生活中地轴对称单元测精彩试题
数学八年级上册《轴对称》单元检测(含答案)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
北师大七年级下第五章生活中的轴对称单元检测试卷(A)含答案
第五章生活中的轴对称单元检测A卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()2.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米4.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:215.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点 B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点6.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46° C.67° D.78°8.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50° B.∠A=40°,∠B=60°C.∠A=20°,∠B=80° D.∠A=40°,∠B=80°9.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1 B.2 C.3 D.410.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.311.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形 B.等边三角形C.不等边三角形 D.不能确定形状12.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.12二.填空题(共6小题,共24分)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ 范围是.15.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.16.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB= (度)三.解答题(共8小题)19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.20.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.21.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.22.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.23.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.参考答案与试题解析一.选择题(共12小题)1.分析:根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.分析:根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.3.分析:如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B点为最短距离.解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.4.分析:在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=: =14:25.故选B.5.分析:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.6.分析:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.7.分析:首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.8.分析:根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.9.分析:由AD⊥BC,D为BC的中点,利用SAS可证明△ABD≌△ACD,然后利用全等三角形的性质即可求证出②③④.解:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D.10.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.11.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.12.分析:根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.二.填空题(共6小题)13.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.分析:由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM 的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.15.分析:根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.分析:分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.17.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.18.分析:首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.三.解答题(共8小题)19.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).20.分析:由AB=AC,MB=MC,根据线段垂直平分线的判定定理,可得点A在BC的垂直平分线上,点M在BC的垂直平分线上,又由两点确定一条直线,可得直线AM是线段BC的垂直平分线.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.21.分析: D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…∵点D是BC边上的中点∴BD=DC …∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).22.分析:要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.23.分析:根据BO平分∠CBA,CO平分∠ACB,BM=MO,NC=NO,从而知道,△AMN的周长是AB+AC的长,从而得解.解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.24.分析:先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.25.分析:(1)根据折叠的性质即可得出;(2)∠2=∠BEF.由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF=BE=10,继而可求得CF=BC﹣BF.解:(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°﹣50°﹣50°=80°;(3)∵AB=8,DE=10,∴BE=10,∴AE==6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC﹣BF=16﹣10=6.故答案为:BC′,C′F.26.分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.。
20年春北师大版七年级数学下册《第五章生活中的轴对称》单元测试题及答案
20年春北师大版七年级数学下册《第五章生活中的轴对称》单元测试题及答案一、选择题1.下列图案中,不能用折叠剪纸方法得到的是( )A .B .C .D .2.如图,在△ABC 中,AB =AC ,AD ⊥BC ,∠B =30°,则∠CAD 的度数为( ) A .30° B .60° C .90° D .120°3.如图,△ABC 中,AB =AC ,AD ⊥BC ,BD =AD =4 cm ,AE =AF ,则图中阴影部分的面积是(C)A .32 cm 2B .16 cm 2C .8 cm 2D .无法确定 4.下列四个图形中,对称轴最多的图形是( )A .B .C .D .5.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cm C .9cm 和12cm D .在9cm 与12cm 之间 6.下列说法中,不正确的是 ( )A .等腰三角形底边上的中线就是它的顶角平分线B .等腰三角形底边上的高就是底边的垂直平分线的一部分C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形D .两个三角形能够重合,它们一定是轴对称的7.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )8.如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC≌△BPOD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD9.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A,则如图所示8个点中,可以瞄准的点的个数()A.1B.2C.4D.610.如图△ABC和△A'B'C'关于直线l对称,下列结论中:①△ABC△A'B'C';②∠BAC'=∠B'AC;③l垂直平分CC';④直线BC和B'C',的交点不一定在l上.正确的有( )A.4个B.3个C.2个D.1个11.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和E,则△BCD的周长是()A.6B.8C.10D.无法确定12.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对二、填空题13.成轴对称的图形______是全等图形,全等图形_____是轴对称图形(选填“一定”或“不一定”).AB第11题图14.下图是小明在平面镜里看到的电子钟示数,这时的实际时间是________。
轴对称单元测试题及答案
轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。
7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。
8. 一个轴对称图形的对称轴可以是一条________或多条________。
9. 轴对称图形的对称轴将图形分成两个完全________的部分。
10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。
三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。
()12. 轴对称图形的对称轴可以是曲线。
()13. 轴对称图形的对称轴一定经过图形的中心。
()14. 一个图形的轴对称图形与原图形是完全相同的。
()15. 轴对称图形的对称轴是唯一的。
()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。
17. 描述如何确定一个图形是否是轴对称图形。
五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。
六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。
答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。
北师大版数学七年级下第五章生活中的轴对称单元检测B卷
初中数学试卷第五章生活中的轴对称单元检测B卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.等腰三角形的两边长分别为13cm、6cm,那么第三边长为()A.7cm B.13cm C.6cm D.8cm2.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有()A.4个 B.3个 C.2个 D.1个3.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步,已知点A 为乙方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步 B.3步 C.4步 D.5步4.如图,在边长为1正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,3AE=EB,有一只蚂蚁从E点出发,经过F、G、H,最后回点E点,则蚂蚁所走的最小路程是()A.2 B.4 C. D.5.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠.使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A. cm B. cm C. cm D.3cm6.三角形ABC的三条内角平分线为AE、BF、CG,下面的说法中正确的个数有()①△ABC的内角平分线上的点到三边距离相等②三角形的三条内角平分线交于一点③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分.A.1个B.2个 C.3个 D.4个7.下列各语句中不正确的是()A.全等三角形的周长相等B.全等三角形的对应角相等C.到角的两边距离相等的点在这个角的平分线上D.线段的垂直平分线上的点到这条线段的两端点的距离相等8.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.7条 B.8条 C.9条 D.10条9.已知,如图,在△ABC中,D为BC边上的一点,延长AD到点E,连接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列结论:①△ABD为等腰三角形;②AE=AC;③BE=CE=CD;④CB 平分∠ACE.其中正确的结论个数有()A.1个 B.2个 C.3个 D.4个10.若一个三角形的最小内角为60°,则下列判断中正确的有()(1)这个三角形是锐角三角形;(2)这个三角形是等腰三角形;(3)这个三角形是等边三角形;(4)形状不能确定;(5)不存在这样的三角形.A.1个B.2个C.3个D.4个11.已知△ABC中,三边a,b,c满足|b﹣c|+(a﹣b)2=0,则∠A等于()A.60°B.45°C.90°D.不能确定12.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.B.C.D.二.填空题(共6小题,共24分)13.把图中的某两个小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形..14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.15.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为.16.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):.17.如图,已知△ABC中,AC+BC=24,AO、BO分别是角平分线,且MN∥BA,分别交AC于N、BC于M,则△CMN的周长为.18.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.三.解答题(共8小题)19.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是.(2)点B关于原点的对称点的坐标是.(3)△ABC的面积为.(4)画出△ABC关于x轴对称的△A′B′C′.20.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.21.如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.(1)若∠CAE=∠B+30°,求∠B的大小;(2)若AC=3,AB=5,求△AEB的周长.22.小明用一条长30cm的细绳围成了一个等腰三角形,他想使这个三角形的一边长是另一边长的2倍,那么这个三角形的各边的长分别是多少?23.已知如图1:△ABC中,AB=AC,∠B、∠C的平分线相交于点O,过点O作EF∥BC交AB、AC于E、F.①图中有几个等腰三角形?请说明EF与BE、CF间有怎样的关系.②若AB≠AC,其他条件不变,如图2,图中还有等腰三角形吗?如果有,请分别指出它们.另第①问中EF与BE、CF间的关系还存在吗?③若△ABC中,∠B的平分线与三角形外角∠ACD的平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.如图3,这时图中还有哪几个等腰三角形?EF与BE、CF间的关系如何?为什么?24.在等腰三角形中,过其中的一个顶点的直线如果能把这个等腰三角形分成两个小的等腰三角形,我们称这种等腰三角形为“少见的三角形”,这条直线称为分割线,下面我们来研究这类三角形.(1)等腰直角三角形是不是“少见的三角形”?(2)已知如图所示的钝角三角形是一个“少见的三角形”,请你画出分割线的大致位置,并求出顶角的度数;(3)锐角三角形中有没有“少见的三角形”?如果没有,请说明理由;如果有,请画出图形并求出顶角的度数.25.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).26.数学课上,李老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB (填“>”,“<”或“=”).(2)一般情况,证明结论:如图2,过点E作EF∥BC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)(3)拓展结论,设计新题:在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,则CD的长为(请直接写出结果).参考答案与试题解析一.选择题(共12小题)1.【分析】题目给出等腰三角形有两条边长分别为13cm、6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当6cm是腰时,因6+6<13,不能组成三角形,应舍去;当13cm是腰时,6cm、13cm、13cm能够组成三角形.则第三边应是13cm.故选:B.2.【分析】注意全等三角形与轴对称的性质【解答】解:①成轴对称的图形,关于对称轴折叠后可重合,正确;②轴对称不仅考虑全等,还要考虑位置,所以全等三角形不一定成轴对称,错误;③错误.两个同心圆,是轴对称图形,半径不相等.④两个圆半径相等,则全等,并且总能找到作为对称轴的一条直线,所以一定成轴对称,正确.∴①④共2个正确.故选C.3.【分析】根据题意,结合图形,由轴对称的性质判定正确选项.【解答】解:观察图形可知:先向右跳行,在向左,最后沿着对称的方法即可跳到对方那个区域,所以最少是3步.故选B.4.【分析】延长DC到D',使CD=CD',G对应位置为G',则FG=FG',作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.由两点之间线段最短可知当E、F、G'、H'、E'在一条直线上时路程最小,再延长AB至K使BK=AB,连接E′K,利用勾股定理即可求出EE′的长.【解答】解:延长DC到D',使CD=CD',G关于C对称点为G',则FG=FG',同样作D'A'⊥CD',D'A'=DA,H对应的位置为H',则G'H'=GH,再作A'B'⊥D'A',E的对应位置为E',则H'E'=HE.容易看出,当E、F、G'、H'、E'在一条直线上时路程最小,最小路程为EE'===2.故选C.5.【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠A′DB+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:C.6.【分析】画出图形,设O为∠BAC的角平分线和∠ACB的角平分线的交点,过O作ON⊥AB于N,OM⊥BC于M,OQ⊥AC于Q,求出ON=OM=OQ,判断即可.【解答】解:∵设O为∠BAC的角平分线和∠ACB的角平分线的交点,过O作ON⊥AB于N,OM⊥BC于M,OQ⊥AC于Q,∴ON=OQ,OQ=OM,∴ON=OM=OQ,∴△ABC的三个内角的角平分线的交点到三角形三边的距离相等,∴①错误;∵ON⊥AB,OM⊥BC,ON=OM,∴O在∠ABC的角平分线上,即O是△ABC的三个角的平分线交点,∴②正确;∵三角形的三个内角的平分线都在三角形的内部,∴③正确;∵三角形的任意中线把三角形的面积分为面积相等的两部分,而三角形的任意角平分线不一定把三角形的面积分成面积相等的两部分,∴④错误;故选B.7.【分析】此题从已知开始结合全等三角形、角平分线、中垂线的相关性质对各个选项进行判断.【解答】解:全等三角形是能够完全重合的两个三角形,因此它们的周长相等,对应角也相等;故A、B正确;到角两边距离相等的点,在角的平分线所在直线上,很明显C的叙述有漏解的情况,故C 错误;线段垂直平分线上的点到线段两端点的距离相等,是中垂线的性质,故D正确;故选C.8.【分析】根据等腰三角形的判定,进行划分,即可解答.【解答】解:如图:∴最多画8条,故选:B.9.【分析】可根据证△ABF≌△△ADF推出AB=AD,得出△ABD为等腰三角形;可根据同弦所对的圆周角相等点A、B、C、E共圆,可判出BE=CE=CD,根据三角形内角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根据∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分线.【解答】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,∴①正确;∵∠BAD=∠2=∠3,∴点A、B、E、C在同一个圆上,∴∠BAE=∠4=∠3,∠ABC=∠6,∴BE=CE,∵∠5=∠ADB=∠ABD,∠BAE=∠4,∴∠5=∠6,∴CE=CD,即CD=CE=BE,∴③正确;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,∴②正确∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,∴④错误;故选C.10.【分析】因为最小角为60度,则该三角形的最大角不能大于60度,否则最小的角将不是60°,则可以得到其三个角均为60度,即是一个等边三角形.【解答】解:因为最小角为60度,则该三角形的最大角不能大于60度,否则不合题意,则可以得到其三个角均为60度,即是一个等边三角形;其最大角不大于90度,所以是锐角三角形;等边三角形是特殊的等腰三角形.所以前三项正确,即正确有三个.故选C.11.【分析】根据非负数的性质列式求解得到a=b=c,然后选择答案即可.【解答】解:△ABC中,三边a,b,c满足|b﹣c|+(a﹣b)2=0,∴b﹣c=0,a﹣b=0,∴a=b=c,∴三角形是等边三角形,所以∠A=60°.故答案选:A.12.【分析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.【解答】解:连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选:A.二.填空题(共6小题)13.【分析】本题主要是根据轴对称图形的性质来做,就是从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点就可.【解答】解:所作图形如图:14.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=20×3=30,故答案为:30.15.【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.16.【分析】根据已知条件求证△EBO≌△DCO,然后可得∠OBC=∠OCB再利用两角相等即可判定△ABC是等腰三角形.此题答案不唯一.【解答】答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.17.【分析】根据AO、BO分别是角平分线和MN∥BA,求证△AON和△BOM为等腰三角形,再根据AC+BC=24,利用等量代换即可求出△CMN的周长【解答】解:AO、BO分别是角平分线,∴∠OAN=∠BAO,∠ABO=∠OBM,∵MN∥BA,∴∠AON=∠BAO,∠MOB=∠ABO,∴AN=ON,BM=OM,即△AON和△BOM为等腰三角形,∵MN=MO+ON,AC+BC=24,∴△CMN的周长=MN+MC+NC=AC+BC=24.故答案为:24.18.【分析】根据等边三角形的三边都相等,三个角都是60°,可以证明△ACD与△BCE全等,根据全等三角形对应边相等可得AD=BE,所以①正确,对应角相等可得∠CAD=∠CBE,然后证明△ACP与△BCQ全等,根据全等三角形对应角相等可得PC=PQ,从而得到△CPQ是等边三角形,再根据等腰三角形的性质可以找出相等的角,从而证明PQ∥AE,所以②正确;根据全等三角形对应边相等可以推出AP=BQ,所以③正确,根据③可推出DP=EQ,再根据△DEQ的角度关系DE≠DP.【解答】解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.三.解答题(共8小题)19.(【分析】(1)根据平面直角坐标系写出即可;(2)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解;(4)根据网格结构找出点A、B、C关于x轴的对称点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)点C的坐标是(﹣3,﹣2);(2)点B关于原点的对称点的坐标是(1,﹣3);(3)△ABC的面积=6×6﹣×2×5﹣×1×6﹣×4×6,=36﹣5﹣3﹣12,=36﹣20,=16;(4)如图所示,△A′B′C′即为所求作的三角形.故答案为:(1)(﹣3,﹣2),(2)(1,﹣3),(3)16.20.【分析】(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.21.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠B=∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠CEA=∠B+∠BAE=2∠B,然后在△ACE中,根据直角三角形两锐角互余列出方程求解即可;(2)利用勾股定理列式求出BC=4,设AE=BE=x,表示出CE=4﹣x,然后在Rt△ACE中,利用勾股定理列式求出x,再根据三角形的周长的定义列式计算即可得解.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠B=∠BAE,∴∠CEA=∠B+∠BAE=2∠B,在△ACE中,∠CAE+∠CEA=∠B+30°+2∠B=90°,解得∠B=20°;(2)由勾股定理得,BC===4,设AE=BE=x,则CE=4﹣x,在Rt△ACE中,AC2+CE2=AE2,即32+(4﹣x)2=x2,解得x=,∴△AEB的周长=×2+5=11.25.22.【分析】可设一边长为x,则另一边长为2x,然后分x为腰和底两种情况,表示出周长解出x,再利用三角形三边关系进行验证即可.【解答】解:设一边为xcm,则另一边为2xcm,当长为xcm的边为腰时,此时三角形的三边长分别为xcm、xcm、2xcm,由题意可列方程:x+x+2x=30,解得x=7.5,此时三角形的三边长分别为:7.5、7.5和15,因为7.5+7.5=15,不符合三角形三边之间的关系,所以不符合题意;当长为xcm的边为底时,此时三角形的三边长分别为xcm、2xcm、2xcm,由题意可列方程:x+2x+2x=30,解得x=6,此时三角形的三边长分别为:6、12、12,满足三角形的三边之间的关系,所以这个三角形的各边长分别为6cm、12cm和12cm.23.【分析】(1)根据EF∥BC,∠B、∠C的平分线交于O点,可得∠EOB=∠OBC,∠FOC=∠OCB,∠EOB=∠OBE,∠FCO=∠FOC,再加上题目中给出的AB=AC,共5个等腰三角形;根据等腰三角形的性质,即可得出EF与BE、CF间有怎样的关系.(2)根据EF∥BC 和∠B、∠C的平分线交于O点,还可以证明出△OBE和△OCF是等腰三角形;利用几个等腰三角形的性质即可得出EF与BE,CF的关系.(3)EO∥BC和OB,OC分别是∠ABC与∠ACL的角平分线,还可以证明出△BEO和△CFO是等腰三角形.【解答】解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE﹣CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCD,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE﹣CF.24.【分析】(1)画出图形,利用三角形内角和进行计算,可得等腰直角三角形是“少见的三角形”;(2)画出图形,利用等腰三角形的性质、三角形内角和进行解答;(3)有,画出图形,利用等腰三角形的性质、三角形内角和进行解答.【解答】解:(1)如图1,当过顶角∠C的顶点的直线CD把△ABC分成了两个等腰三角形,则AC=BC,AD=CD=BD,设∠A=x°,则∠ACD=∠A=x°,∠B=∠A=x°,∴∠BCD=∠B=x°,∵∠A+∠ACB+∠B=180°∴x+x+x+x=180,解得x=45,则顶角是90°;∴△ABC是等腰直角三角形,即等腰直角三角形是“少见的三角形”;(2)如图2,AC=CD=AB,BD=AD,设∠B=x°,∵AB=AC,∴∠C=∠B=x°,∵BD=AD,∴∠BAD=∠B=x°,∴∠ADC=∠B+∠BAD=2x°,∵AC=DC,∴∠ADC=∠CAD=2x°,∴∠BAC=3x°,∴x+x+3x=180,x=36°,则顶角∠BAC=108°.(3)如图3,当过底角∠CAB的角平分线AD把△ABC分成了两个等腰三角形,则有AC=BC,AB=AD=CD,设∠C=x°,∵AD=CD,∴∠CAD=∠C=x°,∴∠ADB=∠CAD+∠C=2x°,∵AD=AB,∴∠B=∠ADB=2x°,∵AC=BC,∴∠CAB=∠B=2x°,∵∠CAB+∠B+∠C=180°,∴x+2x+2x=180,x=36°,则顶角是36°.25.【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF 即可;(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.【解答】解:(1)故答案为:=.(2)过E作EF∥BC交AC于F,∵等边三角形ABC,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,∴△DEB≌△ECF,∴BD=EF=AE,即AE=BD,故答案为:=.(3)解:CD=1或3,理由是:分为两种情况:①如图1过A作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴△AMB∽△ENB,∴=,∴=,∴BN=,∴CN=1+=,∴CD=2CN=3;②如图2,作AM⊥BC于M,过E作EN⊥BC于N,则AM∥EN,∵△ABC是等边三角形,∴AB=BC=AC=1,∵AM⊥BC,∴BM=CM=BC=,∵DE=CE,EN⊥BC,∴CD=2CN,∵AM∥EN,∴=,∴=,∴MN=1,∴CN=1﹣=,∴CD=2CN=1,即CD=3或1.26.【分析】(1)当E为中点时,过E作EF∥BC交AC于点F,则可证明△BDE≌△FEC,可得到AE=DB;(2)类似(1)过E作EF∥BC交AC于点F,可利用AAS证明△BDE≌△FEC,可得BD=EF,再证明△AEF是等边三角形,可得到AE=EF,可得AE=DB;(3)分为四种情况:画出图形,根据等边三角形性质求出符合条件的CD即可.【解答】解:(1)如图1,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,故答案为:=;(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD.(3)解:分为四种情况:如图3,∵AB=AC=1,AE=2,∴B是AE的中点,∵△ABC是等边三角形,∴AB=AC=BC=1,△ACE是直角三角形(根据直角三角形斜边的中线等于斜边的一半),∴∠ACE=90°,∠AEC=30°,∴∠D=∠ECB=∠BEC=30°,∠DBE=∠ABC=60°,∴∠DEB=180°﹣30°﹣60°=90°,即△DEB是直角三角形.∴BD=2BE=2(30°所对的直角边等于斜边的一半),即CD=1+2=3.如图4,过A作AN⊥BC于N,过E作EM⊥CD于M,∵等边三角形ABC,EC=ED,∴BN=CN=BC=,CM=MD=CD,AN∥EM,∴△BAN∽△BEM,∴,∵△ABC边长是1,AE=2,∴=,∴MN=1,∴CM=MN﹣CN=1﹣=,∴CD=2CM=1;如图5,∵∠ECD>∠EBC(∠EBC=120°),而∠ECD不能大于120°,否则△EDC不符合三角形内角和定理,∴此时不存在EC=ED;如图6,∵∠EDC<∠ABC,∠ECB>∠ACB,又∵∠ABC=∠ACB=60°,∴∠ECD>∠EDC,即此时ED≠EC,∴此时情况不存在,答:CD的长是3或1.故答案为:1或3.。
北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)
北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)北师大版数学七年级下册生活中的轴对称单元试题及答案(1)一、选择题1.在等边三角形ABC 中,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E ,若△ABC 的边长为a ,则△ADE 的周长为 ( )A .2aB .C .1.5aD .a2.下列推理中,错误的是 ( ) A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形 D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 3.下列说法中,不正确的是 ( ) A .等腰三角形底边上的中线就是它的顶角平分线 B .等腰三角形底边上的高就是底边的垂直平分线的一部分 C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形 D .两个三角形能够重合,它们一定是轴对称的4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cmC .9cm 和12cmD .在9cm 与12cm 之间 5.观察图中的汽车商标,其中是轴对称图形的个数为 ()A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为a 34( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =________.7.已知:如图,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8.如图,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB =20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图,点G 在CA 的延长线上,AF =AG ,∠ADC =∠GEC .求证:AD 平分∠BAC .8.已知:如图,等腰直角三角形ABC 中,∠A =90°,D 为BC 中点,E 、F 分别为AB 、AC 上的点,且满足EA =CF .求证:DE =DF .参考答案一、1. C 2.B 3.D 4.B 5.C 6.C 7.D 8.D 9.B 10.A二、1.5 2. 3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD=5cm,DE=5cm,EB=10cm 6.先证△ENC≌△DMB(ASA),∴ DM=EN.再加上AD=BE即可.7.∵ AF=AG,∴∠G=∠AFG.又∵∠ADC=∠GEC,∴ AD∥GE.∴∠G=∠CAD.∴∠AFG=∠BAD.∴∠CAD=∠BAD.∴ AD平分∠BAC.8.连结AD.在△ADF和△BDE中,可证得:BD=AD,BE=AF,∠B=∠DAF.∴△ADF≌△BDE.∴ DE=DF.北师大版数学七年级下册生活中的轴对称单元试题及答案(2)一、选择题(每小题3分,共30分)1. 观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .2. 如图的方格纸中,左边图形到右边图形的变换是( ) A.向右平移7格B.以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB 的中点旋转180°,再以AB 为对称轴作轴对称变换D.以AB 为对称轴作轴对称变换,再向右平移7格3. 如图所示,△与△关于直线对称,则∠等于( )A. B. C.D.4. 下列说法正确的是( )第2题图第3题图A.如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等 5. 如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点的三角形共有( ) A.3个 B.4个 C.5个 D.6个6.以下各命题中,正确的命题是()(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5) 7. 将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )A .B .C .D .8. 下列说法正确的是( ) A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴第5题图第7题图C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形9. 如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( ) A.6种 B.5种 C.4种 D.2种10. 如图所示,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( )A.平分∠B.△的周长等于C.D.点是线段的中点二、填空题(每小题3分,共24分)11. 一位交警在执勤过程中,从汽车的后视镜中看见某车牌照的后5位号码是,该车牌的后5位号码实际是 .12. 光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知=60°,β=50°,则= .第9题图第10题图第12题图13. 如图,在△ABC 中,AB=5 cm ,AC=3 cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .14. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.15. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 . 16. 如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)17. 如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′.若PB =3,则PP ′= .第15题图第17题图ABDCO E第18题第13题B第14题图第16题图18. 如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.三、解答题(共46分)19.(6分)如图所示,在等边△中,分别平分∠和△的外角∠,∥交于点,求证:.20. (6分)如图所示,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?21. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.第21题图ABCDP第20题图22. (6分)公园内有一块三角形空地(如图所示),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在图中画出分割线,保留必要的画图痕迹.23. (6分)以直线为对称轴画出图的另一半.24. (8分)已知:如图所示,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线上一点,CE =CD ,DM ⊥BC 于M ,求证:M 是BE 的中点. 25. (8分)如图所示,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.第24题图第22题图第25题第23题图参考答案1. D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D 符合.故选D .2. D 解析:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称变换,再向右平移7格.故选D .3. D 解析:因为 △与△关于直线对称, 所以所以.4. D 解析:A.如果图形甲和图形乙关于直线MN 对称,则图形甲不一定是轴对称图形, 错误;B.有的图形没有对称轴,错误;C.平面上两个大小、形状完全一样的图形不一定关于某直线对称,与摆放位置有关,错误;D.如果△ABC 和△EFG 成轴对称,那么它们全等,故其面积一定相等,正确.故选D . 5. C 解析:与△ABC 成轴对称且以格点为顶点的三角形有 △ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选C .6. D 解析:(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则三边长为9 cm ,9 cm ,4 cm ,或 4 cm ,4 cm ,9 cm ,因为4+4<9,则它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确; (5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确. 如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C . ∵ AD 是角平分线,∴ ∠1=∠2,第5题答第6题答∴∠B =∠C,∴AB =AC.即△ABC是等腰三角形.故选D.7. C 解析:当正方形纸片两次沿对角线对折成为一直角三角形时,在垂直于斜边的位置上剪菱形,则直角顶点处完好,即原正方形中间无损,且菱形关于对角线对称.故选C.8. B 解析:A.轴对称图形是指1个图形,故错误;B.等边三角形有三条对称轴,即三条中线所在直线,故正确;C.两个全等的三角形不一定组成一个轴对称图形,故错误;D.直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,故错误.故选B.9. C 解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的小正方形时,不会是轴对称图形,其余的4种情况均可以. 故选C.10. D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.所以△的周长为,故正确. 因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.11. BA629 解析:关于镜面对称,也可以看成是关于某条直线对称,关于某条直线对称的数字依次是BA629.12. 40° 解析:=180°-[60°+(180°-100°)]=40°. 13. 8 14. 1515. 3 解析:要使△PBG 的周长最小,而BG =1一定,只要使BP +PG 最短即可.连接AG 交EF 于M .∵ △ABC 是等边三角形,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴ AG ⊥BC ,EF ∥BC , ∴ AG ⊥EF ,AM =MG , ∴ A 、G 关于EF 对称,∴ P 点与点E 重合时,BP +PG 最小, 即△PBG 的周长最小,最小值是:PB +PG +BG =AE +BE +BG =AB +BG =2+1=3.16. △MBD 或△MDE 或△EAD 解析:由∠ACB =90°,DE ∥AC ,得∠EDC=90°,又M 为BE 的中点,得MB=MD=ME,∴△MBD 和△MDE 是等腰三角形,∵∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,∴∠EDA =∠EAD =∠DAC , ∴△EAD 是等腰三角形.17. 3 解析:∵ △ABP 绕点B 顺时针方向旋转60°得到△CBP ′, ∴ ∠PBP ′=60°,BP =BP ′,第15题答图∴△BPP′为等边三角形,∴PP′=BP=3.18.解析:△和△,△和△△和△△和△共4对.19. 证明:因为分别平分∠和∠,所以∠∠,∠∠.因为∥,所以∠∠,∠∠.所以∠∠,∠∠.所以.所以.20. 解:点是线段的中点.理由如下:过点作于点因为∥所以.又因为∠的平分线,是∠的平分线,所以所以所以点是线段的中点.21. 分析:(1)易得y轴在C的右边一个单位,轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及与坐标轴的距离可得相应坐标.解:(1)(2)如图所示;(3)点B′的坐标为(2,1).22. 解:如图,分别作AB 、BC 的垂直平分线,相交于点P , 沿PA 、PB 、PC 进行分割,得到的△PAB 、△PBC 、△PAC 都是等腰三角形,都是轴对称图形. 23. 分析:作图形的对称图形首先作出各顶点的对称点,然后连接各对称点即为原图形的对称图形.解:作对称图形得:作圆弧的对称图形时以原来圆弧的圆心为圆心,原半径为半径作出圆弧的对称图形.对于矩形的对称图形和外框图形的对称图形首先作出各顶点关于的对称点,连接对称点即为原图形的对称图形.24. 分析:欲证M 是BE 的中点,已知DM ⊥BC ,因此只需证DB =DE ,即证∠DBE =∠E ,根据BD 是等边△ABC 的中线可知∠DBC =30°,因此只需证∠E =30°. 证明:连结BD ,∵ △ABC 是等边三角形,∴ ∠ABC =∠ACB =60°.第21题答图第23题答图第22题答图∵ CD =CE ,∴ ∠CDE =∠E =30°.∵ BD 是AC 边上的中线,∴ BD 平分∠ABC ,即∠DBC =30°, ∴ ∠DBE =∠E .∴ DB =DE.又∵ DM ⊥BE , ∴ DM 是BE 边上的中线,即M 是BE 的中点.25. 解:如图所示,分别以直线、为对称轴,作点的对应点和,连接,交于,交于,则最短.第24题答OP MN第25题答图YX北师大版数学七年级下册生活中的轴对称单元试题及答案(3)一、填空题(每题3分,共30分)1、△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=_____.2、等腰三角形的一个角为100°,则它的两底角为_____.3、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为_______.4、底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜边上的高,这时图中有_____个等腰三角形.5、等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_______________.6、26个大写英文字母中,有些字母可以看成轴对称图形,例如_ _(至少写出4个).7、图1中三角形1与____成轴对称图形,整个图形中共有____条对称轴.图1 图2 图38、如图2,如果点M在的∠ACB平分线上且AM=6厘米,则BM=______厘米,你的理由是_____________________________________________.9、如图3,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4 cm,则D 到OA的距离为_____.10、请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.二、选择题(每题3分,共15分)11、下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段D.不等边三角形12、下列说法中错误的是( )A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个三角形对称D.轴对称指的是两个图形沿着某一直线对折后重合13、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )14、线段AB 和CD 互相垂直平分于O 点,且OC =21AB , 顺次连结A 、D 、B 、C ,那么图中的等腰直角三角形共有( ) A.4个B.6个C.8个D.10个15、将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )三、简答题(本题8分)16、指出下列图形中的轴对称图形,并画出它们的对称轴.ABCD四、解答题17、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长. (7分)18、如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN。
2020年北师大版七年级数学下册单元测试题《第5章生活中的轴对称》测试题 含答案
七年级下册单元测试卷《第5章生活中的轴对称》测试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1、将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.2、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3、如图,已知△ABC是等边三角形,点D,E,F分明是边AB,BC,AC的中点,则图中等边三角形的个数是()A.2个B.3个C.4个D.5个4、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°5、如图,在正方体的两个面上画了两条对角线AB,AC,则∠BAC等于()A.60°B.75°C.90° D.135°6、图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1) B.(2)C.(3) D.(4)7、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()号.A.1 B.2 C.3 D.48、如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处 B.4处C.3处D.2处9、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CEC.AD D.AC10、如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题6小题,每小题4分,共24分)11、如图,有一个英语单词,四个字母都关于直线l对称,请在试卷上补全字母,在答题卡上写出这个单词所指的物品__________.12、如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.13、下列轴对称图形中,只用一把无刻度的直尺能画出对称轴的序号是_________.①菱形②三角形③等腰梯形④正五边形14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为__________.15、如图,六边形ABCDEF的六个角都是120°,边长AB=1cm,BC=3cm,CD=3cm,DE=2cm,则这个六边形的周长是:______________.16、数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.观察,探究可以得到∠ABM的度数是__________.三:解答题(一)(本大题共3题,每小题6分,共18分)17、生活中因为有美丽的图案,才显得丰富多彩,以下是来自现实生活中的两个图案(图1、2、).请在图3,图4中画出两个是轴对称图形的新图案.18、如图,在矩形ABCD 中,点E 为BC 的中点,点F 在CD 上,要使△AEF 的周长最小时,画图确定点F 的位置.19、如果一个图形有两条对称轴,如长方形,那么这两条对称轴夹角是多少度?其他有两条对称轴的图形的两条对称轴是否也具有这个特征?如果一个图形有三条对称轴,如正三角形,它的三条对称轴相邻两条的夹角是多少度?其他有三条对称轴的图形的三条对称轴是否也具有这个特征?如果一个图形有n 条对称轴,那么每相邻的两条对称轴的夹角为多少度?四、解答题(二)(本大题共3题,每小题7分,共21分)20、如图,直线AD 和CE 是△ABC 的两条对称轴,AD 和CE 相交于点O . (1)从边来看,△ABC 是什么三角形?说明理由.(2)OD 与OE 有什么数量关系?说明理由21、如图图,△ABC 中,∠C =090, ∠A =030.(1)作图:用尺规作线段AB 的中垂线DE,交AC 于点D,交AB 于点E,(保留作图痕迹,不要求写作法和证明)(2)连接BD ,请你判断BD 是否平分∠CBA ,并说明你的理由。
(常考题)北师大版初中数学七年级数学下册第五单元《生活中的轴对称》测试题(有答案解析)(3)
一、选择题1.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( )A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤ 2.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm 3.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 4.下列图形是轴对称图形的是( )A .B .C .D . 5.如图,矩形纸片ABCD 沿着BE 折叠,使C 、D 两点分别落在C 1、D 1处,若∠ABC 1=45°,则∠ABE 的度数为( )A .22.5°B .21.5°C .22°D .21°6.下面有4个汽车标致图案,其中不是轴对称图形为( )A.B.C.D.7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.8.下列图形是轴对称图形的是()A.B.C.D.9.如图,直线l1与l2相交,且夹角为45°,点P在角的内部,小明用下面的方法作点P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作点P1关于l2的对称点P2,然后再以l1为对称轴作点P2关于l1的对称点P3,以l2为对称轴作点P3关于l2的对称点P4,...,如此继续,得到一系列的点P1,P2,...,Pn,若点Pn与点P重合,则n的值可以是()A.2019 B.2018 C.2017 D.201610.一根长为20cm的长方形纸条,将其按照图示的过程折叠,若折叠完成后纸条两端超出点P的长度相等,且PM=PN=5cm,则长方形纸条的宽为()A .1.5cmB .2cmC .2.5cmD .3cm11.在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC 关于某条直线对称的格点三角形,最多能画( )个.A .5B .6C .7D .812.如图,四边形ABCD 中,∠A =90°,∠C =110°,点E ,F 分别在AB ,BC 上,将△BEF 沿EF 翻折,得△GEF ,若GF ∥CD ,GE ∥AD ,则∠D 的度数为( )A .60°B .70°C .80°D .90°二、填空题13.四边形ABCD 中,90B D ∠=∠=︒,70C ∠=︒,在BC ,CD 上分别找一点M ,N ,使AMN 的周长最小时,AMN ANM ∠+∠的度数为__________.14.如图,OP 平分∠AOB ,PM ⊥OA 于M ,点D 在OB 上,DH ⊥OP 于H .若OD =4,OP =7,PM =3,则DH 的长为_____.15.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若∠EFG =52°,则∠2﹣∠1=_____°.16.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:①32C EF '∠=︒;②148AEC ∠=︒;③64BGE ∠=︒;④148BFD ∠=︒正确的序号为___________.17.在ABC ∆中,将B ,C ∠按如图所示方式折叠,点B ,C 均落于边BC 上一点Q 处,线段MN ,EF 为折痕,若82A ∠=︒,则MQE ∠=______.18.如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有_____种19.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.20.如图,在锐角△ABC 中,AB =4,∠ABC =45°,∠ABC 的平分线交AC 于点D ,点P 、Q 分别是BD 、AB 上的动点,则AP+PQ 的最小值为______.三、解答题21.如图,在直角坐标系中,()1,5A -,()3,0B -,()4,3C -.(1)在图中作出ABC 关于y 轴对称的图形111A B C △,并写出点1B 的坐标. (2)在y 轴上找一点P ,使PA PB +最小(不要求写做法,请保留作图痕迹).22.如图,△ABC 在平而直角坐标系中,其中A 、B 、C 的坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)作△ABC 关于y 轴对称的△A 1B 1C 1,其中点A 、B 、C 的对应点分别为A 1,B 1,C 1; (2)点P 在x 轴上,当PA+PC 的值最小时,请在图中标出点P .23.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2)在DE 上画出点Q ,使QA QC +最小.(3)四边形BCC 1B 1的面积为 .24.如图,(1)画出ABC ∆关于y 轴对称的图形'''A B C ∆.(2)请写出点'A 、'B 、'C 的坐标:'A ( , ) 'B ( , )'C ( , )25.如图所示,(1)写出顶点C 的坐标.(2)作ABC 关于y 轴对称的111A B C △(3)计算ABC 的面积.26.如图,已知ABC ∆.(1)画出ABC ∆关于y 轴对称的A B C '''∆;(2)写出ABC ∆关于x 轴对称的111A B C ∆各顶点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【详解】∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.2.B解析:B【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在Rt△DEB中利用勾股定理解决.【详解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB22+22AC BC+=10,68△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在Rt△DEB中,∵222+=,DE EB DB∴()222+=-,48x x∴x=3,∴CD=3.故答案为:B.【点睛】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.3.A解析:A【分析】依据点D在△ABC的边BC上,BD>CD,即可得到S△ABD>S△ACD,再根据折叠的性质,即可得到S1>S2.【详解】解:∵点D在△ABC的边BC上,BD>CD,∴S△ABD>S△ACD,由折叠可得,S△ABD=S△AED,∴S△AED>S△ACD,∴S△AED−S△ADF>S△ACD−S△ADF,即S1>S2,故选:A.【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.C解析:C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、B 、D 都不是轴对称图形,C 是轴对称图形,故选C .【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴. 5.A解析:A【分析】根据折叠前后对应角相等即可得出∠CBE 的度数,再根据∠ABC 为直角即可得到答案.【详解】设∠ABE=x ,根据折叠前后角相等可知,∠C 1BE=∠CBE=45x ︒+,∵∠ABC=90°,∴∠CBE+∠ABE=90°,即4590x x ︒++=︒,解得22.5x =︒.故选:A .【点睛】本题考查了图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.6.C解析:C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C .【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键. 7.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.B解析:B【解析】【分析】根据轴对称图形的概念,一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形. 据此进行选择即可.【详解】根据轴对称图形定义,图形A、C、D中不是轴对称图形,而B是轴对称图形.故选B【点睛】本题主要考查了轴对称图形的辨识,解答本题的关键是熟练掌握轴对称图形的概念.9.D解析:D【解析】【分析】根据题意画出图形,进而得出每对称变换8次回到P点,进而得出符合题意的答案.【详解】解:如图所示:P1,P2,…,P n,每对称变换8次回到P点,∵2016÷8=252,∴P n与P重合,则n的可以是:2016.故选:D.【点睛】此题主要考查了轴对称,根据题意得出点的变化规律是解题关键.10.B解析:B【解析】【分析】设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,除了AP和BM的长度中间的长度为5x,将折叠的纸条展开,根据题意列出方程式求出x的值即可.【详解】解:如图:设纸条宽为xcm,观察图形,由折叠的性质可知:PM=PN=5,MN=20由题意可得:5×2+5x=20解得:x=2故选:B.【点睛】本题考查了翻折变换的知识以及学生的动手操作能力,解答本题的关键是仔细观察图形,得到各线段之间存在的关系.11.C解析:C【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题的难点在于确定出不同的对称轴.12.C解析:C【分析】依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D 的度数.【详解】解:∵GF ∥CD ,GE ∥AD ,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G ,∴四边形BEGF 中,∠B=360920110︒︒︒-- =80°, ∴四边形ABCD 中,∠D=360°-∠A-∠B-∠C=80°,故选:C .【点睛】本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题13.【分析】作A 关于BC 和CD 的对称点A′A′′连接A′A′′交BC 于M 交CD 于N 则A′A′′即ΔAMN 为的周长最小值推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决【详解】如图作A 关于BC 和CD 的解析:140︒【分析】作A 关于BC 和CD 的对称点A′、A′′,连接A′A′′,交BC 于M ,交CD 于N ,则A′A′′即ΔAMN 为的周长最小值,推出∠AMN+∠ANM=2(∠A′+∠A″)即可解决.【详解】如图,作A 关于BC 和CD 的对称点,A A ''',连接A A ''',交BC 于M ,交CD 于N ,则A A '''即AMN ∆为的周长最小值,70,90C ABC ADC ︒︒∠=∠=∠=,110DAB ︒∴∠=,∴∠A′+∠A″=70°,∵BA=BA′,MB ⊥AB ,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB ,∠A″=∠NAD ,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″)=140°.故答案为140°【点睛】本题考查对称的性质、线段垂直平分线的性质、三角形内角和定理等知识,利用对称作辅助线是解决最短的关键.14.【分析】作PE ⊥OB 根据角平分线的性质求出PE 根据三角形的面积公式计算得到答案【详解】解:作PE ⊥OB 于E ∵OP 平分∠AOBPM ⊥OAPE ⊥OB ∴PE =PM =3S △ODP =×OP×DH =×OD×PE 解析:127【分析】作PE ⊥OB ,根据角平分线的性质求出PE ,根据三角形的面积公式计算,得到答案.【详解】解:作PE ⊥OB 于E ,∵OP 平分∠AOB ,PM ⊥OA ,PE ⊥OB ,∴PE =PM =3,S △ODP =12×OP ×DH =12×OD ×PE , ∴12×7×DH =12×4×3, 解得,DH =127, 故答案为:127. 【点睛】 本题考查角平分线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题关键.15.【分析】利用AD∥BC求出∠1=180°﹣∠GEF﹣∠DEF=76°∠2=180°﹣∠1=104°即可求出答案【详解】∵AD∥BC∠EFG=52°∴∠DEF=∠FEG=52°∠1+∠2=180°由折解析:【分析】利用AD∥BC求出∠1=180°﹣∠GEF﹣∠DEF=76°,∠2=180°﹣∠1=104°,即可求出答案.【详解】∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°故答案为:28.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,以及折叠的性质:折叠前后的对应角相等.16.①③【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可【详解】解:①∵AC′∥BD′∠EFB=32°∴∠C′EF=∠EFB=32°故本小题正确;②∵∠C′EF=32°∴∠CEF=32°解析:①③【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【详解】解:①∵AC′∥BD′,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;②∵∠C′EF=32°,∴∠CEF=32°,∴∠AEC=180°−∠CEF-∠C′EF=116°,故本小题错误;③∵AC′∥BD′,∠AEC=116°,∴∠BGE=180°-∠AEC=64°,故本小题正确;④∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°−∠CGF=180°−64°=116°,故本小题错误,故答案为:①③.【点睛】本题考查了折叠的性质、平行线的性质,熟知两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等是解题关键.17.【分析】由折叠的性质得到∠MQN=∠B ∠EQF=∠C 由三角形内角和定理得到∠B+∠C=98°根据平角的定义即可得到答案【详解】解:由折叠的性质得到∠MQN=∠B ∠EQF=∠C ∵∠A+∠B+∠C=18解析:82︒【分析】由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,∵∠A+∠B+∠C=180°,∴∠B+∠C=180°82-︒=98°,∴∠MQN+∠EQF=98°,∴1809882MQE ∠=︒-︒=︒;故答案为:82︒.【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题.18.【分析】根据轴对称的概念求解可得【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色使得黑色小方格组成的图形为轴对称图形的涂法有3种故答案为:3【点睛】本题主要考查利用轴对称设计图案利 解析:【分析】根据轴对称的概念求解可得.【详解】解:如图所示:在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有3种,故答案为:3.【点睛】本题主要考查利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.19.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD ∥BC ∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.20.2【解析】【分析】作AH⊥BC于H交BD于P′作P′Q′⊥AB于Q′此时AP′+P′Q′的值最小【详解】解:作AH⊥BC于H交BD于P′作P′Q′⊥AB于Q′此时AP′+P′Q′的值最小∵BD平分∠解析:22【解析】【分析】作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.【详解】解:作AH⊥BC于H,交BD于P′,作P′Q′⊥AB于Q′,此时AP′+P′Q′的值最小.∵BD平分∠ABC,P′H⊥BC,P′Q′⊥AB,∴P′Q′=P′H,∴AP′+P′Q′=AP′+P′H=AH,根据垂线段最短可知,PA+PQ的最小值是线段AH的长,∵AB=4,∠AHB=90°,∠ABH=45°,∴2,故答案为:2.【点睛】本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.三、解答题21.(1)图形见解析,()13,0B ;(3)见解析【分析】(1)利用关于y 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可; (2)找到B 点关于y 轴的对称点B 1,再连接AB 1,与y 轴交点即为所求.【详解】解:(1)A(-1,5),B(-3,0),C(-4,3),关于y 轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,点A 1、B 1、C 1的坐标为A 1(1,5),B 1(3,0),C 1(4,3),描出A 1,B 1,C 1,顺次连结A 1B 1,B 1C 1,C 1A 1,由题意可知111A B C △即为所求,()13,0B ;(2)由题意作图如下,连结BA 1交y 轴于点P ,A 、A 1关于y 轴对称,AP=A 1P ,由两点距离知BA 1≤BP+A 1P=BP+AP ,点P 即为所求使得PA PB +最小.【点睛】本题考查了作图−对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形,也考查了对称性的应用.22.(1)见解析;(2)见解析;【分析】(1)由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形;(2)连接A1B与y轴交点就是P点即是使得PA+PC值最小的点.【详解】解:(1)如图所示,△A1B1C1,即为所求;(2)如图,连接A1B与y轴交点就是P点,即为所求.【点睛】此题主要作图-轴对称变换与平移变换,关键是正确确定组成图形的关键点的对称点位置及轴对称变换的性质.23.(1)见解析;(2)见解析;(3)12【分析】(1)由网格结构找出点A、B、C关于直线DE对称点A1、B1、C1的位置,然后顺次连接即可;(2)利用轴对称确定最短路线问题连接A1C与DE的交点即为所求点Q.(3)利用梯形面积公式求解.【详解】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:点Q即为所求;(3)四边形BCC1B1的面积为:1(48)22+⨯=12.【点睛】考查了画轴对称图形和利用轴对称求最短路线,解题关键是正确得出对应点位置.24.(1)见解析;(2)'A(3,2)'B(4,-3)'C(1,-1)【分析】(1)根据对称的特点,分别绘制A、B、C的对应点,依次连接对应点得到对称图形;(2)根据对称图形读得坐标.【详解】(1)图形如下:(2)根据图形得:'A(3,2)'B(4,-3)'C(1,-1)【点睛】本题考查绘制轴对称图形,注意,绘制轴对称图形实质就是绘制对称点,然后将对称点依次连接即为对称图形.25.(1)(-2,-1);(2)作图见解析;(3)4.5.【分析】(1)利用第三象限点的坐标特征写出C点坐标;(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积分别减去三个三角形的面积可计算出△ABC的面积.【详解】(1)C 点坐标为(-2,-1);(2)如图,△A 1B 1C 1为所作;(3)△ABC 的面积=5×3-12×5×2-12×2×1-12×3×3=4.5. 【点睛】 本题考查了作图-对称轴变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.26.(1)图见解析;(2)111(1,2),(3,1),(1,2)A B C ----.【分析】(1)分别作各点关于y 轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可.【详解】(1)如图;(2)111(1,2),(3,1),(1,2)A B C ----【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.。
轴对称测试题及答案
轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。
答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。
答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。
答案:对称中心4. 轴对称图形的对称轴可以有______条。
答案:无数5. 一个图形关于某面对称,那么这个面被称为______。
答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。
初中数学生活中的轴对称综合题(含答案)
初中数学生活中的轴对称综合题一、单选题(共10道,每道10分)1.下列轴对称图形中,对称轴的条数为3个的图形是(__)A.圆B.等腰三角形C.正方形D.等边三角形答案:D试题难度:三颗星知识点:轴对称图形2.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有()个.A.2B.3C.4D.5答案:D试题难度:三颗星知识点:轴对称的性质3.如图,在△ABC中,点O是∠ABC的平分线与线段BC的垂直平分线OD的交点,OF⊥AB于点F,OE⊥AC于点E,则下列结论中不一定成立的是()A.OB=OCB.OD=OFC.OA=OB=OCD.BD=DC答案:C试题难度:三颗星知识点:角平分线的性质;垂直平分线的性质4.如图,已知线段AB的端点A在直线l上(AB与l不垂直)请在直线l上另找一点C,使△ABC 是等腰三角形,这样的点能找()个.A.1B.2C.3D.4答案:D试题难度:三颗星知识点:等腰三角形的判定5.如图,AB=AC,DE垂直平分AB,交AB与D,交AC于E,若∠A=38°,则∠EBC=____;若△ABC的周长等于28,BC=8,则△BCE的周长为(__)A.31°;28B.33°;20C.33°;18D.31°;20答案:C试题难度:三颗星知识点:等腰三角形的性质6.如图,四边形ABCD沿直线l对折后互相重合,如果AD∥BC,有下列结论:①AB∥CD②AB=CD③AB⊥BC④A O=OC,其中正确的结论有()A.1个B.2个C.3个D.4个答案:C试题难度:三颗星知识点:轴对称的性质7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A. B.C. D.答案:B试题难度:三颗星知识点:翻折变换(折叠问题)8.如图,点P关于OA、OB的对称点分别为C、D,连结CD,交OA于M,交OB于N,若△PMN的周长=8厘米,则CD为()厘米.A.8B.4C.10D.6答案:A试题难度:三颗星知识点:翻折变换(折叠问题)9.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是(__)A.1号袋B.2号袋C.3号袋D.4号袋答案:B试题难度:三颗星知识点:轴对称的性质10.跟我学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚线BC剪下△ABC,展开即可得到一个五角星.若想得到一个正五角星(如图④,正五角星的5个角都是36°),则在图③中应沿什么角度剪即∠ABC的度数为(__)A.126°B.108°C.90°D.72°答案:A试题难度:三颗星知识点:剪纸问题。
(北师大版)上海市七年级数学下册第五单元《生活中的轴对称》测试题(含答案解析)
一、选择题1.下列说法中错误的是( )A .成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B .关于某条直线对称的两个图形全等C .全等的三角形一定关于某条直线对称D .若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称2.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100° 3.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条 4.下列轴对称图形中,对称轴最多的图形是( )A .B .C .D .5.下面有4个汽车标致图案,其中不是轴对称图形为( )A .B .C .D .6.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个7.如图,在44⨯方形网格中,与ABC ∆有一条公共边且全等(不与ABC ∆重合)的格点三角形(顶点在格点上的三角形)共有( )A.3个B.4个C.5个D.6个8.下列图形是轴对称图形的是( )A.B. C. D.9.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个10.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.11.如图,点P是直线l外一个定点,点A为直线l上一个定点,点P关于直线l的对称点记为P1,将直线l绕点A顺时针旋转30°得到直线l′,此时点P2与点P关于直线l′对称,则∠P1AP2等于()A.30°B.45°C.60°D.75°12.下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个二、填空题13.如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠EFM,则∠AFM=_____°.∠AFM=1214.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=50°,则∠2-∠1=_____.15.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠+∠的大小是__________.∠+∠=,则AFE BCDAFC BCF15016.如图 a 是长方形纸带,∠DEF=19°,将纸带沿 EF 折叠成图 b,再沿 BF 折叠成图 c,则图 c 中的∠DHF 的度数是________ .17.如图,点D、E分别在纸片的边AB、AC上.将沿着DE折叠压平,使点A 与点P重合.若,则_____°.18.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.19.如图所示,将长方形纸片ABCD 进行折叠,∠FEH=70°,则∠BHE=_______.20.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.三、解答题21.尺规作图(只保留作图痕迹,不要求写出作法及证明过程):如图,已知点P 在BAC ∠内,分别在AB 、AC 边上求作点E 和点F ,使PEF 的周长最小.22.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①作△ABC 关于l 1对称的图形△A 1B 1C 1;②作△A 1B 1C 1关于l 2对称的图形△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .23.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.24.如图,要在燃气管道l 上修建一个泵站,分别向A 、B 两镇供气,请你利用尺规作图帮助确定泵站P 修在什么地方,可使所用的输气管线最短?(保留作图痕迹,不写作法)25.如图,ABC ∆三个顶点的坐标分别为(1,1)A , (4,2)B ,(3,4)C(1)若111A B C ∆与ABC ∆关于 y 轴成轴对称,画出111A B C ∆,并直接写出111A B C ∆三个顶点坐标为 1A _____,1B ______,1C _______;(2)在y 轴上是否存在点Q .使得12AOQ ABC S S ∆∆=,如果在,求出点 Q 的坐标,如果不存在,说明理由;(3)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标是______. 26.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称(对称轴不一定是正方形的边所在直线),请在下面给出的图中画出2个这样的DEF .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称的性质和定义,对选项进行一一分析,选择正确答案.【详解】A 、成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴,符合轴对称的定义,故正确;B 、关于某条直线对称的两个图形全等,符合轴对称的定义,故正确;C 、全等的三角形一定关于某条直线对称,由于位置关系不确定,不一定关于某条直线对称,故错误;D 、若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称,符合轴对称的定义,故正确.故选:C .【点睛】本题考查了轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.2.B解析:B【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.3.B解析:B【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【详解】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选B.【点睛】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.4.D解析:D【分析】根据对称轴的概念、结合图形分别找出各个图形的对称轴,得到答案.【详解】A中图形有一条对称轴;B中图形有一条对称轴;C中图形有两条对称轴;D中图形有四条对称轴;故选:D.【点睛】此题考查轴对称图形,正确找出各个图形的对称轴是解题的关键.5.C解析:C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A. 属于轴对称图形,正确;B. 属于轴对称图形,正确;C. 不属于轴对称图形,错误;D. 属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.6.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.7.B解析:B【分析】通过全等三角形的性质作轴对称图形可以分析得到.【详解】以BC为公共边可以画出两个,以AB、AC为公共边可以各画出一个,所以一共四个.故选B【点睛】本题考查了全等三角形的性质,根据方格的特点和全等三角形的性质结合画轴对称图形是解题的关键.8.B解析:B【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;B、有六条对称轴,是轴对称图形,故本选项正确;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误.故选B.9.C解析:C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.A解析:A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.11.C解析:C【分析】根据轴对称的性质得到∠P1AD=∠PAD,∠PAC=∠P1AC,根据平角的定义得到∠DAC=150°,于是得到结论.【详解】如图,∵点P关于直线l的对称点记为P1,点P2与点P关于直线l′对称,∴∠P1AD=∠PAD,∠PAC=∠P1AC,∵∠BAC=30°,∴∠DAC=150°,∴∠DAP1+P2AC=150°,∠DAP1+∠P2AB=150°﹣30°=120°,∴∠P1AP2=180°﹣120°=60°,故选:C.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.12.C解析:C【分析】根据轴对称图形的定义:一个图形沿一条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,据此即可解答.【详解】解:根据对称轴的定义可知,是轴对称图形的有第2个、第3个和第4个.故选C.【点睛】本题考查了利用轴对称图形的定义,注意对基础知识的理解.二、填空题13.36【分析】由折叠的性质可得∠EFM=∠EFB设∠AMF=x°由∠AFM=∠EFM可得∠EFM=∠BFE=2x°然后根据平角的定义列方程求出x的值即可得答案【详解】∵将一张长方形的纸片沿折痕EF翻折解析:36【分析】由折叠的性质可得∠EFM=∠EFB,设∠AMF=x°,由∠AFM=12∠EFM可得∠EFM=∠BFE=2x°,然后根据平角的定义列方程求出x的值即可得答案.【详解】∵将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,∴∠EFM=∠EFB,设∠AFM=x°,∠EFM,∵∠AFM=12∴∠EFM=∠BFE=2x°,∴x°+2x°+2x°=180°,解得:x=36,∴∠AFM=36°.故答案为:36【点睛】此题考查了折叠的性质与平角的定义.解题的关键是注意方程思想与数形结合思想的应用.14.20°【分析】根据AD∥BC折叠可知∠EFG=∠DEF=∠D′EF=50°进而知∠1度数再根据两直线平行同旁内角互补可得∠2度数可得答案【详解】解:∵AD∥BC∴∠DEF=∠EFG∵∠EFG=50°解析:20°【分析】根据AD∥BC、折叠可知,∠EFG=∠DEF=∠D′E F=50°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【详解】解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=50°,∴∠DEF=50°;又∵∠DEF=∠D′EF,∴∠D′EF=50°;∴∠1=180°-50°-50°=80°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°-∠1=180°-80°=100°,∴∠2-∠1=20°.故答案为:20°.【点睛】本题主要考查翻折问题及平行线的性质,结合题干熟悉翻折过程中相等的量及平行线的性质是关键.15.300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC∠BCF=∠DCF再根据题目条件∠AFC+∠BCF=150°可得到∠AFE+∠BCD的度数【详解】解:∵六边形ABCDEF是轴对称图形CF所解析:300°【分析】根据轴对称图形的概念可得∠AFC=∠EFC,∠BCF=∠DCF,再根据题目条件∠AFC+∠BCF=150°,可得到∠AFE+∠BCD的度数.【详解】解:∵六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,∴∠AFC=∠EFC,∠BCF=∠DCF,∵∠AFC+∠BCF=150°,∴∠AFE+∠BCD=150°×2=300°,故答案为:300°.【点睛】此题主要考查了轴对称的性质,关键是掌握轴对称图形的对称轴两边的图形能完全重合.16.57°【解析】【分析】由题意知∠DEF=∠EFB=19°图b∠GFC=142°图c中的∠DHF=180°-∠CFH【详解】∵AD∥BC∠DEF=19°∴∠BFE=∠DEF=19°∴∠EFC=180°解析:57°【解析】【分析】由题意知∠DEF=∠EFB=19°图b∠GFC=142°,图c中的∠DHF =180°-∠CFH.【详解】∵AD∥BC,∠DEF=19°,∴∠BFE=∠DEF=19°,∴∠EFC=180°-19°=161°(图a),∴∠BFC=161°-19°=142°(图b),∴∠CFE=142°-19°=123°(图c),∴由DH∥CF得∠DHF =180°-123°=57°【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.17.136°【解析】【分析】根据三角形的内角和等于180°求出∠ADE+∠AED再根据翻折变换的性质可得∠PDE=∠ADE∠PED=∠AED然后利用平角等于180°列式计算即可得解【详解】解:∵∠A=6解析:【解析】【分析】根据三角形的内角和等于180°,求出∠ADE+∠AED,再根据翻折变换的性质可得∠PDE=∠ADE,∠PED=∠AED,然后利用平角等于180°列式计算即可得解.【详解】解:∵∠A=68°,∴∠ADE+∠AED=180°-68°=112°,∵△ABC 沿着DE 折叠压平,A 与P 重合,∴∠PDE=∠ADE ,∠PED=∠AED ,∴∠1+∠2=180°-(∠PED+∠AED )+180°-(∠PDE+∠ADE )=360°-2×112°=136°. 故答案为:136°.【点睛】本题考查了三角形的内角和定理,翻折变换的性质,平角的意义,渗透整体思想的利用,掌握三角形的内角和180°是解决问题的关键.18.65【解析】【分析】根据翻折的定义可以得到各角之间的关系从而可以得到∠AEF+∠BEG 的度数从而可以解答本题【详解】解:由题意可得∠AEA=2∠AEF ∠BEB=2∠BEG ∴(∠AEA+∠BEB )∵∠解析:65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 19.70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°再根据两直线平行内错角相等即可求得答案【详解】由题意得∠DEH=∠FEH=70°∵AD//BC ∴∠BHE=∠DEH=70°故答案为:7解析:70°【解析】【分析】由折叠的性质可得∠DEH=∠FEH=70°,再根据两直线平行,内错角相等即可求得答案.【详解】由题意得∠DEH=∠FEH=70°,∵AD//BC ,∴∠BHE=∠DEH=70°,故答案为:70°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握折叠的性质以及平行线的性质是解题的关键.20.5【分析】作DF⊥AB于F根据角平分线的性质得到DE=DF根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F∵BD平分∠ABCDE⊥BCDF⊥AB∴DE=DF∴×AB×DF+×BC×DE=解析:5【分析】作DF⊥AB于F,根据角平分线的性质得到DE=DF,根据三角形的面积公式计算即可;【详解】如图:作DF⊥AB于F,∵ BD平分∠ABC,DE⊥BC,DF⊥AB,∴DE=DF,∴12×AB×DF+12×BC×DE=ABCS,即12×AB×2+12×7×2=12,解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;三、解答题21.见解析【分析】步骤:①作P关于AB的对称点P1.②作P关于BC的对称点P2.③连接P1P2.④P1P2与AB的交点就是E,P1P2与BC的交点就是F.PEF即为所求.【详解】解:如图:PEF即为所求,注:①作P关于AB的对称点1P;②作P关于BC的对称点2P;③连接P1P2.④P1P2与AB的交点就是E,P1P2与BC的交点就是F.【点睛】本题考查了作图-复杂作图,轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(1)①见解析;②见解析;(2)(-4,2).【分析】(1)①分别作出A,B,C的对应点A1,B1,C1即可.②分别作出A1,B1,C1的对应点A2,B2,C2即可.(2)根据点的位置确定坐标即可.【详解】解:(1)①如图,△A1B1C1即为所求作.②如图,△A2B2C2即为所求作.(2)B2(-4,2),故答案为:(-4,2).【点睛】本题考查作图-轴对称变换,解题的关键是理解题意,灵活运用所学知识解决问题.23.28°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠BAD 的度数,在△ABD 中,利用三角形外角性质可求出∠PDE 的度数,再在△PDE 中利用三角形内角和定理可求出∠P 的度数.【详解】解:在ABC 中,80ACB ∠=︒,24B ∠=︒,18076BAC ACB B ∴∠=︒-∠-∠=︒. AD 平分BAC ∠, 1382BAD BAC ∴∠=∠=︒. PDE ∠是ABD △的外角,243862PDE B BAD ∴∠=∠+∠=︒+︒=︒,PE BC ⊥于E ,90PED ∴∠=︒, 906228P ∴∠=︒-︒=︒.【点睛】本题考查了三角形内角和定理、角平分线的定义以及对顶角,利用三角形内角和定理及角平分线的定义,求出∠ADC 的度数是解题的关键.24.见解析.【分析】作B 关于管道l 的对称点B′,连接AB′交管道l 于P ,连接BP ,则泵站P 修在P 点,可使AP+BP 最短.【详解】解:画出图形如图所示,点P 即为泵站的位置.【点睛】本题考查基本作图-轴对称确定最短路径问题,熟记将军饮马模型,掌握轴对称点的画法是解答的关键.25.(1)图见解析,1(1,1)A -,1(4,2)B -,1(3,4)C -;(2)存在,70,2Q ⎛⎫ ⎪⎝⎭或70,2;(3)()2,0P【分析】(1)作出A 、B 、C 关于y 轴的对称点A '、B ′、 C '即可得到坐标;(2)存在.设(0,)Q m ,根据三角形的面积公式,构建方程即可解决问题;(3)作点B 关于x 轴的对称点B ′,连接AB '交x 轴于 P ,此时PA PB +的值最小.【详解】解:(1)111A B C ∆如图所示,1(1,1)A -, 1(4,2)B -,1(3,4)C -.(2)存在.设()0,Q m ,111792*********ABC S ∆=-⨯⨯-⨯⨯-⨯⨯=, 74QAO S ∆∴=, 17||124m ∴⋅⋅=, 72m ∴=±, 70,2Q 或70,2. (3)如图作点B 关于x 轴的对称点B ′,连接AB '交 x 轴于P ,此时PA PB +的值最小,此时点P 的坐标是(2,0).【点睛】本题考查轴对称-最短路线问题、三角形的面积、坐标与图形变化等知识,熟悉相关性质是解题的关键.26.见解析【分析】根据轴对称图形的定义进行画图即可.【详解】解:如图所示:【点睛】本题有一定的难度,要求找出所有能与三角形ABC形成对称的轴对称图形,这里注意思维要严密.。
精编北师大版七年级数学下册第五章《生活中的轴对称》单元测试卷(5套试题)含答案
第五章《生活中的轴对称》单元测试卷1一、选择题1.下列说法中,不正确的是 ( )A.等腰三角形底边上的中线就是它的顶角平分线B.等腰三角形底边上的高就是底边的垂直平分线的一部分C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形D.两个三角形能够重合,它们一定是轴对称的2.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为 ( )4A.2a B.a3C.1.5a D.a4.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是( )A.9cm B.12cmC.9cm和12cm D.在9cm与12cm之间5.观察图7—108中的汽车商标,其中是轴对称图形的个数为 ( )A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 ( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图7—109,在△ACD中,AD=BD=BC,若∠C=25°,则∠ADB=________.7.已知:如图7—110,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E =_____________.8.如图7—111,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图7—112,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图7—113,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图7—114,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图7—115,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图7—116,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图7—117,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB=20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图7—118,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图7—119,点G在CA的延长线上,AF=AG,∠ADC=∠GEC.求证:AD平分∠BAC.8.已知:如图7—120,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.求证:DE=DF.参考答案一、1.D 2.B 3.C 4.B 5.C 6.C 7.D 8.D 9.B 10.A 二、1.5 2.3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD =5cm ,DE =5cm ,EB =10cm 6.先证△ENC≌△DMB(ASA ), ∴ DM=EN. 再加上AD =BE 即可.7.∵ AF=AG ,∴ ∠G=∠AFG.又∵ ∠ADC=∠GEC,∴ AD∥GE.∴ ∠G=∠CAD. ∴ ∠AFG=∠BAD.∴ ∠CAD=∠BAD. ∴ AD 平分∠BAC.8.连结AD.在△ADF 和△BDE 中,可证得: BD =AD ,BE =AF ,∠B=∠D AF. ∴ △ADF≌△BDE.∴ DE=DF.第五章《生活中的轴对称》单元测试卷2选择题(每题5分,共30分)1、下列图形中,不是轴对称图形的是()A.等腰三角形 B.线段 C.钝角 D.直角三角形2、下列图案中,有且只有三条对称轴的是()3、等腰三角形一腰上的高与底边所成的角等于()A.顶角B.顶角的一半C.顶角的两倍D.底角的一半4、等腰三角形两边的长分别是2cm和5cm,则这个三角形的周长是( )A.9cmB.12cmC.9cm或12cmD.在9cm和12cm之间5、下列图案中,不能用折叠剪纸方法得到的是()6、将写有字母F的纸条正对镜面,则镜中出现的会是()二、填空题(每题5分,共25分)1、把一张纸对折,任意剪成一个形状,把它打开后所得到的图形关于这条折痕成______图形.2、我国传统木结构房屋,窗子常用各种图案装饰,如右图所示是一种常见的图案,这个图案有______条对称轴.3、前后两辆车,从前一辆的反光镜里看到后一辆车的车牌号是则后面这辆车的实际车牌号是___________.4、等腰三角形的三个内角与顶角相邻的一个外角之和是310°,则底角度数为________.5、如图,在△ABC 中,∠BAC=110°,PM 和QN 分别垂直平分AB 和AC ,则∠PAQ=_________. 三、画图题(每题5分,共10分)把下列各图补成以直线l 为对称轴的轴对称图形. 1、 2、四、解答题(第1题5分,第2、3、4题10分,共35分) 1、如图是由一个等腰三角形(AB=AC )和一个圆(O 为圆心)所成的轴对称图形,则AO 与BC 有怎样的位置关系?试说明理由。
轴对称单元测试题(含答案--高质量)
(轴对称)一、选择题(每小题3%,共30%)1。
下面四组图形中,右边与左边成轴对称的是( )A. B 。
C 。
D 。
2。
下列图形中一定有4条对称轴的是( )A 。
长方形 B.正方形 C.等边三角形 D 。
等腰直角三角形 3。
下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个 C 。
4个 D.6个 4.如图1:射线BA,CA 相交于点A,连接BC ,已知AB=AC ,∠B=400, 则∠CAE 的度数为( )A 。
400 B.600 C 。
800 D.10005.等腰三角形是轴对称图形,它的对称轴有( )A 。
1条B 。
2条 C.3条 D.1条或3条 图1 6。
如图2:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=900,则∠B 的度数为( ) A 。
30B.20C 。
40D 。
25图27。
底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段( ) A 。
9条 B 。
6条 C.7条 D.3条 8。
如图3:在△ABC 中,AB=AC,∠A=360,BD ,CE 分别平分∠ABC 和∠ACB,相交于点F ,则图中等腰三角形共有( ) A 。
7个 B 。
8个 C 。
6个 D 。
9个图39。
如图4:如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1000,则∠BCD 的度数为( ) A 。
700B.800C.600D.90010。
等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( ) 图4BCAE B C A E DAB C D E FA BCDEmA.600B.1200C.600或1500D.600或1200二、填空题(每小题3%,共15%)11.从镜子中看到背后墙上电子钟的示意数为 ,这时的实际时间为______。
12。
在△ABC 中,AB=AC,AD ⊥BC 于D ,由以上两个条件 可得_________________.(写出一个结论即可)13.如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC于点D,已知AD=4。
生活中的轴对称单元综合测试题
A B C D 生活中的轴对称单元综合测试题(总分100分 时间60分钟)一.选择题(每题3分,共24分)1.下列美丽的图案中,是轴对称图形的是( ).2.李芳同学球衣上的号码是253,当他把镜子放在号码的正左边时,镜子中的号码是( ).3.下列图案中轴对称图形的个数是( ).A. 1B. 2C. 3D. 44.如图,在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( )A .(1)(2)(3)B .(1)(2)(4) C. (2)(3)(4) D .(1)(3)(4)5.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( )A .17cmB .22cmC .17cm 或22cmD .18cm6.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( )A .40°B .50°C .60°D .30°7.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°8.如图,直线l 代表一条河,P 、Q 两地相距8千米,P 、Q两地到l 的距离分别为2千米、5千米,欲在l 上的某点M 处修建一个水泵站,向P 、Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( ).二.填空题(每题3分,共21分)(1)36︒C B A(2)45︒C B A (3)90︒C A108︒(4)CBAABD C A B C D 8题图l9.三角形三内角的度数之比为1∶2∶3,最大边的长是8cm ,则最小边的长是_______cm .10.夷陵长江大桥为三塔斜拉桥.如图,中塔左右两边所挂的 最长钢索AB =AC ,塔柱底端D 与点B 间的距离是228米,则BC 的长是 米. 11.在ABC ∆中,AB =AC ,边AB 的垂直平分线与AC 所在的直线 相交所得的锐角是500,则B ∠的度数是 ______________.12.把图中的某两个..小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.13.已知:如图,△ABC 为正三角形,D 是BC 延长线上一点,连结AD ,以AD 为边作等边三角形ADE ,连结CE ,若 AC=2, CE=9,则线段CD 的长度是 .14.如图,已知BO 、CO 分别是∠ABC 和∠ACB 的平分线,OE ∥AB ,OF ∥AC ,如果已知BC 的长为a ,你能知道△OEF 的周长是 .15.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .三.作图题(每题5分,共10分)16.如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:作出关于直线AB 的轴对称图形;17.如图,EFGH 为矩形台球桌面,现有一白球A 和一彩球B.应怎样击打白球A,才能使白球A 碰撞台边EF 、EH,反弹后能击中彩球B?四.解答题18.(8分)已知△ABC 中AB=AC ,AD ⊥BC 于D ,若△ABC 、△ABD 的周长分别是20cm 和16cm ,•求AD 的长.12题图 15题图 E B A13题图B C F E O 14题图A B 16题图F17题图 DC B A10题图19.(8分)如图,五边形ABCDE 中AB=AE ,BC=DE ,∠ABC=∠AED ,点F 是CD 的中点.•求证:AF ⊥CD.19题图20.(9分)已知,如图ΔABC 中,AB =AC,D 点在BC 上,且BD =AD ,DC =AC.将图中的等腰三角形全都写出来.并求∠B 的度数.20题图21.(10分)已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、BC 的距离分别为h 1、h 2、h 3,△ABC 的高为h.“若点P 在一边BC 上(如图1),此时h 3=0,可得结论h 1+h 2+h 3=h ″.请直接应用上述信息解决下列问题:当点P 在△ABC 内(如图2)、点P 在△ABC 外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h 1、h 2、h 3与h 之间的关系如何?请写出你的猜想,不需证明.图1图2 图3 21题图22.(10分)如图,在△ABC 中,∠B=600,AB=24cm,BC=16cm,现有动点M 从点A 出发,沿B C D AM F线段AB 向点B 运动;点N 从B 出发,沿线段BC 向点C 运动.如果点M 的速度是4cm/s, 点N 的速度是2cm/s,它们同时出发,设MB=y,CN=x.(1)求y 与x 的关系式;(2)当x 的值为多少时,△BMN 为等边三角形;(3)点M 运动多长时间时,△BMN 为直角三角形;22题图C。
2020北师大版七年级数学下册第五章生活中的轴对称同步单元综合评价试卷含解析
2020北师大版七年级数学下册第五章生活中的轴对称同步单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(共10小题,满分30分,每小题3分)的正方形网格中,有三个小方格被涂上了阴影,请在图中再选择两1.在如图所示33个空白的小正方形并涂成阴影,使得图中的阴影部分成为轴对称图形,共有()种不同的填涂方法.A.4种B.5种C.6种D.7种2.如图,从标有数字1,2,3.4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是()A.1B.2C.3D.43.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)4.如图,已知要在一块长方形的空地上修建一个花坛,要求花坛图案(阴影部分)为轴对称图形,图中的设计符合要求的有()A.4个B.3个C.2个D.1个5.把一张长方形纸片按如图①,图①的方式从右向左连续对折两次后得到图①,再在图①中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.6.如图所示,在3×3的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有()A.6种B.5种C.4种D.2种7.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种,例①中四幅图就视为同一种,则得到不同共有A.4种B.5种C.6种D.7种8.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.9.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10B.6C.3D.210.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒①的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是()A.①B.①C.①D.①二、填空题(共7小题,满分28分,每小题4分)11.汉字“王、中、田”等都是轴对称图形,请再写出一个这样的汉字________12.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是______(填出所有符合要求的小正方形的标号)13.如图的2×5的正方形网格中,①ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与①ABC成轴对称的格点三角形一共有_________个.14.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形._______________15.如图,图形①经过________变换成图形①,图形①经过________变换成图形①,图形①经过________变换成图形①(选填“轴对称”“平移”或“旋转”).16.下列四个图都是由16个相同的小正方形拼成的正方形网格,其中的两个小正方形被涂黑.请你在各图中再将两个空白的小正方形涂黑.使各图中涂黑部分组成的图形成为轴对称图形(另两个被涂黑的小正方形必须全不相同),并画出其对称轴.其对称轴分别是:________,________,________,________.17.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有________种.三、解答题(共6小题,满分42分,每题7分)18.如图,在4 ⨯ 4 的正方形网格中,有5 个黑色小正方形.(1)请你移动一个黑色小正方形,使移动后所形成的4 ⨯ 4 的正方形网格图形是轴对称图形.如:将8 号小正方形移至14 号;你的另一种做法是将号小正方形移至号(填写标号即可);(2)请你移动2 个小正方形,使移动后所形成的图形是轴对称图形.你的一种做法是将号小正方形移至号、将号小正方形移至号(填写标号即可).19.将16个相同的小正方形拼成正方形网格,并将其中的两个小正方形涂成黑色,如图所示,请你用三种不同的方法分别在图甲、图乙、图丙中再将两个空白的小正方形涂上阴影,使它成为轴对称形。
七年级下册数学第五章生活中的轴对称单元测试题(含答案)
北师大版七年级下册数学第五章生活中的轴对称单元测试题一.选择题(共10小题)1.如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论错误的是( )A .PC=PDB .∠CPD=∠DOPC .∠CPO=∠DPOD .OC=OD2.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E,D 两点,EC=4,△ABC 的周长为23,则△ABD 的周长为( )A .13B .15C .17D .193.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC 的周长为19cm,△ABD 的周长为13cm ,则AE 的长为( )A .3cmB .6cmC .12cmD .16cm4.如图所示,线段AC 的垂直平分线交线段AB 于点D,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°5.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D,则∠D 的度数为( ) A .15° B .17。
5° C .20° D .22.5°6.一个等腰三角形一边长为4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A .13cmB .14cmC .13cm 或14cmD .以上都不对7.下列图形中不是轴对称图形的是( ) A . B . C . D .8.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°第1题图 第2题图 第3题图 第5题图第4题图 第8题图 第9题图 第10题图9.如图,D 是直角△ABC 斜边BC 上一点,AB=AD ,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是( )A .40°B .50°C .60°D .不能确定10.如图,∠B=∠C ,∠1=∠3,则∠1与∠2之间的关系是( )A .∠1=2∠2B .3∠1﹣∠2=180°C .∠1+3∠2=180°D .2∠1+∠2=180°二.填空题(共10小题)11.如图,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC=3,点P 到OA 的距离为 .12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 .13.如图,在△ABC 中,AB=AC=6,AB 的垂直平分线交AB 于点E ,交BC 于点D ,连接AD ,若AD=4,则DC= .14.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE=2,AB=4,则AC 的长是 .15.如图所示,已知△ABC 的周长是20,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .16.如图,△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D .已知BD :CD=3:2,点D 到AB 的距离是6,则BC 的长是 .17.如图,△ABC 中,∠A=80°,∠B=40°,BC 的垂直平分线交AB 于点D ,连结DC ,如果AD=3,BD=8,那么△ADC 的周长为 .18.如图,∠AOB 是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF 、FG 、GH …,且OE=EF=FG=GH …,在OA 、OB 足够长的情况下,最多能添加这样的钢管的根数为 .三.解答题(共10小题)19.如图,在△ABC 中,∠ACB=90゜,BE 平分∠ABC,交AC 于E ,DE 垂直平分AB 于D,求证:BE +DE=AC .第11题图 第13题图 第14题图 第15题图 第16题图 第17题图20.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.21.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.22.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.26.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.23.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.24.电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置.(尺规作图,不写作法,保留作图痕迹)25.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.北师大版七年级下册数学第五章生活中的轴对称单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.2.(2016•天门)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.3.(2016•恩施州)如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.4.(2016•黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【点评】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17。
第五章 生活中的轴对称(北师大版七年级新教材)
2013—2014学年度第二学期炉山二中七年级数学单元测试卷第五章生活中的轴对称(说明:本试题考试时间90分钟,满分150分)班级:姓名:成绩:一、选择题:(每小题4分,共40分)1、下列图形是一些商品的标志,其中不是轴对称的是()A B C D2、下列说法中,不正确的是()A、等腰三角形底边上的中线就是它的顶角平分线B、等腰三角形底边上的高就是底边的垂直平分线的一部分C、一条线段可看作以它的垂直平分线为对称轴的轴对称图形D、两个三角形能够重合,它们一定是轴对称的3、到三角形三边距离都相等的点是三角形()的交点.A、三边中垂线B、三条中线C、三条高D、三条内角平分线4、下列说法正确的是()A、轴对称涉及两个图形,轴对称图形涉及一个图形B、如果两条线段互相垂直平分,那么这两条线段互为对称轴C、所有直角三角形都不是轴对称图形D、有两个内角相等的三角形不是轴对称图形5、下列图形中对称轴最多的是()A、等腰三角形B、正方形C、圆D、线段6、若等腰三角形的周长为26cm,一边为11cm,则腰长为()A、11cmB、7.5cmC、11cm或7.5cmD、以上都不对7、如图1:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米A 、16B 、18C 、26D 、288、将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )9、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是 ( )A 、40°B 、50°C 、60°D 、30°10、如图2,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,•则四个结论正确的是 ( )①AP 是∠A 的平分线; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSPA 、全部正确;B 、仅①和②正确;C 、仅②③正确;D 、仅①和③正确 二、选择题:(每小题4分,共40分)11、底角等于顶角一半的等腰三角形是 三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档文案大全七年级下册数学第五章生活中的轴对称单元测试题一.选择题(共10小题)1.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC 的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19 3.如图,在△ABC中,DE是AC的垂直平分线,△ABC 的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm4.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°5.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°6.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对7.下列图形中不是轴对称图形的是()A B C D8.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°9.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40° B.50° C.60° D.不能确定10.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180°实用文档文案大全二.填空题(共10小题)11.如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为13.如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是15.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC 于D,且OD=3,则△ABC的面积是16.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是17.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,如果AD=3,BD=8,那么△ADC的周长为18.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为19.已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为20.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为三.解答题(共10小题)21.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB 于D,求证:BE+DE=AC.实用文档文案大全22.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC 于点E和F.求证:DE=DF.23.如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=..求证:AB平分∠EAD.25.如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.实用文档文案大全求证:BD=DE.26.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.27.如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm..(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.实用文档文案大全28.已知点D、E在△ABC的BC边上,AD=AE,BD=CE,为了判断∠B与∠C 的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据.解:作AM⊥BC,垂足为M ∵AD=AE,∴△ADE是三角形,∴DM=EM ()又∵BD=CE,∴BD+DM=,即BM=;又∵(自己所作),∴AM是线段的垂直平分线;∴AB=AC ()∴29.电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P 的位置.(尺规作图,不写作法,保留作图痕迹)30.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE.(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.实用文档文案大全实用文档文案大全北师大版七年级下册数学第五章生活中的轴对称单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016?怀化)如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.∠CPD=∠DOP C.∠CPO=∠DPO D.OC=OD【分析】先根据角平分线的性质得出PC=PD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出∠CPO=∠DPO,OC=OD.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,故A正确;在Rt△OCP与Rt△ODP中,,∴△OCP≌△ODP,∴∠CPO=∠DPO,OC=OD,故C、D正确.不能得出∠CPD=∠DOP,故B错误.故选B.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了全等三角形的判定与性质,得出PC=PD是解题的关键.2.(2016?天门)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.实用文档文案大全【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.3.(2016?恩施州)如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.【点评】本题考查了线段垂直平分线性质的应用,能熟记线段垂直平分线性质定理的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.4.(2016?黄石)如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50° B.100° C.120° D.130°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【解答】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=50°,∴∠BDC=∠DCA+∠A=100°,故选:B.【点评】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(2016?枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()实用文档文案大全A.15° B.17.5° C.20° D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°故选A.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.6.(2016?湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解本题的关键.7.(2016?泸州)下列图形中不是轴对称图形的是()A B C D【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.实用文档文案大全【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.(2016?聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.9.(2016?庄河市自主招生)如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.若α=10°,则β的度数是()A.40° B.50° C.60° D.不能确定【分析】根据AB=AD,可得出∠B=∠ADB,再由∠ADB=α+∠C,可得出∠C=β﹣10°,再根据三角形的内角和定理得出β即可.【解答】解:∵AB=AD,∴∠B=∠ADB,∵α=10°,∠ADB=α+∠C,∴∠C=β﹣10°,∵∠BAC=90°,∴∠B+∠C=90°,即β+β﹣10°=90°,解得β=50°,故选B.【点评】本题考查了等腰三角形的性质、三角形的内角和定理以及三角形外角的性质,是基础知识要熟练掌握.实用文档文案大全10.(2016?孝感模拟)如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180° C.∠1+3∠2=180° D.2∠1+∠2=180°【分析】由已知条件∠B=∠C,∠1=∠3,在△ABD中,由∠1+∠B+∠3=180°,可推出结论.【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°故选B.【点评】本题考查了三角形内角和定理和三角形外角的性质的应用.二.填空题(共10小题)11.(2016?常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为3【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.12.(2016?通辽)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°【分析】分两种情况讨论:①若∠A<90°;②若∠A>90°;先求出顶角∠BAC,再利用三角形内角和定理即可求出底角的度数.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,实用文档文案大全∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°故答案为:69°或21°【点评】本题考查了等腰三角形的性质以及余角和邻补角的定义;注意分类讨论方法的运用,避免漏解.13.(2016?牡丹江)如图,在△ABC中,AB=AC=6,AB的垂直平分线交AB于点E,交BC于点D,连接AD,若AD=4,则DC=5【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到BF=CF=BC,由AB的垂直平分线交AB于点E,得到BD=AD=4,设DF=x,根据勾股定理列方程即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∴BF=CF=BC,∵AB的垂直平分线交AB于点E,∴BD=AD=4,设DF=x,∴BF=4+x,∵AF2=AB2﹣BF2=AD2﹣DF2,实用文档文案大全即16﹣x2=36﹣(4+x)2,∴x=0.5,∴DF=0.5,∴CD=CF+DF=BF+DF=BD+2DF=4+0.5×2=5,故答案为:5.【点评】此题考查了等腰三角形的性质,线段垂直平分线的性质.此题难度不大,注意掌握转化思想与数形结合思想的应用.14.(2016?营口模拟)如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.15.(2016?邯郸二模)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC 和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是30实用文档文案大全【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到△ABC的面积等于周长的一半乘以3,代入求出即可.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是22,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3 =20×3=30,故答案为:30.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16.(2016?白云区校级二模)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD:CD=3:2,点D到AB的距离是6,则BC的长是15【分析】作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据题意求出BD的长,计算即可.【解答】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴CD=DE=6,又BD:CD=3:2,∴BD=9,∴BC=BD+DC=15,故答案为:15.实用文档文案大全【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.17.(2016?句容市一模)如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,连结DC,如果AD=3,BD=8,那么△ADC的周长为19【分析】根据线段垂直平分线的性质得到DB=DC,根据三角形内角和定理和等腰三角形的性质证明CA=CD=DB=8,根据三角形周长公式计算即可.【解答】解:∵BC的垂直平分线交AB于点D,∴DB=DC,∴∠DCB=∠B=40°,∵∠A=80°,∠B=40°,∴∠ACB=60°,∴∠ACD=20°,∴∠ADC=80°,∴CA=CD=DB=8,∴△ADC的周长=AD+AC+CD=19,故答案为:19.【点评】本题考查的是线段垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(2016?河北模拟)如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为8【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为8.【点评】此题考查了三角形的内角和是180度的性质和等腰三角形的性质及三角形外角的性质;发现并利用规律是正确解答本题的关键.19.(2016?淮安一模)已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为14cm实用文档文案大全【分析】两直线平行,内错角相等,以及根据角平分线性质,可得△OBD、△EOC均为等腰三角形,由此把△AEF的周长转化为AC+AB.【解答】解:∵DE∥BC ∴∠DOB=∠OBC,又∵BO是∠ABC的角平分线,∴∠DBO=∠OBC,∴∠DBO=∠DOB,∴BD=OD,同理:OE=EC,∴△ADE的周长=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14cm..故答案是:14cm..【点评】本题考查了平行线的性质和等腰三角形的判定及性质,正确证明△OBD、△EOC 均为等腰三角形是关键.20.(2016?广东校级一模)如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为100°【分析】作点A关于BC的对称点A′,关于CD的对称点A″,根据轴对称确定最短路线问题,连接A′A″与BC、CD的交点即为所求的点M、N,利用三角形的内角和定理列式求出∠A′+∠A″,再根据轴对称的性质和三角形的一个外角等于与它不相邻的两个内角的和可得∠AMN+∠ANM=2(∠A′+∠A″),然后计算即可得解.【解答】解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°故答案为:100°实用文档文案大全【点评】本题考查了轴对称确定最短路线问题,轴对称的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,确定出点M、N的位置是解题的关键,要注意整体思想的利用.三.解答题(共10小题)21.(2016?历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.22.(2016?历下区一模)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点实用文档文案大全∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F ∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).【点评】本题考查了等腰三角形的性质及全等三角形的判定与性质;利用等腰三角形三线合一的性质是解答本题的关键.23.(2016?长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.实用文档文案大全24.(2016?西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=..求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.25.(2016?门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.实用文档文案大全26.(2016春?吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,【分析】然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.27.(2016春?滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm..(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;实用文档文案大全(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.28.(2016春?衡阳县校级期末)已知点D、E在△ABC的BC边上,AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据.解:作AM⊥BC,垂足为M ∵AD=AE,∴△ADE是等腰三角形,∴DM=EM (等腰三角形底边上的高也是底边上的中线)又∵BD=CE,∴BD+DM=CE+EM,即BM=CM;又∵AM⊥BC(自己所作),∴AM是线段BC的垂直平分线;∴AB=AC (线段垂直平分线上的点到线段两个端点的距离相等)∴∠B=∠C【分析】首先根据等腰三角形的性质,得DM=EM,结合已知条件,根据等式的性质,得BM=CM,从而根据线段垂直平分线的性质,得AB=AC,再根据等腰三角形的性质即可证明.【解答】解:作AM⊥BC,垂足为M ∵AD=AE,∴△ADE是等腰三角形,∴DM=EM (等腰三角形底边上的高也是底边上的中线)实用文档文案大全又∵BD=CE,∴BD+DM=CE+EM,即BM=CM;又∵AM⊥BC(自己所作),∴AM是线段BC的垂直平分线;∴AB=AC (线段垂直平分线上的点到线段两个端点的距离相等)∴∠B=∠C.故答案为:等腰,等腰三角形底边上的高也是底边上的中线,CE+EM,CM,AM⊥BC,BC,线段垂直平分线上的点到线段两个端点的距离相等,∠B=∠C.【点评】此题综合考查了等腰三角形的性质、线段垂直平分线的性质.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合;等腰三角形的两个底角相等.29.(2016秋?西市区校级期中)电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置.(尺规作图,不写作法,保留作图痕迹)【分析】根据题意,P点既在线段AB的垂直平分线上,又在两条公路所夹角的平分线上.故两线交点即为发射塔P的位置.【解答】解:设两条公路相交于O点.P为线段AB的垂直平分线与∠MON的平分线交点或是与∠QON的平分线交点即为发射塔的位置.如图,满足条件的点有两个,即P、P′.【点评】此题考查了线段的垂直平分线和角的平分线的性质,属基本作图题.实用文档文案大全30.(2016春?长清区期末)以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD,CE(1)说明BD=CE;(2)延长BD,交CE于点F,求∠BFC的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【分析】(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可得到∠BFC=180°﹣∠ACE﹣∠CDF=180°﹣∠DBA﹣∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°【解答】解:(1)∵△ABC、△ADE是等腰直角三角形,∴AB=AC,∠BAD=∠EAC=90°,AD=AE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE;(2)∵△ADB≌△AEC,∴∠ACE=∠ABD,而在△CDF中,∠BFC=180°﹣∠ACE﹣∠CDF 又∵∠CDF=∠BDA∴∠BFC=180°﹣∠DBA﹣∠BDA =∠DAB =90°;(3)BD=CE成立,且两线段所在直线互相垂直,即∠BFC=90°.理由如下:∵△ABC、△ADE是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∵∠BAC+∠CAD=∠EAD+∠CAD ∴∠BAD=∠CAE,∵在△ADB和△AEC中,,∴△ADB≌△AEC(SAS)实用文档文案大全∴BD=CE,∠ACE=∠DBA,∴∠BFC=∠CAB=90°【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.。