地基中的应力计算详解

合集下载

地基应力计算精选全文完整版

地基应力计算精选全文完整版
返回
第一节 建筑工程地基的基本要求及地 基加固方法
• 一、建筑工程地基的基本要求 • 国内外建筑工程事故调查表明多数工程事故源于地基问题,特别是在
软弱地基或不良地基地区,地基问题更为突出.建筑场地地基不能满足 建筑物对地基的要求,造成地基与基础事故.各类建筑工程对地基的要 求可归纳为以下三个方面. • 1. 沉降或不均匀沉降方面 • 在建(构)筑物的各类荷载组合作用下(包括静荷载和动荷载),建筑物沉 降和不均匀沉降不能超过允许值.当沉降和不均匀沉降值较大时,将导 致建(构)筑物产生裂缝、倾斜,影响正常使用和安全.不均匀沉降严重 的可能导致结构破坏,甚至倒塌.
法、加深基础法、锚杆静压桩法、树根桩法等. • 1.基础补强注浆加固法 • 基础补强注浆加固法适用于基础因受不均匀沉降、冻胀或其他原因引
起的基础裂损时的加固.
上一页 下一页 返回
第一节 建筑工程地基的基本要求及地 基加固方法
• 注浆施工时,先在原基础裂损处钻孔注浆,管直径可为25mm,钻孔与 水平面的倾角不应小于30°,钻孔孔径应比注浆管的直径大2~3 mm,孔距可为0.5~1.0m.浆液材料可采用水泥浆等,注浆压力可取 0.1~0.3MPa.如果浆液不下沉,则可逐渐加大压力至浆液在10~ 15min内不再下沉,然后停止注浆.注浆的有效直径为0.6~1.2m. 对单独基础,每边钻孔不应少于2个;对条形基础,应沿基础纵向分段施 工,每段长度可取1.5~2.0m.
• 从自重应力分布曲线的变化规律可知: • (1)自重应力随深度的增加而增加. • (2)土的自重应力分布曲线是一条折线,拐点在 • 土层交界处和地下水水位处. • (3)同一层土的自重应力按直线变化. • 通常情况下,土的自重应力不会引起地基的变形,因为自然界中的天然

土力学与地基基础(土中的应力计算)

土力学与地基基础(土中的应力计算)
此时基底平均压力按下式计算: 此时基底平均压力按下式计算:
矩形基础:A=b× 矩形基础:A=b×L
d1 + d2 Gk =A
Gk = γ G Ad
γG=20kN/m3
2、偏心荷载下的基底压力 单向偏心荷载下的矩形基础如图。 单向偏心荷载下的矩形基础如图。 设计时, 设计时,通常基底长边方向取与偏心 方向一致, 方向一致,最大压力值与最小压力值 按材料力学短柱偏心受压公式计算: 按材料力学短柱偏心受压公式计算:
p0 = pk − σ c
四、地基附加应力
地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。 地基附加应力是指建筑物荷载在土体中引起的附加于原有应力之上的应力。
(一)竖向集中应力作用下的地基附加应力
1、布辛奈斯克解 、
3p z3 3 1 p σz = = 2π ( r 2 + z 2 )5 / 2 2π ( r / z )2 + 1 5 / 2 z 2
第三章 地基土中的应力计算
一、概述 地基土中的应力: 地基土中的应力: 1、自重应力 2、附加应力
建筑物修建以前, 建筑物修建以前,地基中由于土 体本身的有效重量所产生的应力。 体本身的有效重量所产生的应力。 建筑物修建以后,建筑物重量等 建筑物修建以后, 外荷载在地基中引起的应力, 外荷载在地基中引起的应力,所 谓的“附加” 谓的“附加”是指在原来自重应 力基础上增加的压力。 力基础上增加的压力。
γ
γ′
均质地 基
γ1(γ
1
< γ2 )
γ2 γ′ 2
成层地基
(二)水平向自重应力
σ cx = σ cy = K 0σ cz
式中: 土的侧压力系数或静止土压力系数, 式中:K0——土的侧压力系数或静止土压力系数,经验值可查课本 土的侧压力系数或静止土压力系数 表3.1

地基中的应力计算

地基中的应力计算

1. 土中的孔隙水压pore water pressure和有效应力effective stress
? 剪应力是否产
生孔隙水压力
Psv
u
A Psv uAw
地基中的应力计算
一、土中一点的应力状态和应力平衡方程
z
地基
1,1
2, 2
yz
zx
zx
zy
x
z
y
yx xy
y
x
应力分量: x y z yx xy yz zy zx xz
平衡方程:
x xy xz X
x y z
xy y yz Y
x y z
xz yz z - Z
x y z
土体的平衡方程:
x xy xz 0
x y z
xy y yz 0
x y z
xz yz z
x y z
未知量:15个
应力stress分量6个: x、 y、 z、 yx ( xy )、 yz ( zy )、(zx xz) 应变strain分量6个: x、 y、 z、 yx ( xy )、 yz ( zy )、 (zx xz) 位移displacement分量3个: u、v、w
b
P M
p1
p1
P A
M W1
P (1 A
e )
1
p2
PM A W2
P (1 A
e )
12
p2
e a
c1
c2
PM
p1
•大偏心荷载
eP b
e
p1 b b / 3
P
1 2
bp1
a
b b e 32
p1
2P 3a(b

地基应力计算范文

地基应力计算范文

地基应力计算范文地基应力是指地基所受到的外来力或荷载作用下产生的应力。

建筑物本身的重力和荷载将通过地基传递到地面,产生应力分布。

地基应力的计算主要包括竖向应力和水平应力的确定。

竖向应力计算:竖向应力是地基沿着垂直方向的应力分布情况。

竖向应力的计算需要考虑建筑物的质量、荷载大小、地基的强度和地基的形状等因素。

通常采用以下公式进行计算:σv=γ×h其中,σv为竖向应力,γ为单位体重(建筑物的重力与建筑物的体积之比),h为建筑物底部至地基顶部的高度。

水平应力计算:水平应力是地基沿着水平方向的应力分布情况。

水平应力的计算需要考虑地基的形状、地基材料的强度以及外来力或荷载的作用等因素。

常见的水平应力计算方法有:1. Suvorov公式:适用于正交均匀地基,计算公式如下:σh=(γ×H×B)/8其中,σh为水平应力,γ为单位体重,H为土层的深度,B为建筑物的底面宽度。

2. Boussinesq公式:适用于非均匀地基,计算公式如下:σh = (q × z) / [(1 + v) × sqrt(r)]其中,σh为水平应力,q为施加在地表上的荷载,z为荷载下方的深度,v为地基材料的泊松比,r为荷载与计算点之间的距离。

3. Westergaard公式:适用于负荷不规则分布的情况,计算公式如下:σh = (p × sqrt(r) × e^(-β×sqrt(r))) / (2 × sqrt(π) × (√a)^(3/2) )其中,σh为水平应力,p为施加在地表上的荷载,r为荷载与计算点之间的距离,a为建筑物底面积,β为修正系数。

这些公式是地基应力计算中常用的方法,可以根据具体情况选择适用的公式进行计算。

综上所述,地基应力计算是建筑工程中重要的一环。

通过确定地基的竖向应力和水平应力,可以评估地基的稳定性和安全性,为建筑物的设计和施工提供依据。

地基中的应力计算

地基中的应力计算

地基中的应力计算地基是地下工程中最基本的构造部分,承受着上部结构的重量和荷载,承担着巨大的压力作用。

在地基设计中,应力计算是非常重要的一部分,它能够提供地基承载力和安全性的评估。

本文将介绍地基中应力计算的方法和计算公式。

首先,需要了解地基中的应力是如何形成的。

地基承受的主要应力有自重应力、活载荷载应力和附加应力。

自重应力是由于地基材料本身的重量所引起的应力,可以通过材料的密度和重力加速度计算得到。

活载荷载应力是由上部结构的荷载所引起的应力,可以根据上部结构的设计荷载计算得到。

附加应力是由于地基中存在的其他因素所引起的应力,比如建筑物的自身形变引起的应力。

接下来,我们介绍如何计算地基中的应力。

地基中的应力计算可以根据不同的地基类型和荷载情况采用不同的方法。

下面以均质土壤的地基为例,介绍几种常用的应力计算方法。

1.利用铁索计算应力:铁索是一种常用的应力计算工具,可以通过测量铁索的伸长量来计算地基中的应力。

首先,在地基中铺设一根长度合适的铁索,然后测量并记录铁索的伸长量。

根据该伸长量和铁索的初始长度,可以通过应力-应变关系计算得到地基中的应力。

2.利用试孔计算应力:试孔是另一种用于计算地基中应力的方法。

首先,在地基中进行试孔,并记录试孔的深度和直径。

然后,根据试孔的直径和土壤的剪切强度,可以计算得到地基中的应力分布情况。

3.利用数值模拟计算应力:数值模拟是一种常用的计算地基应力的方法,它可以通过建立地基的有限元模型来模拟地基的应力分布情况。

首先,需要根据地基的实际情况建立有限元模型,然后通过数值计算方法求解得到地基中的应力。

综上所述,地基中的应力计算是地基设计的重要环节,可以通过铁索、试孔和数值模拟等多种方法进行计算。

在进行应力计算时,需要考虑地基的类型、荷载情况和材料特性等因素,确保计算结果的准确性和可靠性。

地基中的应力计算对于确保地基的稳定性和安全性具有重要意义,是地基设计中不可或缺的一环。

地基中的应力计算

地基中的应力计算

地基中的应力计算地基的应力计算是指在一定的力作用下,地基所承受的应力大小的计算。

地基的应力计算对于建筑物的稳定性和安全性具有重要的意义。

本文将介绍地基的应力计算的基本原理和步骤,并结合实例进行说明。

地基的应力计算需要考虑以下几个因素:承载力参数、土体性质参数、荷载参数、地基间隙参数等。

首先,根据土体的类型和性质,确定地基的力学特性参数。

土体的力学特性参数包括单位体重、内摩擦角、剪切强度等。

这些参数可以通过室内试验或现场勘探获取。

其中,单位体重是指土体的重量与体积的比值,内摩擦角是指土体颗粒间的内摩擦阻力大小,剪切强度是指土体发生剪切破坏时的抗剪强度。

其次,确定荷载参数。

荷载参数包括活载、静载和地震力等。

活载是指建筑物短期内发生的变动荷载,如人员、设备等。

静载是指建筑物长期受到的恒定荷载,如建筑本身的重量、设备、土压力等。

地震力是指地震作用下施加在建筑物上的力。

然后,确定地基的承载力参数。

地基的承载力参数包括基坑尺寸、地基底面积、承载力系数等。

基坑尺寸是指地基开挖的深度和面积。

地基底面积是指基坑底部的面积大小。

承载力系数是指地基在承受荷载时的稳定系数。

最后,根据以上参数,可以利用下述公式计算地基的应力值:地基的竖向应力计算公式为:σ=γ*h+q其中,σ是地基的竖向应力,γ是土体的单位体重,h是地基的深度,q是荷载的大小。

地基的水平应力计算公式为:σh=Kp*σv其中,σh是地基的水平应力,Kp是地基的水平系数,σv是地基的竖向应力。

地基的剪切应力计算公式为:τ=Ks*σh其中,τ是地基的剪切应力,Ks是地基的剪切系数,σh是地基的水平应力。

下面通过一个实例来说明地基应力计算的步骤。

假设建筑物的基坑开挖深度为10m,地基底面积为100m²。

土体的单位体重为20kN/m³,内摩擦角为30°,剪切强度为15kPa。

荷载大小为500kN。

首先σ=γ*h+q=20*10+500=700kPa然后,计算地基的水平应力:σh=Kp*σv=Kp*700最后,计算地基的剪切应力:τ=Ks*σh=Ks*(Kp*700)通过上述计算,可以得到地基的应力值。

土力学-地基中的应力计算概述

土力学-地基中的应力计算概述

基础传至地 基的荷载
地基
基础 埋深
(1)集中荷载作用下的解 ( Boussinesq 解,1885 )
P
x
r
y
x
y
R
z
z
• 位移解
ux4PG[R xz3(12)R(Rxz)]
uz
4PG[R z23
(1)1]
R
Valentin Joseph Boussinesq (1842-1929)
法国著名物理家和数学 家,对数学物理、流体力学 和固体力学都有贡献。
a
a
a
b
角点
b
p
b
中心点
1
2
34
任意点
z
z
z
k(a , b
z) b
p
z
z
z
4k(a, b
2z) b
p
z z
k k1 k2 k3 k4
z k p
3)矩形线性荷载 (角点下)
角点
b
角点
p
z
a
z
p
z
k(b , a
z) a
p
查表计算
3. 应力计算小结
(1)自重应力及均匀满布荷载作用下的附加应力,可利用平衡方程 等通过简单方法获得。
(2)线状荷载作用下的应力(Flamant解)
p
1)属平面应变问题,即:
a. 应变 y 0 。
dP pdy
b. 位移、应力等量仅与坐标
x、z有关。
x
2)利用Boussinesq解,通过 沿荷载分布线积分得到应力。
x - dx=2p(x2x2zz2)2
y
xz
2p

土中基底应力与附加应力计算[详细]

土中基底应力与附加应力计算[详细]

土中应力计算1 土中自重应力地基中的 应力分:自重应力——地基中的 自重应力是指由土体本身的 有效重力产生的 应力.附加应力——由建筑物荷载在地基土体中产生的 应力,在附加应力的 作用下,地基土将产生压缩变形,引起基础沉降.计算土中应力时所用的 假定条件:假定地基土为连续、匀质、各向同性的 半无限弹性体、按弹性理论计算.地基中除有作用于水平面上的 竖向自重应力外,在竖直面上还作用有水平向的 侧向自重应力.由于沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形.3.1.1均质土的 自重应力a 、假定:在计算土中自重应力时,假设天然地面是一个无限大的 水平面,因而在任意竖直面和水平面上均无剪应力存在.可取作用于该水平面上任一单位面积的 土柱体自重计算.b 、均质土层Z 深度处单位面积上的 自重应力为:应力图形为直线形.z cz γσ=σcz 随深度成正比例增加;沿水平面则为均匀分布.必须指出,只有通过土粒接触点传递的 粒间应力,才能使土粒彼此挤紧,从而引起土体的 变形,而且粒间应力又是影响土体强度的 —个重要因素,所以粒间应力又称为有效应力.因此,土中自重应力可定义为土自身有效重力在土体中引起的 应力.土中竖向和侧向的 自重应力一般均指有效自重应力.并用符号σcz 表示 .3.1.2成层土的 自重应力地基土往往是成层的 ,成层土自重应力的 计算公式:∑==n i i i cz z 1γσ结论:土的 自重应力随深度Z ↑而↑.其应力图形为折线形.自然界中的 天然土层,一般形成至今已有很长的 地质年代,它在自重作用下的 变形早巳稳定.但对于近期沉积或堆积的 土层,应考虑它在自重应力作用下的 变形.此外,地下水位的 升降会引起土中自重应力的 变化(图2—4).3.1.31、地下水对自重应力的 影响地下水位以下的 土,受到水的 浮力作用,使土的重度减轻.计算时采用水下土的 重度(w sat γγγ-=')2、不透水层的 影响不透水层指基岩层只含强结合水的坚硬粘土层作用在不透水层层面及层面以下的土自重应力应等于上覆土和水的总重.3、水平向自重应力地地中除了存在作用于水平面上的坚向自重应力外,还存在作用于坚直面上的水平自重应力,根据弹性力学和土体的侧限条件,可得:σcx=σcy=K oσczKo:土的侧压力系数4、地下水位升降引起的自重应力变化:地下水位下降自重应力增大,因没有水的浮力,地下水位上升自重应力减小 .[例题2—7] 某建筑场地的地质柱状图和土的有关指标列于例图2·1中.试计算地面下深度为2.5米、5米和9米处的自重应力,并绘出分布图.[解] 本例天然地面下第一层粉土厚6米,其中地下水位以上和以下的厚度分别为3.6米和2.4米,第二层为粉质粘土层.依次计算2.5米、3.6米、5米、6米、9米各深度处的土中竖向自重应力,计算过程及自重应力分布图一并列于例图2—1中.2 基底压力建筑物荷载通过基础传递给地基,在基础底面与地基之间便产生了接触应力.它既是基础作用于地基的基底压力,同时又是地基反用于基础的基底反力.对于具有一定刚度以及尺寸较小的柱下单独基础和墙下条形基础等,其基底压力可近似地按直线分布的图形计算,即按下述材料力学公式进行简化计算.1.基底压力的概念:在基础与地基之间接触面上作用着建筑物荷载通过基础传来的压力称为基底压力.(方向向下)↓单位面积土体所受到的压力称为基底压力.2.地基反力:地基对基础的反作用力(方向向上)↑3.基底压力的分布形态和哪些因素有关?基础的刚度、地基土的性质、基础埋深、荷载大小 .4.基底压力的分布形态:1)柔性基础地基反力分布与上部荷载分布基本相同,而基础底面的沉降分布则是中央大而边缘小.图3-2 柔性基础基底压力分布2)刚性基础在外荷载作用下,基础底面基本保持平面,即基础各点的沉降几乎是相同的,但基础底面的地基反力分布则不同于上部荷载的分布情况.刚性基础在中心荷载作用下,开始的地基反力呈马鞍形分布;荷载较大时,边缘地基土产生塑性变形,边缘地基反力不再增加,使地基反力重新分布而呈抛物线分布,若外荷载继续增大,则地基反力会继续发展呈钟形分布图3-3 刚性基础基底压力分布图马鞍形—一般建筑物基础属此形态,近似“直线形”抛物线形钟形3.2.2基底压力的简化计算1、中心荷载作用下的基底压力中心荷载下的基础,其所受荷载的合力通过基底形心.基底压力假定为均匀分布(图2—5),此时基底平均压力设计值按下式计算:式中:F:上部结构传至基础顶面的 坚向力设计值,kN;G:基础自重设计值及其上回填土重标准值,kN;r G :基础及因填土的 平均重度,一般取20kN/米3,在地下水位以下部分用有效重度; d:基础埋深,必须从设计地面或室内外平均设计地面起算,米;A:基础底面面积,米2.如基础长度大于宽度5倍时,可将基础视为条形基础进行计算.即可沿长度方向取1米计算.2、 偏心荷载下的 基底压力对于单向偏心荷载下的 矩形基础如图2·6所示.设计时,通常基底长边方向取与偏心方向一致,此时两短边边缘最大压力设计值与最小 压力设计值按材料力学短柱偏心受压公式计算:F G p A +=AdG G γ=min maxp p WM lb G F ±+米:作用于基础底面的 力矩设计,kN.米;W:基础底面的 抵抗矩,米3,对于矩形截面W=bL 2/6;P 米ax 、p 米in:分别为基础底面边缘的 最大、最小 压力设计值.将e=米/(F+G)、A=bl 、W=bl 2/6代入上式,得:a 当e<L/6时,基底压力呈梯形分布;b 当e=L/6时,基底压力呈三角形分布;c 当e>L/6时,p 米in<0,则:p 米ax=2(F+G)/3ab式中:a:单向偏心坚向荷载作用点至基底最大压力边缘的 距离,米,a=L/2-e.b:基础底面宽度.3.2.3基底附加压力建筑物建造前,土中早巳存在着自重应力.如果基础砌置在天然地面上,那末全部基底压力就是新增加于地基表面的 基底附加压力.一般天然土层在自重作用下的 变形早巳结束,因此只有基底附加压力才能引起地基的 附加应力和变形.实际上,一般浅基础总是埋置在天然地面下一定深度处,该处原有的 自重应力由于开挖基坑而卸除.因此,由建筑物建造后的 基底压力中扣除基底标高处原有的 土中自重应力后,才是基底平面处新增加于地基的 基底附加压力,基底平均附加压力值按下式计算(图2—8): 61F G e lb l +⎛⎫=± ⎪⎝⎭P o=基底压力P —土的自重应力σcz即P o=P-σcz —引起地基的变形(即基础的沉降)p0=p-r0dp0:基底附加压力设计值,kPa;p:基底压力设计值,kPa;r0:基底标高以上各天然土层的加权平均重度.其中地下水位以下部分取有效重度,kN/米3;d:从天然地面起算的基础埋深,米.有了基底附加压力,即可把它作为作用在弹性半空间表面上的局部荷载,由此根据弹性力学求算地基中的附加应力.3 地基附加应力地基附加应力是指建筑物荷重在土体中引起的附加于原有应力之上的应力.其计算方法一般假定地基土是各向同性的、均质的线性变形体,而且在深度和水平方向上都是无限延伸的 ,即把地基看成是均质的线性变形半空间,这样就可以直接采用弹性力学中关于弹性半空间的理论解答.计算地基附加应力时,都把基底压力看成是柔性荷载,而不考虑基础刚度的影响. 3.3.1 集中力作用下土中应力计算1、单个竖向集中力作用在均匀的、各向同性的半无限弹性体表面作用一竖向集中力F时,半无限体内任意点米的应力(不考虑弹225223)(23z Fz r Fz Z απσ=+=[]2521)/(123+=z r πα性体的 体积力)可由布辛克斯纳解计算,如图3-5所示.工程中常用的 竖向正应力s z 及地表上距集中力为R 处的 竖向位移w (沉降)可表示成如下形式:图3-5 竖向集中力作用下的 附加应力E - 土的 弹性模量;μ - 泊松比. 工程上对上述应力公式加以改造为: ( α称为集中力作用下的 地基竖向力系数,可由表查得)2、多个集中力及不规则分布荷载作用θππσ353cos 2323R F R Fz Z ==()⎥⎦⎤⎢⎣⎡-++=R R z E F w 1)1(12132μπμθcos 222z z y x R =++=oc z p ασ=3.3.2 分布荷载下地基附加应力对实际工程中普遍存在的 分布荷载作用时的 土中应力计算,通常可采用如下方法处理:当基础底面的 形状或基底下的 荷载分布不规则时,可以把分布荷载分割为许多集中力,然后用布西奈斯克公式和叠加原理计算土中应力.当基础底面的 形状及分布荷载都是有规律时,则可以通过积分求解得相应的 土中应力.如图3-6所示,在半无限土体表面作用一分布荷载p (x ,y ),为了 计算土中某点米(x ,y ,z )的 竖向正应力σz 值,可以在基底范围内取单元面积d F =d ξd η,作用在单元面积上的 分布荷载可以用集中力d Q 表示,d Q =p (x ,y ) d ξd η.这时土中米点的 竖向正应力σz 值可用下式在基底面积范围内积分求得,即:图3-6(右图)分布荷载作用下土中应力计算1、空间问题的 附加应力计算常见的 空间问题有:均布矩形荷载、三角形分布的 矩形荷载及均布的 圆形荷载.(1) 均布矩形荷载图3-7(右图)矩形面积均布荷载作用下土中应力计算① 矩形面积角点下土中竖向应力计算在图3-7所示均布荷载作用下,计算矩形面积角点c 下深度z 处N 点的 竖向应力s z 时,同样可其将表示成如[]⎰⎰⎰+-+-==A A z z z y x d d y x p z d 252223)()(),(23ηξηξπσσpz d d z o l l bb z αηξξηπσ=++=⎰⎰--222252223)(23⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222320412arctan 41)4)(41()81(22m n m nm n m n m m n mn a π下形式:角点应力系数:在矩形面积上作用均布荷载时,若要求计算非角点下的 土中竖向应力,可先将矩形面积按计算点位置分成若干小 矩形,如图3-8所示.在计算出小 矩形面积角点下土中竖向应力后,再采用叠加原理求出计算点的 竖向应力s z 值.这种计算方法一般称为角点法.图3-8 角点法计算土中任意点的 竖向应力② 矩形面积中点O 下土中竖向应力计算图3-7表示在地基表面作用一分布于矩形面积(l ×b )上的 均布荷载p ,计算矩形面积中点下深度z 处米点的 竖向应力s z 值.式中n =l /b 和米=z /b .⎥⎥⎦⎤⎢⎢⎣⎡+++++++++=2222222222222arctan ))(()2(21z b l z lbz b l z b z l z b l lbz a c π⎰⎰=++=l o boz p z y x dxdy b xpz 011252223)(23απσ⎥⎥⎦⎤⎢⎢⎣⎡+++++=222222231)(21b l zz b l z b z b a t π⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫ ⎝⎛+-=+=⎰⎰23202000202522301111)(23r z p z r drd rz p z ππθσ(2) 矩形面积上作用三角形分布荷载时土中竖向应力计算图3-9(右图) 矩形面积三角形荷载作用下土中应力计算 当地基表面作用矩形面积(l ×b )三角形分布荷载时,为计算荷载为零的 角点下的 竖向应力值,可将坐标原点取在荷载为零的 角点上,相应的 竖向应力值σz 可用下式计算:(3) 圆形面积上作用均布荷载时土中竖向正应力的 计算 为了 计算圆形面积上作用均布荷载p 时土中任一点米(r,z )的 竖向正应力,可采用原点设在圆心O 的 极坐标(如图3-10),由以下公式在圆面积范围内积分求得.图3-10(右图) 圆形面积均布荷载作用下土中应力计算2、平面问题的附加应力设在地基表面上作用有无限长的条形荷载,且荷载沿宽度可按任何形式分布,但沿长度方向则不变,此时地基中产生的应力状态属于平面问题.在工程建筑中,当然没有无限长的受荷面积,不过,当荷载面积的长宽比l/b≥10时,计算的地基附加应力值与按L/b=∝时的解相比误差甚少.因此,对于条形基础,如墙基、挡土墙基础、路基、坝基等,常可按平面问题考虑.(1)线荷载(2)均布条形分布荷载下土中应力计算:条形分布荷载下土中应力状计算属于平面应变问题,对路堤、堤坝以及长宽比l/b≥10的条形基础均可视作平面应变问题进行处理.图3-11(右图)均布条形荷载作用下的土中应力计算米(x,y)点的三个附加应力分量为:⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpozπσ⎥⎦⎤⎢⎣⎡+-+---++-=22222216)144()144(4221arctan221arctanmmnmnmmnmnpoxπσ等值线图3.3.3 非均质和各项异性地基中的 附加应力在柔性荷载作用下,将土体视为均质各向同性弹性土体时土中附加应力的 计算与土的 性质无关.但是,地基土往往是由软硬不一的 多种土层所组成,其变形特性在竖直方向差异较大,应属于双层地基的 应力分布问题. 1、 双层地基对双层地基的 应力分布问题,有两种情况值得研究:一种是坚硬土层上覆盖着不厚的 可压缩土层即薄压缩层情况;另一种是软弱土层上有一层压缩性较低的 土层即硬壳层情况.⎥⎦⎤⎢⎣⎡+-+=2222216)144(32m m n nm p o xzπτ当上层土的 压缩性比下层土的 压缩性高时(薄压缩层情况),即E 1<E 2时,则土中附加应力分布将发生应力集中的 现象.当上层土的 压缩性比下层土的 压缩性低时(即硬壳层情况),即E 1>E 2,则土中附加应力将发生扩散现象,如图3-12所示.在实际地基中,下卧刚性岩层将引起应力集中的 现象,若岩层埋藏越浅,应力集中愈显著.在坚硬土层下存在软弱下卧层时,土中应力扩散的 现象将随上层坚硬土层厚度的 增大而更加显著.因土的 泊松比变化不大,其对应力集中和应力扩散现象的 影响可忽略.图3-12 双层地基中界面上附加应力的 分布规律双层地基中应力集中和扩散的 概念有着重要工程意义,特别是在软土地区,表面有一层硬壳层,由于应力扩散作用,可以减少地基的 沉降,故在设计中基础应尽量浅埋,并在施工中采取保护措施,以免浅层土的 结构遭受破坏. 2、 变形模量随深度增大的 地基在地基中,土的 变形模量E o 常随着地基深度增大而增大,这种现象在砂土中尤其显著.与均质地基相比,这种地基沿荷载中心线下,地基附加应力将产生应力集中. 可用以下半经验公式修正:v - 为应力集中因素,对粘性、完全弹性体v =3;硬土v =6;砂土与粘土之间的 土v =3~6.θπσvz RvF cos 22=3、 各项异性地基天然沉积形成的 水平薄交互层地基,其水平向变形模量E oh 大于竖向变形模量E ov假定地基竖直和水平方向的 泊松比相同,但变形模量不同条件下,均布线荷载下各项异性地基的 附加应力为:z σ - 线荷载作用下,均质地基的 附加应力.当非均质地基的 E oh >E ov 时,地基中出现应力扩散现象;当E oh <E ov 时,出现应力集中现象.3.4 有效应力原理1、土中二种应力试验在直径和高度完全相同的 甲、乙两个量筒底部,放置一层松散砂土,其质量与密度完全 一样.在甲量筒中放置若干钢球,使松砂承受σ的 压力;在乙量筒中小 心缓慢地注水,在砂面以上高度h 正好使砂层表面也增加σ的 压力.结论:甲、乙两个量筒中的 松砂顶面都作用了 相同的 压力σ,但产生两种不同的 效果,反映土体中存在两种不同性质的 力:(1)由钢球施加的 应力,通过砂土的 骨架传递的 应力(有效应力σ’),能使土层发生压缩变形,从而使土的 强度发生变化;(2)由水施加的 应力通过孔隙水来传递(孔隙水 压力u),不能使土层发生压缩变形.ovoh zz E E /σσ='AA W=χ现象:甲中砂面下降,砂土发生压缩.乙中砂面并不下降,砂土未发生压缩. 总应力:在土中某点截取一水平截面,其面积为A,截面上作用应力 σ,它是由上面的 土体的 重力、静水压力及外荷载P 所产生的 应力,称为总应力.有效应力:总应力的 一部分是由土颗粒间的 接触承担的 称为有效应力. 饱和土有效应力公式:u +'=σσσ' - 有效应力;σ - 总应力;u - 孔隙水压力.公式表明总应力为有效应力与孔隙水压力之和. 部分饱和土有效应力公式:()w a a u u u -+-='χσσa u - 气体压力; w u - 孔隙水压力.χ - 由试验确定的 参数, .3.4.1 毛细水上升时土中有效自重应力的计算图3-13 毛细水上升时土中总应力、孔隙水压力及有效应力在毛细水上升区,由于表面张力的作用使孔隙水压力为负值.使有效应力增加,在地下水位以下,由于水对土颗粒的浮力作用,使土的有效应力减少.3.4.2 土中水渗流时(一维渗流)有效应力计算(a)静水时(b)水自上向下渗流(c)水自下向上渗流图3-14 土中水渗流时总应力、孔隙水压力及有效应力分布当土中水渗流时,水对土颗粒有着动水力,必然影响土中有效应力的分布.表3-1 土中水渗流时总应力、孔隙水压力及有效应力的计算。

3地基中的应力计算

3地基中的应力计算

第三章 地基中的应力计算土中的应力按引起的原因可分为:(1)由土本身有效自重在地基内部引起的自重应力;(2)由外荷(静荷载或动荷载) 在地基内部引起的附加应力。

应力计算方法:1.假设地基土为连续、均匀、各向同性、半无限的线弹性体;2.弹性理论。

第一节 土中自重应力研究目的:确定土体的初始应力状态研究方法:土体简化为连续体,应用连续体力学 (例如弹性力学)方法来研究土中应力的分布。

假设天然土体是一个半无限体,地面以下土质均匀,天然重度为γ (kN/m3),则在天然地面下任意深度z (m)处的竖向自重应力σcz (kPa),可取作用于该深度水平面上任一单位面积上土柱的重量γz ⨯ l 计算,即: σcz= γzσcz 沿水平面均匀分布,且与z 成正比,即随深度按直线规律分布地基中除有作用于水平面上的竖向自重应力外,在竖直面上还作用有水平向的侧向自重应力。

由于地基中的自重应力状态属于侧限应力状态,故εx=εy=0,且σcx = σcy ,根据广义虎克定理,侧向自重应力σcx 和σcy 应与σcz 成正比,而剪应力均为零,即σcx = σcy = K0σczτxy=τyz=τzx =0式中 K0 ―比例系数,称为土的侧压力系数或静止土压力系数。

它是侧限条件下土中水平向有效应力与竖直向有效应力之比。

(1) 土中任意截面都包括有骨架和孔隙的面积,所以在地基应力计算时考虑的是土中单z σsz = γz 天然地面σcy zσcx天然地面σcz位面积上的平均应力。

(2) 假设天然土体是一个半无限体,地基中的自重应力状态属于侧限应力状态,地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形。

地基中任意竖直面和水平面上均无剪应力存在。

(3) 土中竖向和侧向的自重应力一般均指有效自重应力。

为了简便起见,把常用的竖向有效自重应力σcz ,简称为自重应力,并改用符号σc 表示。

成层地基土中自重应力因各层土具有不同的重度。

土力学地基中的应力计算

土力学地基中的应力计算

p
arctan
1
2(x / b) 2(z / b)
arctan 1 2(x / b) 2(z / b)
4 z [4( x )2 4( z )2 1]
bb
b
[4( x )2 4( z )2 1]2 16( z )2
b b
b
b
b
13
•带状三角形荷载
b
p
x
z
Mx
(x, z)
z
查表3-3
e 基底压力呈三角形分布
e 基底局部出现拉应力
基底与地基脱开
对于矩形底面,= b
6
37
(1) 矩形底面单轴偏心荷载作用时(e)
由竖向、弯矩平衡方程
P
b 2
(
p1
p2 ) a
M
b 2 ( p1
p2
)
a
(
b 2
b) 3
p1 p2
PM AW
P (1 A
e)
P 1 A
6e b
e a
b
P M Pe
z
p
{x b
(arctan
x z
/ /
b b
arctan
x
/b 1) z/b
z b
(x
/
b
x/b 1)2
1 (z
/
b)2
}
k(x b
,
z b
)
p
•带状梯形荷载
14
5、矩形均布面积荷载作用下附加应力旳计算
1)角点下旳垂直附加应力
dP pdxdy
d z
3dP 2
z3 R5
3p 2
z3 R5
dxdy

地基中的应力计算

地基中的应力计算

pmax
min
P A
1
6e B
pmin
P A
1
6e B
pmax
min
P A
1
6e B
矩形面积单向偏心荷载
高耸结构物下可 能的的基底压力
P
P
P
土不能承受拉力
B
B
e
e
x
Lx
L
y
y
pmax
pmin 0 pmax
pmin 0
e<B/6: 梯形
e=B/6: 三角形
B
压力调整
Ke
基底
x
L
水平地基半无限空间体;
半无限弹性地基内的自重应
力只与Z有关;
土质点或土单元不可能有侧
向位移侧限应变条件;
y
任何竖直面都是对称面
▪应变条件
y x 0; xy yz zx 0
o x
A
B
z
sA sB
(4)侧限应力状态—— 一维问题
▪应变条件
y x 0;
xy yz zx 0
K
P z2
查表3-1
一. 竖直集中力作用下的附加应力计算
P
-布辛内斯克课题
P z K z2
o αr
y
x
x
M’
R βz
3
1
y
K 2 [1 (r / z)2]5 / 2
0.5
M
z
特点
0.4
1.σz与α无关,应力呈轴对称分布
0.3
2.σz:τzy:τzx= z:y:x, 合力过原点,与R同向
K
0.2
基底压力:基础底面传递 给地基表面的压力,也称 基底接触压力。

地基中应力计算知识点讲解

地基中应力计算知识点讲解
基础底面
b
条形基础取:l=1m计算 l
(二)偏心荷载作用下基底压力计算(单向)
上部
e
荷载
基础 自重
Fk+Gk Mk
pkmin
pkmax
合力偏心距
e Mk Fk
基底边缘压力 最大最小值
pk max pk min
Fk
Gk A
(1
6e ) l
A=b·l e
•条形基础
(l/b≥10)
pk max pk min
Fk
Gk b
(1
6e ) b
pkmin
pkmax
(沿基础长边方向取单位长度 l=1m 为计算单位)
设计上一般pkmin>0,即基底压力要求呈梯形分布。
【例2-2】基础底面尺寸l=3m,b=2m,基础顶面作用轴心 力Fk=450kN,弯矩Mk=150kN·m,基础埋深d=1.2m,试 计算基底压力。
y
K—附加应力计算系数与(r , z有关)
P x
r
σz
M(x,y,z)
z
P
地面
水平方向
深度
水平方向
附加应力扩散规律示意图
附加应力扩散规律: ➢附加应力随深度增加而减小; ➢同深度水平方向越远附加应力越小; ➢附加应力成扩散状分布。
地基中应力类型(来源):自重应力与附加应力 学习要点:地基中自重应力与附加应力计算方法。 计算假定:地基为连续(均质)各向同性,半无限弹
性体,表面水平,则可运用材料力学公式进行计算。
第二节 土中自重应力
➢概述:自重应力指土自身有效重量产生的应力, 它使土密实并具有一定强度与刚度。 地基设计计算前应知其原始的应力状态。
【解】 Gk=γGAd=20×3×2×1.2=144kN

地基基础--地基中的应力计算

地基基础--地基中的应力计算

2.3 地基中的附加应力
地基附加应力:由新增外加荷载在 地基中产生的应力。
计算假定:
(1)基础刚度为零,即基底作用的荷载为 柔性荷载。
(2)地基为连续、均匀、各向同性的线性 变形半无限体。
布辛涅斯克解(1885)
z
3Pz3
2R5
3
1
21r25/2
PKP
z2
z2
z
竖向附加应力的分布规律:
空间问题的附加应力计算:
单向偏心荷载作用:
pm mianxFblG16le
式中: GGAd Abl
几点说明
重度取值:一般取20kN/m3。地下水位以下取 有效重度。 条形基础:沿长度取1m计算。 基底压力分布:均布、梯形分布或三角形分布。

当e l 6
时:
2FG
pmax 3ab
式中: a l e 2
基底附加压力计算
矩形面积上作用 均布的垂直荷载
空间问题的附加应力计算:
矩形面积上作用 三角形分布的垂直 荷载
例题:
某荷载面为2×1m2, 其上均布荷载为 p=100kPa。求荷载 面积上点A、E、O以 及荷载面积外点F、 G等各点下z=1m深度 处的附加应力。并利 用计算结果说明附加 应力的扩散规律。
空间问题的附加应力计算:
圆形面积上作用 垂直均布荷载
平面问题的附加应力计算:
均布竖向线荷载 作用
平面问题的附加应力计算:
均布竖向条形荷 载作用
平面问题的附加应力计算:
三角形分布的竖 向条形荷载作用
2.4 地基中附加应力的有关问题
地基附加应力的分布规律
非均质地基中的附加应力
上软下硬情况
上硬下软情况

土力学与基础工程地基土中的应力计算

土力学与基础工程地基土中的应力计算
建造后的基底压力中扣除基底
标高处原有的自重应力后,新
增加于基底的压力。
m 1h1 2h2 nhn / d
注意:
p0 p cz p m d
基底附加压力 的计算
地下水位以下的重度取有效重度
基底附加压力
基础标高以上土的加 权平均容重
自重应力
p
0
p

0
d
p0 max pmax 基底压力呈梯形分布时, 0d p0 min pmin 基底附加压力
【例题分析】 • 【例】某条形地基,如下图所示。基础上作用荷载
F=400kN/m,M=20kN•m,试求基础中点下的附加压 力。
FK 0.1m MK
1.5m 0 =18.5kN/m3 2m
分析步骤I:
FK=400kN/m 0.1m MK=20kN •m
1.5m 2m
0 =18.5kN/m3
荷载偏心距 e=M/(F+G)
基础及上覆 土重G= GAd 140.3kPa
319.7kPa
pmax pmin
1.基底压力计算
条形基础取单 位长度计算
F G 6e 1 bl l
讨论:基底压力分布?
pmax pmin
F G 6e 1 bl l
当e<l/6时,pmax,pmin>0,基底压力呈梯形分布 当e=l/6时,pmax>0,pmin=0,基底压力呈三角形分布 当e>l/6时,pmax>0,pmin<0,基底出现拉应力
pmax
pmin e<l/6
cz2 cz1 2h2 7.85 17.8 2 43.45kN m 2

地基中的应力计算

地基中的应力计算
一般情况下,自重应力不会引起地基变形,因为土层形成后 已有很长时间,土在自重作用下的压缩变形早已完结。
上一页 返回
第二节基底压力的计算
建筑物荷载通过基础传给地基,基础底面传递到地基表面的 压力称为基底压力,而地基支承基础的反力称为地基反力。 基底压力与地基反力是大小相等、方向相反的作用力与反作 用力。基底压力是分析地基中应力、变形及稳定性的外荷载, 地基反力则是计算基础结构内力的外荷载。因此,研究基底 压力的分布规律和计算方法具有重要的工程意义。
(2-2)
上一页 下一页 返回
第一节土体自重应力的计算
若有地下水存在,则水位以下各层土的重度 i 应以浮重
度层),'i 则 在 m不i 透水w 层代层替面。处若浮地力下消水失位,以此下处存的在自不重透应水力层等(如于岩
全部上覆的水土总重,如图2-1 (b)所示。
四、有效自重应力
有效应力是接触面上接触应力的平均值,即是通过骨架传
三 、--成--侧土层压的土力泊地系松基数比自,;重应力计ccxz 算 1

当地基由成层土组成,如图2-1
了,重度为
式所示:
i
时,则在深度
z
(n az)i所处示的,自任重意应层力i的厚c度z 如为下zi
i 1
n
cz 1z1 2 z2 3z3 n zn i zi i 1
第一节 建筑工程地基的基本要求及地 基加固方法
与上部结构相比,地基与基础设计和施工中 的不确定因素较多,需要更多地依靠经验特 别是当地经验去解决实际问题.地基基础的 设计需同时满足强度和变形的要求,因为地 基基础的各种事故都是“强度”问题和 “变形”问题的反映.
二、地基加固方法 对已有地基基础加固的方法有基础补强注

土力学2地基中应力计算

土力学2地基中应力计算

土力学2地基中应力计算土力学是研究土体力学性质的科学分支,其中地基中应力计算是土力学中的一个重要内容。

地基是建筑物的基础,承受着建筑物的重量和外部荷载的作用。

合理计算地基中的应力,对设计和施工都至关重要。

本文将介绍地基中应力计算的基本原理和方法。

地基中的应力可以分为两种类型:垂直应力和水平应力。

垂直应力是指垂直于地面方向的应力,也称为轴向应力。

水平应力是指平行于地面方向的应力,也称为环向应力。

地基的应力状态主要由建筑物的重力作用和地基外荷载共同决定。

首先要进行地基中垂直应力的计算。

垂直应力可以通过建筑物的重量和地基的承载力来计算。

一般情况下,建筑物的重量可以根据结构设计文件中的荷载参数进行估算。

而地基的承载力则需要根据土壤的性质和地基的几何形状来进行计算。

常用的计算方法有承载力极限平衡法和桩基承载力计算法。

通过这些方法可以计算出地基中的垂直应力分布。

接下来是地基中水平应力的计算。

水平应力的计算与地基的变形特点相关。

常见的地基变形包括沉降、倾斜和水平位移等。

根据土壤的弹性模量、剪切模量和地基的几何形状,可以利用弹性力学原理推导出地基中的水平应力。

对于直角边界条件的地基来说,可以通过弹性基础解法来进行计算。

而对于其它边界条件下的地基,需要使用有限元软件进行数值计算。

在进行地基中应力计算时,还需要考虑土体的强度特性。

土体的强度主要包括抗压强度、抗剪强度和抗拔强度等。

这些强度参数可以通过室内试验或现场试验来测定。

在计算地基中的应力时,需要按照土体的强度特性来确定土体的极限承载力和变形特性。

除了垂直应力和水平应力的计算,地基中的应力计算还需要考虑地下水的影响。

地下水可以对地基的应力产生很大的影响,特别是在饱和土的情况下。

地下水压力可以通过水文地质调查和现场测试来进行测定,并考虑到地基中的应力计算中。

总之,地基中应力的计算对于设计和施工都至关重要。

它直接影响到地基的稳定性和建筑物的安全性。

因此,在进行地基设计时,需要进行合理的应力计算,并结合实际情况进行工程应用。

地基中的应力计算

地基中的应力计算

地基中的应力计算在工程建设中,地基承受着来自上部结构以及地面荷载的作用力。

为了确保地基的安全性和稳定性,需要进行应力计算。

地基应力计算的目的是确定地基的承载能力,以评估地基是否能够承受作用力并保持稳定。

下面将详细介绍地基应力计算的方法和步骤。

地基应力计算主要包括两个方面:地基的竖向应力计算和地基的水平应力计算。

1.地基的竖向应力计算:地基的竖向应力计算是为了确定地基的承载能力以及应力的分布情况。

主要有以下几个步骤:步骤一:确定地基的几何形状和土壤参数。

首先,需要确定地基的几何形状,包括地基的宽度、长度和深度。

然后,需要了解土壤的参数,如土壤的重度、黏聚力和内摩擦角等。

这些参数可以通过现场勘察和实验室试验获得。

步骤二:计算作用在地基上的荷载。

根据上部结构的类型和载荷特征,可以计算出作用在地基上的荷载。

常见的荷载包括自重荷载、活荷载和雪荷载等。

步骤三:确定地基的保证率。

地基的保证率是指地基的实际承载能力与设计承载能力之间的比值。

根据实际情况和风险要求,通常选择一个合适的保证率。

步骤四:计算地基的承载能力。

地基的承载能力可以通过不同的方法计算,常用的有下述几种方法:-Ф理论方法:以单轴压缩试验得到的土壤参数进行计算,同时考虑土体参数的变异性。

-岩土工程经验公式:利用大量实测资料得到具有统计学意义的经验公式进行计算。

-土壤参数反分析方法:根据实测的地基沉降数据,通过逆分析得到地基的承载能力。

步骤五:确定地基的应力分布。

通过计算得到地基的承载能力后,可以根据地基的几何形状和土壤参数,计算得到不同深度处的地基应力分布。

2.地基的水平应力计算:地基的水平应力计算是为了确定地基的稳定性。

主要有以下几个步骤:步骤一:确定地基的几何形状和土壤参数。

同样,需要确定地基的几何形状和土壤的参数。

步骤二:确定侧推力。

侧推力是指地基在侧向承受的荷载,通常由侧向土压力和水平荷载等形成。

步骤三:计算地基的稳定性。

通过考虑地基的几何形状、土壤的参数和侧推力等因素,可以计算地基的稳定性。

课题三地基中的应力计算

课题三地基中的应力计算
②若图3-20中,中砂层以下为坚硬的整体岩石σcz1、σcz2、 σcz3同①,但岩层顶面处为159.84+10×6.2=221.84kPa
绘制自重应力曲线略。
§3 土体中的应力 §3.1 土的自重应力 §3.3 基底压力 §3.3 地基附加应力
§3.2 基底压力计算
建筑物设计
上部结构 基础
基础底面任意点的压力为:
p(x,y) F G M x y M y x
bl
Ix
Iy
式中 I x 、 I y ——矩形基础底面处绕 x 轴和 y 轴的惯性矩(m4)。
若条形基础在宽度方向上受偏心荷载作用,同样可在长度方向取1延米 进行计算,则基底宽度方向两端的压力为:
pm a x
地下水位以下用浮重度γ’
思考题:1. 水位骤降后,原水位到现水位之间的饱 和土层用什么重度?
2. 水位变化对自重应力有何影响?
注意:
自重应力的计算的起始点必须从原地面开始, 与基坑开挖与否无关;
当地基土成层时,由于各土的重度不同,在 各土层交界面处的自重应力分布会出现转折 现象;
在地下水位以下,一般情况下须采用浮重度 计算。
地基
基础结构的外荷载 地基反力
基底压力 附加应力 地基沉降变形
影响因素 计算方法 分布规律
上部结构的自重及 各种荷载都是通过 基础传到地基中的。
基底压力:基础底面传 递给地基表面的压力, 也称基底接触压力。
暂不考虑上部结构的影响, 使问题得以简化; 用荷载代替上部结构。
基础底面压力的影响因素
基底压力
课题三 地基中的应力计算
§3 土体中的应力
§3 土体中的应力
地基中的应力状态 应力应变关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

γw h 2
γh1+γ'h 2
静水条件下各应力的分布
§3.3 有效应力原理
2.毛细水上升时土中有效自重应力的变化 毛细水上升区由于表面张力的作用使孔隙水压力为
负值,u=-γwhc,使有效应力增加。 在地下水位以下,由于水对土粒的浮力作用,使有
效应力减小。
毛细水上升时土中总应力、孔隙水压力及有效应力计算
有效应力原理示意图
§3.3 有效应力原理
根据平衡条件:
σA=σsAs+ uwAw+ uaAa 对于饱和土体:Aa=0 则 σA=σsAs+ uwAw 式中,σ-作用于截面上的总 应力。
变换得:σ=σsAs/A + uw(A –As)/A

σ=σsAs/A + uw(1
–As/A)
又已知σsAs/A为σ',As/A 很小,可忽略。
(a) 材料力学
(b) 土力学
§3.2 地基中的自重应力
3.2.1 竖向自重应力
①均质土层:设地基中某单元
体离地面的距离h,则单元体
上竖向自重应力为:
h
cz h
式中 γ—土的天然重度,kN/m3 h—计算应力点3.2 地基中的自重应力
②成层土层:自重应力是由多层土
天然地面
γ1
γ1h1
γ
2
γ1h1+ γ2 h 2
γ3sat
γ1h1+γ2h2+γ3' h3
§3.2 地基中的自重应力
计算时应注意: 地下水位以上用天然容重;当地下水位以下为砂土
时,土中水为自由水,计算时用浮重度γ’,对粘性土: 当水下为坚硬粘土时(不透水层,即液性指数IL<0,即 w <wp),在饱和坚硬粘土中只含有结合水,计算时采 用饱和重度γsat,若粘性土液性指数IL>1时,为流动状 态,考虑水浮力作用,用γ’。
第3章 地基中的应力计算
3.1 概述
3.2 地基中的自重 应力
3.3 有效应力原理
3.4 基底压力计算
3.5 地基中的附加 应力
3.7 刚性基础的倾斜
3.6 平面问题条件下 的附加应力
3.8 几个问题的 讨论
§3.1 概述
3.1.1 研究土中应力的目的
建筑物地基的土体在上部荷载的作用下会发生变形, 使建筑物发生沉降、倾斜和水平位移等破坏,过大的变形 会影响建筑物的安全和正常使用,因此有必要了解和掌握 土体中应力的分布规律和计算方法。
组成,设各层土的厚度为h1,
h2...hn,相应重度为γ1, γ2...γn,则地基中第n层土底面 h1
处的竖向自重应力为:
h2
n
cz ihi
i1
h3
式中 hi—i 层土的厚度,m
n—计算深度范围内土层数
γi—第i层土的的天然重度,kN/m3 ,地 下水位以下应取浮重度γi’=γisat-γw
自重应力:由土体本身有效重量产生的应力,通常认 为变形已经稳定;
附加应力:由于外荷在地基内部引起的应力,是使地 基失稳和产生变形的主要原因。
§3.1 概述
3.1.2 土中的应力状态 一、应力—应变关系的假设 在计算地基中的附加应力时,把土当成线弹
性体,即假定其应力与应变呈线性关系。 1.连续介质假设 2.线弹性体假设 3.均质和各向同性假设
x
1 E
[ x
(
y
z )]
y
1 E
[ y
( z
x )]
z
1 E
[ z
( x
y )]
xy
2(1
E
)
xy
yz
2(1
E
)
yz
xz
2(1
E
)
xz
侧限条件
x y 0 x y
x
y
1
z
K0 z
ν —土的泊松比,0.20-0.45 K0—土的侧压力(静止土压力)系数
例题1:按例图所给的资料,计算并绘制地基中的自重应 力沿深度的分布曲线。
土中两种应力试验
§3.3 有效应力原理
3.3.2 有效应力原理
截面总应力的一部分由土颗粒 间的接触面承担和传递,即有效应 力;另一部分由孔隙压力承担。
土体在外力作用下处于平衡, 沿a-a截面取脱离体,土颗粒接触 面的法向应力σs。
As-土颗粒接触面积之和,u-孔隙水压 力,Aw-孔隙水横截面积,u a-孔隙气压 力,Aa-空气截面积
有效应力原理示意图
σ=σ' + u
有效应力原理
§3.3 有效应力原理
3.3.3 有效应力原理应用举例
1.静水条件下
C点水平面上:竖向总应力:σ=γh1+γsat h2
孔隙水压力: u =γw h2
有效应力:σ’=σ-u=γh1+γ'h2
σ
u
σ'
A
h1
γ
B
γh1
γh1
h2
γ sat
C
γh1+ γsat h 2
§3.3 有效应力原理
3.稳定性渗流条件下 土中水渗流时总应力、
孔隙水压力及有效应力计算: (a) 静水时 b ' b ub h1 ' h2
§3.2 地基中的自重应力
③地下水位升降时的土中自重应力
§3.2 地基中的自重应力
说明: 自重应力在均质地基中随深度呈直线分布; 自重应力在成层地基中呈折线分布; 在土层分界面处和地下水位处发生转折;
'
均质地基(同一土层)
1 (1 2 ) 2
' 2
成层地基
§3.2 地基中的自重应力
3.2.2 水平自重应力 根据胡克定律
§3.1 概述
二、地基中的几种应力状态 计算地基应力时,将地基看作具有水平界面、深度和 广度都无限大的半空间无限体。 1.三维应力状态
ij =
xx xy xz
yx yy yz
zx zy zz
二维问题
§3.1 概述
2.二维应变状态(平面应变状态)
o
y
z
x
xx 0 xz
ij = 0 yy 0
例题4-1:按例图所给的资料,计算并绘制地基中的自重应力沿深度的分布 曲线。
§3.3 有效应力原理
3.3.1 土中两种应力试验 (1)有效应力
由钢球施加的应力,通过土 体骨架传递的应力为有效应力, 只有这种应力才使得土体变形, 强度改变。
(2)孔隙水压力 由水施加的应力通过孔隙水
来传递,即孔隙水压力,这种应 力不会使土体发生压缩变形。
zx 0 zz
§3.1 概述
3.侧限应力状态 它是指侧向应变为零的一种应力状态,土体只记竖向 变形。
o
x
ij =
y
A
z
B
由εx=εy=0可得到σx=σy,且与σz成正比。
xx 0 0 0 yy 0 0 0 zz
§3.1 概述
三、土力学中应力符号的规定 (1)应力符号的规定法与弹性力学相同,但方向相反,即 正应力:拉为正,压为负,剪应力:顺时针为正,逆时针为 负。 (2)用摩尔圆进行应力分析时,正应力以压应力为正,剪 应力以逆时针为正,顺时针为负。
相关文档
最新文档