基于无刷直流电机控制系统设计与实现

合集下载

无刷直流电机控制系统设计与实现

无刷直流电机控制系统设计与实现

无刷直流电机控制系统设计与实现一、本文概述随着科技的不断进步和电机技术的快速发展,无刷直流电机(Brushless Direct Current, BLDC)因其高效率、低噪音、长寿命等优点,在电动工具、航空航天、汽车电子、家用电器等多个领域得到了广泛应用。

然而,要实现无刷直流电机的高效、稳定运行,离不开先进且可靠的控制系统。

本文旨在对无刷直流电机控制系统的设计与实现进行深入探讨,分析控制策略、硬件构成和软件编程,并结合实例,详细阐述控制系统在实际应用中的表现与优化方向。

通过本文的研究,希望能够为相关领域的学者和工程师提供有价值的参考,推动无刷直流电机控制系统技术的进一步发展和应用。

二、无刷直流电机基本原理无刷直流电机(Brushless DC Motor, BLDCM)是一种采用电子换向器代替传统机械换向器的直流电机。

其基本工作原理与传统的直流电机相似,即利用磁场与电流之间的相互作用产生转矩,从而实现电机的旋转。

但与传统直流电机不同的是,无刷直流电机在结构上取消了碳刷和换向器,采用电子换向技术,通过电子控制器对电机内部的绕组进行通电控制,从而实现电机的旋转。

无刷直流电机通常由定子、转子、电子控制器和位置传感器等部分组成。

定子由铁芯和绕组组成,负责产生磁场;转子则是由永磁体或电磁铁构成,负责在磁场中受力旋转。

电子控制器是无刷直流电机的核心部分,它根据位置传感器提供的转子位置信息,控制电机绕组的通电顺序和通电时间,从而实现电机的连续旋转。

位置传感器则负责检测转子的位置,为电子控制器提供反馈信号。

在无刷直流电机的工作过程中,当电机绕组通电时,会在定子中产生一个旋转磁场。

由于转子上的永磁体或电磁铁与定子磁场之间存在相互作用力,转子会在定子磁场的作用下开始旋转。

当转子旋转到一定位置时,位置传感器会向电子控制器发送信号,电子控制器根据接收到的信号控制电机绕组的通电顺序和通电时间,使定子磁场的方向发生变化,从而驱动转子继续旋转。

基于c8051的直流无刷电机控制系统的设计

基于c8051的直流无刷电机控制系统的设计

基于c8051的直流无刷电机控制系统的设计
设计一个基于c8051的直流无刷电机控制系统,可以按照以下步骤进行:
1. 选择合适的c8051单片机芯片,建议选择具备PWM输出和
高速计数器功能的型号。

2. 设计电机驱动电路,包括功率电路和驱动电路。

功率电路通常由MOSFET H桥组成,负责将电机驱动电压转换为驱动电流。

驱动电路负责根据单片机控制信号控制MOSFET开关,
控制电机的起停和运动方向。

3. 编写单片机的控制程序。

需要实现以下功能:
- 设定电机转速或转矩的目标值;
- 读取电机的实际转速或转矩;
- 根据目标值和实际值进行比较,计算出控制电压;
- 生成PWM信号,控制电机驱动电路。

4. 调试和测试控制系统。

连接电机和单片机,进行测试和调试,确保系统正常工作。

5. 优化系统性能。

可以根据需要进行性能优化,例如增加闭环控制、采用磁编码器等。

以上步骤仅供参考,根据实际需求和资源可以进行适当调整和修改。

希望能对你有所帮助!。

基于单片机的无刷直流电机的控制系统设计

基于单片机的无刷直流电机的控制系统设计

【基于单片机的无刷直流电机的控制系统设计】1. 引言无刷直流电机(BLDC),作为一种高效、低噪音、长寿命的电动机,被广泛应用于各种领域。

而采用单片机进行控制,实现对BLDC的精准控制,则成为现代工业中的热门技术。

本文将围绕基于单片机的无刷直流电机控制系统设计展开探讨,深入剖析其原理和实现过程。

2. 无刷直流电机的工作原理无刷直流电机是一种采用电子换相技术的电机,其工作原理与传统的直流电机有所不同。

它不需要使用碳刷和电刷环来实现换向,而是通过内置的电子控制器来精确控制转子上的永磁体和定子上的电磁线圈的相互作用,实现转子的旋转运动。

3. 单片机在无刷直流电机控制中的作用单片机在无刷直流电机的控制系统中扮演着核心角色,它通过内置的PWM模块生成PWM波形,用于控制电机驱动器中的功率器件,同时监测电机的运行状态,并根据需要进行调整和反馈控制,实现对电机的精准控制。

4. 基于单片机的无刷直流电机控制系统设计(1)硬件设计在设计基于单片机的无刷直流电机控制系统时,需要考虑到电机的功率和控制要求,选择合适的单片机和电机驱动器,设计电机驱动电路以及检测装置,确保系统能够稳定可靠地工作。

(2)软件设计利用单片机的PWM模块生成PWM波形,采用适当的控制算法(如PID控制算法),编写控制程序,实现对无刷直流电机的精准控制。

考虑到系统的实时性和稳定性,需要进行充分的软件优化和调试。

5. 个人观点和理解在基于单片机的无刷直流电机控制系统设计中,充分理解无刷直流电机的工作原理和单片机的控制特点,合理选择硬件和编写软件,是至关重要的。

只有系统全面、深刻地理解,才能设计出高质量、稳定可靠的控制系统。

6. 总结本文围绕基于单片机的无刷直流电机控制系统设计展开了探讨,从无刷直流电机的工作原理、单片机在控制系统中的作用,到具体的硬件设计和软件设计,全面、深入地阐述了相关内容。

希望通过本文的阐述,读者能够对基于单片机的无刷直流电机控制系统设计有更深入的理解和应用。

无刷直流电动机驱动控制电路的设计和实现

无刷直流电动机驱动控制电路的设计和实现
里 、, 翟

—两— _-J丁s 单片机 :睦 二二二 :—.1垩 亘坠H:: 童:r伫l: 1]
煎亟 I
图 1 无 刷 直 流 电动 机 控 制 系 统 总 体 结 构 框 图
系统 的工 作 原 理 如 下 :图 1中 STC89C52输 出 信号经信号处理 电路产生 6路控制信号 以及 PWM 波 通过 控制 集成 芯 片 IR2130来 间 接控 制 三 相 逆 变 桥 MOS管 的两两 开 断 ,从 而实 现无刷 直 流 电动 机 的 驱 动 。首先 该系统 通 过人机 接 口设定 目标 速度 输入 到单 片机 ,然 后 该 单 片 机 通 过 转 换 成 对 应 的 PWM 经过信号处理电路去控制集成芯片 IR2130,而该集 成芯片的输 出通过合理选择 自举器件 ,具有较好 的 自举功能 ,迅速去控制三相逆变桥的两两开断 ,以实
STC89C52 was taken as control chip,and IR2130 was taken as the pre-drive chip.A three—phase inverter br idge power am— plifier was built with discrete components MOS transistors.In order to achieve closed-loop control of BLDCM ,the photoelec— tric encoder disk was installed to measure the real-time speed.The system stability was improved through PID control algo— rithm .Experimental results show that the power consumption of the drive and control circuit is low ,and the motor has sm ooth operation,low noise,sm all torque ripple and high eff iciency.

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于pwm技术的无刷直流电机的调速系统设计大学论文

基于PWM技术的无刷直流电机的调速系统设计Brushless DC Motor Speed Control System Based On PWM摘要无刷直流电机(BLDCM)具有调速性能优异、运行性能可靠和维护方便等优点,相较于有刷直流电机,其采用电子换向取代机械换向,有效地提高了电动机的运行效率,也使得其成品体积更加的轻巧。

但是无刷直流电机也存在转矩脉动、控制器复杂、成本较高等缺陷,这些缺陷的存在也一定程度上影响了无刷直流电机作为高效、先进电机在应用上的普及,因此研究如何改善以及解决无刷直流电机存在的问题便具有更加明显的现实意义。

MATLAB是一款用于数据分析与计算、算法开发以及动态系统建立与仿真的数学软件。

最初是由美国MathWorks公司出品的商用数学软件,其由Matlab和Simulink 两个重要组成部分构成,现在更是应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

本文通过对无刷直流电机结构以及工作原理的研究与分析,找出导致其具有较大转矩脉动的原因,并先从理论上得到如何抑制转矩脉动的方法,再通过Matlab 建立起无刷直流电机的仿真模型,对其仿真结果进行分析与改善,从而有效地抑制无刷直流电机的转矩脉动。

关键词:无刷直流电机,转矩脉动,仿真模型AbstractBrushless DC motor (BLDCM) has excellent speed performance, reliable performance and easy maintenance, etc., compared to a brush DC motor, which uses electronically commutated replace mechanical commutation, effectively improve the operating efficiency of the motor, but also so that the volume of the finished product more compact. But there brushless DC motor torque ripple controller complexity, high cost and other defects, the presence of these defects also affected to some extent, a brushless DC motor as efficient and advanced motor universal in application, how to improve and therefore research solve the problems of the brushless DC motor will have more obvious practical significance.MATLAB is a tool for data analysis and computation, algorithm development, and simulation of dynamic systems to establish and mathematical software. MathWorks was originally developed by the US company produced commercial mathematical software, which consists of Matlab and Simulink are two important parts, and now it is used in engineering calculations, control design, signal processing and communications, image processing, signal detection, financial modeling design and analysis and other fields.Based on the brushless DC motor structure and working principle of research and analysis to identify the cause of which has a large torque ripple, and theoretically first get how to suppress torque ripples, established through Matlab brushless Simulation Model DC motor, its simulation results are analyzed and improved in order to effectively suppress the torque ripple of the brushless DC motorKeywords:Brushless DC motor; The torque pulsation; The simulation model目录第一章绪论 (6)1.1 研究背景及研究意义 (6)1.2 无刷直流电机调速系统的国内外研究现状 (7)1.3 本文的主要研究内容及章节安排 (8)第二章无刷直流电机的基本原理 (9)2.1 无刷直流电机的基本结构 (9)2.1.1 电机本体 (9)1.电动机定子 (9)2. 电动机转子 (10)2.1.2 位置传感器 (10)2.2 无刷直流电机的工作原理及换相过程 (12)2.2.1 无刷直流电机的工作原理 (13)2.2.2 无刷直流电机的换相过程 (15)2.3 无刷直流电机的应用 (16)2.4 本章小结 (16)第三章基于PWM技术的无刷直流电机转矩脉动抑制 (17)3.1 PWM控制技术简介 (17)3.1.1 PWM控制技术的基本原理 (17)3.1.2 PWM控制技术的控制方法 (18)3.2 Buck变换器的原理及控制方式 (19)3.2.1 Buck变换器的原理 (19)3.2.2 Buck变换器的控制方式 (20)3.3 无刷直流电机转矩脉动的产生 (20)3.3.1传导区转矩脉动 (21)3.3.2换相区转矩脉动 (22)3.4 无刷直流电机转矩脉动的抑制 (24)3.5 本章小结 (27)第四章无刷直流电机的仿真分析 (28)4.1 MATLAB和SIMULINK的介绍 (28)4.2 无刷直流电机的数学模型 (29)4.2.1电机本体模块 (30)4.2.2转矩计算模块 (31)4.2.3速度控制模块 (32)4.2.4电流控制模块 (32)4.2.5电压逆变模块 (33)4.3无刷直流电机的仿真结果 (33)4.4本章小结 (38)结论 (39)致谢 (40)参考文献 (41)附录 (42)第一章绪论1.1 研究背景及研究意义对于工厂生产和社会发展而言,电力拖动都有着举足轻重的地位,为了满足生产工艺的需求,通过控制电机的转矩以及转速来控制电动机的转速以及位置,这样就可以形成一个自动化系统,称之为电力拖动。

基于foc矢量控制的无刷直流电机控制器设计

基于foc矢量控制的无刷直流电机控制器设计

知识专题:基于foc矢量控制的无刷直流电机控制器设计一、简介无刷直流电机(BLDC)是一种使用电子换向控制器而不是机械换向器来转动电机的电机类型。

它具有高效率、低噪音和长寿命等优点,因此在许多领域得到广泛应用。

而基于磁场定向控制的FOC矢量控制则是一种提高无刷直流电机性能的先进控制技术。

本文将就基于FOC矢量控制的无刷直流电机控制器设计进行深入探讨,包括其原理、设计要点以及应用场景等。

二、FOC矢量控制原理及优势FOC矢量控制是一种以矢量运算为基础的控制策略,通过对电机磁场和电流进行矢量控制,可以实现电机高效、精确的控制。

与传统的直接转矩控制(DTC)相比,FOC矢量控制具有转矩响应快、效率高、噪音小等优势,特别适用于对电机性能要求较高的场景。

三、基于FOC矢量控制的无刷直流电机控制器设计要点1. 电机参数识别:首先需准确识别电机的参数,包括电感、电阻、磁通极链系数等。

这些参数将直接影响控制器设计和性能表现。

2. 闭环控制策略:基于FOC矢量控制的无刷直流电机控制器通常采用闭环控制策略,例如PID控制。

通过精确的闭环控制,可以实现电机的精准转速和位置控制。

3. 硬件设计:控制器的硬件设计非常重要,包括功率电子器件选型、电路板布线、散热设计等。

合理的硬件设计可以提高控制器的稳定性和效率。

4. 软件算法:控制器的软件算法是FOC矢量控制的核心,其中包括空间矢量调制、换向算法、速度闭环控制等。

优秀的软件算法可以提高电机的控制精度和动态性能。

四、基于FOC矢量控制的无刷直流电机控制器应用场景1. 电动汽车:FOC矢量控制的无刷直流电机控制器在电动汽车领域有着广泛的应用。

其高效、精准的控制特性可以提高汽车的动力性能和续航里程。

2. 工业机器人:在工业机器人领域,FOC矢量控制的无刷直流电机控制器可以实现机器人的高速精度运动,提高生产效率和产品质量。

个人观点基于FOC矢量控制的无刷直流电机控制器设计是现代电机控制领域的重要研究方向,其在提高电机性能和应用领域拓展方面具有巨大潜力。

无刷直流电机控制器设计与实现

无刷直流电机控制器设计与实现

无刷直流电机控制器设计与实现无刷直流电机控制器是一种常见的电力控制装置,适用于各种工业生产和民用领域,有着广泛的应用前景。

本文将介绍无刷直流电机控制器的设计与实现,从电机控制原理、硬件设计、软件编程等方面全面解析,帮助读者了解和掌握无刷直流电机控制器的基本知识和技术。

一、电机控制原理无刷直流电机的控制原理是利用调整电子元器件的工作状态,改变电机相序和电压大小,控制电机的转速和方向。

具体实现需要依赖于电机控制芯片和相关的控制电路。

硬件设计方面,无刷直流电机控制器需要包括电源电路、驱动电路、反馈电路等几个方面。

电源电路是为了提供可靠的稳定电压,保证无刷电机的正常工作。

驱动电路是控制电机转速和方向的核心,主要包括电机驱动芯片、功率管、电机端口等。

反馈电路是为了实现电机转速的反馈控制,保证稳定性和精确性。

二、硬件设计无刷直流电机控制器的硬件设计,主要包括电源电路、驱动电路、反馈电路和中控电路等几个方面。

其中,电源电路是为了提供电压和电流,保证无刷电机的正常工作;驱动电路是用来控制电机的方向和速度;反馈电路则是通过反馈电路检测电机的当前转速状态,实现对电机的有效控制;中控电路则是通过处理驱动电路和反馈电路的场效应管的信号,实现对无刷直流电机的一个全面控制。

三、软件编程无刷直流电机控制器的软件编程是制作控制器的一个必要步骤。

其实现基于C 语言,主要应用于控制电路和集成电路之间的通信和控制。

在编程过程中,需要掌握相关的控制原理和编程技巧,进而实现对无刷直流电机的有效控制和操作。

四、实现结果无刷直流电机控制器的实现结果对于工业控制和民用领域有着广泛的应用前景,其中包括机械加工、医疗设备、交通工具等各个领域。

通过对无刷直流电机控制器的掌握和实现,可以实现对无刷直流电机进一步的优化和改进。

BLDC电机驱动系统的设计与控制

BLDC电机驱动系统的设计与控制

BLDC电机驱动系统的设计与控制一、引言随着电气化和智能化时代的到来,电机的应用日益广泛,其中包括无刷直流电机(Brushless DC Motor,BLDC)的应用。

BLDC 电机比传统的有刷电机在功率,效率,噪音等方面更加优越,逐渐成为热门的电机类型。

本文旨在介绍BLDC电机驱动系统的设计与控制。

二、BLDC电机的结构与工作原理BLDC电机由定子和转子组成。

定子由绕组、铁芯、端盖和轴承组成,转子由永磁体、轴和转子芯组成。

BLDC电机通过由无刷交流电动机电控制器驱动,由交流电源产生的交流电能转换成直流电源驱动电机,交换电流的方向使电机转速单向改变。

BLDC电机的转子上装有永久磁体,当电磁铁控制摆臂(电子换向器)的电流发生改变时,摆臂上的电流也发生改变,使摆臂产生磁力作用于转子上的永磁体,电机将按程序旋转。

BLDC电机利用电子励磁器(ESC)驱动,在驱动上根据电机合理功率和电机特性选择适当的PWM频率进行控制。

电机转子位置由电子励磁器通过观察电极式绝缘体旋转特性来确定。

三、BLDC电机驱动系统设计BLDC电机驱动系统主要由以下部分组成:1. 电机本体:包含电机的绕组、转子、定子、永磁体、轴承等元件。

2. 电机控制系统:主要是控制模块和功率驱动模块。

控制模块包括控制器、检测器、电源系统和信号输入系统等等;功率驱动模块包括电机驱动芯片、电源菜单、PWM驱动芯片、电源管理芯片等。

3. 电机驱动源:主要是DC电源,驱动电机需要定电压和定电流,详细的如下表格所示。

驱动电机的参数 | DC电源参数---|---Phase (U, V, W) | DC 驱动电压电机频率 | DC驱动电压电机转速 | DC 驱动电流电机力矩 | DC驱动电流(最大)表1:BLDC电机的驱动参数在BLDC电机驱动系统中,电子控制器扮演着重要的角色,电子控制器负责将输入信号转化为驱动电机的信号,控制电机正反转、转速、制动等操作。

其中,输入信号通常采用角度位置传感器进行电气信号准确定位,从而实现闭环速度控制。

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计学号:1008421057本科毕业论文(设计)(2014届)直流无刷电机控制系统的设计院系电子信息工程学院专业电子信息工程姓名胡杰指导教师陆俊峰陈兵兵高工助教2014年4月摘要无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。

现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。

自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。

现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。

本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。

关键词:控制系统;DSPIC30F2010芯片;无刷直流电机AbstractBrushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention.Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth.The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop.Keywords: Control system; dspic30f2010 chip; brushless DC motor目录摘要 (I)Abstract (III)目录 (IV)1 引言 01.1 研究背景及意义 01.2 国内外研究现状 (1)1.3 设计任务与要求 (1)2 基本理论 (1)2.1 无刷直流电机的结构以及基本原理 (1)2.2 无刷直流电机的运行特性 (4)2.3 无刷直流电机的应用 (5)3 直流无刷直流电机控制系统的设计 (6)3.1 无刷直流电动机系统的组成部分 (6)3.2 无刷直流电机控制系统的设计 (8)4 直流无刷电机的电路设计 (9)4.1 开关电路的设计 (9)4.2 保护电路的设计 (9)4.3 驱动电路的设计 (10)4.4 反馈电路的设计 (10)4.5 电源电路的设计 (11)5 直流无刷电机控制系统的软件设计 (11)5.1 系统功能的实现 (12)5.2 软件流程图 (12)6 实物成果及展望 (13)致谢 (16)参考文献 (16)附录 (19)1 引言近年来随着微电子技术自动控制技术和新型永磁材料的发展,无刷直流电机的应用越来越广泛。

无刷直流电机控制系统设计

无刷直流电机控制系统设计

无刷直流电机控制系统设计随着技术的不断发展,无刷直流电机(BLDC)在许多领域的应用越来越广泛。

相比有刷直流电机,无刷直流电机具有更高的效率和更长的使用寿命。

因此,设计一种高效、稳定、可靠的无刷直流电机控制系统至关重要。

本文将介绍无刷直流电机控制系统的设计思路和实现方法。

关键词:无刷直流电机、控制系统、系统架构、电路设计、软件设计。

无刷直流电机控制系统主要由电机、驱动器、传感器和控制器等组成。

电机是系统的核心,其性能直接影响整个系统的表现。

驱动器的作用是驱动电机运转,同时需要满足系统的动态性能和稳定性要求。

传感器主要用于反馈电机的位置和速度信息,以便控制器可以精确地控制电机。

控制器是无刷直流电机控制系统的核心,它负责处理传感器反馈的信息,并输出控制信号来控制电机的运转。

系统架构方面,无刷直流电机控制系统可以采用基于数字信号处理(DSP)或微控制单元(MCU)的方案。

数字信号处理(DSP)具有运算能力强、速度快的优点,但价格较高。

微控制单元(MCU)具有价格低、易于编程的优势,但运算能力较弱。

在电路设计方面,主要需要考虑功率电路、控制电路和传感器的接口。

功率电路需要满足电机的功率需求,同时需要考虑到过流、过压等保护措施。

控制电路需要实现控制算法的硬件实现,同时需要提供必要的接口与上位控制器进行通信。

传感器的接口需要满足不同传感器的数据采集需求,并需要处理好信号的同步和传输问题。

在软件设计方面,无刷直流电机控制系统需要实现控制算法的软件实现。

一般而言,控制算法可以采用PID(比例-积分-微分)控制算法或模糊控制算法等。

PID控制算法是一种线性控制算法,通过调整比例、积分和微分三个参数,可以实现对电机的精确控制。

模糊控制算法则是一种非线性控制算法,它通过模糊逻辑和规则实现对电机的控制,具有适应性强、鲁棒性好的优点。

为了验证无刷直流电机控制系统的稳定性和有效性,我们进行了一系列实验。

实验结果表明,该系统可以在不同负载和不同转速下稳定运行,并且电机的位置和速度可以精确地被控制。

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统一、本文概述随着科技的快速发展和电机控制技术的不断进步,直流无刷电机(BLDC,Brushless Direct Current Motor)在各个领域的应用越来越广泛。

它们具有高效、低噪音、长寿命等优点,尤其在航空、汽车、家用电器、电动工具以及机器人等领域得到了广泛应用。

而基于脉冲宽度调制(PWM,Pulse Width Modulation)的直流无刷电机控制系统,以其灵活的控制方式、精确的速度调节和优秀的动态响应特性,成为现代电机控制领域的重要研究方向。

本文将对基于PWM的直流无刷电机控制系统进行深入研究。

我们将简要介绍PWM技术的基本原理及其在电机控制中的应用。

接着,我们将重点探讨基于PWM的直流无刷电机控制系统的构成、工作原理以及主要控制策略。

文章还将分析该控制系统的性能特点,包括调速范围、动态响应、稳定性等。

我们将展望基于PWM的直流无刷电机控制系统的未来发展趋势和应用前景。

通过本文的研究,我们期望能够为读者提供一个全面、深入的了解基于PWM的直流无刷电机控制系统的机会,同时为相关领域的工程师和研究者提供有益的参考和启示。

二、直流无刷电机的基本原理直流无刷电机(Brushless Direct Current Motor,简称BLDCM)是一种通过电子换向器替代传统机械换向器的直流电机。

其基本原理主要基于电磁感应和电子换向技术。

电磁感应:直流无刷电机内部通常包含定子(stator)和转子(rotor)两部分。

定子通常由多个电磁铁组成,而转子则带有永磁体。

当定子上的电磁铁通电时,会产生磁场,与转子上的永磁体相互作用,从而驱动转子旋转。

这就是电磁感应的基本原理。

电子换向:与传统的直流电机使用机械换向器不同,直流无刷电机使用电子换向器。

电子换向器通常由微处理器和功率电子开关(如MOSFET或IGBT)组成。

微处理器根据电机的运行状态和位置传感器(如霍尔传感器)的反馈信号,控制功率电子开关的通断,从而实现电磁铁的电流方向的改变。

无刷直流电机控制系统设计

无刷直流电机控制系统设计

无刷直流电机控制系统设计无刷直流电机控制系统设计一、引言近年来,无刷直流电机由于其高效、低噪音和长寿命等特点,被广泛运用在各种领域,如电动汽车、无人机、工业机器人等。

无刷直流电机的控制系统是整个系统的核心,其设计的优劣直接影响到系统的性能和稳定性。

因此,对无刷直流电机控制系统的研究具有重要意义。

二、无刷直流电机基本原理无刷直流电机是一种将交流电转换成直流电的电机,其工作原理和普通直流电机基本相同。

传统的直流电机是通过换向器将直流电源提供的直流电转换成交流电,再通过电刷与换向器进行配合,使得电机能够正常转动。

然而,无刷直流电机通过内部的传感器,能够实时检测转子位置,在合适的时机切换相序,从而实现电机的转动。

其与直流电机相比,具有结构简单、寿命长、噪音低等特点。

三、无刷直流电机控制系统的组成无刷直流电机控制系统主要由传感器、电机驱动器和控制算法三部分组成。

1. 传感器传感器主要用于检测转子位置和转速等信息,常见的传感器有霍尔传感器、编码器等。

通过传感器获得的信息可以提供给控制系统,以便实时控制电机的工作状态。

2. 电机驱动器电机驱动器作为控制系统的核心部件,主要用于控制电机的转速和方向。

电机驱动器通常由功率放大器和控制电路组成,通过接收控制信号,控制电机的运行。

3. 控制算法控制算法是无刷直流电机控制系统的关键,常见的控制算法有电流反馈控制、速度反馈控制和位置反馈控制等。

通过对传感器获得的信息进行处理和分析,控制算法能够准确地控制电机的运行状态,实现所需的功能。

四、无刷直流电机控制系统设计无刷直流电机控制系统的设计需要考虑多个方面的因素,如控制精度、稳定性、响应速度等。

1. 选择合适的传感器传感器的选择直接影响到控制系统的精度和稳定性。

根据实际需求,选择适用的传感器,并进行合理的安装和校准。

2. 电机驱动器的设计电机驱动器需要根据电机的功率和转速等参数进行选择和设计。

选用合适的功率放大器和控制电路,确保电机能够正常工作,并满足系统的要求。

直流电机控制系统设计与实现

直流电机控制系统设计与实现

移位算法 的使用, 进行 了深入 研究, 为实现对直流 电机的高效控制提供 了有益借鉴。 关键词 : 直流电机; 控制系统 ; 设计
与交 流 电动 机 相 比 , 流 电机 结 构复 杂 、 直 成本 高 、 运行 维 护 困
占空 比 的控制 数 。软 件 中还 可进 行 显示 线速 度 或 角速 度 的转 换计
3 使 用 循 环 移 位 的 算 法
笔 者采 用 P WM 方 法对 直 流 电动机 速度 进 行调 控 。 WM 是通 P
从 挥直 流 电机 的优 势 , 提 高机 电产 品的质 量 水 平 , 对 具有 十 分重 要 的 过 控制 固定 电压 的 直流 电源 开关 频率 , 而 改变 负载 两 端 的 电压 , 进 而达 到控 制要 求 的一种 电压调 整方 法 。 WM 可 以应 用在 许 多方 P 意义 。
由八位 驱 码 驱动 器 带动 L D数 码 管进 行 显示 。预置 速 度 由按 E 难, 但是 直流 电机 具 有 良好 的调 速 性 能 、 大 的启 动转 矩 和 过载 能 算 , 较 力 强等 许 多优 点, 因此 在 许 多行业 仍 大量 应用 。 无刷 直 流 电机 由于 键 s 、2输 入 , 1s 进行“ ”“一, 制 , 置数 也 由 L D数 码管 显 示。 +、 ’ j 空 预 E
个 大功 率三 极 管或 场 效应 管或 继 电器 直 接带 动 电机 即 可 ,当 电 时 器来 完 成 , 是 由于 5 但 l内部只 提 供 了 2 定 时 器 , 个 因此 如 果要
机需 要双 向转 动时 ,可 以使 用 由 4个 功率 元件 组 成 的 H桥 电路 或 向 3 或 更 多的直 流 电机 输 出不 同占 空 比的信 号 就要 反 复设 置定 个 者使 用一 个双 刀双 掷 的继 电器 。 果不 需要 调速 , 如 只要 使用 继 电器 时器 , 实现 较 为 复杂 , 我们 采 用一 种 比较 简 单 的方 法不 仅 可 以实现

基于TMS320F2808的直流无刷电机控制系统设计

基于TMS320F2808的直流无刷电机控制系统设计

将C A P 配成I / 0 口
... ..... ...... ...
: I ! . . . . . . . . . 一
读取I , o 状态判断 换相
............... . ......
! I ! . . . . . . . . . 一
计算 电机速度 L — — — — 一 将I l O F 1 重新配成 C A P 功能
— — —பைடு நூலகம்— —
图 1系 统 原 理 框 图 控 制芯片采用 T I 公 司 的T MS F 2 8 0 8 D S P 芯 片。系统分为控制 板和 主 回路板 。 D S P 板: 实 现 电 机控 制 的核 心 部分 , 系统 主 要 用 了 D S P以下 模 块: ( 1 ) S C I 接 口用 于键 盘控制 电机 的起 、 停、 正转 、 反转 、 改变速度 等 , 对 电机 控制系统进行实时监控 , 串行通 信速率可变 。 ( 2 ) e C A N 模块用于 同上位机通 信 , 用上位机实现对 电机 的控制 。 ( 3 ) A D 转换模 块用于测量 电机 的电流 、 电压 、 控制 器的温度等 。 ( 4 ) e P wM模块 用于产生需要 的6 路P WM信 号 , 驱动主 回路板 上的
括 系统 的硬 件 电路 , 电机的控 制方法和设计 , 并给 出 了系统的软件 流程 图, 研 究结果验证 了该 系统的优越性 , 不仅控 制精度 高。 还 具 有 良好 的静 态和动态性能 , 可靠性 高, 有较好 的使 用价值 。 [ 关键词 ] D S P 无刷直流 电机 控制 系统

翱 L _ !

图2系统软件硬件框图 三、 系统软件设计 系统 控制 芯片选 用 T I 公 司的 T M S 3 2 0 F 2 8 0 8 D S P 。利 用 D S P高速 A D转换实现 电流电压模拟量 检测 , e P WM模 块可 以方 便灵活 的实 现电 机P WM控制 。e C A P 捕获模块 检测霍 尔位置 传感器信 号 , 完成位 置检 测和 P WM换相 以及速 度计 算 。S C I 模块 实现通讯 显示 , C A N 总线 完成 与上位机的通讯 。系统控制框 图如图 2 所示。 系统完 成 电机 控制 主要 包括两 个 中断 : C A P 中断 , A D中断 。其中 C A P 中断完 成 P WM换相 的计算 , 以及 电机速度 的计算 。A D中断 完成

基于硬件FOC的无刷直流电机驱动器设计

基于硬件FOC的无刷直流电机驱动器设计

基于硬件FOC的无刷直流电机驱动器设计一、本文概述随着科技的发展,无刷直流电机(BLDC,Brushless Direct Current)以其高效、低噪、长寿命等优点,在各种应用场景中逐渐取代了有刷直流电机。

其中,硬件场向控制(FOC,Field Oriented Control)作为一种先进的控制策略,被广泛应用于无刷直流电机的驱动器设计中。

FOC技术通过精确控制电机的磁场和转矩,实现了电机的高效、平稳运行。

本文旨在探讨基于硬件FOC的无刷直流电机驱动器设计。

我们将对无刷直流电机和FOC技术的基本原理进行介绍,以帮助读者理解无刷直流电机的工作原理和FOC控制的优点。

接着,我们将详细阐述基于硬件FOC的驱动器设计方案,包括硬件选型、电路设计、软件编程等方面。

我们将通过实际应用的案例分析,展示基于硬件FOC的无刷直流电机驱动器的性能表现和应用前景。

通过本文的阅读,读者将能够全面理解基于硬件FOC的无刷直流电机驱动器设计的全过程,掌握其核心技术,为相关领域的研发和应用提供有益的参考。

二、无刷直流电机基本原理无刷直流电机(Brushless DC Motor, BLDC)是一种利用电子换向器替代传统机械换向器的直流电机。

其基本原理是,通过电子换向器控制电机的定子绕组电流,以产生旋转磁场,从而驱动转子转动。

由于无刷直流电机消除了机械换向器带来的摩擦和火花,因此具有更高的效率和更长的使用寿命。

无刷直流电机的主要组成部分包括定子、转子和电子换向器。

定子由多个电磁绕组组成,这些绕组通过电流产生磁场。

转子是一个带有永磁体的旋转部分,它在定子的旋转磁场中转动。

电子换向器则负责控制定子绕组的电流方向,从而改变旋转磁场的方向,使转子能够持续转动。

在无刷直流电机中,电子换向器通常由功率电子开关(如功率晶体管或MOSFET)和控制器组成。

控制器根据电机的运行状态和所需的转速或转矩,控制电子开关的通断,从而调节定子绕组的电流大小和方向。

基于STM32的直流无刷无感电机的控制系统研究

基于STM32的直流无刷无感电机的控制系统研究

南阳理工学院本科生毕业设计(论文)学院:电子与电气工程学院专业:电子信息工程学生:指导教师:薛晓完成日期2014 年 5 月南阳理工学院本科生毕业设计(论文)直流无刷电机的控制系统设计与实现Design of Brushless DC Motor Controller and Implementation总计: 21 页表格: 2 个插图: 27 幅南阳理工学院本科毕业设计(论文)直流无刷电机控制系统设计与实现Design of Brushless DC Motor Controller and Implementation学院(系):电子与电气工程学院专业:电子信息工程学生姓名:学号:指导教师(职称):薛晓(讲师)评阅教师:完成日期:南阳理工学院Nanyang Institute of Technology直流无刷电机控制系统设计与实现电子信息工程专业[摘要]直流无刷无感直流电机具有体积小、调速性能好、重量轻、效率高等优点,目前在很多领域得到了的应用。

本课题设计的是无刷无感直流电机的控制,包括无刷直流电机无位置传感器控制系统和无刷无感直流电机的基本结构、工作原理、数学模型等理论进行了分析和论述,为直流电机的控制提供理论依据。

用matlab guide设计了上位机界面来进行PID参数的整定。

本课题设计了直流无刷电机的控制系统并进行了调试。

用STM32进行控制。

实验结果表明设计的转子位置检测可以很好的检测电机的反电势过零点信号,进而保证电机的正确换相和稳定运行。

整个系统可以控制无刷无感直流电机顺利启动,并通过滑动变阻器实现电机的调速。

[关键词] 无刷直流电机;电机驱动;换相;反电势Design of Brushless DC Motor Controller and ImplementationElectronic Information Engineering SpecialtyAbstract:The brushless DC motors have the advantage of small,good debugging performance,low weight,and high efficiency. So it has been widely used now. And this restricts the industrial drive applications,After the attachment with sensorless control. This paper mainly reserches the sensorless control technology for BLDCM,designs and control BLDCM without position sensor. I use MATLAB guide to debug PID parameter.designing a controller of brushless DC motor and do some experiments for this control system. I use the STM32 MCU as the core microprocessor of hardware system.The results of the experiment show that the rotor position detection system can perfectly detect the location of back-EMF zero-crossing signal,and ensuring the correct motor commutation and stable operation.The whole control system can control the brushless DC motor stating smoothly,and use the Sliding rheostat to achieve speed control.Key words:Brushless dc motor;motor drive;commutation; back-emf目录1 引言 (1)1.1 题目综述 (1)1.2 国内外研究状况 (1)1.3 课题设计的主要内容 (1)2 系统设计目标和设计方案 (2)2.1系统设计目标 (2)2.2控制系统结构总体框图的设计 (2)2.3硬件系统方案论证 (3)2.3.1 控制器芯片选型 (3)2.3.2 无刷直流电机的选型 (3)2.3.3驱动电路的选型 (4)2.3.4位置检测器件选型 (4)3控制系统的工作原理和硬件设计 (5)3.1直流无刷电机的工作原理 (5)3.2无刷电机的反电势法位置检测原理 (6)3.3电源模块 (6)3.4 MCU控制模块 (7)3.5 IPM功率模块 (8)3.6反电势位置检测模块 (10)3.7 隔离电路设计 (10)3.8 速度改变电路设计 (11)4 系统软件设计 (11)4.1软件总体设计 (11)4.2软件总体设计流程图 (12)4.3无刷无感直流电机开环启动模块 (12)4.4无刷直流电机位置检测及电机转速模块 (13)4.5 AD采样改变PWM占空比模块 (14)4.6 PID计算模块 (14)4.7 matlab gui 串行通信界面设计 (15)5直流无刷无感电机测试结果及结果分析 (16)5.1 H_PWM_L_PWM的波形 (16)5.2端电压对地波形 (16)5.3位置检测波形 (17)5.4电流波形 (17)5.5实物图 (18)结束语 (19)参考文献 (20)致谢..................................................... 错误!未定义书签。

直流无刷电机控制实验系统设计与实现

直流无刷电机控制实验系统设计与实现

直流无刷电机控制实验系统设计与实现摘要:伴随着社会和科技的发展,在产业的制造与使用中,永磁材料、电力电子技术、传感器技术、现代控制理论以及微型计算机技术都取得了巨大的进展。

基于上述相关材料、技术的研发与集成,使得其在直流无刷电动机的应用技术更为完备与成熟,并具有高效率、长寿命、低噪声等优良的速度-转矩性能等优点。

在新时期、新情况下,直流无刷电动机以其众多的优势和特点,在工业、家电等行业得到了越来越多的应用,这就对电动机的控制提出了越来越高的要求。

本文在已有的科研成果的前提下,针对当前我国在直流无刷电机方面的研发现状,提出了直流无刷电机的发展方向。

关键词:直流无刷电机;发展;现状分析由于其具有高效率、低噪声、结构紧凑、可靠性高、维修费用低等优点,在各类新能源汽车和各类家用电子产品中得到了广泛应用。

本文所设计的 BLDCM控制试验系统是以EV汽车为原型,具有EV汽车的基础性能;并对电动式汽车控制系统中的每一个功能进行了分区、分区的划分,方便了详细的试验方案的实施;同时,本试验所使用的24V的电压,使整个试验系统的直流母线电流不超过2A,从而避免了因大功率而造成的安全隐患和设备的损坏。

在软件设计方面,对程序的流程图进行了细致的设计,将各种控制功能以不同的形式包装起来,方便了软硬件的协作调试。

该实验平台可以应用于课堂实验,可以应用于课程设计,可以进行创新实验。

一、直流无刷电机(一)直流无刷电机基本结构直流无刷电机是同步电机的一种,即电机转子的转速主要受电机定子旋转磁场的速度和周边相应转子极数的影响直流无刷电机是21世纪发展起来的一种新型的机电一体化装备,它的主要组成是由电机本体、传动机构等组成,尤其是在工业生产中,被越来越多的人所采用。

至于直流无刷电机,则是将新老两代直流电机的优势相结合,不仅保留了传统直流电机的优势,而且在具体的结构设计上,基本上去掉了碳刷和滑环,达到了无级调速,而且速度范围也相对较宽,这样的话,在使用过程中,其过载能力会得到极大的提高,而且可靠性、稳定性和适应性也会得到很好的改善,最主要的是,在维护和维护过程中,可以方便地进行操作和维护。

低成本无刷直流电机控制系统设计与实现

低成本无刷直流电机控制系统设计与实现

低成本无刷直流电机控制系统设计与实现一、概述直流电机控制系统是电机控制技术的重要组成部分。

传统的直流电机控制系统采用可调电阻、可调电容等设备控制电机的转速和输出功率,但这些设备成本高、效率低、体积大,难以满足现代工业生产对高效、精准、低成本的电机控制需求。

为此,本文提出了一种基于低成本无刷直流电机控制系统的设计方案,以提高电机控制的效率和精准度。

二、无刷直流电机控制系统原理无刷直流电机是一种基于电子换向和电子调速技术来实现的直流电机。

相对于传统的有刷直流电机,无刷直流电机具有以下优势:1、电子换向取代机械换向,无刷电机无需换向刷,电机结构简单,容易制造和维护。

2、无刷电机电子调速能力强,运行平稳,调速精度高,且具有多种保护机制。

综上所述,无刷直流电机作为工业生产的推动力,具有重要的应用前景。

无刷直流电机控制系统的核心部件是电机控制芯片,主要功能是负责换向控制、电流控制、速度控制、制动等。

经过调节电机控制芯片中的控制参数,可实现无刷直流电机的不同转速和输出功率。

具体控制方案详见下文。

三、低成本无刷直流电机控制系统设计方案1、硬件设计本次控制系统采用ST公司的STM32F103C8T6开发板,用于控制无刷直流电机的速度和转向,同时,使用H桥驱动芯片(L298N)和红外测速模块,控制电机转向和转速,以及电流和电压计算模块,实时测量电机的电流和电压值,从而确定电机的输出功率,从而实现精准控制。

2、软件设计本控制系统采用Keil MDK-ARM软件进行编译和调试,采用ST公司提供的HAL库函数,对STM32F103C8T6进行编程,实现各种控制参数的设定和控制逻辑的设计。

该控制系统采用PID控制算法对电机进行控制,PID控制器主要包括三个控制环节:比例环节、积分环节和微分环节,三个环节分别对应控制器中的三个控制系数——比例系数(Kp)、积分系数(Ki)和微分系数(Kd)。

PID控制器的输出值为电机PWM占空比,PWM频率即为定时器的中断周期,因此定时器的时钟频率应当高于PWM频率。

基于DSP的无刷直流电动机控制系统设计

基于DSP的无刷直流电动机控制系统设计
中 图分 类 号 :T 6+1 M3 文 献 标 志 码 :A 文章 编 号 :10 —88 2 1 }50 0 —3 0 164 (0 0 o —130
De i n o nt o yse fBr h e sDC o or Ba e P sg n Co r lS tm o us l s M t s d on DS
Q e g I n P ( c ol f l t n sadIf m t nE gneig n u nvr t S ho o e r i n no ai n ier ,A h i i sy E co c r o n U e i
o rh etr ,H f 3 6 h a f c i c e ee 2 0 0 ,C i ) A t u i 1 n
0 5I 舌 无刷 直 流 电 机 不 仅 具 有 交 流 电 机 的 体 积 小 、
重量 轻 、惯 量 小 等 特 点 ,而 且 拥 有 直 流 电 动 机 优 良的调速性 能 ,但 又 没 有 机 械 换 向 器 的缺 点 , 因 此主要 应 用 于 工 厂 白化 和 办公 自动 化 方 面 ,它 正 在迅 速取 代 传 统 的直 流 电 机 和 异 步 电机 ,在 高 精
moo p e y t m , a d d sg e e -u i g f z y c n r l r t c iv r s ls tr s e d c n trs e d s s e n e in d s r t n n u z o tol a h e e b u h e s DC mo o p e o — f e o
实 现 无 刷 直 流 电 机 调 速 , 给 出 了 实 验 结 果 和
结 论 引。
1 自整 定 模 糊 控 制 技 术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于无刷直流电机控制系统设计与实现
发表时间:2017-10-20T11:19:09.350Z 来源:《防护工程》2017年第15期作者:樊圣至[导读] 为了摆脱此系统对进口技术的依赖性,应深入研究其控制系统,提升设计水平,从而实现煤矿开采的自动化。

交通运输部东海第一救助飞行队摘要:无刷直流电机具备体积小、效率高以及控制精度高等优势,且在多个领域得到了广泛使用。

但在部分控制系统中,外加干扰以及参数摄动等因素干扰了系统的动静态性,基于此,本文在分析无刷直流电机结构与运行原理的基础上,指出了其软硬件方面的优化控制措施,以期为此后无刷直流电机控制系统的设计工作提供更多的参考依据。

关键词:无刷直流电机;控制系统;设计与实现
1 无刷直流电机结构
电机本体、位置测算结构、电子换相逻辑等均属于无刷直流电机的组成结构,且其与永磁同步电机较为相似。

相较直流电机,无刷直流电机旋转的转子为磁极,而直流电机为绕组。

且定子主要由电枢绕组、定子铁芯以及其他固定部件组成,电枢绕组一般采用三相Y型绕法,而转子磁极则采用稀土永磁钢片组成,安装在转子表面。

2 无刷直流电机软硬件设计2.1系统硬件部分
2.1.1系统硬件结构
系统硬件主要包括整流电路、开关电源电路、控制芯片、信号隔离电路、调试电路、逆变功率电路以及电流电压检测与保护电路等,其具体结构如下图1所示。

图1 无刷直流电机控制系统硬件结构组成图其中键盘控制系统信息,比如完成启动、停机、速度给定以及系统参数的在线修改等工作。

系统交流电源通过整流桥获得直流电源,并供给全桥逆变以及开关电源电路。

而开关电源电路则为系统提供24V以及5V的直流电源,电压检测电路通过模数转换获得电压时值,通过母线电压的监控实行过压保护动作,而主控芯片则通过判断输入信息进行控制命令。

2.1.2电源部分分路
整个系统能量的主要来源便是电源,且其呈现出交流、直流以及交流的变化过程,整个电路被分为强电与弱电两个组成部分,且单相220伏的交流电在整合后会形成310伏的直流电,为逆变电路以及开关电路提供能量。

首先是整流电路,包括单相全桥不可控整流电路以及电容充电电流限制电路两个组成部分,当电机功率为1.5kW时,控制器的输出能力设定为2.2kW,且上电瞬间直流电源对电容充电,断开继电器,且电流在经过电阻的过程中得到缓冲。

其次是电源电路,主要由变压器、IC1以及MC7085等部分组成,其中IC1为电源的专门控制面板。

且开关电源处于电压工作模式,IC1通过电压反馈调整PWM的输出功率,从而维持电源电压的稳定运行。

最后是芯片电源电路,主要采用主控芯片为3.3伏的工作电平。

2.1.3主控芯片以及周边电路研究中采用适合电机控制领域的32位Cortex -M3核的单片机,可以达到较高的运算效率,且其时钟频率为72赫兹,具备丰富的外设资源。

在设计管脚分配以及附属电路时应在参考专业手册的基础上进行,第一,对于引脚60的外接电路,芯片应处于下载设置状态,且系统完成后还应焊接0欧姆的电阻,以保持引脚的低电平状态。

第二,对于晶振电路应采用8M外部晶体的振荡器,且电源与大地之间连接电容,以排除电源的耦合干扰。

第三,PWM信号输出控制电路,应采用安全性较强的芯片,且在芯片输出后以及光电隔离之前设置74ACT244以有效控制信号的总输出。

第四,键盘系统属于独立通信模块,设计时应按照协议要求编写通讯软件即可使用。

2.1.4功率器元件以及驱动电路GTO、MOSFET、GTR、IGBT以及IPM等均属于常用的功率开关元件,且设计期间,应根据元件管件的耐压程度、最大开关频率等因素进行选择。

本次研究中,电机控制要求较高的开关频率;较小的导通阻抗以及较小的驱动功率,因此可以选择MOSFET、IPM以及IGBT。

比较发现,IGBT具备大电流以及低导通阻抗的特点,可以保持开关频率;而IPM则在内部集成了过高电压、过大电流以及高温的检测系统,且可以在引脚处输出故障信号,降低了系统的损害率。

但考虑到此次研究的试验性质,因此应选择IGBT的分立元件组建全桥逆变电路,并确定1200伏的耐压与25安的额定电流,上升时间为50毫秒。

2.1.5模拟量采集与故障电路
首先是采样电流,为了获得准确的采集电流数值,应在U、V两相上安装霍尔电流传感器设备,设定额定输出电流为40毫安,额定测量电流为25安,且可以使用交流与直流测量。

以U相电流测量为例,根据电机额定电流以及电机过载能力确定霍尔电流传感器的负载电阻,以有效控制芯片采样工作。

其次是模拟量的输入,包括母线电压采样、热敏电阻采样以及输入给定转速的模拟值等工作。

最后是故障处理电路,通过硬件处理得到过流信息金额日控制光耦驱动器的输出,且主控芯片联合组合软件处理故障逻辑,完成软件解锁以及故障迅速反应。

2.2系统控制的软件设计
本次研究的无刷直流电机控制系统的软件部分采用C语言编写程序,主控程序与中断处理程序为程序的组成部分,其中主控程序主要完成系统时钟的初始化,并根据硬件配置初始化EEPROM的存储程序。

中断服务程序主要完成所有A/D采样值的计算工作,并运行多数的控制程序。

且定时器3的中断主要获取转子位置,并计算运行速度。

2.2.1软件结构
软件系统主要完成无刷直流电机磁场的定向控制驱动,使其具备速度伺服功能。

但由于缺乏速度信息,以致在电机控制启动时无法算转子位置角度,无法输出合适的电压矢量,因此,无刷直流电机的磁场应利用方波PWM的调制方式控制启动,当电气角速度达到200rad/s 时在切换至无刷直流电机的磁场定向控制模式。

其主要的流程图如下图2所示。

图2 主程序流程图
2.2.2中断服务程序设计
在本次设计中采用了定时器1的上溢中断、定时器3的移出中断以及输入捕捉中断等三个中断模式,一方面是定时器3的中断服务流程,定时器3存在三个输入通道,且配置了捕捉中断以及计数器溢出中断,使得发生输入捕捉中断时可以清零计数器数值,也可以获得清零前的计数值。

这样在三个输入捕捉端接入霍尔转子位置传感器可以有效计算电机转速值。

且当控制模式为PWM方波调制时,捕捉中断的发生也伴随着换相动作,且通过修改定时器1的相关寄存器即可完成换相。

但当无刷直流电机处于磁场定向控制模式时,则无需换相。

另一方面是定时器1的中断服务程序,在定时器配置中,将PWM模式设定为PWM2模式,即中央对齐模式。

且将PWM的频率设定为20kHz,中断周期为50微秒。

中断设计过程中,应明确中断标志,并根据配置完成模拟量的采集工作,且对采集数据进行数字滤波,并得到相应真值,用于判断过电压、过电流以及温度过高等故障问题,起用闭环程序进行速度控制。

且在直流电机磁场定向控制模式中还应计算转子位置角度,估算转子位置,并通过正弦表获得各相电电流参考值,最后在通过PWM的输出寄存器控制开关管的导通电压矢量。

3 实验结果分析
在试验过程中,无刷直流电机运行正常且散热性较好,当电机处于高速旋转状态时,转速稳定,且调节电位器的转变速度较快。

而转速低至一定程度时,电机驱动模块启动保护动作,关断内部的IGBT,停止运行。

同时,优化设计后的直流电机硬软件联调成功,其控制系统具备一定的合理性与实用性。

结束语
近年来,无刷直流电机获得了较快发展,且在各个应用领域中得到广泛普及,具备不可替代的优势。

为了摆脱此系统对进口技术的依赖性,应深入研究其控制系统,提升设计水平,从而实现煤矿开采的自动化。

参考文献
[1]吴琎,祝恒洋,唐煌生,袁倩倩,苗瑞,蒋文坚.基于功率驱动模块LHKF10003T01的无刷直流电机控制系统设计[J].微电机,2017(03).
[2]徐弈辰,李红斌,刘红月.基于FPGA的无刷直流电机控制系统实现(优先出版)[J].电子技术与软件工程,2014(22).
[3]王亮,马立新,杨威.基于自抗扰控制的无刷直流电机换相转矩脉动抑制的研究[J].机电工程,2017(01).
[4]徐敬成,凌云,陈海东,黄文威,侯文浩.无刷直流电机远程调速控制方法(优先出版)[J].湖南工业大学学报,2017(01).。

相关文档
最新文档