随机过程第四章期末练习题

合集下载

随机过程期末复习试题

随机过程期末复习试题

期末复习试题一、填空题1. 假设()0.4,P A =()0.7P A B =, 若A 与B 互不相容,则()________P B =; 若A 与B 相互独立,则()________P B =.2.设0<P (A )<1,0<P (B )<11=+)|()|(B A P B A P ,则A 与B 满足什么关系__________.3.设A 与B 为两个事件,()0.9P A =,()0.3P AB =,则()P AB =___________.4. 设()0.5P A =,()0.3P B =()0.2P B A =,则()P B A ⋃=___________. 5.设随机变量X 的分布率为{}7aP X k ==,( 1, 2, ,7k =)则常数a =_______.6.设随机变量X 的密度函数为, 01,()0, ax x f x <<⎧=⎨⎩其它.则常数a =_________7. 设X 和Y 是两个随机变量,且3(0,0)7P X Y ≥≥=,4(0)(0)7P X P Y ≥=≥=, 则{max(,)0}P X Y ≥= ______________8. 设随机变量()Xπλ,且已知[(1)(2)]1E X X --=,则λ=___________.9.设随机变量(,)XB n p 的二项分布,且()4,()3,E X D X ==则n =___,p =___10. 设X 服从2(,)N μσ,随σ增大,概率{}P X μσ-<的值________________. 11. 设X 服从(1,4)N ,则2()E X 为 ________________.12.设随机变量X 和Y 独立,且都服从(,1)N μ,若{1}0.5P X Y +≤=,则μ为____13.设随机变量X 和Y 独立,且X 服从(1,2)N ,Y 服从(0,1)N ,则23Z X Y =-+服从_________14. 设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则由切比雪夫不等式,有{||6}P X Y +≥≤_______________.15. 某人不断地掷骰子.设n X 表示前n 次抛掷中出现的最大点数,那么随机序列{},1n X n ≥的状态空间是____________________.16.设计数过程{(),0}N t t ≥是强度为λ的泊松过程,令00t =,则均值函数为_____,方差函数为_____.17.设{(),0}W t t ≥是以2σ为参数的维纳过程,则0, ()t W t ∀>___________________.18.已知1{,}n X n T ∈为马尔可夫链,12{,,}I a a =为状态空间,对于120,r t t t m ≤<<<<(1,,i t m m n T +∈),都有1122{,,,,}r r m n t i t i i i m i p X a X a X a X a X a +======______二、简单计算题1. 已知1()()(),4P A P B P C ===1()0, ()(),8P AC P AB P BC ===求,,A B C 至少有一个发生的概率2.设X 的密度函数为, 0 1,()0, .ax x f x <<⎧=⎨⎩其他试求:(1)常数a ;(2)1{0}2P X ≤≤.3.设X 的密度函数为121, 0,()20, .x e x f x -⎧>⎪=⎨⎪⎩其他求以a 为未知数的一元二次方程2240a Xa ++=有实根的概率。

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

《随机过程》第四章作业解答

《随机过程》第四章作业解答

20. 解:由例 4.8 中的结果可知甲最终赢的概率为:
(1)
P (甲最终赢)
=
(
1−p p
)a

1
(
1−p p
)a+b

1
=
(
2 3
)16
(
2 3
)36
− −
1 ;
1
(2)
P (甲最终赢)
=
(
1−p p
)a

1
(
1−p p
)a+b

1
=
(
2 3
)4

1
(
2 3
)24

1
21. 解:(1) 状态空间可以分为三个等价类:{1, 2}, {3, 4}, {5, 6}。其中 {1, 2} 与 {3, 4} 是常 返的,{5, 6} 是瞬时的,而且状态 {1, 2, 3, 4} 是非周期的。从而由推论 4.1 可知:
不妨记 p11 ≥ p12 ≥ · · · ≥ pn1 ≥ 0,若 p11 > p12 严格成立,从而有:
n
n
p11 = p1ipi1 < p11 p1i = p11
i=1
i=1
得到矛盾,从而有 p11 = p12。类似可证:对 ∀j ≤ n,p11 = p1j 均成立。从而类似可证:
对 ∀i, j ≤ n, p1j = pjj。

19.
解:结合概率转移矩阵画出有向图,可以得到: f1(1n) = a,
n=1 , 从而状态{1}是
0, n > 1
如有疏漏,欢迎指正
4
《随机过程》第四章作业解答

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题解答1、 设∑=-=Nk k k kn U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

解:计算均值函数和相关函数如下0)}{cos(2)cos(2}{)(11=-=⎭⎬⎫⎩⎨⎧-==∑∑==Nk k k k N k k k k n X U n E U n E X E n ασασμ∑∑∑∑∑∑======-=--=--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=Ni i i N i i i i i i Ni Nj j j i i j i N j j j j N i i i i X m n U m U n E U m U n E U m U n E m n R 12121111)](cos[)}cos(){cos(2)}cos(){cos(2)cos(2)cos(2),(ασαασαασσασασ因此可知,},1,0,{ ±=n X n 是平稳随机过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 解:(1)样本函数不连续。

(2)令:012≥>t t ,下面求相关函数:)(221)(212210)(1212211212121211212212122112221122121121212cos cos )]}(cos[)]({cos[21!)]([)]}(cos[)]({cos[)1(21))]}()(()(cos[))]()(()(2)({cos[21))]}()(()(cos[))]()(()({cos[21))}(cos())({cos(}{))}(cos())(cos({)}()({),(t t t t k t t k kX e t t e t t t t e k t t t t t t t t t t t t t t t E t t t t t t t t E t t t t E A E t t t t A E t X t X E t t R ----∞=--⋅=⋅-++=⋅-⋅-++-=-+-+-+++=-+-++++=++⋅=++==∑λλλωωωωλωωηηπωηηππηωηηπωηηπωπηωπηωπηωπηω因为:t t t R ωξ2cos ),(=因此该过程是均方连续的随机过程。

随机过程第四章作业及参考答案

随机过程第四章作业及参考答案

第四章 马尔科夫过程P2271. 将一颗骰子扔很多次。

记n X 为第n 次扔正面出现的点数,问(){}12X n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记n Y 为前n 次扔正面出现点数的总和,问(){}12Y n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率。

解: (1)由于(){}12X n n = ,,,的取值只能是{}123456,,,,,,故状态空间为{}123456E =,,,,,。

由于()X n 的取值的概率与()1X n -以前的()X i 的取值完全无关,所以是()X n 是马尔科夫链。

故()(){}116ij p P X n j X n i ==-==. 它的一步转移概率矩阵为:111111666666111111666666111111666666111111666666111111666666111111666666P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)由于前n 次扔正面出现点数的总和()Y n =前1n -次扔正面出现点数的总和+第n 次扔正面出现的点数,而前1n -次扔正面出现点数的总和与第n 次扔正面出现的点数相互独立,因此()Y n 具有无后效性,是马尔科夫链。

它的一步转移概率为:()112616078ij j i i i p n n j i i i j i ⎧=+++⎪+=⎨⎪=++<⎩ ,,,,,,,,,,或 其中16i n n n =+ ,,,;()1261j n n n =+++ ,,,。

2. 一个质点在直线上作随机游动,一步向右的概率为p (01p <<),一步向左的概率为q ,1q p =-。

在0x =和x a =处放置吸收壁。

记()X n 为第n 步质点的位置,它的可能值是(){}012X n n = ,,,,。

试写出一步转移概率矩阵。

解:状态空间为{}012E a = ,,,,。

随机过程答案

随机过程答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设ln (),()(k Z F X E Z k =并求是常数)。

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第四章作业

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第四章作业

为独立增量过程 Y (n )
∴ Y (n ) 为马氏链
Y (0 ) = 0
Pij (m , k ) = P { Y (m + k ) = j Y (m ) = i } = P{ Y (m + k ) − Y (m ) = j − i Y (m ) − Y (0 ) = i } m+k = P ∑ X (i ) = j − i i= m +1
16 8 ) λ (17 41 , 41 , 41 放在 A 处好
1 1
1 1
习题十三
1 1 2 3 4 5 . . ∞
1 2
习题十四
2
1 1 2 2
3 0
1 1 2 2
4 0 0
1 1 2 2
5 0 0 0
1 1 2 2
6 0 0 0 0
1 2
7 ........

0 0 0 0 0 0
0 0 0 0 0
0 0
1
=
1
2
p
a −1
+
p
a +1
p (a + b ) − p (a + b − 1 ) = p (a + b − 1 ) − p (a + b − 2 ) p (a + b − 1 ) − p (a + b − 2 ) = p (a + b − 2 ) − p (a + b − 3 . p (a . p( 1 ) − p (0
0 0 0
+ + +
0 0 0 0 0 0
1 1 1
3 3 3
× 60 × 10 × 10
7 7 7 30 30 30

《随机过程及其在金融领域中的应用》习题四答案

《随机过程及其在金融领域中的应用》习题四答案

第四章 习题41、对泊松过程{},0t N t ≥(1)证明:当s t <时,{}1,0,1,,kn ks t n s s P N k N n k n k t t -⎛⎫⎛⎫⎛⎫===-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)当2λ=时,试求:()()()112112;1,3;21P N P N N P N N ≤==≥≥(3)设顾客到达某商店是泊松事件,平均每小时以30人的速度到达。

求下列事件的概率:相继到达的两顾客的时间间隔为大于2分钟、小于2分钟、在1分钟到3分钟之间。

答:(1)证明:{}()()()()()()()()()()()()()()()()()()(),,!!!!!!!1!!s t s t s s t s s t t t t n kkt s sk n kn k nk n ktn kk n kk nP N k N n P N k N n k P N k P N n k P N k N n P N n P N n P N n t s s e ek n k s t s n k n k t t t e n n s t s n s s k t k n k t t λλλλλλλλλλ------------====-==-========-⎡⎤⎣⎦--==--⎛⎫⎛⎫⎛⎫==- ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(2)()()()()()()()()11110121112222201211120!1!2!225P N P N N N e e e e e e e λλλλλλλ-------≤==+=+==++-=++=()()()()12121224111,31,3112224P N N P N N P N P N ee e----=====-=====()()()()()()()()()()111111121112112,122111121011311101P N N P N P N N P N P N P N P N P N e P N P N e --≥≥≥≥≥==≥≥-<-=-=-===-<-=-(3) 解法一:顾客到达事件间隔服从参数为λ的指数分布:()()()30,03030,0x x Z Z f t e x f t e x λλλ--=≥=⇒=≥①()30301111303023030106030x x P Z e dx e e e ∞∞----⎧⎫>===--=⎨⎬-⎩⎭⎰②()11303011303000230301116030x x P Z e dx e e e ----⎧⎫<===--=-⎨⎬-⎩⎭⎰ ③1131133030202022221160601330301606030x x P Z e dx e e e e e ------⎛⎫⎧⎫<<===--=-⎨⎬ ⎪-⎩⎭⎝⎭⎰解法二:()3030==0.560λ∴平均每小时有人到达人/分钟根据齐次Poisson 过程的到达时间间隔{},1,2,n X n =是独立同分布于均值为1λ的指数分布的,故可有: 相继到达的顾客的时间间隔大于2分钟的概率为:()12t n P X e e λ-->== 相继到达的顾客的时间间隔小于2分钟的概率为:()1211t n P X e e λ--<=-=-相继到达的顾客的时间间隔在1分钟到3分钟之间的概率为:()()()()1.50.50.5 1.5133111n n n P X P X P X e e e e ----<<=<-<=---=-2、{},0t N t ≥是强度为λ的泊松过程。

《概率论与随机过程》第4章习题解答

《概率论与随机过程》第4章习题解答

4.6 已知平稳过程)(t X 的自相关函数为||)(τατ-=e R X ,求)(t X 的功率谱密度)(ωX G ,并作图。

解:()()0()()022()eee 11e e ()()11()()()2()()j X j j j j G e d d d j j j j j j j j ατωτωατωατωατωατωτττωαωαωαωαωαωααωαωαωα∞---∞∞---+-∞∞---+-∞==+=---+=-+-+--+==-++⎰⎰⎰4.7 已知平稳过程)(t X 的自相关函数为τωττα0||cos )(-=e R X ,求)(t X 的功率谱密度)(ωX G ,并作图。

解:00000000000()()00[()][()][()][()]0[()]0()ecos 11e (e e )(e e )e 2211e e )(e e )22111e 2()(j X j j j j j j j j j j j G e d d d d d j j ατωτωτωτωτωτωατωατωωατωωατωωατωωατωωατωωττττττωωα∞---∞∞-----+-∞∞----+---+-++-∞---==+++=+++=----⎰⎰⎰⎰⎰0000[()]0[()][()]000000022220020e )111e e 2()()1112()()1112()()1222()()()j j j j j j j j j ωωατωωατωωατωωαωωαωωαωωαωωαωωαωωαααωωαωωααωω-+--∞∞--+-++⎧⎫⎨⎬+-⎩⎭⎧⎫+--⎨⎬-+++⎩⎭⎧⎫=--⎨⎬--+-⎩⎭⎧⎫++⎨⎬-+++⎩⎭⎧⎫⎪⎪=+⎨⎬-+++⎪⎪⎩⎭=-+2220()ααωωα+++4.9已知平稳过程X(t),求Y(t)=A+B X(t)的功率谱密度,A ,B 为常数 解:()(){})(R B 2A )(R B )]E[ABX(t E[ABX(t)]A )BX(t A BX(t)A E )(R X 2X 2X 22Y τττττ++=++++=+++=ABm ()22X X 22X ()A2B R ()2A 2()()j Y X G ABm e d ABm B G ωτωττπδωω∞--∞⎡⎤=++⎣⎦=++⎰4.11 已知平稳过程)(t X 的功率谱密度为⎩⎨⎧<=其它,,01)(0ωωωX G ,求)(t X 的自相关函数)(τX R ,并作图。

随机过程知到章节答案智慧树2023年浙江大学

随机过程知到章节答案智慧树2023年浙江大学

随机过程知到章节测试答案智慧树2023年最新浙江大学第一章测试1.设随机过程X(t)=At+(1-A)B, -∞<t<∞. 其中随机变量A与B独立同分布,P(A=0)=0.4, P(A=1)=0.6. 则以下选项正确的有().参考答案:P(X(0)=1, X(1)=1)=0.24.;P(X(0)=0, X(1)=0)=0.16.2.设随机过程X(t)=At+(1-A)B, -∞<t<∞. 其中随机变量A与B独立同分布,P(A=0)=0.4, P(A=1)=0.6. 则自相关函数等于().参考答案:.3.如果两个正态过程的均值函数和自协方差函数相同,则它们对应的有限维分布相同. ()参考答案:对4.设随机过程X(t)=At+B, -∞<t<∞. 其中随机变量A与B独立同服从区间(0,2)上均匀分布. 则以下选项正确的是().参考答案:自协方差函数.5.设随机过程X(t)=At+B, -∞<t<∞. 其中随机变量A与B独立同服从区间(0,2)上均匀分布. 则以下选项正确的有().参考答案:X(1)-X(0)~U(0, 2).;X(2)-X(1)与X(0)同分布.;X(0)~U(0, 2).第二章测试1.设{Xn; n≥0}是时齐Markov链,状态空间I={1,2,3},一步转移矩阵.设则以下的选项对的有 ( )参考答案:;;2.2.设{Xn; n≥0}是时齐的Markov链,状态空间I={1,2,3,4,5,6,7},一步转移矩阵为.则以下选项正确的有 ( )参考答案:共有三个互达等价类{1,2,3},{4,5}和{6,7}.;只有状态6,7是暂留, 其它都是正常返.;状态1的周期为1, 状态5的周期为1, 状态6的周期为2.3.设{Xn; n≥0}是时齐的Markov链,状态空间I={1,2,3},一步转移矩阵为.假设平稳分布为则以下选项中正确的是( ) 参考答案:4.设{Xn; n≥0}是时齐的Markov链,状态空间I={1,2,3,4},一步转移矩阵为.令则以下选项正确的是( )参考答案:5.设{Xn; n≥0}是时齐的Markov链,状态空间I={1,2,3,4},一步转移矩阵为.设则( )参考答案:对第三章测试1.设独立同分布且服从0-1分布,记,则是平稳独立增量过程()参考答案:对2.随机过程是平稳独立增量过程, 其中是标准布朗运动()参考答案:对3.已知是强度为2的泊松过程,则以下选项正确的有()。

最新-期末随机过程试题及答案资料

最新-期末随机过程试题及答案资料

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则这个随机过程的状态空间。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t+a 。

评卷人二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A )=P(B A )P(C AB)。

2.设{X (t ),t ?0}是独立增量过程,且X (0)=0,证明{X (t ),t ?0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ijik kjk Ip p p l l ∈=∑,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程第四章复习题及其解答马尔科夫链

随机过程第四章复习题及其解答马尔科夫链

第四章一、填空1.参数集和状态集均为离散集的马尔可夫过程称为马尔可夫链。

2.设{X n ,n єT}为马尔可夫链,称pj=p{X0=j}为{X n ,n єT}的初始概率,称pj (n )=p{Xn=j}为{X n ,n єT}的绝对概率。

3.设{X n ,n>=0}为马尔可夫链,则一步转移概率p ij =P{X n+1=j|X n =i}4.矩阵()ij a 其元素非负且对每i 有1j=∑ija,称矩阵()ij a 为随机矩阵。

5.f (n)ij =P{T ij =n|X 0=i}=P{X n =j,X k ≠j,1<=k<=n-1|X 0=i}为首达概率。

6.若1=ii f ,称i 为常返状态;若1<ii f ,称i 为非常返状态。

7.状态相通关系为等价关系,具有自反性、对称性、传递性。

8.设马尔可夫链的状态集为E={0,±1,±2,…}或其有限子集,其初始时刻n=0的概率记为p i (0)=P{X(0)=i},i єE,称集合{p i (0)}为该马尔可夫链的初始分布。

9.设马尔可夫链的状态集为E={0,±1,±2,…}或其有限子集,其绝对时刻n 时的概率记为p i (n)=P{X(n)=i},i єE,称集合{p i (n)}为该马尔可夫链的绝对分布。

10.设C ⊂S ,如对任意i ∈C 及j ∉C,都有p ij =0,称C 为闭集。

若C 的状态相通,C 成为不可约的。

11.若平稳齐次马尔可夫链的初始分布为平稳分布,则绝对概率等于初始概率。

12.不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧∈I j ,u 1j 。

13.马氏链的绝对分布由其初始分布及相应的转移概率唯一确定。

二、1.设昨日、今日都下雨,明日有雨的概率为0.7;昨日无雨,今日有雨、明日有雨的概率为0.5;昨日有雨,今日无雨,明日有雨的概率为0.4;昨日、今日均无雨,明日有雨的概率为0.2。

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

(2)如果 X ~ N (0,1) ,问过程 (t) 是否均方可微?说明理由。
解:计算随机过程 (t) 的相关函数:
R (s,t) E{ (s) (t)} E{( X cos 2s Y sin 2s)(X cos 2t Y sin 2t)} cos 2s cos 2tE{X 2} sin 2s sin 2tE{Y 2} [cos 2s sin 2t sin 2s cos 2t]E{XY}
4、 设有随机过程 X (t) 2Z sin(t ) , t ,其中 Z 、 是相互独立的随机 变量,Z ~ N (0,1) ,P( / 4) P( / 4) 1/ 2 。问过程 X (t) 是否均方可积
过程?说明理由。
解:由 Z 、 的相互独立性,计算随机过程 X (t) 的均值函数和相关函数: E{X (t)} E{2Z sin(t )} 2E{Z}E{sin(t )} 0
Y (t) 2X (t) 1, t 0 。试求过程{Y (t), t 0} 的相关函数 RY (s,t) 。
解:由相关函数的定义,有:
RY (s,t) E{Y (s)Y (t)} E{(2X (s) 1)(2X (t) 1)} 4E{X (s) X (t)} 2E{X (s)} 2E{X (t)} 1 4E{X (s) X (t)} 4 1
0
T 2 T T E{X (s) X (u)}dsdu m2 00
T 2
T 0
T 0
R
X
(
s

u
)dsdu

m
2
T 2
T 0
T 0
[C

《随机过程答案》第四章习题

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝1、 设∑=-=N k k k k n U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续?(2) 试求此过程的相关函数,并问该过程是否均方连续?3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2t N t X σμ。

令1)(2)(-=t X t Y ,0≥t 。

试求过程}0),({≥t t Y 的相关函数),(t s R Y 。

4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。

问过程)(t X 是否均方可积过程?说明理由。

5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分布。

(1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由;(2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。

6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足:{}+∞<<∞--=-t s s t s X t X E ,,)]()([2;令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。

湖南大学《随机过程》课程习题集

湖南大学《随机过程》课程习题集

湖南大学本科课程《随机过程》习题集主讲教师:何松华教授第一章:概述及概率论复习设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取 3个,求 其中有次品的概率。

设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放 回,求第3次才取得合格品的概率。

设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取 得红球的概率(甲取出的球不放回)。

设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回, 求连续n 次取得合格品的概率。

设随机变量X 的概率分布函数为连续的,且其中0为常数,求常数A 、B 的值 设随机变量X 的分布函数为F (x) A Barctg(x) (- <x< )(1)求系数A 、B ; (2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。

已知二维随机变量(X,丫的联合概率密度分布函数为6xy(2 x y) 0 x,y 1f xY (x,y )elsewhere(1)求条件概率密度函数f xiY (x|y)、f Y|x (y|x) ; (2)问X 、丫是否相互独立 已知随机变量X 的概率密度分布函数为f X (x)21exp [叮笛■- 2 X2 X随机变量丫与X 的关系为 Y=cX+b 其中c ,b 为常数。

求丫的概率密度分布函数 设X 、丫是两个相互独立的随机变量,其概率密度分布函数分别为F(x)A Be x x 00 x 0求随机变量Z=X+丫的概率密度分布函数。

设随机变量丫与X 的关系为对数关系,丫=ln(X),随机变量丫服从均值为m Y 、标准差为Y的正态分布,求X 的概率密度分布。

的数学期望及方差。

随机变量X 服从均值为m x 、标准差为X 的正态分布,X 通过双向平方率检波器,Y=c*(c>0),求丫的概率密度分布。

设二维随机变量的联合概率密度分布函数为f xY (x, y) Asin(x y) (0 x ,0 y -)2 2(1)求系数A ,(2)求数学期望E[X]、E[Y],方差D[X]、D[Y]; (3)求X 、丫的相关函数及相 关系数。

随机信号分析基础第四章习题

随机信号分析基础第四章习题
RW ( ) E[W (t)W (t )] E[ A2 X (t) X (t ) ABX (t)Y (t ) ABX (t )Y (t) B2Y (t)Y (t )]
A2RX ( ) B2RY ( ) ABRXY ( ) ABRYX ( )
由维纳辛钦定理可得: GW () A2GX () B2GY () ABGXY () ABGYX ()
4.5 功率谱估值的经典方法 1. 平滑法
将全部数据用来计算出—个周期图,然后在频域将其平滑
G (i )
1 2L 1
iL
Gˆ N
j i L
(
j)
窗口根据实际情况选择
4.5 功率谱估值的经典方法
谱估值的一些实际问题
1.数据采样率 2.每段数据的长度L 3.数据总长度 4.数据预处理 a.把无用的直流分量和周期分量(比如市电干扰)去掉 b.处理前还应去掉信号中的“趋势项”,比如电生理记录
rect( )
2a
a2 2
a
a
a2 ( 0 )2 a2 ( 0 )2
sin2 ( )
2
( )2
2
4.3 功率谱密度的性质
性质1: 非负性, Gx(ω)≥0 性质2: GX(ω)是实函数
性质3: Gx(ω)是偶函数,即 GX () GX ()
性质4: GX ' ( ) 2GX ( )
(2)当平稳过程含有对应于离散频率的周期分量时,该成 分就在频域的相应频率上产生δ-函数。
4.2 功率谱密度与自相关函数之间的关系 典型的傅氏变换
(t)
1
c os0t
sin(t / 2)
2 t / 2
ea
ea cos0
1 , 1

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

随机过程第四章习题解答

随机过程第四章习题解答

第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。

随机过程-习题-第4章-01

随机过程-习题-第4章-01

4.1 设有一泊松过程(){}0,≥t t N ,求:(1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。

问该过程是否为平稳过程? (1) 解:首先,{}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ======根据泊松过程的独立增量性质可知{}{})(1212121211221212!)()]([)()()(t t k k ek k t t k k t t N P k t N k t N P -----=-=-===λλ 于是,{}21122!)(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----===(2) 解:该过程的均值为[]()()t k t te e k t k t N E k k t k t k λλλλλλ=⎪⎪⎭⎫ ⎝⎛-==∑∑+∞=--+∞=-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >)[]()[])]([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-=其中,)()]()([1212t t t N t N E -=-λ121212)]([t t t N E λλ+=于是,12t t >时的相关函数为[]12121212121221)()()(t t t t t t t t t N t N E λλλλλ+=++-=同理可得21t t >时的相关函数为[]221221)()(t t t t N t N E λλ+=所以,泊松过程的相关函数为[]{}2121221,min )()(t t t t t N t N E λλ+=所以,泊松过程过程不是平稳过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P ( H1 | H 0 ) P ( S 0 | H 0 ) erfc[ A2Tb / N 0 ]
注: erfc( x)


x
1 x2 e dx 。提示:计算 H 0 情况下正态随机变量 S 的均值、方差。 2
2
6、设一个通信系统中的发送端可能发送 H0 和 H1 两种信号,这两种信号定义如下:
并说明当 t 足够大时, Y (t ) 趋近于常数 1。 提示:先计算均值函数与均方值函数,并利用零均值正态过程的矩特性:对于任意的 t1、 t2 、 t3 、 t4 , 有 E[X(t1)X(t2)X(t3)X(t4)]=E[X(t1)X(t2)]E[X(t3)X(t4)]+E[X(t1)X(t3)]E[X(t2)X(t4)]+ E[X(t1)X(t4)]E[X(t2)X(t3)]
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
第四章练习题 判断题
如果两个随机变量服从正态分布,则它们一定服从联合正态分布。 (X) 如果两个随机变量的联合概率密度为二维联合正态分布,则它们分别服从正态分 布。 (V) 如果两个随机变量 X1 和 X2 是联合正态的, 则它们的边缘分布也是正态分布的。 (V) 两个正态随机变量如不相关,则必相互独立。 (V) 如果两个随机变量的联合分布不是联合正态分布,则至少有一个变量不服从正态 分布。 (X) 如果两个随机变量 X 、Y 服从联合正态分布,则条件分布 f X |Y ( x | y ) 为正态分布。 (V) 零均值随机变量 X 、 Y 服从联合正态分布, 则



xf X |Y ( x | y )dx 不一定为 0 值。 (V)
随机变量 X 、 Y 服从联合正态分布,则 Var[ X | Y ] Var[ X ] 。 (V) 如果两个随机变量 X1 和 X2 是联合正态的, 则它们的条件分布也是正态分布的。 (V) 若正态随机过程平稳,则其均值函数及相关函数可以确定其全部统计特性。 (V) 如果正态随机过程是广义平稳的,则必定是严格平稳的。 (V) 若正态随机过程在某两个时刻互不相关,则在该两个时刻相互独立。 (V) 若正态随机过程是窄带的,则该窄带过程及其同相分量、正交分量三者具有相同 的一维概率密度分布函数,且正交分量与同相分量相互独立。 (V) 不管白色噪声服从何种分布,通过有限带宽线性系统后,输出过程为正态随机过 程。 (V) 对于正态过程而言,广义平稳与狭义平稳的概念是等价的。 (V) 一般平稳正态噪声与信号之和是非平稳的正态过程。 (V) 平稳白噪声的自相关函数是冲激函数。 (V)
4 、 假 设 X (t ) 为 零 均 值 正 态 平 稳 随 机 过 程 , 相 关 函 数 为 RX ( ) e
| |
,已知
Y (t )
1 t 2 2 1 2 2 t X ( s )ds , 求 Y (t ) 的均值函数 mY (t ) , 证明其方差函数 Y (t ) 2 (1 e ) , 0 t t t
H 0 : x(t ) A cos(1t ) v(t ) H1 : x(t ) A cos(2t ) v(t )
其中 v(t ) 为功率谱密度为
(0 t Tb ) (0 t Tb )
Tb N0 的正态白色噪声,且有: cos(1t ) cos(2t )dt 0 、 0 2
填空题
1、若零均值二维联合正态分布随机变量 X 、 Y 的联合概率密度分布函数为
f XY ( x, y )

1 2 A
exp{(
x 2 xy y 2 )} ,则随机变量 X 的方差为 6 9 13.5
,A 。
/ 2
, Y 的方差
, X 、 Y 的相关系数为
2、平稳高斯过程 X ( t ) 的相关函数为 RX ( ) 6e
计算题
1、设随机过程 X ( t )= U c o s ωt + V sin ωt ,其中ω为常数,U 和 V 是两个相互独立的 高斯随机变量。已知 E[U]=E[V]=0,E[U2]=E[V2]=σ2, 求 X ( t ) 的一维和二维概率密度。 2、一正态随机过程的均值为 mX(t)=3,协方差为 K(t1,t2)=4cosπ(t1-t2),求当 t1=1/2、t2=1 时的二维概率密度。 3、随机变量 X 、 Y 的均值为 0,方差分别为 4,9;相关系数为 0.5; 它们服从二维联 合正态分布,则 X Y 的二维联合概率密度 f XY ( x, y ) 是多少?

Tb
0
cos(21t )dt cos(22t )dt 0 ; 定 义 一 个 接 收 端 的 检 验 统 计 量
0 Tb Tb 0 0
Tb
S x(t ) cos(1t )dt x(t ) cos(2t )dt ,并定义一个接收判决准则:当 S>0 时,认为发
送端发送的是 H0 信号;当 S<0 时,则认为发送端发送的是 H1 信号。试证:当发送端发送 H0 信号时,接收端将其判决成 H1 信号的错误概率为:
,则随机变量 X ( t ) , X ( t + 1 ) ,
1
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
X ( t + 2 ) 和 X ( t + 3 ) 的协方差矩阵 K=_______________。
3、当白噪声通过带通滤波器后,其输出是____。 4、系统的噪声等效通能带表示____。 5、常见的限带随机信号有____和____。 6、当白噪声通过低通滤波器后,其输出是____。 7、对平稳离散时间白色噪声序列 X (1), X (2),..., X ( n) 按从小到大的顺序排序,得到新 的随机序列 Y (1), Y (2),..., Y (n) , 若序列 X 的一维概率分布函数为 FX ( x) , 则随机变量 Y (2) 的一维概率分布函数为 FY ( y, 2) 概率分布函数为 FY ( y,1) 。 。随机变量 Y (1) 的一维
湖南大学信息科学与工程学院
Tb N0 的正态白色噪声,且有 cos(2t )dt 0 ;定义一个接 0 2
其中 v(t ) 为功率谱密度为 收端的检验统计量 S

Tb
0
x(t ) cos(t )dt ,并定义一个接收判决准则:当 S>0 时,认为发送
端发送的是 H0 信号;当 S<0 时,则认为发送端发送的是 H1 信号。试证:当发送端发送 H0 信号时,接收端将其判决成 H1 信号的错误概率为:
5、设一个通信系统中的发送端可能发送 H0 和 H1 两种信号,这两种信号定义如下:
H 0 : x(t ) A cos(t ) v(t ) H1 : x(t ) A cos(t ) v(t )
2
(0 t Tb ) (0 t Tb )
应用统计与随机过程课程习题集
P ( H1 | H 0 ) P ( S 0 | H 0 ) erfc[ A2Tb / (2 N 0 )] 。
注: erLeabharlann c( x) x
1 x2 e dx 2
2
3
相关文档
最新文档