离散数学之等值演算
1.3等值演算(离散数学) PPT
等值 不等值
基本等值式
1.双重否定律
A ┐┐A
2.幂等律
A A∨A, A A∧A
3.交换律
A∨B B∨A, A∧B B∧A
4.结合律
(A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
5.分配律
A∨(B∧C) (A∨B)∧(A∨C) (∨对∧的分配律)
A∧(B∨C) (A∧B)∨(A∧C) (∧对∨的分配律)
等值演算的应用 –证明两个公式等值
–判断公式类型 –解判定问题
等值演算的应用举例
例3 证明两个公式等值 (p→q)→r (p∨r)∧(┐q∨r)
解答
(p→q)→r (┐p∨q)→r
(蕴含等值式、置换规则)
┐(┐p∨q)∨r (蕴含等值式、置换规则)
(p∧┐q)∨r
(德摩根律、置换规则)
(p∨r)∧(┐q∨r) (分配律、置换规则)
(蕴含等值式) (分配律) (德摩根律) (蕴含等值式)
例题
例5 证明:(p→q)→r 与 p→(q→r) 不等值
解答 方法一、真值表法。
方法二、观察法。易知,010是(p→q)→r的成假赋值,而010 是p→(q→r)的成真赋值,所以原不等值式成立。
方法三、通过等值演算化成容易观察真值的情况,再进行判断。
1.3 等值演算
两公式什么时候代表了同一个命题呢?
抽象地看,它们的真假取值完全相同时即代 表了相同的命题。
设公式A,B共同含有n个命题变项,若A与B有 相同的真值表,则说明在2n个赋值的每个赋 值下,A与B的真值都相同。于是等价式AB 应为重言式。
等值的定义及说明
定义1.10 设A,B是两个命题公式,若A,B构成的 等价式AB为重言式,则称A与B是等值的,记 作AB。
离散数学-命题逻辑等值演算
消解规则
总结词
消解规则允许我们通过消除两个等价的 命题来得出新的结论。
VS
详细描述
消解规则允许我们通过消除两个等价的命 题来得出新的结论。例如,如果我们有两 个等价的命题A和B,并且知道A能推出C, 同时B能推出D,那么我们可以通过消解规 则得出C ∧ D。
03
推理规则
假言推理
总结词
假言推理是一种基于前件和后件的推理方法,前件是推理的前提,后件是推出的结论。
详细描述
假言推理的逻辑形式是“如果P,则Q”,表示当P为真时,Q也为真。例如,“如果天 下雨,则地面会湿”,当天下雨时,可以推断出地面会湿。
应用场景
假言推理在日常生活和科学研究中广泛应用,如自然语言处理、人工智能、法律推理等 领域。
拒取式与析取三段论
总结词
拒取式是一种通过否定结论 来推导前提的推理方法,而 析取三段论则是通过前提的 析取来推导结论的推理方法
人工智能中的逻辑推理是离散数学中命题逻辑等值演算的另 一个重要应用。在自然语言处理、知识表示和推理、智能决 策等领域,逻辑推理都发挥着关键作用。
通过使用命题逻辑等值演算,人工智能系统可以更好地理解 和处理复杂的逻辑关系,提高推理的准确性和效率。例如, 在专家系统中,逻辑推理可以帮助我们构建知识库和推理机 ,实现智能化的决策支持。
05
习题与思考
命题逻辑的习题练习
练习题1
理解命题逻辑的基本概念,如命题、联结词、量词等,并能够准确 判断一个语句是否为命题。
练习题2
掌握命题逻辑中的推理规则,如析取三段论、合取三段论、假言推 理等,并能够运用这些规则进行简单的逻辑推理。
练习题3
利用真值表法判断复合命题的真假值,理解复合命题的逻辑关系。
离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算
名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0
离散数学之等值演算
10
例3 (续)
(3) ((pq)(pq))r)
解 ((pq)(pq))r)
(p(qq))r (分配律)
p1r
(排中律)
pr
(同一律)
这不是矛盾式,也不是重言式,而是非重言式的可
说明: 由公式A的主析取范式确定它的主合取范式,反之亦然. 用公式A的真值表求A的主范式.
30
主范式的用途(续)
例 某公司要从赵、钱、孙、李、周五名新毕业 的大学生中选派一些人出国学习. 选派必须满足 以下条件:
(1)若赵去,钱也去; (2)李、周两人中至少有一人去; (3)钱、孙两人中有一人去且仅去一人; (4)孙、李两人同去或同不去; (5)若周去,则赵、钱也去. 试用主析取范式法分析该公司如何选派他们出国?
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
成假 赋值
000 001 010 011 100 101 110 111
名称
M0 M1 M2 M3 M4 M5 M6 M7
21
主析取范式与主合取范式
主析取范式: 由极小项构成的析取范式 主合取范式: 由极大项构成的合取范式 例如,n=3, 命题变项为p, q, r时,
③ (1) ~ (5)构成的合取式为 A=(pq)(su)((qr)(qr)) ((rs)(rs))(u(pq))
33
例 (续)
A的演算过程如下:
A (pq)((qr)((qr))(su)(u(pq))
((rs)(rs))
离散数学 等值式 范式 消解算法
15
命题公式的范式
(3) 使用分配律 A(BC)(AB)(AC) A(BC) (AB)(AC)
求合取范式 求析取范式
公式范式的不足不惟一
16
求公式的范式
例5 求下列公式的析取范式与合取范式 (1) (pq)r (2) (pq)r
p q r 1 1 0 M6
p q r 1 1 1 M7
mi与Mi的关系: mi Mi, Mi mi
23
主析取范式与主合取范式
主析取范式——由极小项构成的析取范式 主合取范式——由极大项构成的合取范式 例如,n=3, 命题变项为 p, q, r 时,
(pqr)(pqr) m1m3 ——主析取范式 (pqr)(pqr) M1M7——主合取范式 公式A的主析取(合取)范式——与A 等值的主析取(合取)范式 定理2.5 (主范式的存在惟一定理) 任何命题公式都存在与之等值的主析取范式和主合取范式, 并且是惟一的
等值演算与置换规则
1. 等值演算——由已知的等值式推演出新的等值式的过程 2. 等值演算的基础:
(1) 等值关系的性质:自反性、对称性、传递性 (2) 基本的等值式 (3) 置换规则(见3) 3. 置换规则 设 (A) 是含公式 A 的命题公式,(B) 是用公式 B 置换 (A) 中所有的 A 后得到的命题公式 若 BA,则 (B)(A)
(pr)(qr) (对分配律) 合取范式
18 r (pq) r 消去 ((pq) r) (r (pq)) 消去 ( (pq) r) (r pq) 消去
((p q) r) ( p q r ) 否定内移
合取范式:
离散数学-第二章命题逻辑等值演算习题及答案
第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。
离散数学第2章 命题逻辑等值演算
例2.6
CHAPTER TWO
例2.6 在某次研讨会的休息时间,3名与会者根据王教授的口音 对他是哪个省市的人进行了判断: 甲说王教授不是苏州人,是上海人。
乙说王教授不是上海人,是苏州人。 丙说王教授不是上海人,也不是杭州人。 听完3人的判断,王教授笑着说,他们3人中有一人说得全对, 有一人说对了一半,有一人说得全不对。试用逻辑演算法分析 王教授到底是哪里的人? 解: 设命题 p, q, r分别表示 : 王教授是苏州、上海、杭州人。 则p, q, r中必有一个真命题,两个假命题。要通过逻辑演算将 真命题找出来。 设: 甲的判断为: A1= ┐p∧q; 乙的判断为:A2= p∧┐q; 丙的 判断为:A3= ┐q∧r。
等值式模式
CHAPTER TWO
当命题公式中变项较多时,用上述方法判断两个公式是否 等值计算量很大。为此,人们将一组经检验为正确的等值式作 为等值式模式,通过公式间的等值演算来判断两公式是否等值。 常用的等值式模式如下:
1.双重否定律:A⇔ ┐(┐A) 2.幂等律:A⇔A∨A, A⇔A∧A
3.交换律: A∨B⇔B∨A, A∧B⇔B∧A 4.结合律: (A∨B)∨C⇔A∨(B∨C), (A∧B)∧C⇔A∧(B∧C) 5.分配律:A∨(B∧C)⇔(A∨B)∧(A∨C) (∨对∧的分配律)
⇔ ┐(┐p∨q)∨r (蕴含等值式,置换规则) ⇔ (p∧┐q)∨r (德摩根律,置换规则)
⇔(p∨r)∧(┐q∨r)(分配律,置换规则) 为简便起见, 以后凡用到置换规则时, 均不必标出。
6/2/2013 9:02 PM Discrete Math. , Chen Chen 10
离散数学一阶逻辑等值演算
在一阶逻辑中,推理系统还包括量词和谓词,量词 用于描述个体的数量,谓词则用于描述个体的性质 。
推理系统的构造
构造推理系统需要确定系统的 公理和推理规则。
公理的选择应确保系统的一致 性和完备性,即从公理推导出 的结论不与已知事实相矛盾, 并且所有需要的结论都能从公 理推导出来。
离散数学一阶逻辑等值演算的展望
形式化方法的普及和应用
随着计算机科学的不断发展,离散数学一阶逻辑等值演算的形式化方法将更加普及和应 用,成为解决复杂问题的关键工具之一。
人工智能与离散数学的深度融合
未来的人工智能系统将更加依赖于离散数学一阶逻辑等值演算的形式化方法,以实现更 加智能化的推理和决策。
新兴领域的应用拓展
离散数学一阶逻辑等值演算
目
CONTENCT
录
• 离散数学概述 • 一阶逻辑基础 • 等值演算 • 推理系统 • 应用实例 • 离散数学一阶逻辑等值演算的发展
趋势与展望
01
离散数学概述
定义与特点
定义
离散数学是研究离散对象(如集合、图、树、逻辑等)的数学分 支的总称。
特点
离散数学主要关注离散对象的结构、性质和关系,通常不涉及连 续的量或函数。
离散概率论是研究离散随机事件的数学分支,例如扔骰子、抽签等。一阶逻辑等值演算在离散概率论 中也有着重要的应用。
利用一阶逻辑等值演算,可以描述随机事件之间的关系和性质,例如计算事件的概率、推导事件的独 立性等。这些描述方法有助于深入理解随机事件和概率分布,为解决实际问题提供有力支持。
06
离散数学一阶逻辑等值演算的发展趋势与展望
离散数学第五章一阶逻辑等值演算与推理
5.1 一阶逻辑等值式与置换规则定义5.1设A,B是一阶逻辑中任意两个公式,若A B是永真式,则称A与B 是等值的。
记做A B,称A B是等值式。
谓词逻辑中关于联结词的等值式与命题逻辑中相关等值式类似。
下面主要讨论关于量词的等值式。
一、基本等值式第一组代换实例由于命题逻辑中的重言式的代换实例都是一阶逻辑中的永真式,因而第二章的16组等值式给出的代换实例都是一阶逻辑的等值式的模式。
例如:xF(x)┐┐xF(x)x y(F(x,y)→G(x,y))┐┐x y(F(x,y)→G(x,y))等都是(2.1)式的代换实例。
又如:F(x)→G(y)┐F(x)∨G(y)x(F(x)→G(y))→zH(z)┐x(F(x)→G(y))∨zH(z))等都是(2.1)式的代换实例。
第二组消去量词等值式设个体域为有限域D={a1,a2,…,a n},则有(1)xA(x)A(a1)∧A(a2)∧…∧A(a n)(2)xA(x)A(a1)∨A(a2)∨…∨A(a n) (5.1)第三组量词否定等值式设A(x)是任意的含有自由出现个体变项x的公式,则(1)┐xA(x)x┐A(x)(2)┐xA(x)x┐A(x)(5.2)(5.2)式的直观解释是容易的。
对于(1)式,“并不是所有的x都有性质A”与“存在x没有性质A”是一回事。
对于(2)式,“不存在有性质A的x”与“所有x都没有性质A”是一回事。
第四组量词辖域收缩与扩张等值式设A(x)是任意的含自由出现个体变项x的公式,B中不含x的出现,则(1)x(A(x)∨B)xA(x)∨Bx(A(x)∧B)xA(x)∧Bx(A(x)→B)xA(x)→Bx(B→A(x))B→xA(x) (5.3)(2)x(A(x)∨B)xA(x)∨Bx(A(x)∧B)xA(x)∧Bx(A(x)→B)xA(x)→Bx(B→A(x))B→xA(x) (5.4)注意:这些等值式的条件。
第五组量词分配等值式设A(x),B(x)是任意的含自由出现个体变项x的公式,则(1)x(A(x)∧B(x))xA(x)∧xB(x)(2)x(A(x)∨B(x))xA(x)∨xB(x) (5.5)二、基本规则1.置换规则设Φ(A)是含公式A的公式,Φ(B)是用公式B取代Φ(A)中所有的A之后的公式,若A B,则Φ(A)Φ(B).一阶逻辑中的置换规则与命题逻辑中的置换规则形式上完全相同,只是在这里A,B 是一阶逻辑公式。
离散数学第二章 命题逻辑等值演算
范式存在定理
定理2.3 任何命题公式都存在着与之等值的析取范式与合 定理 取范式. 取范式. 求公式 的范式的步骤 的范式的步骤: 证 求公式A的范式的步骤: (1) 消去 中的→, ↔ 消去A中的 中的→ A→B⇔¬ ∨B ⇔¬A∨ → ⇔¬ A↔B⇔(¬A∨B)∧(A∨¬ ∨¬B) ↔ ⇔ ¬ ∨ ∧ ∨¬ (2) 否定联结词¬的内移或消去 否定联结词¬ ¬ ¬A⇔ A ⇔ ⇔¬A∧¬ ¬(A∨B)⇔¬ ∧¬ ∨ ⇔¬ ∧¬B ⇔¬A∨¬ ¬(A∧B)⇔¬ ∨¬ ∧ ⇔¬ ∨¬B
真值表法
例1 判断 ¬(p∨q) 与 ¬p∧¬q 是否等值 ∨ ∧ 解 p q 0 0 0 1 1 0 1 1 ¬p ¬q 1 1 0 0 1 0 1 0 p∨q ¬(p∨q) ¬p∧¬q ¬(p∨q)↔(¬p∧¬q) ∨ ∨ ∧ ∨ ↔¬ ∧ 0 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1
实例(续)
(2) (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) 解 (p→q)↔(¬q→¬ → ↔ ¬ →¬ →¬p) ∨¬p) ⇔ (¬p∨q)↔(q∨¬ ¬ ∨ ↔ ∨¬ ⇔ (¬p∨q)↔(¬p∨q) ¬ ∨ ↔¬ ∨ ⇔1 该式为重言式. 该式为重言式 (蕴涵等值式) 蕴涵等值式) (交换律) 交换律)
实例(续)
(3) ((p∧q)∨(p∧¬ ∧r) ∧¬q))∧ ∧ ∨ ∧¬ 解 ((p∧q)∨(p∧¬ ∧r) ∧ ∨ ∧¬ ∧¬q))∧ (分配律) 分配律) (排中律) 排中律) (同一律) 同一律) ∨¬q))∧ ⇔ (p∧(q∨¬ ∧r ∧ ∨¬ ⇔ p∧1∧r ∧ ∧ ⇔ p∧r ∧ 成假赋值. 成假赋值 总结:A为矛盾式当且仅当 ⇔ 为重言式当且仅当A⇔ 总结 为矛盾式当且仅当A⇔0; A为重言式当且仅当 ⇔1 为矛盾式当且仅当 为重言式当且仅当 说明:演算步骤不惟一, 说明 演算步骤不惟一,应尽量使演算短些 演算步骤不惟一
第2章命题逻辑等值演算离散数学介绍
解答 方法一、真值表法。
方法二、观察法。易知,010是(p→q)→r的成假赋值,而010是 p→(q→r)的成真赋值,所以原不等值式成立。
方法三、通过等值演算化成容易观察真值的情况,再进行判断。
A=(p→q)→r (┐p∨q)→r
(蕴涵等值式)
┐(┐p∨q)∨r
(蕴涵等值式)
(p∧┐q)∨r
(德摩根律)
(┐p∨q)∨q)∧p)∨q
(蕴涵等值式)
(┐(┐p∨q)∨┐p)∨q
(德摩根律)
((p∧┐q)∨┐p)∨q
(德摩根律)
((p∨┐p)∧(┐q∨┐p))∨q (分配律)
(1∧(┐q∨┐p))∨q
(排中律)
(┐q∨q)∨┐p
(同一律)
1∨┐p
(排中律)
1
B=p→(q→r) ┐p∨(┐q∨r)
(蕴涵等值式)
┐p∨┐q∨r
(结合律)
000,010是A的成假赋值,而它们是B的成真赋值。
例题2.5 用等值演算判断下列公式的类型: (1)(p→q)∧p→q (2)(p→(p∨q))∧r (3)p∧(((p∨q)∧┐p)→q)
(1) (p→q)∧p→q
离 散 数 学介绍
本章的主要内容
– 等值式与基本的等值式 – 等值演算与置换规则 – 析取范式与合取范式、主析取范式与主合取范式 – 联结词完备集(不讲) – 可满足性问题与消解法(不讲)
本章与后续各章的关系
– 是第一章的抽象与延伸 – 是后续各章的现行准备
两公式什么时候代表了同一个命题呢? 抽象地看,它们的真假取值完全相同时即
一个逻辑等值式,如果只含有┐、∨、∧、0、1
那么同时 把∨和∧互换 把0和1互换
离散数学命题逻辑等值演算
命题公式与分类
命题公式
由命题变元、联结词和括号组成的符号 串,例如“(P ∧ Q) → R”。
VS
分类
根据命题公式的结构和性质,可将其分为 重言式、矛盾式、可满足式等类型。其中 ,重言式在所有赋值下都为真,矛盾式在 所有赋值下都为假,可满足式则存在至少 一组赋值使其为真。
PART 02
等值演算基本原理
命题
具有明确真假值的陈述句,例如“今 天是晴天”或“2 + 2 = 5”。
联结词
用来连接命题并构成复合命题的词汇 ,如“且(∧)”、“或(∨)”、“ 非(¬)”、“如果...则...(→)”等 。
真值表与逻辑等价
真值表
列出命题逻辑中所有可能的真值组合 ,用于确定复合命题的真假值。
逻辑等价
两个命题在所有可能的真值组合下具 有相同的真假值,则称这两个命题逻 辑等价。
吸收律、分配律及应用
吸收律定义
在命题逻辑中,吸收律描述了两个公式之间的等值关系。具体公式为:P∨(P∧Q)⇔P 和 P∧(P∨Q)⇔P。
分配律定义
分配律是命题逻辑中的基本等值式之一,它允许合取和析取在逻辑表达式中进行分配。具体公式为: P∧(Q∨R)⇔(P∧Q)∨(P∧R) 和 P∨(Q∧R)⇔(P∨Q)∧(P∨R)。
PART 06
总结回顾与拓展延伸
关键知识点总结回顾
等值式与蕴含式
等值演算基本规则
包括双重否定律、幂等律、交换 律、结合律、分配律、吸收律、 德摩根律等,是进行命题逻辑等 值演算的基本依据。
命题逻辑基本概念
命题、联结词、命题公式、真值 表等基本概念是命题逻辑的基础 。
理解等值式与蕴含式的概念及性 质,掌握二者之间的转换方法。
离散数学(一阶逻辑等值演算与推理)
(量词否定等值式) (量词分配等值式)
量词否定等值式 换名规则 辖域收缩扩张规则
25
求前束范式的实例
(3) xF(x)y(G(x,y)H(y)) 解 xF(x)y(G(x,y)H(y)) zF(z)y(G(x,y)H(y)) zy(F(z)(G(x,y)H(y))) 或 xF(x)y(G(z,y)H(y)) xy(F(x)(G(z,y)H(y)))
若x(A(x)B)在I下取0值,则在I下对任意的 xD,使A(x)B在I下取0值。故A(x)和B都 为假命题,所以xA(x)B在I下取0值。
13
基本等值式
(4) 量词分配等值式 ① x(A(x)B(x)) xA(x)xB(x) ② x(A(x)B(x)) xA(x)xB(x) 注意:对,对无分配律
3
基本等值式
第二组 (1) 消去量词等值式 设D ={a1, a2, … , an} ① xA(x) A(a1)A(a2)…A(an) ② xA(x) A(a1)A(a2)…A(an)
例 设个体域 A={a,b}, 公式
(x)P(x) (x)S(x)在A上消去量词后应为: P(a)P(b)(S(a)S(b))
19
实例
例3 设个体域D={a,b,c}, 消去下述公式中的量 词: (1) xy(F(x)G(y)) (2) xyF(x,y) 解 xy(F(x)G(y)) (y(F(a)G(y)))(y(F(b)G(y))) (y(F(c)G(y))) ((F(a)G(a))(F(a)G(b))(F(a)G(c))) ((F(b)G(a))(F(b)G(b))(F(b)G(c))) ((F(c)G(a))(F(c)G(b))(F(c)G(c)))
16
离散数学,命题逻辑等值演算
十六组重要的等值式
• 5.分配律 (提取公因式) A∧(B∨C) (A∧B)∨(A∧C) A∨(B∧C) ( A∨B)∧(A∨C)
• 6.德摩根律 ¬(A∨B) ¬A∧¬B ¬(A∧B) ¬A∨¬B
德摩根律的例子
• “地大物博”的否定: 地不大或物不博
¬(A∧B) ¬A∨¬B • “用人民币或港币支付”的否定:
第二章 命题逻辑 等值演算
• 2.1 等值式 重点
• 2.2 析取范式与合取范式
• 2.3 联结词的完备集 难点
• 2.4 可满足性问题与消解法
2.1 等值式
定义2.1 设A、B是任意两个命题公式,若等价式 A ↔ B为重言式,则称A与B是等值的, 记作:A B
• ⑴ 自反性,即对任意命题公式A, AA • ⑵ 对称性,即对任意命题公式A和B,
p(qr)
1 1 1 1 1 1 0 1
(pq)r
0 1 0 1 1 1 0 1
(p∧q)r
1 1 1 1 1 1 0 1
十六组重要的等值式(模式)
• 1.双重否定律 A¬¬A
• 2.幂等律 A∧A A,A∨A A
• 3.交(A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
p∨q,p∨ ¬ r均是有两个文字的简单析取 式,即子句。
p∧q∧r,p∧q∧ ¬ q均是有三个文字的简 单合取式。
定理 2.1
(1) 一个简单析取式是重言式, 当且仅当 它同时含有一个命题变元及其否定。
(2) 一个简单合取式是矛盾式, 当且仅当 它同时含有一个命题变元及其否定。
• 例如, p∨q∨¬ p 是重言式 p∧¬ q∧ q是矛盾式
• 13.等价等值式 A↔B (A→B)∧(B→A)
离散数学23命题公式的等值式、蕴含等值式
关于等值演算的说明
等值演算的基础 等值关系的性质: 自反性:AA。 对称性:若AB,则BA。 传递性:若AB且BC,则AC。 基本的等值式 代入规则,替换规则
等值演算的应用 证明两个公式等值 判断公式类型 解判定问题
等值演算的应用举例
证明两个公式等值 (P→Q)→R (P∨R)∧(┐Q∨R)
┐(P∨Q) 与 ┐P∧┐Q 等值
例题
例题2 判断下列各组公式是否等值
(1)P→(Q→R)与(P∧Q)→R
等值
(2)(P→Q)→R与(P∧Q)→R
不等值
1.双重否定律 2.幂等律 3.交换律 4.结合律 5.分配律
6.德·摩根律 7.吸收律
基本等值式
A ┐┐A A A∨A, A A∧A A∨B B∨A, A∧B B∧A (A∨B)∨C A∨(B∨C)
解:(P→Q)→R (┐P∨Q)→R (蕴含等值式、置换规则) ┐(┐P∨Q)∨R (蕴含等值式、置换规则) (P∧┐Q)∨R (德摩根律、置换规则) (P∨R)∧(┐Q∨R)(分配律、置换规则)
例题
例5 用等值演算法验证等值式 (P∨Q)→R (P→R)∧(Q→R)
解:(P→R)∧(Q→R)
这些具体的等值式都被称为原来的等值式模 式的代入实例。
若公式C是公式A的一个连续部分,则称C是A 的一个子公式。
替换规则 设Φ(A)是含公式A的命题公式, Φ(B)是用公式B置换了Φ(A)中所有的A后得 到的命题公式,若BA,则Φ(B)Φ(A)。
例题4 证明A→(B∨(B∧A))A→B.
由已知的等值式推演出另外一些等值式的过 程为等值演算。
方法三、通过等值演算化成容易观察真值的 情况,再进行判断。
A=(P→Q)→R (┐P∨Q)→R (蕴涵等值式)
离散数学课件-5-一阶逻辑等值演算与推理
离散数学课件-5-一阶逻辑等值演算与推理第五章一阶逻辑等值演算与推理§1 一阶逻辑等值式与置换规则定义:A,B两个谓词公式,若A?B是永真式,则称A与B是等值的,记为A?B。
常用等值式:第一组:命题逻辑中常用等值式的代换实例第二组:一阶逻辑中的特有等值式1.消去量词当D={a1, a2,…, a n}时,有①?xA(x)?A(a1)∧A(a2)∧…∧A(a n)②?xA(x)?A(a1)∨A(a2)∨…∨A(a n)2.量词否定①??xA(x)??x?A(x)②﹁?xA(x)??x?A(x)3.辖域收缩与扩张①?x(A(x)∨B)??xA(x)∨B②?x(A(x)∧B)??xA(x)∧B③?x(A(x)∨B)??xA(x)∨B④?x(A(x)∧B)??xA(x)∧B4.量词分配①?x(A(x)∧B(x))??xA(x)∧?xB(x)②?x(A(x)∨B(x))??xA(x)∨?xB(x)演算规则:1.置换规则:φ(A):含A的谓词公式φ(B):用公式B替换φ(A)中所有A之后的公式若A?B,则φ(A)?φ(B)。
2.换名规则:设A是谓词公式,把A中某指导变元对应的全部约束出现替换为A中未出现过的符号,而A中其余部分不变,设所得谓词公式为A′,则A?A′。
3.代替规则设A是谓词公式,把A中某个体变项的全部自由出现替换为A中未出现过的符号,而A中其余部分不变,设所得公式为A′,则A?A′。
例①?xF(x,y,z)→?yG(x,y,z)sF(s,y,z)→?tG(x,t,z) 换名②?x(F(x,y)→?yG(x,y,z))x(F(x,t)→?yG(s,y,z)) 代替例给定解释I:D I ={2,3},a:2,b:3G(x,y):G(a, a)=G(a, b)=G(b, a)=1,G(b, b)=0F(x):F(a)=0,F(b)=1① ?x(F(x)∧G(x,a))(F(a)∧G(a,a))∧(F(b)∧G(b,a))?(0∧1)∧(1∧1)? 0② ?x?yG(x,y)x(G(x,a)∧G(x,b))(G(a,a)∧G(a,b))∨(G(b,a)∧G(b,b))(1∧1)∨(1∧0)1例证明:﹁?x(F(x)→G(x))??x(F(x)∧﹁G(x)) 解:﹁?x(F(x)→G(x))﹁?x(﹁F(x)∨G(x))x﹁(﹁F(x)∨(G(x)x(F(x)∧﹁G(x))§2 前束范式定义:设A是谓词公式,若A有如下形式Q1x1Q2x2…Q k x k B其中Q i(1≤i≤k)为?或?,B为不含量词的公式,则称A为前束范式。
离散数学第二章命题逻辑等值演算
再如 ┑p ∨ q 既是p →q的析取范式又是它的的合取范式
如果公式的范式不唯一则对于将公式按等值进行分类的利用价值就不高
p q (p → q)∧(q→p) (p∧q)∨(┓p∧┓q)
00
1
1
01
0
0
10
0
0
11
1
1
(0,0)与(1,1)为公式的成真赋值。 (0,1)与(1,0)为公式的成假赋值
命题公式的分类(根据公式在赋值下的真值情况进行分类) 1)若命题公式在它的各种赋值下取值均为真,则称命题公式是重言
式或永真式。 2)若命题公式在它的各种赋值下取值均为假,则称命题公式是矛盾
2
如:┐Q∧(P→Q) → ┐P
4
分析1:若要得出:当设 A为真,B为
假的情况不会出现,
5
那么A →B 为永真式。
6
可证明:设前件为真
7
分析2: 还可以从设 B为假,推出A
为真的情况不会出现(A为假),
9
证明: 设后件为假
8
那么A →B 为永真式。
1 0
((P→Q)∧( Q→R)) →(P→R)
不同真值表的公式 1)当命题变元确定后,通过五个连接词及其命题变元可以构成 无数个不 同表现形式的命题公式。 问题:这些不同形式的命题公式的真值表是否都不相同? 先看变元仅有两个p,q 那么关于这两个变元的公式的赋值仅有4组
(┐p ∨ q)∧(┐q∨┐p∨r)∧┐q
是含三个简单析取式的合取范式.
2、性质:
1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
┐p ∧ P ∨ ┐ q∧ q ⇔ 0 ∨ 0 ⇔ 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A1A2Ar , 其中A1,A2,,Ar是简单析取式
13
析取范式与合取范式(续)
范式:析取范式与合取范式的总称 公式A的析取范式: 与A等值的析取范式 公式A的合取范式: 与A等值的合取范式 说明: 单个文字既是简单析取式,又是简单合取式 pqr, pqr既是析取范式,又是合取范式 (为什么?)
说明: n个命题变项产生2n个极小项和2n个极大项 2n个极小项(极大项)均互不等值 在极小项和极大项中文字均按下标或字母顺序排列 用mi表示第i个极小项,其中i是该极小项成真赋值的十
进制表示. 用Mi表示第i个极大项,其中i是该极大项成 假赋值的十进制表示, mi(Mi)称为极小项(极大项)的名称. mi与Mi的关系: mi Mi , Mi mi
m1m3m5m7
③
②, ③代入①并排序,得
(pq)r m1m3m5 m6m7(主析取范式)
25
求公式的主范式(续)
(2) 求A的主合取范式
(pq)r
(pr)(qr) , (合取范式) ①
pr
p(qq)r
(pqr)(pqr)
M0M2,
②
26
求公式的主范式(续)
qr (pp)qr (pqr)(pqr) M0M4 ②, ③代入①并排序,得 (pq)r M0M2M4
(1) A=(pq)r 解 (pq)r
(pq)r pqr
(消去) (结合律)
这既是A的析取范式(由3个简单合取式组成的析 取式),又是A的合取范式(由一个简单析取式 组成的合取式)
16
求公式的范式举例(续)
(2) B=(pq)r 解 (pq)r
(pq)r (消去第一个) (pq)r (消去第二个) (pq)r (否定号内移——德摩根律) 这一步已为析取范式(两个简单合取式构成)
(pq)(qp) (蕴涵等值式) (pq)(pq) (交换律) 1 由最后一步可知,该式为重言式. 问:最后一步为什么等值于1?
10
例3 (续)
(3) ((pq)(pq))r)
解 ((pq)(pq))r)
(p(qq))r (分配律)
p1r
(排中律)
pr
(同一律)
这不是矛盾式,也不是重言式,而是非重言式的可
B2= (su)(u(pq)) (su)(pqs)(pqu)
(分配律)
B1B2 (pqrsu)(pqrsu) (qrsu)(pqrs)(pqru)
再令 B3 = ((rs)(rs))
34
例 (续)
得 A B1B2B3 (pqrsu)(pqrsu)
注意:在以上演算中多次用矛盾律 要求:自己演算一遍 ④ A (pqrsu)(pqrsu) 结论:由④可知,A的成真赋值为00110与11001, 因而派孙、李去(赵、钱、周不去)或派赵、钱、 周去(孙、李不去).
满足式.如101是它的成真赋值,000是它的成假赋值.
总结:A为矛盾式当且仅当A0 A为重言式当且仅当A1
说明:演算步骤不惟一,应尽量使演算短些 11
1.4 范式
▪ 析取范式与合取范式 ▪ 主析取范式与主合取范式
12
析取范式与合取范式
文字:命题变项及其否定的总称 简单析取式:有限个文字构成的析取式 如 p, q, pq, pqr, … 简单合取式:有限个文字构成的合取式 如 p, q, pq, pqr, … 析取范式:由有限个简单合取式组成的析取式
8
应用举例——判断公式类型
例3 用等值演算法判断下列公式的类型
(1) q(pq)
解 q(pq)
q(pq) (蕴涵等值式)
q(pq) (德摩根律)
p(qq) (交换律,结合律)
p0
(矛盾律)
0
(零律)
由最后一步可知,该式为矛盾式.
9
例3 (续)
(2) (pq)(qp) 解 (pq)(qp)
(pqr)(pqr) m1m3 是主析取范式 (pqr)(pqr) M1M5 是主合取范式 A的主析取范式: 与A等值的主析取范式 A的主合取范式: 与A等值的主合取范式.
22
主析取范式与主合取范式(续)
定理 任何命题公式都存在着与之等值的主析取范 式和主合取范式, 并且是唯一的.
用等值演算法求公式的主范式的步骤: (1) 先求析取范式(合取范式) (2) 将不是极小项(极大项)的简单合取式(简 单析取式)化成与之等值的若干个极小项的析 取(极大项的合取),需要利用同一律(零 律)、排中律(矛盾律)、分配律、幂等律等. (3) 极小项(极大项)用名称mi(Mi)表示,并
14
命题公式的范式
定理 任何命题公式都存在着与之等值的析取范式 与合取范式. 求公式A的范式的步骤:
(1) 消去A中的, (若存在) (2) 否定联结词的内移或消去 (3) 使用分配律
对分配(析取范式) 对分配(合取范式) 公式的范式存在,但不惟一
15
求公式的范式举例
例 求下列公式的析取范式与合取范式
③ (主合取范式)
27
主范式的用途——与真值表相同
(1) 求公式的成真赋值和成假赋值
例如 (pq)r m1m3m5 m6m7, 其成真赋值为001, 011, 101, 110, 111, 其余的赋值 000, 010, 100为成假赋值. 类似地,由主合取范式也可立即求出成 假赋值和成真赋值.
p(qr) (pq) r
2
基本等值式
双重否定律 : AA
等幂律: AA
结合律:
(AB)CA(BC)
(AB)CA(BC)
分配律:
A(BC)(AB)(AC)
A(BC) (AB)(AC)
3
基本等值式(续)
德·摩根律: (AB)AB
(AB)AB
吸收律: 零律: 同一律:
31
例 (续)
解此类问题的步骤为: ① 将简单命题符号化 ② 写出各复合命题 ③ 写出由②中复合命题组成的合取式 ④ 求③中所得公式的主析取范式
32
例 (续)
解 ① 设p:派赵去,q:派钱去,r:派孙去, s:派李去,u:派周去.
② (1) (pq) (2) (su) (3) ((qr)(qr)) (4) ((rs)(rs)) (5) (u(pq))
1.3 命题逻辑等值演算
▪ 等值式 ▪ 基本等值式 ▪ 等值演算 ▪ 置换规则
1
等值式
定义 若等价式AB是重言式,则称A与B等值, 记作AB,并称AB是等值式 说明:定义中,A,B,均为元语言符号, A或B中 可能有哑元出现. 例如,在 (pq) ((pq) (rr))中,r为左边 公式的哑元. 用真值表可验证两个公式是否等值 请验证:p(qr) (pq) r
极大项
公式
pqr p q r p q r p q r p q r p q r p q r p q r
成假 赋值
000 001 010 011 100 101 110 111
名称
M0 M1 M2 M3 M4 M5 M6 M7
21
主析取范式与主合取范式
主析取范式: 由极小项构成的析取范式 主合取范式: 由极大项构成的合取范式 例如,n=3, 命题变项为p, q, r时,
19
极小项与极大项(续)
由p, q两个命题变项形成的极小项与极大项
极小项 公式 成真赋值 名称
极大项 公式 成假赋值 名称
p q 0 0 m0 p q
0 0 M0
p q
0 1 m1 p q 0 1 M1
p q 1 0 m2 p q
1 0 M2
pq
1 1 m3 p q 1 1 M3
20
35
说明:也可以从右边开始演算(请做一遍) 因为每一步都用置换规则,故可不写出 熟练后,基本等值式也可以不写出
7
应用举例——证明两个公式不等值
例2 证明: p(qr) (pq) r 用等值演算不能直接证明两个公式不等值,证明两
个公式不等值的基本思想是找到一个赋值使一个成 真,另一个成假.
方法一 真值表法(自己证) 方法二 观察赋值法. 容易看出000, 010等是左边的 的成真赋值,是右边的成假赋值. 方法三 用等值演算先化简两个公式,再观察.
③ (1) ~ (5)构成的合取式为 A=(pq)(su)((qr)(qr)) ((rs)(rs))(u(pq))
33
例 (续)
A的演算过程如下:
A (pq)((qr)((qr))(su)(u(pq))
((rs)(rs))
(交换律)
B1= (pq)((qr)(qr)) (pqr)(pqr)(qr) (分配律)
继续: (pq)r (pr)(qr) (对分配律)
这一步得到合取范式(由两个简单析取式构成)
17
2元真值函数对应的真值表
pq
00 01 10 11 pq
00 01 10 11
F0( 2) F1( 2) F2( 2) F3( 2) F4( 2) F5( 2) F6( 2) F7(2)
00000000
说明: 由公式A的主析取范式确定它的主合取范式,反之亦然. 用公式A的真值表求A的主范式.
30
主范式的用途(续)
例 某公司要从赵、钱、孙、李、周五名新毕业 的大学生中选派一些人出国学习. 选派必须满足 以下条件:
(1)若赵去,钱也去; (2)李、周两人中至少有一人去; (3)钱、孙两人中有一人去且仅去一人; (4)孙、李两人同去或同不去; (5)若周去,则赵、钱也去. 试用主析取范式法分析该公司如何选派他们出国?
按角标从小到大顺序排序.
23
求公式的主范式
例 求公式 A=(pq)r的主析取范式与主合