八年级数学分式的加减法练习题

合集下载

八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件

八年级数学下册 第17章分式 17.2分式的运算 2分式的加减法习题课件
【解题探究】
(1)①分式加减的两种运算是:同分母的分式加减和异分母的分
式加减.
②同分母的分式加减方法是:分母不变,分子(fēnzǐ)相加减;异分母的 分式加减方法是:先通分,转化为同分母的分式运算,再按同分母
的分式加减方法运算.
第六页,共二十五页。
(2)按照(1)的探究(tànjiū)计算:
m 1 m1 1 ; m1 m1 m1
第十六页,共二十五页。
【跟踪训练】
4.(2012·临沂中考)化简 (1 4 ) 的a 结果(jiē guǒ)是( )
(A) a2
(B) a a2 a2
a
a2
(C) a2
(D) a
a
a2
【解析】选A. (1 4)a (1 4)a 2
a 2a 2 a 2 a
1a24 a2a2. a a2 a a
第十七页,共二十五页。
bb
b
提示:不成立.
理由是当分式的分子是多项式时,进行减法运算时要加括号.即
acdacdacd.
bb b
b
第五页,共二十五页。
分式的加减运算
【例1】计算:(1)(2012·泉州中考)
m 1 ________; m1 m1
(2 )2 a b 2b b 4 a 2 2 a ; (3 )x 1 3 6 1 2 x x x 2 6 9 .
【解析(jiě xī)m 】 62m 6 m 3
m 3m 2 9m 3m 3m 3 ( m 3 ) 2
m 3 m 31.
答案m :13 m 3 m 3
第二十三页,共二十五页。
5.先化简,再求值:(1)(2012·珠海(zhū hǎi)中考(x)x1x21x)x1,

异分母的分式加减法_例题1.doc.docx

异分母的分式加减法_例题1.doc.docx

《分式的加减法》例题精讲与同步练习【基础知识精讲】1. 分式的通分(1) 把几个异分母的分式分别化为与原来分式相等的同分母的分式叫做通分.(2) 通分的依据是分式的基本性质, 通分的关键是确定最简公分母 . 最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积; (3) 如果分母是多项式,则首先对多项式进行因式分解 .2. 分式的加减法 (1) 同分母的分式加减法同分母的分式相加减,分母不变,把分子相加减. 即:a b a bc cc(2) 异分母的分式加减法异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 即:acadbcadbcbdbdbdbd3. 分式的混合运算分式的加、减、乘、除、乘方混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号内的,若是同级混合运算按从左到右的顺序进行 .【重点难点解析】1.重点难点分析重点 :是掌握通分的方法和分式的加减运算;难点 :是异分母的分式的加减法运算和分式的四则混合运算2. 典型例题解析.例 1通分x 1 5 xx 7 2,x2,22x 3x3x 2x 6 x解∵x 2+3x+2=(x+1)(x+2)x 2-x-6=(x-3)(x+2) 2x -2x-3=(x-3)(x+1) ∴它们的最简公分母为 (x+1)(x+2)(x-3)∴x 1 ( x 1) ( x 3) 23x 2( x 1)( x 2) (x 3)x=x 2 4x3( x 1)( x 2)( x 3)5 x (5 x) ( x1)x 2 x 6( x 3)( x 2) ( x 1)=x 26x 5( x 1)( x2) ( x3)x 7(x7) (x2)x 2 2x 3 ( x 3)( x 1) ( x 2)=x 2 5x 14(x 1)( x 2)( x 3)例 2计算 3a 2 5a 2a 2 5a 1 2a 2 2a 2 1a 2 1 1 a 2解原式 3a 2 5a2a 2 5a1 2a 22=1a 2 1a 21a 2=(3a 25a)(2a 25a1) (2a 22)a21=3a 2 5a2a 2 5a 1 2a 22a21=3a 23=3a 2 1点评 在做减法时,分避免出错,最好添上一个括号,去括号时注意变号 .例 3计算x 2x2x 2x 25x6x解原式 =x 2x1)( x2) ( x 2)( x3)(x=(x2)( x 3) x( x1)( x1)( x 2)( x 3)=x 2 x 6 x 2 x(x1)( x 2)( x 3)=2x 6(x1)( x 2)( x 3)=-2x6( x1)( x 2)( x3)例 4计算1221x 2 x 1 x 1 x 2分析此 若将 4 个分式同 通分,分子将是很复 的, 算比 麻 . 分 察其特点,把一、四和二、三两个分式分 先相加,由于分子的一次 相加后和 零,使 算 .解原式 =(x2) (x 2) 2( x 1) 2( x 1)( x 2)(x2)(x 1)( x 1)=44(x 2)( x2) ( x 1)( x 1)=4( x 1)( x1) 4(x 2)( x2)( x 2)( x2)( x 1)( x 1)=12(x2)( x 1)( x1)( x 1)例 5算x1 3( x 1)2 .x 4 x 2分析 此 如果直接通分, 运算 必十分复 , 当各分子的次数大于或等于分母的次数,可利用多 式除法,将其分离 整式部分与分式部分的和再加减会使运算 便.解原式 =(x4) 3 3( x 2) 32x 4x 2 =1+x 3(3x 3 ) +24 2=3 3x 4x2=3( x 2) 3( x 4)( x 2)( x 4)=6(x 2)( x 4)【 巧解点 】例 6算1 21 +⋯⋯ +11 2 3n(n 1)分析若先通分,再相加,可以 无从下手,但若注意到1=11 ,先分后合,将使 算容易 行.解11+⋯⋯+n(n 1) nn 111 2 2 3n(n 1)1 1 1 1 1 1 )=( )+(2 )+ ⋯⋯ +(n12 3n1=1-1n 1n=1n【 本 解答】P87A 5(5) B 3(2)算 1.(x-y+4xy)(x+y- 4xy)xyx y2.xy 2x 4 yx 2x y x y x 4y 4x2y2(x y) 24xy ( x y) 2 4 xy解 1. 原式=[ x yx ][x yx ]y y=( x y) 2 (x y)222xy x=(x+y)(x-y)=x-yy2.原式 = xy 2x 4 yx 2y 2x2y 2( x 2 y 2 )(x 2 y 2 ) x 2=xy 2x 2 y xy 2x 2 y xy( y x) x 2y2x2y2x2y2(x y)( xy)=- xyxy注: (1) 中将 x-y ,x+y 看作一个整体通分,比逐一通分 便,注意 一技巧, 算最后果不写成乘 式而是多 式(或 式)(2) 中注意运算 序(先乘除、后加减)最后 果能 分要 分,化 最 分式.【典型 点考 】例 7 算 1-(x-1 2x 2x 1 (武 中考 )x) ÷2x11 x 2解 原式 =1-(x 2x 1 ) 2· (x 1) 2x1x 2 x1=1-(x2-x+1)=-x 2+x例 8当 x=-11,求(1+25x 133 2 x 2 4x 5 2的( 天津中考 )) (1-) ÷ (x 2 3x2) x2解原式(x 1) 3 (x 5)2 (x 2)2 (x 1)2 =1)3 (x 2) 2( x 1)2 (x 5)2(x=x 1x16165当 x=-1 1时,原式 =556 1 6 55=111例 9 设 x+1=5,求 (x-1)2的值.(xx解∵x+ 1=51x11222∴ (x- x )=x +x2-2=(x+ x )-4=25-4=21例 10已知x=m (m ≠0), 求x 2xx x 22 1x 4解∵ x 2 x 11xm即 x+ 1 = 1-1= 1m从而得x mm21 1 m2m 2 2m 1x +x2=( m) -2=m 2∴x 2 = 1=14x 2 1122m 1 x x 2 1mx 2m 2=11 2m点评利用 x和 1互为倒数关系,总能建立起x求值问题简单化 .大连中考题 )的值 . ( 上海中考题 )11(x n+ 1 ) 和(x+ 1) 之间的联系,使某些x nx【同步达纲练习】一、填空题 (6 分× 7=42 分 )1. 化简 1+ 1 +1等于.x 2 x 3x2. 使代数式11 1等于 0 的 x 的值是.x21 x 1x 13. 计算 x28 2 x 7 x2x x 6的值为.x 33 x34.1x的最简公分母是.x 2 ,4 2x45.(x 2-1)(1 1 1 -1)= .x x 16.122 2 =.m 2 93 mm37. ab bc c a.ab bc ac二、计算题 (12 × 4=48 分)8. 计算bc a( a b)(b c) (b c)(c a) (c a)( ab)a ba 2b 29. 计算 1-2ba 2 4ab 4b 2 a10. 计算1 12 4 1 x1 x1 x21 x411. 已知 x=4,y=-3 ,求2xx y的值 .2y 2y 2x 2(x y)( x y)x【素质优化训练】12. 如果 abc=1 ,求证1 111(10 分)ab a 1bc b 1ac c 1【生活实际运用】某人在一环形公路上跑步,共跑两圈,第一圈的速率是 x 米 / 分钟,第二圈的速度是 y 米 / 分钟,(x > y ),则他平均一分钟跑的路程是多少?参考答案:【同步达纲练习】一、 1.112.-1 3.-3 4.2(x+2)(x-2) 5.3-x 26.07.06x2二、 8.09.-b 10.8 1a b11.71 x 8【素质优化训练】12. 左边 =11abc aabab a 1 =右边,即证。

分式加减法之找最简公分母专项练习30题(有答案)ok

分式加减法之找最简公分母专项练习30题(有答案)ok

分式加减法之找最简公分母专项练习30题(有答案)ok1.找最简公分母专项练30题(有答案)1.分式的最简公分母是?答案:15abx2.分式的最简公分母是?答案:15abx33.分式的最简公分母是?答案:(a2-2ab+b2)(a2-b2)(a2+2ab+b2)4.分式和的最简公分母是?答案:5.下列各题中,所求最简公分母正确的是?答案:A。

与的最简公分母为6x26.与的最简公分母是?答案:3ab2c7.分式的最简公分母是?答案:4(m-n)(n-m)x28.下列各题中,所求的最简公分母错误的是?答案:B。

与的最简公分母是3a2b3c9.分式的最简公分母是?答案:m2-n210.分式的最简公分母是?答案:(x2-y2)(x-y)(x+y)11.分式的最简公分母是?答案:(a+1)2(a-1)212.分式的最简公分母是?答案:(x-y)2(y2-x2)(x+y)13.分式。

的最简公分母是?答案:(x2-1)(x+1)2(x-1)14.分式的最简公分母是?答案:(x-1)2(x+1)215.分式的最简公分母是?答案:(a+b)(a-b)(a2+b2)16.分式。

的最简公分母是?答案:(a+b+c)(a+b-c)(a-b+c)(-a+b+c)1.最简公分母是(a+b)2(a-b)2.写出最简公分母为6a(a+1)的两个分式:3/(a+1)和18a/(a+1)。

2.分式的最简公分母为30abx3.3.分母是a+b,分母分解后是(a+b)(a-b),分母可变形为-(a-b),所以最简公分母是|a-b|(a+b)。

分式的最简公分母分别为6x2y和a2-b2.4.分式的最简公分母为4x2yz。

5.A选项的最简公分母是6x2,B选项的最简公分母是3a2b3c,C选项的最简公分母是ab(x-y),D选项的最简公分母是m2-n2.6.最简公分母是x(x-y)(x+y)。

7.将$n-m$变形为$-(m-n)$,可得这三个分式的最简公分母是$4(m-n)x^2$,因此选D。

初二数学整式的分式练习题

初二数学整式的分式练习题

初二数学整式的分式练习题在初中数学的学习中,我们经常会遇到各种各样的题目,其中分式的运算是我们需要掌握和理解的重要内容之一。

本文将为大家提供一些初二数学整式的分式练习题,帮助大家更好地掌握这一知识点。

第一题:求下列各分式的值。

(1) 2/3 + 4/5(2) 5/6 - 1/4(3) 3/4 * 2/5(4) 7/8 ÷ 2/3解答:(1) 要进行加法运算,首先需要找到这两个分数的公共分母,即3和5的最小公倍数为15。

然后将分数的分子按照公共分母进行扩展,得到:2/3 = 10/15,4/5 = 12/15。

将扩展后的分数相加得到结果:10/15 + 12/15 = 22/15。

(2) 同样地,首先找到这两个分数的公共分母,即6和4的最小公倍数为12。

然后将分数的分子按照公共分母进行扩展,得到:5/6 =10/12,1/4 = 3/12。

将扩展后的分数相减得到结果:10/12 - 3/12 = 7/12。

(3) 要进行乘法运算,直接将分数的分子相乘得到结果:3/4 * 2/5 =6/20 = 3/10。

(4) 要进行除法运算,将除数的分子和分母交换位置,然后进行乘法运算得到结果:7/8 ÷ 2/3 = 7/8 * 3/2 = 21/16。

第二题:求下列各式的值。

(1) (2 + 3) ÷ (4 - 1)(2) (4 - 2) × (5 + 3)(3) (3 + 1) + (2 - 1)(4) 2 + (3 + 4)解答:(1) 首先计算括号内的加减法运算:2 + 3 = 5,4 - 1 = 3。

然后进行除法运算得到结果:5 ÷ 3 = 5/3。

(2) 同样地,首先计算括号内的加减法运算:4 - 2 = 2,5 + 3 = 8。

然后进行乘法运算得到结果:2 × 8 = 16。

(3) 首先计算括号内的加减法运算:3 + 1 = 4,2 - 1 = 1。

(05)分式加减法专项练习60题(有答案)ok

(05)分式加减法专项练习60题(有答案)ok

分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。

北师大版八年级数学下册分式的加减法练习试题及答案

北师大版八年级数学下册分式的加减法练习试题及答案

3.3 分式的加减法(1)一、目标导航1.同分母的分式的加减法的运算法则及其应用;2.简单的异分母的分式相加减的运算.二、基础过关1.计算:(1)ab ab c ab c 743+-= ;(2)ab b b a a -+-= ; (3)=+-+3932a a a __________;(4)abcac ab 433265+-= . 2.下列计算正确的是( )A .m m m 312=-+B .1=---ab b b a a C .212122++=++-+y y y y y D .b a a b b b a a -=---1)()(22 3.分式25,34ca bc a 的最简公分母是_________. 4.计算:242+-x = . 5.计算213122x x x ---- 的结果是____________. 6.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时.7.计算:(1)ab a b 1+- (2) ab b a ab b a 22)2()2(+--(3)222)3(9)3(x y x y x ----- (4)22225421a a a a a a --+--8.先化简,再求值:))(())((2222a c b a b c c a b a b a ---+---,其中3=a ,2-=b ,1-=c .三、能力提升9.若222222M xy y x y x y x y x y--=+--+ ,则M=___________. 10.化简131224a a a -⎛⎫-÷ ⎪--⎝⎭ 的结果是___________. 11.化简11x y y x ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .1 B .x y C .y x D .-1 12.计算:(1)969392222++-+++x x x x x x x (2)23111x x x x -⎛⎫÷+- ⎪--⎝⎭13. 已知03461022=+--+b a b a ,求ab a b ab a ab b a b a b a -++⨯-÷⎪⎭⎫ ⎝⎛+-2222222的值.四、聚沙成塔已知x +y 1=z +x 1=1,求y +z 1的值.3.3分式的加减法(1)1.⑴abc -7,⑵1,⑶3-a ,⑷abc b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.y x xy +;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.。

分式的加减练习题

分式的加减练习题

分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。

初二数学分式的加减法

初二数学分式的加减法

分式的加减法(一)学习目标1.能利用分式的基本性质通分.2.会进行同分母分式的加减法.3.会进行异分母分式的加减法.要点梳理要点一、同分母分式的加减同分母分式相加减,分母不变,把分子相加减;上述法则可用式子表为:.要点诠释:(1)“把分子相加减”是把各分式的分子的整体相加减,即各个分子都应用括号,当分子是单项式时,括号可以省略;当分子是多项式时,特别是分子相减时,括号不能省,不然,容易导致符号上的错误.(2)分式的加减法运算的结果必须化成最简分式或整式.要点二、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.要点三、异分母分式的加减异分母分式相加减,先通分,变为同分母的分式,再加减.上述法则可用式子表为:.要点诠释:(1)异分母的分式相加减,先通分是关键.通分后,异分母的分式加减法变成同分母分式的加减法.(2)异分母分式加减法的一般步骤:①通分,②进行同分母分式的加减运算,③把结果化成最简分式.要点四、分式的混合运算与分数的加、减、乘、除混合运算一样,分式的加、减、乘、除混合运算,也是先算乘、除,后算加、减;遇到括号,先算括号内的,按先小括号,再中括号,最后大括号的顺序计算. 分式运算结果必须达到最简,能约分的要约分,保证结果是最简分式或整式.要点诠释:(1)正确运用运算法则:分式的乘除(包括乘方)、加减、符号变化法则是正确进行分式运算的基础,要牢牢掌握.(2)运算顺序:先算乘方,再算乘、除,最后算加、减,遇有括号,先算括号内的.(3)运算律:运算律包括加法和乘法的交换律、结合律,乘法对加法的分配律.能灵活运用运算律,将大大提高运算速度.典型例题类型一、同分母分式的加减1、计算:(1);(2);【变式】计算:(1);(2).类型二、异分母分式的加减2、计算:(1);(2);(3)【变式】计算:(1);(2)类型三、分式的加减运算的应用3、请先化简,再选取一个使原式有意义而你又喜欢的数代入求值.类型四、分式的混合运算4、计算:(1);(2)巩固练习一.选择题1.已知()A.B.C.D.2.等于()A.B.C.D.3.的计算结果是()A.B.C.D.4. 化简,其结果是()A. B. C. D. 5.等于()A.B.C.D.6.等于()A.B.C.D.1二.填空题7. 分式的最简公分母是______.8.分式的最简公分母是______.9.计算的结果是____________.10. ____________.11. _________.12.若=2,=3,则=______.三.解答题13. 计算下列各题:(1)(2)(3)(4)14.已知,用“+”或“-”连结M、N,有三种不同的形式:M+N、M-N、N-M,请你任选其中一种进行计算,并化简求值,其中∶=5∶2.15.已知,求代数式的值.【答案与解析】解:(1);(2)【总结升华】本例为同分母分式加减法的运算,计算时注意运算符号,结果一定要化简.【变式】计算:(1);(2). 答案与解析【答案】解:(1).(2)。

专题21 分式的加减乘除混合运算特训50道-【微专题】2022-2023学年八年级数学下册常考点

专题21 分式的加减乘除混合运算特训50道-【微专题】2022-2023学年八年级数学下册常考点

专题21 分式的加减乘除混合运算特训50道1. 计算:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭.2. 化简:(1)2y x y x y y x-+--;(2)1211x x x -⎛⎫-÷ ⎪-⎝⎭.3. 化简:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭.4. 计算:2241244a a a a a -⎛⎫-÷ ⎪+++⎝⎭.5. 计算:22ab a b a b b a ab⎛⎫++÷ ⎪--⎝⎭6. 计筫:(1)2a b a a b a b----;(2)22212a b a b a a ab---÷+.7. 化简(1)2223m n m n m n --+-;(2)2344111a a a a a ++⎛⎫-+÷ ⎪++⎝⎭8. 计算:(1)3223222222x x y xy y xy x y x xy y x y+-+---+-;(2)211121m m m m ⎛⎫-÷ ⎪+++⎝⎭.9. 计算:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭.10. 计算(1)222a b ab a b a b a b+----(2)211121a a a a ⎛⎫-÷ ⎪+++⎝⎭11. 化简:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭12. 化简:21111m m m-⎛⎫+⋅ ⎪-⎝⎭.13. 化简:231122a a a a a +-⎛⎫-+÷ ⎪++⎝⎭14. 化简:2221121x x x x x x ⎛⎫+-+÷ ⎪+++⎝⎭.15. 化简:(1)2111a a a ---(2)2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭16. 化简:35(2)22x x x x -÷+---17. 计算:2241393x x x x -⎛⎫+÷ ⎪+-+⎝⎭.18. 化简:22221244a b a b a b a ab b---÷+++.19. 计算:22211121x x x x x -÷+--+20. 计算:(1)22421x x x--+;(2)222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭.21. 计算:2221211x x x x x x x-÷+-+--.22. 计算22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m .23. 计算:221(1211x x x x x -÷+-+-.24. 计算(1)11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭(2)2214422x x x x x x x -÷--+--25. 计算:(1)2343m n n t mt ⎛⎫-÷ ⎪⎝⎭(2)22424412x x x x x x x -+÷--++-26. 计算:42()11x x x x x --+÷--.27. 计算:(1)11x x x+-;(2)()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭.28. 计算22311244a a a a -⎛⎫+÷ ⎪--+⎝⎭.29. 计算:11111a a a a a a+-+⎛⎫+⋅ ⎪-+⎝⎭.30. 计算:(1)3222ab ab ⎛⎫÷ ⎪⎝⎭;(2)2211xy x y x y x y ⎛⎫÷- ⎪-+-⎝⎭.31. 计算:2169122m m m m -+⎛⎫-÷ ⎪--⎝⎭.32. 计算:(1)21111x x x -+-+;(2)22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭.33. 化简22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭.34. 计算:(1)23239x y z ⎛⎫- ⎪⎝⎭(2)221111x x x -⎛⎫-÷ ⎪++⎝⎭35. 分式计算:(1)2211497m m m÷--(2)524223m m m m-⎛⎫++⋅ ⎪--⎝⎭36. 计算(1)22y x x xy y x+--;(2)2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭.37. 计算:532224x x x x -⎛⎫--÷ ⎪++⎝⎭.38. 计算:(1)ac bc a b a b---(2)2221a a ab b b b -+⎛⎫-÷ ⎪⎝⎭39. 计算(1)a b a b a b+÷ ⎪+--⎝⎭(2)2112x x x x ⎛⎫++÷+ ⎪⎝⎭40. 化简:(1)22224224x x x x ++-+--(2)(233x x x --+)2239x xx -÷-41. 计算(1)234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)4222x x xx x x ⎛⎫-÷ ⎪-+-⎝⎭.42. 计算 :(1)2233(1)(1)xx x ---(2)2122()ab ab a b b a ÷⋅--(3)221()4x xyy x y y ⋅-÷-43. 计算(1)222x x x -++(2)2162844x x x x--÷+44. 化简:(1)2243342x x x x x x +---÷--;(2)2111m m m --÷ ⎪--⎝⎭.45. 计算:(1)232433x x y y ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭;(2)22142a a a ---;(3)22211444a a a a a --÷-+-.46. 化简:2222y y x x y x y xy y ⎛⎫-÷ ⎪--+⎝⎭.47. 计算:(2511a a a a ---)÷41a a -+.48. 计算:2222334422m m m m m m m m ⎛⎫-++÷ ⎪-+--⎝⎭.49. (1)计算:1133a a --+(2)计算:2211x x x x +-⎛⎫+÷ ⎪⎝⎭50. 计算:(1)2a a 1--1a a -;(2)(1+11x -)÷21x x -专题21 分式的加减乘除混合运算特训50道【1题答案】【答案】12x -【解析】【分析】首先运用同分母分式减法法则计算括号内的,再利用分式除法运算法则求解即可.【详解】解:2244222x x x x x x -+⎛⎫-÷ ⎪+++⎝⎭224422x x x x x --+=÷++222244x x x x x -+=⋅+-+2222(2)x x x x -+=⋅+-12x =-.【点睛】本题主要考查了分式的混合运算,解题的关键是熟练运用分式的减法运算法则和乘除运算法则【2题答案】【答案】(1)−1(2)1x x -【解析】【分析】(1)根据同分母分式的减法法则进行计算即可;(2)先计算括号内的,再把除法转换为乘法,再进行约分即可得到答案.【小问1详解】2y x y x y y x-+--2y x y x y x y-=---y xx y-=-=−1;【小问2详解】1211x x x -⎛⎫-÷ ⎪-⎝⎭11=11x x x -⎛⎫- ⎪--⎝⎭2x x -÷2·1x x -=-2x x -1x x =-【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解答本题的关键.【3题答案】【答案】44a a +-【解析】【分析】根据分式混合运算法则进行计算即可.【详解】解:27816333a a a a a -+⎛⎫+-÷ ⎪--⎝⎭()22973334a a a a a ⎛⎫--=-⋅ ⎪---⎝⎭()2216334a a a a --=⋅--()()()244334a a a a a +--=⋅--44a a +=-.【点睛】本题主要考查了分式的混合运算,熟练掌握运算法则是解题的关键.【4题答案】【答案】22a -【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:原式()()()222222a a a a a a +-+-=÷++2222a a a +=⨯+-22a =-.【点睛】此题考查了分式的混合运算,熟练掌握公式及运算法则是解本题的关键.【5题答案】【答案】ab 【解析】【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,最后进行约分化简.【详解】解:22a b a b a b b a ab⎛⎫++÷ ⎪--⎝⎭22a b a b a b ab-+=÷-()()a b a b ab a b a b+-=⨯-+ab =.【点睛】本题主要考查分式的混合运算的知识点,通分和约分是解答本题的关键.【6题答案】【答案】(1)2(2)ba b-+【解析】【分析】(1)直接利用同分母分式的减法法则计算即可得到答案;(2)先将第二项利用除法法则变形,约分后,再进行通分,最后根据同分母分式的减法法则计算即可得到答案.【小问1详解】解:2a b a a b a b----2a b a a b-+=-22a ba b-=-()2a b a b-=-2=;【小问2详解】解:22212a b a b a a ab---÷+()()()21a a b a b a a b a b +-=-⨯+-21a b a b +=-+2a b a b a b a b++=-++2a b a ba b +--=+b a b =-+.【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解本题的关键.【7题答案】【答案】(1)1m n -; (2)22a a -+.【解析】【分析】(1)根据异分母分式的减法化简即可;(2)根据分式的加减乘除混合运算化简即可.【小问1详解】解:()()222323m n m n m n m n m n m n m n ---=-+-++-()()()()()()23223m n m n m n m n m n m n m n m n -----+==+-+-()()1m n m n m n m n +==+--;【小问2详解】解:()()()22311344111112a a a a a a a a a a --++++⎛⎫-+÷=⋅ ⎪+++⎝⎭+()()()222222a a a a a +--==++.【点睛】本题考查分式的加减乘除混合运算,掌握分式的加减乘除混合运算法则正确化简是解题的关键.【8题答案】【答案】(1)x y -;(2)1m +.【解析】【分析】(1)先分解因式,再进行同分母分式的加减法则运算即可得出结果;(2)先通分,再根据分式的除法法则运算即可得出结果.【小问1详解】解:3223222222x x y xy y xy x y x xy y x y+-+---+-()()()()()2222x x y y x y xy x y x y x yx y -----+=++222x y xy x y x y x y----=()2x y x y --=x y -=;【小问2详解】解:21(1121m m m m -÷+++2121m m m m m ⎛⎫÷ ⎪++⎝⎭=+2211m m m m m⨯++=+1m =+.【点睛】本题考查了分式的加减运算法则,分式混合运算法则,熟记对应法则是解题的关键.【9题答案】【答案】2x x+【解析】【分析】先将括号内的式子相减,再将224x x x --分子、分母分解因式,然后约分即可.【详解】解:221224x x x x x x -⎛⎫-÷ ⎪---⎝⎭()()()22121x x x x x x -+-=⋅-- x 2x+=.【点睛】本题考查了分式加减乘除混合运算及提公因式和公式法分解因式,熟练掌握分式化简的运算法则是解决问题的关键【10题答案】【答案】(1)a b -(2)1a +【解析】【分析】(1)根据同分母分式的加减计算法则求解即可;(2)根据分式的混合计算法则进行求解即可.【小问1详解】解:222a b ab a b a b a b +----222a ab b a b-+=-()2a b a b -=-a b =-;【小问2详解】解:211121a a a a ⎛⎫-÷ ⎪+++⎝⎭()21111a a a a +-=÷++()211a a a a+=⋅+1a =+.【点睛】本题主要考查了分式的加减计算,分式的混合计算,熟知分式的相关计算法则是解题的关键.【11题答案】【答案】2a a -【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:原式231()(2)(2)(2)(2)(2)a a a a a a a a +-=-÷+-+-+1(2)(2)(2)1a a a a a a -+=⨯+--2a a =-.【点睛】本题考查了分式的混合运算,熟练掌握分式的混合运算法则是解本题的关键.【12题答案】【答案】1m +【解析】【分析】先计算括号内的分式加法,再计算分式的乘法即可得.【详解】解:原式()()111111m m m m m m +-⎛⎫+⋅ ⎪--⎝⎭-=()()111m m m mm =+-⋅-1m =+.【点睛】本题考查了分式的加法与乘法,熟练掌握分式的运算法则是解题关键.【13题答案】【答案】11a a +-【解析】【分析】原式括号中通分并利用同分母分式的加法法则计算,同时利用除法法则变形,再将分子分母分别因式分解,进而约分得到最简结果即可.【详解】解:原式()()()()12322211a a a a a a a a -+⎡⎤++=+⋅⎢⎥+++-⎣⎦()()22232211a a a a a a a a -+-+++=⋅++-()()22111a a a a ++=+-()()()2111a a a +=+-11a a +=-.【点睛】此题考查了分式的混合运算,熟练掌握分式运算法则是解本题的关键.【14题答案】【答案】12x x ++【解析】【分析】由分式的加减乘除运算,把分式进行化简,即可得到答案.【详解】解:原式()()()22112111x x x x x x x +-⎡⎤+=-÷⎢⎥+++⎣⎦()2221112x x x x x +-+=⋅++12x x +=+;【点睛】本题考查了分式的加减乘除混合运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简.【15题答案】【答案】(1)a +1(2)28m m+【解析】【分析】(1)利用同分母分式的加减法计算,再约分即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2111a a a ---211a a -=-(1)(1)1a a a +-=-=a +1;【小问2详解】解:2743326m m m m m -⎛⎫--÷ ⎪++⎝⎭(3)(3)7(4)32(3)m m m m m m +---=÷++2972(3)3(4)m m m m m --+=⋅+-(4)(4)2(3)3(4)m m m m m m +-+=⋅+-=28m m+.【点睛】本题主要考查了分式的化简,解题的关键是掌握分式混合运算顺序和运算法则.【16题答案】【答案】13x +【解析】【分析】根据分式的减法和除法可以化简题目中的式子.【详解】解:35(2)22x x x x -÷+---=2345()222x x x x x --÷----=23922x x x x --÷--=322(3)(3)x x x x x --⨯-+-=13x +【点睛】此题考查了分式的化简,熟练掌握运算法则是解本题的关键.【17题答案】【答案】23x -【解析】【分析】先算括号内的异分母分式加法,再化除为乘进行化简.【详解】解:原式2(3)43(3)(3)1x x x x x -++=⋅+--2(1)3(3)(3)1x x x x x -+=⋅+--23x =-.【点睛】本题考查分式的化简,熟练掌握最简公分母的寻找规律、因式分解是关键.【18题答案】【答案】-b a b+ 【解析】【详解】解:原式=()()()2212a b a b a b a b a b +--⋅++- =21a b a b +-+ =2a b a b a b a b++-++=b a b -+;【19题答案】【答案】1x 【解析】【分析】先把分子与分母进行因式分解,再把除法转换成乘法进行约分,最后再进行分式的加法运算.【详解】解:22211121x x x x x -÷+--+=221(1)1(1)(1)x x x x x--⨯++-=211(1)x x x x --++=2(1)(1)x x x x --+=1x.【20题答案】【答案】(1)22x x - (2)22x +【解析】【分析】(1)利用提公因式和平方差公式进行计算即可;(2)利用提公因式和平方差公式进行计算即可.【小问1详解】22421x x x--+()()()42111x x x x =-+-+()()()42111x x x x x --=+-()()2211x x x x +=+-22x x=-;【小问2详解】222228224x x x x x ⎛⎫+--÷ ⎪--⎝⎭()()22222228224x x x x x x x +-⎡⎤+=-÷⎢⎥---⎣⎦()()()2222222244x x x x x x +-⎛⎫=⋅ ⎪⎝⎭-+-+()()()22222244x x x x x +-⋅-+=+22x +=.【点睛】本题考查了分式的混合运算,熟练运用分式运算法则和平方差公式是解题的关键.【21题答案】【答案】1x 【解析】【分析】把原式中的除法转化为乘法,将分子分母经过分解因式、约分把结果化为最简即可.【详解】解:原式()()221111x x x x x x --=⨯+--()21111x x x x x -=⨯+--()()1112x x x x x =+---()11x x x =--1x =.【点睛】本题考查的知识点是分式的混合运算,要注意运算顺序,有括号先算括号里的,有除法的把除法转化为乘法来做,再经过分解因式、约分把结果化为最简.【22题答案】【答案】2m m -【解析】【分析】先将括号内的式子通分,再将分式除法变形为分式乘法,最后约分化简即可.【详解】解:22242⎛⎫-÷ ⎪--+⎝⎭m m m m m m ()()222222m m m m m m m +-=÷+-+()()2222m m m m m+=⋅+-2m m =-.【点睛】本题考查分式的混合运算,掌握分式的运算顺序和运算法则是解题的关键.【23题答案】【答案】1【解析】【分析】先把各个分式的分子、分母因式分解,将原式括号中两项通分并利用同分母分式的加法法则计算,再利用除法法则变形,约分即可得到结果.【详解】解:221(1)211x x x x x -÷+-+-2(1)11()(1)11x x x x x x --=÷+---2(1)(1)1x x x x x -=÷--2(1)1(1)x x x x x --=- 1=.【点睛】本题考查了分式的混合运算,熟练掌握运算顺序和每一步的运算法则是解答本题关键.【24题答案】【答案】(1)1a b - (2)12x -【解析】【分析】(1)先计算括号内的分式的加减运算,再把除法转化为乘法,约分后可得结果;(2)先计算除法运算,再计算分式的减法运算即可得到答案.【小问1详解】解:11a b a b b a ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22b a a b ab ab ab ab ⎛⎫⎛⎫=+÷- ⎪ ⎪⎝⎭⎝⎭22a b a b ab ab+-=÷()()a b ab ab a b a b +=+- 1a b=-.【小问2详解】2214422x x x x x x x -÷--+--()222122x x x x x x --=⋅---122-=---x x x x 12-+=-x x x 12x =-.【点睛】本题考查的是分式的混合运算,掌握“分式的混合运算的运算顺序”是解本题的关键.【25题答案】【答案】(1)7169m n t(2)12x -【解析】【分析】(1)先计算乘方,再计算除法即可;(2)先按分式除法法则计算,再按分式减法法则计算即可.【小问1详解】解:原式622169m n n mt t =÷622169m n mt n t =⋅7169m n t=;【小问2详解】解:原式()()()2221222x x x xx x x +-+=⋅-+--122x x x x +=---12x =-.【点睛】本题考查分式混合运算,熟练掌握分式运算法则是解题的关键.【26题答案】【答案】2x +【解析】【分析】先把括号内的式子通分,在运用分式乘除法法则进行解题即可.【详解】解:原式4(1)112x x x x x x -+--=⋅--242x x x x -+-=-(2)(2)2x x x -+=-2x =+.【点睛】本题考查分式的混合运算,掌握运算法则和运算顺序是解题的关键.【27题答案】【答案】(1)1;(2)28a +.【解析】【分析】(1)根据同分母分式的减法法则计算即可;(2)先把()24a -因式分解,再利用乘法分配律计算,然后合并同类项即可求解.【小问1详解】解:11x x x+-11x x+-=x x=1=;【小问2详解】解:()231422a a a ⎛⎫-⋅- ⎪-+⎝⎭()()312222a a a a ⎛⎫=-⋅+- ⎪-+⎝⎭()()()()31222222a a a a a a =⋅+--⋅+--+()()322a a =+--362a a =+-+28a =+.【点睛】本题考查了分式的加减乘除混合运算,分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【28题答案】【答案】21a a --【解析】【分析】先计算括号内的异分母分式减法,同时将除法化为乘法,将分式的分母分子分解因式,再计算乘法即可.【详解】原式222312244a a a a a a --⎛⎫=+÷ ⎪---+⎝⎭2211244a a a a a +-=÷--+()()()221211a a a a a -+=⨯-+-21a a -=-【点睛】此题考查了分式的混合运算,正确掌握分式的混合运算法则是解题的关键.【29题答案】【答案】41a -【解析】【分析】根据分式的运算法则,先去括号,再算除法.【详解】解:原式()()()()()()221111111a a a a a a a a ⎡⎤+-+=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()()222121111a a a a a a a a⎡⎤++--++⎢⎥=⋅-+⎢⎥⎣⎦()()4111a a a a a +=⋅-+41a =-.【点睛】本题考查分式的混合运算.熟练掌握分式的运算法则,是解题的关键.【30题答案】【答案】(1)24a b (2)2x-【解析】【分析】(1)根据整式的混合运算法则计算即可;(2)根据分式的混合运算法则计算即可.【小问1详解】解:原式23382ab a b =⋅24a b=;【小问2详解】解:原式()()()()22xy x y x y x y x y x y x y x y ⎡⎤-+=÷-⎢⎥-+--+⎢⎥⎣⎦22222xy y x y x y -=÷--22222xy x y x y y-=⋅--2x =-.【点睛】本题考查了整式和分式的混合运算,解题的关键是注意运算顺序.【31题答案】【答案】13m -【解析】【分析】先计算括号内的,再计算除法即可求解.【详解】解:原式()233=22m m m m --÷--()23223m m m m --=⋅--13m =-.【点睛】本题考查分式的混合运算,熟练掌握分式运算法则是解题的关键.【32题答案】【答案】(1)21x + (2)23x x -+【解析】【分析】(1)先将分式211x x --约分变为11x +,然后按照同分母分式加减运算法则进行计算即可;(2)按照分式混合运算法则进行计算即可.【小问1详解】解:21111x x x -+-+()()11111x x x x -++-+=1111x x =+++21x =+;【小问2详解】解:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭()()()2321222x x x x x +++=÷++-()()()222323x x x x x +-+==⋅++23x x -=+.【点睛】本题主要考查了分式混合运算,解题的关键是熟练掌握分式混合运算法则,准确进行计算.【33题答案】【答案】x【解析】【分析】根据分式的混合运算法则进行计算即可.【详解】解:22361142x x x x x ++⎛⎫÷- ⎪--⎝⎭3(2)(1)(2)(2)(2)2x x x x x x x ++--=÷+--3322x x x =÷--3223x x x -=⋅-x=【点睛】本题主要考查了分式的混合运算,熟练掌握分式混合运算的法则是解题的关键.【34题答案】【答案】(1)6249x y z(2)11x x -+【解析】【分析】(1)根据分式的乘方法则计算即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到最简结果.【小问1详解】解:2233622243939x y x y x y z z z ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭==;【小问2详解】解:221111x x x -⎛⎫-÷ ⎪++⎝⎭2121111x x x x x ++⎛⎫=-⋅ ⎪++-⎝⎭21111x x x x -+⎛⎫=⋅ ⎪+-⎝⎭11x x -=+.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.【35题答案】【答案】(1)7m m -+ (2)26--m 【解析】【分析】(1)根据分式的除法运算法则求解即可;(2)根据分式的混合运算法则求解即可.【小问1详解】2211497m m m÷--()()()1777m m m m =⨯-+-7m m =-+;【小问2详解】524223m m m m-⎛⎫++⋅ ⎪--⎝⎭()222923m m m m-⎛⎫-=⋅ ⎪--⎝⎭()()()332223m m m m m+--=⋅--26m =--【点睛】本题考查的是分式混合运算,熟知分式混合运算的法则是解答此题的关键.【36题答案】【答案】(1)y x x +-(2)22aa -【解析】【分析】(1)根据平方差公式对分式进行化简即可;(2)根据平方差公式和完全平方公式对分式进行化简即可.【小问1详解】解:22y x x xy y x+--()()22y x x x y x x y =---()22y x x x y -=-()()()y x y x x x y -+=-y x x +=-;【小问2详解】解:2244111a a a a a a -+⎛⎫÷-+ ⎪--⎝⎭()()()22211111a a a a a a ⎡⎤--=÷-⎢⎥---⎢⎥⎣⎦()()222121111a a a a a a a -⎛⎫-+=÷- ⎪---⎝⎭()()222211a a a a a a -⎛⎫-=÷- ⎪--⎝⎭()()()22112a a a a a a --=-⨯--22a a -=.【点睛】本题考查了分式的化简,正确的计算是解决本题的关键.【37题答案】【答案】26x +【解析】【分析】先把括号内通分化简,再把除法转化为乘法约分化简.【详解】解:原式24532224x x x x x ⎛⎫--=-÷ ⎪+++⎝⎭293224x x x x --=÷++()()()332232x x x x x +-+=⨯+-26x =+【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【38题答案】【答案】(1)c (2)1b a-【解析】【分析】(1)根据分式的加减法则进行计算即可;(2)先算括号里的,根据除法法则把除法变乘法,利用完全平方公式将分母因式分解,最后约分化简即可.【小问1详解】解:原式ac bca b-=-()a b c a b-=- c =.【小问2详解】解:原式2()b a b b a b -=⨯-1b a =-.【点睛】本题考查了解分式方程,分式的加减法则的应用,能熟记知识点的内容是解此题的关键.【39题答案】【答案】(1)2a b+ (2)11x +【解析】【分析】(1)将括号内通分,括号外除法改为乘法,再整理约分即可;(2)将括号内通分,再利用完全平方公式整理,最后将除法改为乘法并约分即可.【小问1详解】解:11a a b a b a b⎛⎫+÷ ⎪+--⎝⎭)())(()(a b a b a b a a b a b -=+⨯--++21aa ab =⨯+2a b=+;【小问2详解】解:2112x x x x ⎛⎫++÷+ ⎪⎝⎭2121x x x x x+++=÷21(1)x x x x +=⨯+11x =+.【点睛】本题考查分式的化简.掌握分式的混合运算法则是解题关键.【40题答案】【答案】(1)22x x -+; (2)9x-【解析】【分析】(1)先通分化为同分母分式加减法,进而即可求解;(2)先算括号里分式的减法,再把除法化为乘法,进而即可求解.【小问1详解】解:22 224224xx x x++-+--=()()2222 22224 444 x x xx x x-++----+=()()22222244x x xx----++=22444 x xx---=() ()()2222xx x---+=22xx-+;【小问2详解】解:2223339x x x xx x⎛⎫---÷⎪+-⎝⎭=22229339 x x x x x x⎛⎫---÷⎪+-⎝⎭=()()()33 933x xx x x+--⋅+-=9 x -.【点睛】本题主要考查分式的混合运算,熟练掌握通分和约分以及分式的混合运算法则是关键.【41题答案】【答案】(1)1015x y;(2)12x-+.【解析】【分析】(1)先乘方,再根据分式的乘除法求解即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果即可.【小问1详解】解:234332223y y x x x y ----⎛⎫⎛⎫⎛⎫÷⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6984612y y x x x y---=÷⋅6684912y x x x y y ---=⋅⋅1015x y =;【小问2详解】解:4222x x x x x x⎛⎫-÷ ⎪-+-⎝⎭22224(2)(2)(2)(2)2x x x x x x x x x x⎡⎤+-=-÷⎢⎥+-+--⎣⎦4(2)(2)(2)4x x x x x--=⋅+-12x =-+.【点睛】本题考查了分式的化简,正确对分式进行通分、约分是关键.【42题答案】【答案】(1)31x - (2)1a b- (3)4()x y x y -【解析】【分析】(1)根据分式的减法运算进行计算即可求解;(2)根据分式的乘除法进行计算即可求解;(3)根据分式的加减乘除法进行计算即可求解.【小问1详解】解:2233(1)(1)x x x ---()2331x x -=-()()2311x x -=-31x =-;【小问2详解】解:2122()ab ab a b b a ÷⋅--()2122a b ab ab a b -=⨯⨯-1a b=-;【小问3详解】解:221(4x x y y x y y ⋅-÷-22414x x y x y y y=⨯-⨯-()()2244x x x y y x y --=-()4xy y x y =-.【点睛】本题考查了分式的混合运算,掌握分式的性质是解题的关键.【43题答案】【答案】(1)42x + (2)2x【解析】【分析】(1)先通分,再计算即可;(2)先因式分解,除法改为乘法,再约分即可;【小问1详解】解:222x x x -++2(2)2(2)222x x x x x x x ++=-++++222224x x x x x --++=+42x =+;【小问2详解】2162844x x x x--÷+(4)(4)442(4)x x x x x -+=⨯+-2x =.【点睛】本题考查了分式的混合运算.掌握分式的混合运算法则是解题关键.【44题答案】【答案】(1)22x -+ (2)12m m+-【解析】【分析】(1)先把除法变乘法,再进行分式的混合运算;(2)先把整式化成分式的形式,再进行分式的混合运算.【小问1详解】解:原式=()()2432223x x x x x x x +--⋅+---=()()24222x x x x x +-+--=()()()24222x x x x x +-++- =()()()2222x x x --+- 22x =-+;【小问2详解】解:原式()()2111112m m m m m m +-⎛⎫+-⋅ ⎪-⎝⎭=()()()2211112m m m m m m--+-⋅-=()()11112m m m m+-⋅-=12m m +-.【点睛】本题考查了分式的混合运算,熟练掌握分式运算法则是解题的关键.【45题答案】【答案】(1)316y x (2)12a + (3)222a a a +--【解析】【分析】(1)先平方和立方运算,根据除以一个数等于乘以这个数的倒数,化简即可求得结果;(2)根据平方差公式通分,运算进行化简即可求得结果;(3)根据完全平方公式、平方差公式和除法法则进行运算即可求得结果.【小问1详解】解:原式=2323464927x x y y ÷=2323427964x y y x ⨯=316y x;【小问2详解】解:原式=()()()()222222a a a a a a +--+-+=()()2222a a a a ---+=()()222a a a --+=12a +;【小问3详解】解:原式=()()()()()2221112a a a a a a +--⨯+--=()()221a a a +-+=222a a a +--.【点睛】本题考查了完全平方式、平方差公式、分式的减法与除法,熟练掌握运算法则是解题的关键.【46题答案】【答案】2y x y-【解析】【分析】先通分算括号内的减法,同时将除法变成乘法,然后把分子、分母能因式分解的进行因式分解,最后约分即可.【详解】解:原式()()()()()()2y x y y x y y x y x y x y x y x ⎡⎤++=-⋅⎢⎥-+-+⎢⎥⎣⎦()()()y x y xyx y x y x +=⋅-+2y x y=-.【点睛】本题考查分式的化简,解题的关键是掌握分式的运算法则.【47题答案】【答案】1a a -【解析】【分析】先算括号内的分式减法,然后计算括号外的分式除法即可.【详解】解:254111a a a a a a -⎛⎫-÷ ⎪--+⎝⎭=()()()151114a a a a a a a +-++-- =()()()41114a a a a a a -++-- =1a a -.【点睛】本题考查分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.【48题答案】【答案】1m【解析】【分析】先计算括号内的分式加法,再计算分式的除法即可得.【详解】解:原式()()()2233222m m m m m m m ⎡⎤-+=+÷⎢⎥---⎢⎥⎣⎦()32223m m m m m m -⎛⎫=+⋅ ⎪--+⎝⎭()3223m m m m m +-=⋅-+1m=.【点睛】本题考查了分式的加法与除法,熟练掌握分式的运算法则是解题关键.【49题答案】【答案】(1)269a - (2)21x -【解析】【分析】(1)利用异分母分式加减法法则,进行计算即可解答;(2)先利用异分母分式加减法法则计算括号里,再算括号外,即可解答.【详解】解:(1)1133a a --+()()3333a a a a +-+=-+ ()()633a a =+-=269a -;(2)2211x x x x +-⎛⎫+÷ ⎪⎝⎭2x x x++=•()()11x x x +- ()21x x +=•()()11xx x +- 21x =-.【点睛】本题考查了分式的混合运算,熟练掌握因式分解是解题的关键.【50题答案】【答案】(1)a(2)x +1【解析】【分析】根据分式的四则混合运算和化简可以求得.【小问1详解】解:原式=21a a a --,=(1)1a a a --,=a ;【小问2详解】解:原式=(1)(1)1x x xx x+-´-,=1x .【点睛】本题考查了分式的四则混合运算和化简,熟练的掌握分式运算是解决此题的关键.。

八年级数学上册第二章分式的加减法第3课时分式的混合运算习题pptx课件鲁教版五四制

八年级数学上册第二章分式的加减法第3课时分式的混合运算习题pptx课件鲁教版五四制

8. [新考法·整体代入法·2023·武汉]已知 x2- x -1=0,计算





÷

++
A. 1
B. -1
C. 2
D. -2
1
2
3
4
5
的值是(
6
7
8
)
9
10
11
12
13
【点拨】
原式=

(+)

·
(−)
(+)
(+)

(+)

·
(+) (−)
·

(+)(−)



− ( a -1)
− ( a -1)
− ( a -1)
= a -( a -1)= a - a +1=1.
1
2
3
4
5
6
7
8
9
10
11
12
13
13. [新视角·新定义题]定义:如果一个分式能化成一个整式
与一个分子为常数的分式的和的形式,那么称这个分式

−+




【解】原式=
·

·

.

− (−)(+)

(−)(+)
当 a =1或2时,分式无意义,故 a 可以取-1或0.


选择 a =-1,则原式=- ;

选择 a =0,则原式=- .

(任选其一解答即可)
1
2
3
4
5
6
7
8
9
10
11
12

八年级数学下册 期中-综合大题必刷(压轴13考点33题)(解析版)

八年级数学下册  期中-综合大题必刷(压轴13考点33题)(解析版)

专题08期中-综合大题必刷(压轴13考点33题)一.分式的加减法(共2小题)1.深化理解:阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母x+1,可设x2﹣x+3=(x+1)(x+a)+b;则x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b.∵对于任意x上述等式成立,∴解得:.∴=x﹣2+.这样,分式就拆分成一个整式x﹣2与一个分式的和的形式.(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式为x+7+;(2)已知整数x使分式的值为整数,则满足条件的整数x的值.【答案】(1)x+7+;(2)4或16或2或﹣10.【解答】解:(1)由分母x﹣1,可设x2+6x﹣3=(x﹣1)(x+a)+b,则x2+6x﹣3=(x﹣1)(x+a)+b=x2+ax﹣x﹣a+b=x2+(a﹣1)x﹣a+b.∵对于任意x上述等式成立,∴,解得:.∴==x+7+.故答案为:x+7+.(2)由分母x﹣3,可设2x2+5x﹣20=(x﹣3)(2x+a)+b,则2x2+5x﹣20=(x﹣3)(2x+a)+b=2x2+ax﹣6x﹣3a+b=2x2+(a﹣6)x﹣3a+b,∵对于任意x上述等式成立,∴,解得:.∴==2x+11+.∵x为整数,分式的值为整数,∴为整数,∴x=4或16或2或﹣10.2.阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.【答案】(1)以=2x+5+;(2)27.【解答】解:(1)由分母为x﹣1,可设2x2+3x+6=(x﹣1)(2x+a)+b.因为(x﹣1)(2x+a)+b=2x2+ax﹣2x﹣a+b=2x2+(a﹣2)x﹣a+b,所以2x2+3x+6=2x2+(a﹣2)x﹣a+b,因此有,解得,所以==2x+5+;(2)由分母为x+2,可设5x2+9x﹣3=(x+2)(5x+a)+b,因为(x+2)(5x+a)+b=5x2+ax+10x+2a+b=5x2+(a+10)x+2a+b,所以5x2+9x﹣3=5x2+(a+10)x+2a+b,因此有,解得,所以==5x﹣1﹣,所以5m﹣11+=5x﹣1﹣,因此5m﹣11=5x﹣1,n﹣6=﹣x﹣2,所以m=x+2,n=﹣x+4,所以m2+n2+mn=x2﹣2x+28=(x﹣1)2+27,因为(x﹣1)2≥0,所以(x﹣1)2+27≥27,所以m2+n2+mn的最小值为27.二.分式的混合运算(共1小题)3.我们知道:分式和分数有着很多的相似点.如类比分数的基本性质,我们得到了分式的基本性质;类比分数的运算法则,我们得到了分式的运算法则,等等.小学里,把分子比分母小的分数叫做真分数.类似地,我们把分子整式的次数小于分母整式的次数的分式称为真分式;反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式,如:==+=1+;==+=2+(﹣).(1)下列分式中,属于真分式的是:③(填序号);①②③④(2)将假分式化成整式与真分式的和的形式为:=2+,若假分式的值为正整数,则整数a 的值为﹣2、1或3;(3)将假分式化成整式与真分式的和的形式:=a +1+.【答案】见试题解答内容【解答】解:(1)根据题意可得,、、都是假分式,是真分式,故答案为:③;(2)由题意可得,=,若假分式的值为正整数,则或2a ﹣1=1或2a ﹣1=5,解得,a =﹣2或a =1或a =3,故答案为:2、,﹣2、1或3;(3)=,故答案为:a +1+.三.分式的化简求值(共2小题)4.阅读理解材料:为了研究分式与分母x 的关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234……﹣0.25﹣0.﹣0.5﹣1无意义10.50.0.25…从表格数据观察,当x >0时,随着x 的增大,的值随之减小,并无限接近0;当x <0时,随着x的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,的值减小(增大或减小);当x<0时,随着x的增大,的值减小(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.【答案】(1)减小,减小;(2)2;(3)﹣8≤≤.【解答】解:(1)∵当x>0时随着x的增大而减小,∴随着x的增大,1+的值减小;∵当x<0时随着x的增大而减小,∵=1+,∴随着x的增大,的值减小,故答案为:减小,减小.(2)∵==2+,∵当x>1时,的值无限接近0,∴的值无限接近2.(3)∵==5+,又∵0≤x≤2,∴﹣13≤≤﹣,∴﹣8≤≤.5.已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=﹣1,n=﹣6;(2)若m=﹣2,,求的值;(3)若n=﹣1,当=0时,求m的值.【答案】(1)﹣1,﹣6;(2)﹣4;(3)m1=﹣2,m2=1.【解答】解:(1)将a=﹣3,b=2代入(x+a)(x+b)得:(x+a)(x+b)=(x﹣3)(x+2)=x2﹣x﹣6=x2+mx+n,∴m=﹣1,n=﹣6.故答案为:﹣1,﹣6.(2)∵(x+a)(x+b)=x2+(a+b)x+ab=x2+mx+n.∴,∴+====﹣4.(3)∵a+b=m,ab=n=﹣1,∴(+)+4(a+b)﹣16=0,+4m﹣16=0,4[(a+b)2﹣2ab]+4m﹣16=0,4(m2+2)+4m﹣16=0∴4m2+4m﹣8=0,(m+2)(m﹣1)=0,m1=﹣2,m2=1.四.分式方程的应用(共4小题)6.某镇道路改造工程,由甲、乙两工程队合作20天可完成,甲工程队单独施工完成的天数是乙工程队单独施工完天数的2倍.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队独做a天后,再由甲、乙两工程队合作(20﹣)天(用含a的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?【答案】见试题解答内容【解答】解:(1)设乙单独完成此项工程需要x天,则甲单独完成需要2x天,+=1,解得:x=30,经检验x=30是原方程的解.∴x+30=60,答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)(1﹣)÷(+)=(20﹣)天;故答案为:(20﹣);(3)设甲单独做了y天,y+(20﹣)×(1+2.5)≤64,解得:y≥36答:甲工程队至少要单独施工36天.7.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家里出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)300米/分钟;(2)600米.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.8.育才文具店第一次用4000元购进某款书包,很快卖完,临近开学,又用3600元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,文具店决定对剩余的书包按同一标准一次性打折销售,但要求第二批书包的利润不少于960元,问最低可打几折?【答案】见试题解答内容【解答】解:(1)设第一次每个书包的进价是x元,根据题意得:﹣20=,解得x=50.经检验,x=50是原分式方程的解,且符合题意,答:第一次书包的进价是50元.(2)设可以打y折,则3600÷(50×1.2)=60(个).由80×30+80××30﹣3600≥960,解得y≥9,答:最低可打9折.9.列方程解应用题某水果批发市场苹果的价格如表:购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次和第二次各购买多少千克苹果?(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?【答案】(1)第一次买16千克,第二次买24千克;(2)第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.【解答】解:(1)设第一次购买x千克苹果,则第二次购买(40﹣x)千克苹果,由题意可得6x+5(40﹣x)=216,解得:x=16,40﹣x=24.答:第一次买16千克,第二次买24千克.(2)设第一次购买x千克苹果,则第二次购买(100﹣x)千克苹果.分三种情况考虑:①第一次购买苹果少于20千克,第二次苹果20千克以上但不超过40千克;两次购买的质量不到100千克,不成立;②第一次购买苹果少于20千克,第二次苹果超过40千克.根据题意,得:6x+4(100﹣x)=432,解得:x=16.100﹣16=84(千克);③第一次购买苹果20千克以上但不超过40千克,第二次苹果超过40千克根据题意,得:5x+4(100﹣x)=432,解得:x=32.100﹣32=68千克;答:第一次购买16千克苹果,第二次购买84千克苹果或第一次购买32千克苹果,第二次购买68千克苹果.五.菱形的判定与性质(共3小题)10.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.【答案】见试题解答内容【解答】解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8﹣t,解得t=4.答:当t=4时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形当AQ=CQ,即=8﹣t时,四边形AQCP为菱形.解得:t=3.答:当t=3时,四边形AQCP是菱形;(3)当t=3时,CQ=5,则周长为:4CQ=20cm,面积为:4×8﹣2××3×4=20(cm2).11.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.【答案】见试题解答内容【解答】(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60﹣4t=2t,解得t=10.∴当t=10秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=60﹣4t,即60﹣4t=t,解得t=12;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即60﹣4t=4t,解得t=.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=或12秒时,△DEF为直角三角形.12.如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;(2)①当t为何值时,四边形ACFE是菱形;②当t为何值时,△ACE的面积是△ACF的面积的2倍.【答案】(1)证明见解析;(2)①8;②或.【解答】(1)证明:如图1,∵AG∥BC,∴∠EAC=∠FCA,∠AED=∠CFD,∵EF经过AC边的中点D,∴AD=CD,∴△ADE≌△CDF(AAS),∴AE=CF,∵AE∥FC,∴四边形AFCE是平行四边形;(2)解:①如图2,∵△ABC是等边三角形,∴AC=BC=8cm,∵四边形ACFE是菱形,∴AE=CF=AC=BC=8cm,且点F在BC延长线上,由运动知,AE=t cm,BF=2t cm,∴CF=(2t﹣8)cm,∴2t﹣8=8,解得:t=8,将t=8代入CF=2t﹣8中,得CF=8=AC=AE,符合题意,即当t=8时,四边形ACFE是菱形;②设平行线AG与BC的距离为h cm,∴△ACE边AE上的高为h cm,△ACF的边CF上的高为h cm,∵△ACE的面积是△ACF的面积的2倍,∴AE=2CF,当点F在线段BC上时(0<t<4),CF=(8﹣2t),AE=t cm,∴t=2(8﹣2t),解得:t=;当点F在BC的延长线上时(t>4),CF=(2t﹣8)cm,AE=t cm,∴t=2(2t﹣8),解得:t=,即当t为或时,△ACE的面积是△ACF的面积的2倍.六.矩形的性质(共1小题)13.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O→C→B→A→O的路线移动(移动一周).(1)写出点B的坐标;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当△OBP的面积是10时,直接写出点P的坐标.【答案】(1)B(4,6);(2)P(2,6);(3)(0,5)或(,6)或(4,1)或(,0).【解答】解:(1)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4,OC=6,∴点B(4,6);(2)∵点P移动了4秒时的距离是2×4=8,∴点P的坐标为(2,6);(3)如图,①当点P在OC上时,S△OBP=×OP1×4=10,∴OP1=5,∴点P(0,5);②当点P在BC上,S△OBP=×BP2×6=10,∴BP2=,∴CP2=4﹣=,∴点P(,6);③当点P在AB上,S△OBP=×BP3×4=10,∴BP3=5,∴AP3=6﹣5=1,∴点P(4,1);④当点P在AO上,S△OBP=×OP4×6=10,∴OP4=,∴点P(,0).综上,点P的坐标为(0,5)或(,6)或(4,1)或(,0).七.矩形的判定(共1小题)14.如图,在△ABC中,点O是AC边上的一动点,过O作直线MN∥BC,设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当CE=12,CF=10时,求CO的长;(3)当O点运动到何处时,四边形AECF是矩形?并证明你的结论.【答案】见试题解答内容【解答】解:(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF;(2)∵CE平分∠ACB,CF平分∠ACD,∴∠ECF=∠ACB+∠ACD=×180°=90°,∴Rt△CEF中,EF===2,又∵OE=OF,∴CO=EF=;(3)当O运动到AC中点时,四边形AECF是矩形,证明:∵AO=CO,OE=OF,∴四边形AECF是平行四边形,由(2)可得∠ECF=90°,∴四边形AECF是矩形.八.正方形的性质(共8小题)15.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.【答案】见试题解答内容【解答】解:(1)证明:在正方形ABCD中,AB=AD=BC=CD=2,∠BAD=∠C=∠D=∠ABC=∠ABG=90°.∵BG=DF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS);(2)证明:∵△ABG≌△ADF,∴∠GAB=∠FAD,∴∠GAF=∠GAB+∠BAF=∠FAD+∠BAF=∠BAD=90°,∴AG⊥AF;(3)①解:△ABG≌△ADF,∴AG=AF,BG=DF.∵EF=BE+DF,∴EF=BE+BG=EG.∵AE=AE,在△AEG和△AEF中.,∴△AEG≌△AEF(SSS).∴∠EAG=∠EAF,∴∠EAF=∠GAF=45°,即m=45;②若F是CD的中点,则DF=CF=BG=1.设BE=x,则CE=2﹣x,EF=EG=1+x.在Rt△CEF中,CE2+CF2=EF2,即(2﹣x)2+12=(1+x)2,得x=.∴BE的长为.16.如图①,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)连接MN,△BMN是等边三角形吗?为什么?(2)求证:△AMB≌△ENB;(3)①当M点在何处时,AM+CM的值最小;②如图②,当M点在何处时,AM+BM+CM的值最小,请你画出图形,并说明理由.【答案】见试题解答内容【解答】(1)解:△BMN是等边三角形.理由如下:如图①,∵BM绕点B逆时针旋转60°得到BN,∴BM=BN,∠MBN=60°,∴△BMN是等边三角形;(2)证明:∵△ABE和△BMN都是等边三角形,∴AB=EB,BM=BN,∠ABE=∠MBN=60°,∴∠ABE﹣∠ABN=∠MBN﹣∠ABN,即∠ABM=∠EBN,在△AMB和△ENB中,,∴△AMB≌△ENB(SAS);(3)①由两点之间线段最短可知A、M、C三点共线时,AM+CM的值最小,∵四边形ABCD是正方形,∴点M为BD的中点;②当点M在CE与BD的交点时,AM+BM+CM的值最小,理由如下:如图②,∵△AMB≌△ENB,∴AM=EN,∵△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+MN+CM,由两点之间线段最短可知,点E、N、M、C在同一直线上时,EN+MN+CM,故,点M在CE与BD的交点时,AM+BM+CM的值最小.17.阅读下面材料:我遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.我是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:在图2中,∠GAF的度数是45°.参考我得到的结论和思考问题的方法,解决下列问题:(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,求BE的长度.(2)如图4,△ABC中,AC=4,BC=6,以AB为边作正方形ADEB,连接CD.当∠ACB=135°时,线段CD有最大值,并求出CD的最大值.【答案】阅读材料:45°;(1)BE=;(2)135°.【解答】解:阅读材料:根据旋转△ABG≌△QDE,∴∠GAB=∠EAD,AG=AE,∵∠BAD=∠BAE+∠EAF+∠DAE=90°,∠EAF=45°,∴∠BAF+∠GAB=45°,即∠GAF=45°;(1)过点A作AF⊥CB交CB的延长线于点F,∵AD∥BC,∠D=90°,∴∠B=180°﹣∠D=90°,∵AD=CD=10,∴四边形AFCD是正方形,∴CF=10,根据上面结论,可知BE=DE+BF,设BE=x,∵DE=4,∴BF=BE﹣DE=x﹣4,∴CB=CF﹣BF=10﹣x+4=14﹣x,CE=CD﹣DE=10﹣4=6,∵∠C=90°,∴CE2+CB2=BE2,∴36+(14﹣x)2=x2,解得:x=,故BE=;(3)过点A作AF⊥CA,取AF=AC,连接BF,CF,∵∠BAF=∠BAC+∠CAF=90°+∠BAC,∠DAC=∠BAD+∠BAC=90°+∠BAC,∴∠BAF=∠DAC,又∵AC=AF,AB=AD,∴△FAB≌△CAD(SAS),∴BF=CD,∴线段CD有最大值时,只需BF最大即可,在△BCF中,BF≤BC+CF,当B、C、F三点共线时,BF取最大值,此时BF=BC+CF,在等腰直角三角形ACF中AC=AF=4,∠ACF=45°,∴CF=AC=4,∵CB=6,BF最大为:4+6,此时∠BCA=180°﹣∠ACF=135°.故答案为:135°.18.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.【答案】(1)证明见解答;(2)点P在运动过程中,PF的长度不变,值为.【解答】(1)证明:过点P作PG⊥BC于G,过点P作PH⊥DC于H,如图1.∵四边形ABCD是正方形,PG⊥BC,PH⊥DC,∴∠GPC=∠ACB=∠ACD=∠HPC=45°.∴PG=PH,∠GPH=∠PGB=∠PHE=90°.∵PE⊥PB,即∠BPE=90°,∴∠BPG=90°﹣∠GPE=∠EPH.在△PGB和△PHE中,,∴△PGB≌△PHE(ASA),∴PB=PE.(2)解:PF的长度不变.连接BD,如图2.∵四边形ABCD是正方形,∴∠BOP=90°,∵PE⊥PB,即∠BPE=90°,∴∠PBO=90°﹣∠BPO=∠EPF,∵EF⊥PC,即∠PFE=90°,∴∠BOP=∠PFE,在△BOP和△PFE中,,∴△BOP≌△PFE(AAS),∴BO=PF.∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴BC=OB.∵BC=2,∴OB=,∴PF=OB=.∴点P在运动过程中,PF的长度不变,值为.19.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是PB=PQ;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.【答案】见试题解答内容【解答】解:(1)结论:PB=PQ,理由:过P作PF⊥BC,PE⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠QPF+∠QPE=90°,∴∠BPF=∠QPE,在△PEQ和△PFB中,,∴Rt△PQE≌Rt△PBF,∴PB=PQ;故答案为PB=PQ.(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.20.如图,四边形ABCD是正方形,点E是平面内异于点A的任意一点,以线段AE为边作正方形AEFG,连接EB,GD.(1)如图1,判断EB与GD位置关系,并证明你的结论;(2)如图2,若点E在线段DG上,∠DAE=15°,AG=4,求BE的长.【答案】(1)BE⊥DG,理由见解答;(2)2+2.【解答】解:(1)BE⊥DG;如图1,延长BE交DG于H,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴△ABE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∵∠ADG+∠DGA=90°,∴∠ABE+∠DGA=90°,∴∠GHB=90°,∴BE⊥DG;(2)作AH⊥DG于H,∵四边形ABCD和四边形BEFG都是正方形,∴∠AGE=45°,∴GH=HA===2,∵∠AGE=45°,∴∠GAH=45°,∴∠HAE=45°,∵∠DAE=15°,∴∠HAD=∠HAE+∠DAE=60°,∴HD=AH•tan∠HAD=2=2,∴BE=DG=DH+GH=2+2.21.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),求证:BM+DN=MN;(2)当∠MAN绕点A旋转到BM≠DN时(如图2),则线段BM,DN和MN之间数量关系是BM+DN=MN;(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明.【答案】(1)答案见证明;(2)BM+DN=MN;(3)DN﹣BM=MN.【解答】(1)证明:如图1,过A作AE⊥MN于E,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°,∠BAD=90°,∵∠MAN=45°,∴∠BAM+∠DAN=90°﹣45°=45°,在△ABM和△ADN中,∴△ABM≌△ADN(SAS),∴AM=AN,∠BAM=∠DAN=45°=22.5°,∵AE⊥MN,∴∠NAE=MAN=22.5°,MN=2EN,∴∠DAN=∠NAE,∵AE⊥MN,∠D=90°,∴DN=NE,即BM=DN=NE,∴BM+DN=MN;(2)解:线段BM,DN和MN之间数量关系是BM+DN=MN,理由如下:延长CB至E,使得BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°=∠ABE,在△ADN和△ABE中,∵,∴△ABE≌△ADN(SAS),∴∠BAE=∠DAN,AE=AN,∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,∵∠MAN=45°,∴∠EAM=∠MAN,∵在△EAM和△NAM中,∴△EAM≌△NAM,∴MN=ME,∵ME=BM+BE=BM+DN,∴BM+DN=MN,故答案为:BM+DN=MN;(3)DN﹣BM=MN,理由如下:如图3,在DC上截取DE=BM,连接AE,由(1)知△ADE≌△ABM(SAS),∴∠DAE=∠BAM,AE=AM,∴∠EAM=∠BAM+∠BAE=∠DAE+∠BAE=90°,∵∠MAN=45°,∴∠EAN=∠MAN.∵在△MAN和△EAN中,,∴△MAN≌△EAN(SAS),∴EN=MN,即DN﹣DE=MN,∴DN﹣BM=MN.22.(1)如图1,正方形ABCD中,点P为线段BC上一个动点,若线段MN垂直AP于点E,交线段AB于点M,交线段CD于点N,证明:AP=MN;(2)如图2,正方形ABCD中,点P为线段BC上一动点,若线段MN垂直平分线段AP,分别交AB,AP,BD,DC于点M,E,F,N.求证:EF=ME+FN.【答案】(1)见解答;(2)见解答.【解答】解:(1)如图1,过B点作BH∥MN交CD于H,则AP⊥BH,∵BM∥NH,∴四边形MBHN为平行四边形,∴MN=BH,∵四边形ABCD是正方形.∴AB=BC,∠ABP=90°=∠C,∴∠CBH+∠ABH=∠BAP+∠ABH=90°,∴∠BAP=∠CBH,∴△ABP≌△BCH(ASA),∴BH=AP,∴MN=AP;(2)如图2,连接FA,FP,FC∵正方形ABCD是轴对称图形,F为对角线BD上一点,∴FA=FC,又∵FE垂直平分AP,∴FA=FP,∴FP=FC,∴∠FPC=∠FCP,∴∠FAB=∠FPC,∴∠FAB+∠FPB=180°,∴∠ABC+∠AFP=180°,∴∠AFP=90°,∴FE=AP,由(1)知,AP=MN,∴MN=ME+EF+FN=AP=2EF,∴EF=ME+FN.九.正方形的判定与性质(共1小题)23.如图,正方形ABCD中,AB=3,点E是对角线AC上的一点,连接DE.过点E 作EF⊥ED,交AB于点F,以DE,EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB的中点,求正方形DEFG的面积.【答案】(1)证明见解析;(2)6;(3).【解答】(1)证明:如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF(ASA),∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形;(2)解:∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=3,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=6;(3)解:连接DF,∵四边形ABCD是正方形,∴AB=AD=3,AB∥CD,∵F是AB中点,∴AF=FB=,∴DF===,∴正方形DEFG的面积=DF2=()2=.一十.旋转的性质(共5小题)24.如图,已知△ABC为等边三角形.P为△ABC内一点,PA=8,PB=6,PC=10,若将△PBC绕点B逆时针旋转后得到△P′BA.(1)求点P与点P′之间的距离;(2)求∠APB的度数.【答案】(1)6;(2)150°.【解答】解:(1)连接PP′由题意可知AP′=PC=10,BP′=BP,∠PBC=∠P′BA,而∠PBC+∠ABP=60°,所以∠PBP′=60度.故△BPP′为等边三角形,所以PP′=BP=BP′=6;(2)利用勾股定理的逆定理可知:PP′2+AP2=AP′2,所以△APP′为直角三角形,且∠APP′=90°,可求∠APB=90°+60°=150°.25.如图1,点E为正方形ABCD内一点,∠AEB=90°,将△ABE绕点B顺时针方向旋转90°,得到△CBE'(点A的对应点为点C),延长AE交CE'于点F,连接DE.(1)试判断四边形BEFE'的形状,并说明理由;(2)若DA=DE,如图2,请猜想线段CF与E'F的数量关系,并加以证明.【答案】(1)四边形BE′FE是正方形;(2)CF=FE'.【解答】解:(1)四边形BE′FE是正方形.理由如下:由旋转得,∠E′=∠AEB=90°,∠EBE′=90°,∵∠BEF=180°﹣∠AEB=90°,∴四边形BE′FE是矩形,由旋转得,BE′=BE,∴四边形BE′FE是正方形.(2)CF=FE',证明如下:如图,过点D作DG⊥AE于点G,则∠DGA=∠AEB=90°,∵DA=DE,∴AG=AE,∵四边形ABCD是正方形,∴DA=AB,∠DAB=90°,∴∠BAE+∠DAG=90°,∵∠ADG+∠DAG=90°,∴∠ADG=∠BAE,∴△ADG≌△BAE(AAS),∴AG=BE;∵四边形BE′FE是正方形,∴BE=FE′,∴AG=FE′,由旋转得,AE=CE′,∴AE=CE′,∴FE′=AE=CE′,∴CF=FE'.26.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数60°;②线段OD的长4;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【答案】见试题解答内容【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.27.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将CO绕点C顺时针方向旋转60°得到CD,连接AD,OD.(1)当α=150°时,求证:△AOD为直角三角形;(2)求∠DAO的度数;(3)请你探究:当α为多少度时,△AOD是等腰三角形?【答案】(1)见解析;(2)50°;(3)140°或125°或110°.【解答】(1)证明:由旋转的性质得:OC=CD,∠DCO=60°,∴△COD是等边三角形,∴∠CDO=60°,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠ACD=∠BCO,∴△BOC≌△ADC(SAS),∴∠ADC=∠BOC=150°,∴∠ADO=90°,即△AOD是直角三角形;(2)解:∵△COD是等边三角形,∴∠COD=60°,∵∠AOB=110°,∠BOC=α,∴∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,由(1)知:△ADC≌△BOC,∴∠ADC=∠BOC=α,∴∠ADO=α﹣60°,△ADO中,∠DAO=180°﹣∠ADO﹣∠AOD=180°﹣(α﹣60°)﹣(190°﹣α)=50°;(3)解:分三种情况:①当AO=AD时,∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO =α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②当OA=OD时,∠OAD=∠ADO.∵∠AOD=190°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=50°,∴α﹣60°=50°,∴α=110°;③当OD=AD时,∠OAD=∠AOD.∵190°﹣α=50°,∴α=140°,综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.28.如图,四边形ABCD是正方形,点E在AB的延长线上,连接EC,EC绕点E逆时针旋转90°得到EF,连接CF、AF,CF与对角线BD交于点G.(1)若BE=2,求AF的长度;(2)求证:AF+2BG=AD.【答案】(1);(2)证明过程见解答.【解答】(1)解:连接AC,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠EBC=90°,AC2=AB2+BC2=2BC2,∴CE2=BE2+BC2,∵EC绕点E逆时旋转90°得到EF,∴EF=EC,∠FEC=90°,∴∠EFC=∠ECF=45°,CF2=EF2+CE2=2CE2=2BE2+2BC2,∴∠EFC=∠EAC=45°,∴∠FAE=∠FCE=45°,∴∠FAC=90°,∴CF2=AF2+AC2=AF2+2BC2,∴AF2+2BC2=2BE2+2BC2,即AF2=2BE2,∵BE=2,∴AF2=2×22=8,解得AF=;(2)证明:连接AC,延长AF,CB交于点H,∵∠FAE=∠ABD=45°,∴AF∥BD,又∵AD∥BC,∴四边形ADBH是平行四边形,∴AD=BH=BC=AB,∴AH=AB=CD,∵AH∥BG,∴CG=FG,∴BG是△CHF的中位线,∴HF=2BG,∵AH=AF+FH,∴AD=AF+2BG,即AF+2BG=AD.一十一.频数(率)分布直方图(共1小题)29.某校为了了解本校1200名初中生对“防溺水”安全知识的掌握情况,随机抽取了60名初中生进行“防溺水”安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数分布表和频数分布直方图:组别成绩x分频数第1组50≤x<606第2组60≤x<7010第3组70≤x<80a第4组80≤x<90b第5组90≤x<10012请结合图表完成下列问题:(1)频数分布表中的a=18,b=14.(2)将频数分布直方图补充完整.(3)若测试成绩不低于80分定为“优秀”,则该校的初中生对“防溺水”安全知识的掌握情况为“优秀”的大约有多少人?【答案】(1)18,14;(2)见解答;(3)520人.【解答】解:(1)根据条形统计图所给出的数据可得:a=18,则b=60﹣6﹣10﹣18﹣12=14;故答案为:18,14;(2)根据(1)求出的b的值,补图如下:(3)“优秀”等级的人数大约为:1200×=520(人).答:“优秀”等级的人数大约为520人.一十二.条形统计图(共1小题)30.为了丰富学生的大课间活动,某校围绕着“你最喜欢的球类活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.请根据两幅统计图中的信息,回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)求本次抽样调查中最喜欢乒乓球活动的学生数,并补全条形图;(3)若该校共有1800名学生,请你估计全校学生中最喜欢足球活动的人数约为多少?【答案】见试题解答内容【解答】解:(1)根据题意得:=50(名),答:该校对50名学生进行了抽样调查;(2)本次抽样调查中最喜欢乒乓球活动的学生数是:50﹣20﹣10﹣15=5(人),补图如下:(3)根据题意得:1800×=360(人),答:全校学生中最喜欢足球活动的人数约为360人.一十三.利用频率估计概率(共3小题)31.在一个不透明的盒子里装有颜色不同的黑、白两种球共60个,它们除颜色不同外,其余都相同,王颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中搅匀,经过大量重复上述摸球的过程,发现摸到白球的频率稳定于0.25,(1)请估计摸到白球的概率将会接近0.25;(2)计算盒子里白、黑两种颜色的球各有多少个?(3)如果要使摸到白球的概率为,需要往盒子里再放入多少个白球?【答案】见试题解答内容【解答】解:(1)根据题意得:当n很大时,摸到白球的概率将会接近0.25;假如你摸一次,你摸到白球的概率为0.25;故答案为:0.25;(2)60×0.25=15,60﹣15=45;答:盒子里白、黑两种颜色的球分别有15个、45个;(3)设需要往盒子里再放入x个白球;根据题意得:,解得:x=15;经检验x=15是原方程的解,答:需要往盒子里再放入15个白球.32.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球试验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到白球的频数n63a247365484606摸到白球的频率0.4200.4100.4120.4060.403b(1)按表格数据格式,表中的a=123;b=0.404;(2)请估计:当次数s很大时,摸到白球的频率将会接近0.4(精确到0.1);。

100题分数加减法(有答案)

100题分数加减法(有答案)

100题分数加减法(有答案)100题分数加减法(有答案)1. 1/2 + 1/3 = 5/62. 3/4 - 1/5 = 11/203. 2/3 + 4/5 = 22/154. 7/10 - 1/3 = 17/305. 2/5 + 3/8 = 31/406. 4/7 - 2/9 = 22/637. 3/8 + 1/6 = 11/248. 5/6 - 1/4 = 1/39. 2/5 + 7/12 = 29/3010. 1/3 - 1/9 = 2/9在这个分数加减法练习中,我们将解决一系列的分数加减法题目。

下面是一百道题目,每一道题都附有答案供您核对。

11. 3/4 + 2/3 = 17/1212. 5/7 - 1/6 = 29/4213. 1/2 + 3/4 = 5/414. 2/5 - 1/3 = 1/1515. 3/8 + 2/5 = 31/4017. 1/4 + 1/6 = 5/1218. 4/5 - 2/9 = 26/4519. 1/3 + 1/8 = 11/2420. 5/6 - 1/4 = 1/321. 1/2 + 1/3 = 5/622. 3/4 - 1/5 = 11/2023. 2/3 + 4/5 = 22/1524. 7/10 - 1/3 = 17/3025. 2/5 + 3/8 = 31/4026. 4/7 - 2/9 = 22/6327. 3/8 + 1/6 = 11/2428. 5/6 - 1/4 = 1/329. 2/5 + 7/12 = 29/3030. 1/3 - 1/9 = 2/9在这一组题目中,我们需要计算分数的加法和减法。

分数加减法是数学中的基础概念之一,通过练习可以提高我们的计算能力。

31. 3/4 + 2/3 = 17/1232. 5/7 - 1/6 = 29/4234. 2/5 - 1/3 = 1/1535. 3/8 + 2/5 = 31/4036. 6/7 - 3/4 = 9/2837. 1/4 + 1/6 = 5/1238. 4/5 - 2/9 = 26/4539. 1/3 + 1/8 = 11/2440. 5/6 - 1/4 = 1/3在这一组题目中,我们再次进行分数的加法和减法练习。

八年级数学上册第十五章分式专项训练题(带答案)

八年级数学上册第十五章分式专项训练题(带答案)

八年级数学上册第十五章分式专项训练题单选题1、对于任意的实数x ,总有意义的分式是( )A .x−5x 2−1B .x−3x 2+1C .x 2+18x D .2x−1答案:B分析:根据分式有意义的条件进行判断即可.A 项当x=±1时,分母为0,分式无意义;B 项分母x 2+1恒大于0,故分式总有意义;C 项当x=0时,分母为0,分式无意义;D 项当x=1时,分母为0,分式无意义;故选:B .小提示:本题考查了分式有意义的条件,掌握知识点是解题关键.2、若关于x 的分式方程m+4x−3=3x x−3+2有增根,则m 的值为( )A .2B .3C .4D .5答案:D分析:根据分式方程有增根可求出x =3,方程去分母后将x =3代入求解即可.解:∵分式方程m+4x−3=3x x−3+2有增根, ∴x =3,去分母,得m +4=3x +2(x −3),将x =3代入,得m +4=9,解得m =5.故选:D .小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、已知a =1−1b ,b =1−1c ,用a 表示c 的代数式为( )A .c =11−bB .a =11−cC .c =1−a aD .c =a−1a答案:D分析:将b =1−1c 代入a =1−1b 消去b ,进行化简即可得到结果.解:把b =1−1c 代入a =1−1b ,得 a =1−11−1c , 1−a =11−1c , 1−1c=11−a , 1c=1−11−a , 1c =−a 1−a ,c =a−1a. 故选D .小提示:本题考查了分式的混合运算,列代数式.熟练掌握运算法则是解题的关键.4、已知一个三角形三边的长分别为6,8,a ,且关于y 的分式方程y+3a y−3+4a 3−y =2的解是非负数,则符合条件的所有整数a 的和为( )A .20B .18C .17D .15答案:D分析:根据三边关系,即可求出a 的取值范围,再求出分式方程的解,利用分式方程的解为非负数建立不等式,即可求出a 的范围,注意分母不能为0.最后综合比较即可求解.解:∵一个三角形三边的长分别为6,8,a ,∴8−6<a <8+6.即:2<a <14,∵y+3a y−3+4a 3−y =2,∴y =6−a ,∵解是非负数,且y ≠3,∴6−a ≥0,且6−a ≠3,∴a ≤6且a ≠3,∴2<a≤6且a≠3,∴符合条件的所有整数a为:4或5或6.∴符合条件的所有整数a的和为:4+5+6=15.故选:D.小提示:本题考查了三角形三边关系、求解分式方程、一元一次不等式等知识,关键在于利用分式方程的解为非负数,建立不等式,同时一定要注意分母不为0的条件.属于中考填空或者选择的常考题.5、计算4ac3b ⋅9b22ac3的结果是()A.36ab2c6abc3B.6ab2cabc3C.6abcac3D.6bc2答案:D分析:先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可.解:4ac3b ·9b22ac3=36ab2c6abc3=6bc2,故选D.小提示:本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解.6、将公式1R =1R1+1R2(R,R1,R2均不为零,且R≠R2)变形成求R1的式子,正确的是()A.R1=RR2R2−R B.R1=RR2R2+RC.R1=RR1+RR2R2D.R1=RR2R−R2答案:A分析:根据等式的性质即可求出答案.1 R1=1R−1R2=R2−RRR2,所以R1=RR2R2−R.故选:A.小提示:本题考查等式的性质,解题的关键是熟练运用等式的性质,属于基础题型.7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、分式方程3x−2=2x+6x(x−2)的解是()A.0B.2C.0或2D.无解答案:D分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得,3x=2(x−2)+6,解得x=2,经检验x=2是增根,则分式方程无解.故选:D.小提示:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.9、下列运算中,错误的是( )A.ab =acbc(c≠0)B.−a−ba+b=−1C.0.5a+b0.2a−0.3b=5a+10b2a−3bD.x−yx+y=y−xy+x答案:D分析:分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.据此作答.解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、x−yx+y =−(y−x)y+x,故D错误.故选D.小提示:本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.10、(−b2a)2n(n为正整数)的值是()A.b2+2na2n B.b4na2nC.−b2n+1a2nD.−b4na2n答案:B分析:根据分式的乘方计算法则解答.(−b2a )2n=b4na2n.故选:B.小提示:此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.填空题11、观察下列各等式:1x ,-2x2,4x3,-8x4,16x5......,猜想第八个分式__.答案:−128x8分析:通过观察找出规律即可,第n个分式可表示为(−1)n+12n-1x n.解:当n=8时,求得分式为:−128x8所以答案为:−128x8.小提示:本题考查了规律型:数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是得出规律(−1)n+12n-1x n.12、化简1÷(3a2b ÷9a4b⋅2b3a)得________.答案:9a4b分析:在分式乘除混合计算中,一般情况下是按照从左到右的顺序进行运算,如果有括号,那么应先算括号内的,再算括号外的.1÷(3a 2b ÷9a 4b ⋅2b 3a )=1÷(3a 2b ×4b 9a ×2b 3a )=9a 4b .所以答案是:9a 4b .小提示:此题考查了分式的乘除混合运算,分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.13、化简b 23a−b +9a 2b−3a 的结果是______.答案:−b −3a分析:根据同分母分式的加减法法则计算即可.解:原式=b 23a−b −9a 23a−b=b 2−9a 23a −b=(b +3a)(b −3a)3a −b=−b −3a所以答案是:−b −3a .小提示:本题考查同分母分式的加减,解题关键是正确地运用运算法则.14、当x________时,分式x+12x−1有意义.答案:≠12.分析:分母不为零时,分式有意义.当2x ﹣1≠0,即x ≠12时,分式x+12x−1有意义.故答案为≠12. 小提示:本题考点:分式有意义.15、若关于x 的分式方程k 1−x =2−x x−1的解为正数,则满足条件的非负整数k 的值为____.答案:0.分析:首先解分式方程k1−x =2−xx−1,然后根据方程的解为正数,可得x>0,据此求出满足条件的非负整数K的值为多少即可.∵k1−x =2−xx−1,∴x=2−k.∵x>0,∴2−k>0,∴k<2,∴满足条件的非负整数k的值为0、1,k=0时,解得:x=2,符合题意;k=1时,解得:x=1,不符合题意;∴满足条件的非负整数k的值为0.所以答案是:0.小提示:此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.解答题16、阅读材料:对于非零实数a,b,若关于x的分式(x−a)(x−b)x的值为零,则解得x1=a,x2=b.又因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx﹣(a+b),所以关于x的方程x+abx=a+b的解为x1=a,x2=b.(1)理解应用:方程x2+2x =3+23的解为:x1=,x2=;(2)知识迁移:若关于x的方程x+3x=5的解为x1=a,x2=b,求a2+b2的值;(3)拓展提升:若关于x的方程4x−1=k﹣x的解为x1=t+1,x2=t2+2,求k2﹣4k+2t3的值.答案:(1)3,23;(2)19;(3)12.分析:(1)根据题意可得x=3或x=23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5, ∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t +t 2+2)(t +t 2-2)+2t 3=t 4+4t 3+t 2-4=t (t 3+t )+4t 3-4=4t +4t 3-4=4(t 3+t )-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.17、解分式方程:3x−1+2=x x−1答案:x =−1分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 解:3x−1+2=x x−1去分母得,3+2(x −1)=x ,解得,x =−1,经检验,x =−1是原方程的解.所以,原方程的解为:x =−1.小提示:本题主要考查了分式方程的解法.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18、先化简,再求值:x 2−4x+4x+1÷(3x+1﹣x +1),请从不等式组{5−2x ≥1x +3>0 的整数解中选择一个合适的值代入求值.答案:2−x 2+x ,1.分析:根据分式运算的步骤先将分式进行化简,然后求出不等式组的解集,根据分式的意义在不等式组的解集中找到整数解,代入求值即可.x 2−4x+4x+1÷(3x+1﹣x +1)=(x−2)2x+1÷3−(x−1)(x+1)x+1=(x−2)2x+1⋅x+13−x 2+1=(x−2)2(2+x)(2−x)=2−x 2+x ,由不等式组{5−2x ⩾1x +3>0得,﹣3<x ≤2, ∵x +1≠0,(2+x )(2﹣x )≠0,∴x ≠﹣1,x ≠±2,∴当x =0时,原式=2−02+0=1.小提示:本题考查了分式的化简求值及分式有意义的条件,不等式组的解法,解决本题的关键是熟练掌握分式运算的步骤过程,能够详尽掌握不等式组的解法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.2.2 分式的加减法(1) 同步练习
一、请你填一填(每小题4分,共36分)
1. 异分母分式相加减,先________变为________分式,然后再加减.
2. 分式xy 2,y x +3,y x -4
的最简公分母是________.
3. 计算:222321xyz z xy yz x +-=_____________.
4. 计算:)1
1(1x x x x -+-=_____________.
5. 已知22y x M -=2222y x y xy --+y x y
x +-,则M=____________.
6. 若(3-a )2与|b -1|互为相反数,则b a -2
的值为____________.
7. 如果x <y <0,那么x x |
|+xy xy |
|化简结果为____________.
8. 化简y x y x --2
2
的结果为____________.
9. 计算22+-x x -22
-+x x =____________.
二、判断正误并改正: (每小题4分,共16分) 1. a b
a b a a b
a a
b a --+=--+=0( ) 2. 11
)1(1
)1(1)1()1(1)1(22222-=--=---=-+-x x x x x x x x x ( ) 3. )(21
21
21
2222y x y x +=+( ) 4.222b a c
b a
c b a c +=-++( )
三、认真选一选:(每小题4分,共8分)
1. 如果x >y >0,那么x y
x y -++11的值是( )
A.零
B.正数
C.负数
D.整数
2. 甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t 1小时后,快者
追上慢者;若相向而行,则t 2小时后,两人相遇,那么快者速度是慢者速度的( ) A.211t t t + B.12
1t t t + C.2121t t t t +- D.2
121t t t t -+
四、请你来运算(共40分)
1. (4×5=20)化简:
(1)(21222---+x x x x )÷x 2; (2)13112-+-+x x x ·341
2
22+++-x x x x
(3 ) x x x x 3922+++969
22++-x x x (4)))((1))((1))((1b c a c c
a b c b b
c a b a a
--++--++--+
2. (10分)已知a -2b=2(a ≠1)求b a b a b a 244222
2++---a 2+4ab -4b 2的值.
3. (10分)化简求值:当x=21时,求11
21122-+-++-x x x x x 的值.。

相关文档
最新文档