模型。
尤其在曲面造型领域,便于计算机处理、交互设计与修改。
对于面的数学描述而言,用边界表示法可以表达平面和自由曲面(如Coons 曲面、NURBS 曲面)。
边界表示法的缺点是数据量庞大,对于简单形体如球体、柱体等的表示显得过于复杂。
(2)体素构造法体素构造法在几何形状定义方面具有精确、严格的特点。
其基本定义单位是体和面,但不具备面、环、边、点的拓扑关系,因此其数据结构简单。
在特征造型方面,体素正是零件基本形状的具体表示,因此对于加工过程中的特征识别具有重要作用。
正是由于体素构造法未能建立完整的边界信息,因此难以向线框模型和工程图转化,并且在显示时必须进行形状显示域的大量计算。
同样,对于自由形状形体的描述也难以进行,对于模型的局部形状修改不能进行。
(3)混合表示在实践中,体素构造法和边界表示法各有所长,因此目前的几何造型引擎几乎都采用体素构造和边界表示的混合方法来进行实体造型。
通常,体素构造模型作为外部模型,而边界表示模型作为内部模型,即以体素构造模型作为输入数据,在计算机内部转换为边界表示模型的内部数据(或几何数据库),同时也保留了体素构造模型的数据。
这样,二者的信息互补,并确保几何模型信息的完整性和精确性。
6、简述贝塞尔曲线的性质。
答案要点:1)端点性质,包括端点位置、切矢以及二阶导矢;(2)对称性;(3)凸包性;(4)几何不变性;7、建立有限元模型的基本步骤包括哪些?答案要点:(1)问题定义;(2)几何模型建立;(3)单元类型选择;4)单元特性定义;5)网格划分;(6)模型检查;(7)边界条件定义。
8、什么是位移函数,它应满足哪些条件?答案要点:(1)位移函数是单元上的实际结构的位移插值函数,即位移的近似位移分布;2)应包括常数项、一次项、连续性和几何各项同性。
9、结构总刚矩阵有什么特点?答案要点:总刚矩阵具有对称性、稀疏性、带状性和奇异性 4 个特点。
10、有限元模型主要包括哪些类型的数据?答案要点:包括节点数据、单元数据和边界条件数据。
11、简述圣维南原理。
如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
6、简述按应力求解平面问题时的逆解法。
答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
7、以三节点三角形单元为例,简述有限单元法求解离散化结构的具体步(1)取三角形单元的结点位移为基本未知量。
(2)应用插值公式,由单元的结点位移求出单元的位移函数。
3)应用几何方程,由单元的位移函数求出单元的应变。
(4)应用物理方程,由单元的应变求出单元的应力。
(5)应用虚功方程,由单元的应力出单元的结点力。
(6)应用虚功方程,将单元中的各种外力荷载向结点移置,求出单元的结点荷载。
(7)列出各结点的平衡方程,组成整个结构的平衡方程组。
8、为了保证有限单元法解答的收敛性,位移模式应满足哪些条件?答:为了保证有限单元法解答的收敛性,位移模式应满足下列条件:(1)位移模式必须能反映单元的刚体位移;(2)位移模式必须能反映单元的常量应变;(3)位移模式应尽可能反映位移的连续性。
9、在有限单元法中,为什么要求位移模式必须能反映单元的刚体位移?每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。
甚至在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。
因此,为了正确反映单元的位移形态,位移模式必须能反映该单元的刚体位移。
10、在有限单元法中,为什么要求位移模式必须能反映单元的常量应变?答:每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。
而且,当单元的尺寸较小时,单元中各点的应变趋于相等,也就是单元的应变趋于均匀,因而常量应变就成为应变的主要部分。
因此,为了正确反映单元的形变状态,位移模式必须能反映该单元的常量应变。
11、在平面三结点三角形单元中,能否选取如下的位移模式并说明理由:(1)u ( x, y )=α 1 +α 2 x 2 +α 3 y ,v( x, y )=α 4 +α 5 x+α 6 y 2 (2)u ( x, y )=α 1 x 2 +α 2 xy +α 3 y 2 ,v( x, y )=α 4 x 2 +α 5 xy +α 6 y 2 (答:1)不能采用。
因为位移模式没有反映全部的刚体位移和常量应变项;对坐标x,y 不对等;在单元边界上的连续性条件也未能完全满足。
(2)不能采用。
因为,位移模式没有反映刚体位移和常量应变项;在单元边界上的连续性条件也不满足。
1、弹性力学平面问题8节点等参元,其单元自由度是16,单元刚阵元素是256。
(2) 弹性力学空间轴对称问题三角形3节点单元,其单元自由度是6,单元刚阵元素是36。
(3) 弹性力学空间问题20节点等参元,其单元自由度是60,20 单元刚阵元素是3600。
(4) 平面刚架结构梁单元(考虑轴向和横向变形)的自由度是6,单元刚阵元素是36。
2、弹性力学空间轴对称问题的有限元计算列式与平面问题的有限元计算列式的主要区别之处?答:区别之处是:平面问题应力和应变分量是3个,空间轴对称问题应力和应变分量是4个;求解刚度矩阵和等效结点力的积分,平面问题是在有厚度的单元平面上积分,而轴对称问题是在整个环体上积分。
即平面单元指有厚度的面,轴对称单元指一个轴对称的旋转体。
出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。