第二节 模糊模式识别

合集下载

模糊模式识别

模糊模式识别

模糊模式识别1 模糊模式识别的原则(1) 最大隶属原则当模式是模糊的,被识别对象是明确的,问题可以描述如下:设有n 个模式,它们分别表示成某论域X (X 可以是多个集合的笛卡儿乘积集)的n 个模糊子集12,,,n A A A,而0x X ∈是一个具体被识别的对象,若有},2,1{n i ∈,使得12()m ax{(),(),,()}inA o A o A o A o x x x x μμμμ=则认为0x 相对属于模式i A。

对事物进行直接识别时,所依据的是最大隶属原则。

这种方法适合处理具有如下特点的问题:a 用作比较的模式是模糊的;b 被识别的对象本身是确定的。

(2) 贴近度原则当模式及被识别对象都是模糊的,问题可以描述如下:设论域X 的模糊子集12,,,n A A A代表n 个模糊模式,被识别的对象可以表示成X 的子集B,若有},2,1{n i ∈,使得12(,)max{(,),(,),,(,)}i n B A B A B A B A σσσσ=则认为B相对合于模式A。

在模糊模式识别的具体应用中,关键是模式或被识别对象的模糊集合的构造,即如何建立刻画模式或对象的模糊集合。

根据实际应用来看,通常有三种主要方法,简单模式的识别方法,语言模式的识别方法和统计模式的识别方法。

2 模糊模式识别方法(一)简单模式的模糊模式识别具体的模糊模式识别工作可分为如下三个步骤:1)选取模式的特征因子集合},,,{21n X X X =X,被识别的对象表示为nni i XXX X ⨯⨯⨯∆∏= 211上的向量(),,,21n x x x ,,1,2,,,i i x X i n ∈= 或者表示为∏=ni i X 1上的模糊子集;2)建立模糊模式的隶属函数()A X μ,1()ni i A F X =∈∏;3)利用最大隶属度原则或贴近度原则对被识别的对象进行归属判决。

特征因子(1,2,,)i X i n = 的选取直接影响识别的效果,它取决于识别者的知识和技巧,很难做一般性讨论,而模式识别中最困难的是建立模式的隶属函数,人们还没有从理论上彻底解决隶属函数的确定问题。

模糊数学方法

模糊数学方法

2) 对称性: 若(x, y)R,则(y, x)R,即集合中(x, y)元素同属于类R 时, 则
(y, x)也同属于R;
3) 传递性: (x, y)R,(y, z)R,则有(x, z)R。
上述三条性质称为等价关系,满足这三条性质的集合R为一分类关
系。
聚类分析的基本思想是用相似性尺度来衡量事物之间的亲疏程度, 并
定义3 模糊集运算定义。若A、B为X上两个模糊集,它们的和集、 交集和A的余集都是模糊集, 其隶属函数分别定义为:
(AB) (x)= max ( A(x), B(x) ) (AB) (x)= min ( A(x), B(x) ) AC (x)=1-A(x) 关于模糊集的和、交等运算,可以推广到任意多个模糊集合中去。
假设R2=(rij ),即rij =
(rik∧rkj ),说明xi 与xj是通过第三者K作为媒介而发生关系,rik∧rkj表 示xi 与xj 的关系密切程度是以min(rik , rkj)为准则,因k是任意的, 故从一 切rik∧rkj中寻求一个使xi 和xj 关系最密切的通道。Rm随m的增加,允许 连接xi 与xj 的链的边就越多。由于从xi 到xj 的一切链中, 一定存在一个使 最大边长达到极小的链,这个边长就是相当于
糊变量,相应的参数分别为
,
,
(i=1, 2, …, n; j=1, 2, …, m)。其中,
,
,
,而
是xij的方差。待判别对象B的m个指标分别具有参数aj , bj (j=1, 2, …, m),且为正态型模糊变量,则B与各个类型的贴近度为
记Si=
,又有Si0=
,按贴近原则可认为B与Ai 0最贴近。
提供了以下8种建立相似矩阵的方法:

模糊模式识别

模糊模式识别

模糊模式识别1模糊数学基本理论9.1 模糊集合•模糊"一词来自英文fuzzy,意思是"模糊的"、"(形状或轮廓)不淸楚"等等.•模糊数学是运用数学方法研究和处理带有模糊性现象的一门新兴学科,它的创始人是美国加利福尼亚大学著名的控制论专家扎德(L.A.zadah)•所谓的模糊性,是指事物的亦此亦彼性,反映在概念形成过程中外延的不分明性•1965年,美国加利福尼亚大学控制论专家扎德(L, A. Zadeh〉教授在《信息与控制》杂志上发表了一箱开创性论文《模糊集》,这标志着模糊数学的诞生。

•在人类社会和各个科学领域中,人们所遇到的各种量大体上可以分成两大类:•确定性的与不确定性的,而不确定性又可分为随机性和模糊性.人们正是用三种数学来分别研究客观世界中不同的量,即在这种框架内,数学模型分为三大类.•第一类是确定性数学模型。

这类模型研究的对象具有确定性,对象之间具有必然的关系,最典型的就是用微分法、微分方程、差分方程所建立的数学模型.•第二类是随机性数学模型。

这类模型研究的对象具有随机性,对象之间具有偶然的关系,如用概率分布方法、马尔可夫(Markov〉链所建立的数学模型。

•第三类是模糊性数学模型。

这类模型所研究的对象与对象之间的关系具有模糊性.两种不确定性之间的区别:•随机性的不确定性,也就是概率的不确定性。

例如,“明天有雨”,“掷一骰子出现6点”等,它们的发生是一种偶然现象,具有不确定性.•在这里,事件本身是确定的,而事件的发生不确定。

只要时间过去,到了明天,“明天有雨”是否发生就变成确定的了。

“掷一骰子出现6点”,只要实际做一次实验,它就变成确定的了.•而模糊性的不确定性,即使时间过去了,或者实际做了一次实验,它们仍然是不确定的。

这主要是因为事件本身( 如“青年人”、“高个子”等) 是不确定的,具有模糊性,是由概念、语言的模糊性产生的。

模糊数学在实际中的应用•几乎涉及国民经济的各个领域,尤其在科学技术、经济管理、社会科学方面得到了广泛而又成功的应用.比如:•在生物学发展史上,由于科学技术的不断进步,人们发现在动物与植物之间存在着“中介状态”,于是又分出张将生物分为五类、六类.这一现象用模糊集合就可得到合理的解释.•对某个领域的经济发展水平的评价,往往划分为富裕型、小康型、温饱型、贫困型,这些都是模糊的,只有通过模糊数学模型才能得到合乎实际的评价。

模糊模式识别的方法

模糊模式识别的方法
为 27 岁和 30 岁的人都属于“青年人” 范畴。
第21页/共26页
例:按气候谚语来预报地区冬季的降雪量。 内蒙古丰镇地区流行三条谚语:①夏热冬雪大,
②秋霜晚冬雪大,③秋分刮西北风冬雪大。现在根据三 条言语来预报丰镇地区冬季降雪量。
为描述“夏热” ( A~1) 、”秋霜晚” (A~2) 、”秋分刮西北 风” ( A~3) 等概念,在气象现象中提取以下特征:
第8页/共26页
等腰三角形的隶属函数I(A,B,C)应满足下条件: (1) 当A = B 或者 B = C时, I(A,B,C )=1; (2) 当A =180, B =60, C =0时, I(A,B,C )=0; (3) 0≤I(A,B,C )≤1. 因此,定义I(A,B,C ) =1–[(A–B)∧(B – C)]/60.
x
50 15
2
,
1,
0 x 50, x 50.
第16页/共26页
当 x0 = 8 时,即物价上涨率为 8 %,我们有: A1(8) = 0.3679, A2 (8) = 0.8521, A3(8) = 0.0529 A4(8) 0, A5 (8) 0。
此时,通货状态属于轻度通货膨胀。
模式识别(Pattern Recognition)是一门判断学科, 属于计算机应用领域,主要目的是让计算机仿照人的思 维方式对客观事物进行识别、判断和分类。
如:阅读一篇手写文字;医生诊断病人的病情;破案 时对指纹图像的鉴别;军事上对舰船目标的识别等等 ,都可归结为模式识别问题。
但是,在实际中,由于客观事物本身的模糊性,加上 人们对客观事物的反映过程也会产生模糊性,使得经典 的识别方法已不能适应客观实际的要求。因此,模式识 别与模糊数学关系很紧密。

模糊数学原理及其应用

模糊数学原理及其应用

绪言任何新生事物的产生和发展,都要经过一个由弱到强,逐步成长壮大的过程,一种新理论、一种新学科的问世,往往一开始会受到许多人的怀疑甚至否定。

模糊数学自1965年L.A.Zadeh教授开创以来所走过的道路,充分证实了这一点,然而,实践是检验真理的标准,模糊数学在理论和实际应用两方面同时取得的巨大成果,不仅消除了人们的疑虑,而且使模糊数学在科学领域中,占有了自己的一席之地。

经典数学是适应力学、天文、物理、化学这类学科的需要而发展起来的,不可能不带有这些学科固有的局限性。

这些学科考察的对象,都是无生命的机械系统,大都是界限分明的清晰事物,允许人们作出非此即彼的判断,进行精确的测量,因而适于用精确方法描述和处理。

而那些难以用经典数学实现定量化的学科,特别是有关生命现象、社会现象的学科,研究的对象大多是没有明确界限的模糊事物,不允许作出非此即彼的断言,不能进行精确的测量。

清晰事物的有关参量可以精确测定,能够建立起精确的数学模型。

模糊事物无法获得必要的精确数据,不能按精确方法建立数学模型。

实践证明,对于不同质的矛盾,只有用不同质的方法才能解决。

传统方法用于力学系统高度有效,但用于对人类行为起重要作用的系统,就显得太精确了,以致于很难达到甚至无法达到。

精确方法的逻辑基础是传统的二值逻辑,即要求符合非此即彼的排中律,这对于处理清晰事物是适用的。

但用于处理模糊性事物时,就会产生逻辑悖论。

如判断企业经济效益的好坏时,用“年利税在100万元以上者为经济效益好的企业” 表达,否则,便是经济效益不好的企业。

根据常识,显而易见:“比经济效益好的企业年利税少1元的企业,仍是经济效益好的企业”,而不应被划为经济效益不好的企业。

这样,从上面的两个结论出发,反复运用经典的二值逻辑,我们最后就会得到,“年利税为0者仍为经济效益好的企业”的悖论。

类似的悖论有许多,历史上最著名的有“罗素悖论”。

它们都是在用二值逻辑来处理模糊性事物时产生的。

模糊模式识别算法的设计

模糊模式识别算法的设计

模糊模 式识 别原 则,包括最 大录 属原则 要: 本文介 绍 了在模糊 模式识 别 中常 用的模糊度 、 闽可夫斯基距 离、内积和外积 与贴近度 ;
和 择 近 原 则 ; 用择 近 原 则 的 模 式 识 别 算 法 。 使 关键 词 : 糊度 贴近度 择 近 原则 模 中图分类 号 : P3 T 文献标识 码 : A
设 , 是 论 域 上 的 模 糊 子 集
例 如 , 物标 本是 属 于 哪 一 纲 、 哪 一 目 , 植 医 A・ ( ( ) B ) ∥ 八 ( ) 生 对 病 的 识 别 , 算 机 识 别手 写 体 等 。 I计 海 明 距 离 外 积 在 模 型 识 别 中 有 两 个 基 本 面 : 先 已 事 在 闵可 夫斯 基距 离 中 , 如果 q 1 这 时有 = , ‘ 设 , 是 论 域 上 的 模 糊 子 集 , 知 若干 标 准 模 型 构 成 模 型 库 ; 待 识 别 的 有 2= { ,U{ ,t” , 1 K l j 记 对 象 。客 观 事 物 大 多 存 在 模 糊 性 。对 识 别 dA宣 ∑l ) ( (,) 一 / d 而 言 , 个 基 本 面 部 可 能带 有 模 糊 性 : 准 两 标 为海 明距离 。 Ai ( ( ) 口 ) 宣= V ( ) 模 型 可 能 带 有 模 糊 性 , 识 别 对 象 也 可 能 待 相 对 海 明 距 离 内积 越 大 , 糊 集越 靠 近 ; 积 越大 , 模 外 模 是 模糊 的 。这 意 味在 实 际 问题 中采 用 模 糊 糊 集 越 疏 远 。将 内 积 和 处 积 结 合 起 来 建 立 模型识别是 必要的 。 (,) 土 ( 一 ( 旦 = ∑5 /) /) / zl 格 贴近 度 可 以 刻画 两 个模 糊 集 的接 近程 度 。 1 2 模 糊聚 类分 析算 法的设 计 为 相对 系 明 距 离 。加 权 海 明 距 离 格 贴 近 度 模 糊 模 式 识 别 分 为 直 接 法 和 间接 法 。 设 , 是 论 域 上 的 模 糊 子 集 , 1 Ⅲ . 直 接 方 法 识 别 的 对 象是 单 个 确 定 的 元 素 , ( = / ∑ , ( d ) ( 一 常 用原 则有 最大 隶属 原 Ⅲ 、 最大 隶 属 度原 J J 为 加 权 海 明距 离 。 6 , =÷[ 垦 1 旦 】 ) △・ +(- 0 ) 一 A 则 、 阀 值 原 则等 。 当 实 际 问题 的识 别对 象 Z 为 A、B 的格 贴 近 度 。 不是 单 个元 素 而 是论 域 上 的 一 个 模 糊 子 w ) 加到 ( 是 的权。 要求∑” )l = ( 闵 可 夫 斯 基 贴 近 度 集 时 , 般采用间接方法 , 一 通过 计算 模糊 子 相 对 加 权 海 明 距 离 用 闵 可 夫 斯 基 距 离 定 义 的 贴 近 度 为 集 的内 积 、外积 、贴近 度 , 用 择近 原 则[】 利 1 堡 = ∑ ) (, (, ) 土 《, /) ) l一 ; ( B =l c , 】 , ) — [( ) “ 求得结果 。 海 明贴 近 度 设 集 合对 象 ( . …u ) 给定 的 的 u, 为 为 相对 加 权 海 明 距 离 。 w( 是 加 到 ) 待识 别对 象 , 中 u,芦 1 2 …埘) 其 ( , , 为 的 脚 的 权 。 要 求 5 , =- ∑ (曰 1 ) ( A) 一 1 n 个 特 性 指 标 , 个 特 性 指 标 刻 画 了 识 别对 每 二 ( = ∑w ) l 欧 氏 贴 近 度 象 E 的某 一 个 方 面 的特 征 。抉 择 评 语 集 合 厂 1 ( , , … ) 其 中 v, , , , …) , =( , … 正 距 离 和 负 距 离 (, 1、 f ) ( ) 功 一 ∑( ∥ 一 ) : ( 1 2 …力 , 芦 , , )表示 一个 类 别 , , , , ) ( … 将 海 明加 权 距 离 变 换 成 最 大 最 小 贴近 度 表 示 属 于这 个 类 别的 对 象 昕对 应 的 脚 个 特 性 指 标 值 。 昕 谓 模 糊 模 式 识 别 就 是 把对 象 d ) ∑ 1 () 『 1 ( 旦= Ⅵ A ( ) 一f ) f { j , ( ma b ̄ ) f 咒 x ・ 划 归 一 个 与其 最 相 似 的 类 别 中去 。对 如果 ( 一d (j> , ) / / )0 则称 丛和 旦 f 8d ( ) 术 平 均 最 小 值 贴 近 度 5算 于 ( , , )卢 1 2 …力)不 同的特 …, ( , , , 征 分 量 . 识 别 模 式 的 重 要 性 不 同 , 对 设 2 mnt( ( 7,i  ̄ ) /) [ zJ 的距 离为正距离 ; 如果 ( ) i ‘ < , 一 { ) O = 5 n B =— ————————一 (, ) 特征 分量 对 模式 的重要程 度 为 B, 将其 则称 和 旦的 距 离 为 负 距 离 。 ma [ d ) £ ) x# ( + ( ]

物探新方法新技术之四:模式识别技术(Pattern Recognition)

物探新方法新技术之四:模式识别技术(Pattern Recognition)

4 模式识别技术一个模式类是由一些给定的共同属性所决定的一个类别,该类别中的一员就是一个模式。

所谓模式识别也就是对所研究的对象根据其共同特征或属性进行识别和分类。

严格地说,模式识别不是简单的分类学。

模式识别过程主要包括三部分,首先从观测样品中提取特征;然后按照某种原则对这些特征进行选择,保留一些起主要作用的特征用于识别;最后采用各种判别方法或聚类方法,根据多个特征对样品进行研究和分类。

模式识别的方法很多,本章讨论了模糊综合评判、模糊模式识别、分段线性模式识别和人工神经网络模式识别等四种方法。

4.1 模糊综合评判法模糊综合评判就是应用模糊变换原理和最大隶属度原则,考虑与被评价事物相关的各个因素,对其所做的综合评判。

在模糊综合评判中需考虑两个集合,即着眼因素集合),,,(21m u u u U =和抉择评语集合),,,(21n v v v V =。

做模糊综合评判的关键就在于找出着眼因素集合U 与抉择评语集合V 之间的模糊关系,并确定合适的综合评判模型。

对于断层识别而言,通过分析地震属性参数与小断层之间的模糊关系,建立各种地震属性参数对应小断层的隶属函数,最后预测小断层存在的肯定区、可能区及否定区。

首先对着眼因素集U 中的单因素),,2,1(m i u i =做单因素评价,从因素i u 着眼确定该事物对抉择等级),,2,1(n j v j =的隶属度ij r ,这样就得出第i 个因素i u 的单因素评价集),,,(21in i i i r r r r =它是抉择评语集合上的模糊子集。

这样m 个着眼因素的评价集就构造出一个总的评价矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n r r r r r r r r r R 212222111211 (4-1) 式中 R ——着眼因素集U 到抉择评语集V 的一个模糊关系;ij r ——因素i u 对抉择等级j v 的隶属度。

在多因素综合评价中,一方面,对于被评价的事物,从不同的因素着眼可以得到不同的结论;另一方面,在诸多着眼因素中,有些因素在总评价中影响程度大些,而另一些可能影响小些,但究竟多大,则是一个模糊择优问题。

机械故障诊断

机械故障诊断
10
二、专家系统的结构
(1)知识库(Knowledge Base)
(2)推理机(Inference Engine)
(3)数据库(Data Base)
(4)解释器(程序)
(ExplicationProgram)
(5)知识获取程序
(Knowledge Ac-quisition Program)
高精度化及智能化。不解体检测的研究,其方向是开发 可预埋在发动机内的传感器。美国、日本等国家已成功 的将超薄型传感器安置在发动机内,对发动机的温度及 主要部件的配合间隙进行诊断,并利用光纤传感器监测 发动机的转速波动。 高精度化,是指提高信号分析的信噪比。如利用相干 函数对测点进行选择,利用多段时域平均法提高当前缸 信号强度,利用倒频谱重新编辑法消除其它缸的影响, 利用小波变换消除噪声等等,其目的都在于去除诊断参 数中的干扰,以提高诊断精度。
24
1.存在的问题 尽管机械故障诊断已取得了长足的发展,但它
是一门正在发展的新型学科,还远没有达到完善 的水平,主要表现在:
⑴ 发展不平衡,旋转机械的故障诊断理论和 实践都取得了较成熟的效果,而往复式机械的诊 断理论和实践都有待于提高。
⑵ 测量分析仪器和诊断仪器相脱离。便携式 的多为分析系统,一般为传感器、放大仪、数据 采集系统+频谱仪。无具体设备的特征数据并缺 乏诊断型系统。而较好的多为专用的、固定式的 系统。一般固定在厂里或设备上,并专为该设备 服务。
14
x(n) h(k)u(n k)
k= 0
p
q
x(n) ak x(n k) bku(n k)
k 1
k 0
AR
MA
建模参数功率谱模型
15
为了对各种谱估计的方法有一个基本的了解, 下面用一已知信号对各种方法进行检验(N=32)。

第二节 模糊模式识别(高等教学)

第二节  模糊模式识别(高等教学)

行业学习8ຫໍສະໝຸດ 例题3.3设论域R={1,2,3,4,5}, A,B ∈F(R),且
A=(0.2, 0.3, 0.6, 0.1, 0.9), B=(0.1, 0.2, 0.7, 0.2, 0) 求欧几里得贴近度
行业学习
9
黎曼贴近度
若U为实数域,被积函数为黎曼可积且广义积 分收敛,则
行业学习
10
例题3.4
行业学习
4
模糊集的贴近度
贴近度 对两个模糊集接近程度的一种度量
定义1 设A,B,C∈F(U),若映射
满足条件:
则称N(A,B)为模糊集A与B的贴近度。N称为F(U)上的贴 近度函数
行业学习
5
海明贴近度
若U={u1, u2,…, un}, 则 当U为实数域上的闭区间[a,b],则有
行业学习
标准模型库={正三角形E,直角三角形R,等腰三角形I,等腰直 角三角形I∩R,任意三角形T}。 某人在实验中观察到染色体的形状,测得起三个内角分别为 (94度,50度,36度),问此三角形属于哪一种三角形?
行业学习
31
择近原则(群体模糊模式识别问题)
设Ai,B ∈F(U)(i=1,2,…,n),若存在i0,是使
6
例题3.2
设模糊集 A=0.6/u1+0.8/u2+1/u3+0.8/u4+0.6/u5+0.2/u6 B=0.4/u1+0.6/u2+0.5/u3+1/u4+0.8/u5+0.3/u6 试应用海明贴近度计算N(A,B)
行业学习
7
欧几里得贴近度
若U={u1, u2,…, un}, 则 当U为实数域上的闭区间[a,b],则有

模糊模式识别方法,统计学习理论和支持向量机

模糊模式识别方法,统计学习理论和支持向量机


改进的模糊C均值算法
• 在模糊C均值算法中,由于引入了的归一化条件,
• 在样本集不理想的情况下可能导致结果不好。 • 比如,如果某个野值样本远离各类的聚类中心, 本来它严格属于各类的隶属度都很小,但由于归 一化条件的要求,将会使它对各类都有较大的隶 属度(比如两类倩况下各类的隶属度都是0.5), 这种野值的存在将影响迭代的最终结果。
• 其中,b>1是一个可以控制聚类结果的模糊程度的 常数。
• 在不同的隶属度定义方法下最小化式Jf的损 失函数,就得到不同的模糊聚类方法。 • 其中最有代表性的是模糊c均值方法,它要 求一个样本对于各个聚类的隶属度之和为1, 即
• 在上述约束下求Jf的极小值,令Jf对mi和μj (xi)的偏导数为。可得必要条件
首先Remp(w)和R(w)都是w的函数,传统 概率论中的定理只说明了(在一定条件下) 当样本趋于无穷多时Remp(w)将在概率意义 上趋近于R(w),却没有保证使Remp(w)最小 的点也能够使R(w) 最小(同步最小)。
根据统计学习理论中关于函数集的 推广性的界的结论,对于两类分类问 题中的指示函数集f(x, w)的所有函数(当 然也包括使经验风险最小的函数),经 验风险Remp(w)和实际风险R(w)之间至 少以不下于1-η(0≤η≤1)的概率存在这样 的关系:
模糊模式识别
模式识别从一开始就是模糊技术应用研究 的一个活跃领域,一方面,人们针对一些 模糊式识别问题设计了相应的模糊模式识 别系统。另一方面,对传统模式识别中的 一些方法,人们用模糊数学对它们进行了 很多改进。这些研究逐渐形成了模糊模式 识别这新的学科分支。
“开水”这一概念的模糊集与确定集
常见的隶属度函数形式
台阶型
三角形

模式识别的主要方法

模式识别的主要方法

模式识别是人工智能的一个重要应用领域,其方法主要包括以下几种:
统计模式识别:基于统计原理,利用计算机对样本进行分类。

主要方法有基于概率密度函数的方法和基于距离度量的方法。

结构模式识别:通过对基本单元(如字母、汉字笔画等)进行判断,是否符合某种规则来进行分类。

这种方法通常用于识别具有明显结构特征的文字、图像等。

模糊模式识别:利用模糊集合理论对图像进行分类。

这种方法能够处理图像中的模糊性和不确定性,提高分类的准确性。

人工神经网络:模拟人脑神经元的工作原理,通过训练和学习进行模式识别。

常见的神经网络模型有卷积神经网络(CNN)、循环神经网络(RNN)等。

支持向量机(SVM):通过找到能够将不同分类的样本点最大化分隔的决策边界来进行分类。

SVM在处理高维数据和解决非线性问题时具有较好的性能。

决策树:通过树形结构对特征进行选择和分类。

决策树可以直观地表示分类的决策过程,但易出现过拟合问题。

集成学习:通过构建多个弱分类器,并将其组合以获得更强的分类性能。

常见的集成学习方法有bagging、boosting等。

在实际应用中,根据具体任务的需求和数据特点,可以选择适合的模式识别方法。

同时,也可以结合多种方法进行综合分类,以提高分类的准确性和稳定性。

三角形类型的模糊模式识别

三角形类型的模糊模式识别

三角形类型的模糊模式识别摘要:三角形类型的模糊模式识别问题,在生物细胞染色体形状的识别、癌细胞以及白血球分类等问题中有很大意义。

发现传统方法和参考论文所提出的新方法在某些三角形判断中的不足,故提出基于给定阈值5.0=λ的最大隶属度原则,提出关于三角形角度的指数型隶属度函数,并与其它两种方法进行对比,结果表明指数函数性质使所求得的隶属度差距较大、区别明显,便于识别,并且更贴近于人们的直观理解,能更好的实现三角形的分类。

关键词:三角形;最大隶属度原则;阀值原则;指数型隶属度函数1、基本概念a) 最大隶属度原则:当模式是模糊的,被识别对象时明确的,问题可以描述成:设~~2~1,...,,n A A A 是论域U 中的n 个模糊模式。

0U 是U 中一个元素。

若有},...,2,1{n i ∈,使:()()}{m ax 010~~u u j i A nj A μμ≤≤=则认为0U 相对隶属于模式~i A ,并称这种识别方法为最大隶属度原则。

b) 阀值原则:设~~2~1,...,,n A A A 是论域U 中的n 个模糊模式,规定一个阀值](1,0∈λ,U u ∈为一个待识别对象。

若()()()λ<},...,,m ax {~~2~1u A u A u A n ,则作为“拒绝识别”的判断;若()()()λ≥},...,,m ax {~~2~1u A u A u A n ,并且有k 个模式()()()u A u A u A ik i i ~~2~1,...,,大于或等于λ,则认为识别可行。

2、指数型隶属度函数的建立设三角形的三个内角分别为C B A ,,,并且约定0>≥≥C B A 。

取特征因子集()}0,180,,{>≥≥=++=C B A C B A C B A U ο。

根据三角形的特征,在U 中规定5个具体的三角形:等腰三角形~I ;直角三角形~R ;等边三角形~E ;等腰直角三角形~IR ;非典型三角形~O 。

第二章 模糊模式识别

第二章 模糊模式识别
−1
x1 : 核(拍照)面积; x2 :核周长; x4 : 细胞周长; x3 : 细胞面积;
核内平均光密度;
六个模糊集:
α 1a 2 A:核增大,A( x) = 1 + x , ~ 1
(a为正常核的面积) ;
−1
B ~
α2 B : 核染色体增深: ( x) = 1 + ; x5
R 维模糊矩阵 β 用贴近度公式求:N ( R , R ) β i
判断Rβ 属于哪一类(字)。
5
例2:癌细胞识别问题(钱敏平,陈传娟) 由医学知识,反映细胞特征有七个数据x1 , ……, x7

x = ( x1 , ……, x7 )
x 5 : 核内总光密度; x 6 : x7 : 核内平均透光率。
2.3模糊模式识别应用实例 模糊模式识别应用实例
本节提供的几个模糊模式识别应用实例, 供处理实际模式识别时参考。
例1:条码识别方法用于上海市燃气公司燃气用户帐单销帐处理、复 旦大学图书馆的检索工作取得满意效果。 现以阿拉伯数字的识别问题为例给予说明。
第一步:构造模式。将0,1,……,9分别用 m × n 维模糊矩阵表示 用 为10个模式。 如“5”,
RE(u)= 1− ρ
≥ β ≥ γ ≥θ
)
1 ∨ (| α − γ | ,β − θ |) | 180
1 [(α −90) + (β −90) + (γ −90) + (θ −90)] 2 90
1 ∧ (| α + β − 180 | ,β + γ − 180 |) | 180
(3)梯形T: T(u)= 1 − ρ3 (4)菱形RH: RH(u)=1− ρ4

概述-模式识别的基本方法

概述-模式识别的基本方法
8
三、模糊模式识别
模式描述方法: 模糊集合 A={(a,a), (b,b),... (n,n)}
模式判定: 是一种集合运算。用隶属度将模糊集合划分
为若干子集, m类就有m个子集,然后根据择近原 则模糊统计法、二元对比排序法、推理法、
模糊集运算规则、模糊矩阵 主要优点:
由于隶属度函数作为样本与模板间相似程度的度量, 故往往能反映整体的与主体的特征,从而允许样本有 相当程度的干扰与畸变。 主要缺点: 准确合理的隶属度函数往往难以建立,故限制了它的 应用。
10
四、人工神经网络法
模式描述方法: 以不同活跃度表示的输入节点集(神经元)
模式判定: 是一个非线性动态系统。通过对样本的学习
理论基础:概率论,数理统计
主要方法:线性、非线性分类、Bayes决策、聚类分析
主要优点:
1)比较成熟
2)能考虑干扰噪声等影响
3)识别模式基元能力强
主要缺点:
1)对结构复杂的模式抽取特征困难
2)不能反映模式的结构特征,难以描述模式的性质
3)难以从整体角度考虑识别问题
3
二、句法模式识别
模式描述方法: 符号串,树,图
概述-模式识别的基本方法
一、统计模式识别 二、句法模式识别 三、模糊模式识别 四、人工神经网络法 五、人工智能方法
1
一、统计模式识别
模式描述方法: 特征向量 x
( x1 ,
x2 ,,
xn
)
模式判定:
模式类用条件概率分布P(X/i)表示,m类就有 m个分布,然后判定未知模式属于哪一个分布。
2
一、统计模式识别
12
五、逻辑推理法(人工智能法)
模式描述方法: 字符串表示的事实

模糊模式识别

模糊模式识别

3.3 模糊集的贴近度
• 几种常见的贴近度类型:设A,B,C F (U),
(1) 海明(Haming)贴近度 若U={u1,u2,…,un},则
1 n N A, B 1 A(u i ) B(u i ) n i 1
当U为实数域上的闭区间[a,b]时,则
b 1 N A, B 1 A(u ) B(u ) du ba a
uU
例1 设论域R为实数域,F 集的隶属函数为 A( x) e 求N ( A, B).
可以计算得到A B A( x1 ) e 而
xR a a 2 1 1 2
2
x a1 1
2
,
B ( x) e
x a2 2
2
AC B C ((1 A( x)) (1 B( x))) 1 N ( A, B) e
a a 2 1 1 2
2
由格贴近度公式得
3.4 模糊模式识别的直接方法
最大隶属原则主要应用于个体的识别 • 最大隶属原则Ⅰ:设Ai F (U) (i=1,2,…,n) 为n个标 准模式,对u0 U是待识别对象,若存在i,使 Ai (u 0 ) maxA1 (u 0 ), A2 (u 0 ), , An (u 0 ) 则认为u0相对地隶属于Ai 。
20 x 50 50 x 80 其它
0 x 40 40 x 50 50 x 60 60 x 100
N A, B

100 0 100 0
A( x) B( x)dx A( x) B( x)dx
50

40 0
80 80 -x x-20 20 40 dx 50 40 dx 50 80 -x 60 x-20 100 dx dx dx dx 40 50 60 40 40

模糊数学的应用

模糊数学的应用

第一部分模糊计算课后任务找一些使用模糊数学作为基础的实际应用,并归类整理。

对每种实际应用进行简单介绍,并形成文档。

模糊数学的应用1、模糊模式识别2、模糊聚类分析3、模糊综合评价4、模糊控制系统5、模糊数学在决策中的应用1、模糊模式识别模式识别就是机器的识别,目的在于让机器自动识别事物。

一个典型的模式识别系统,由数据获取、预处理、特征提取和选择、分类决策以及分类器组成。

一般分为学习过程和识别过程,通过这两个过程对未知类别进行分类。

在生活中有些模式的界限是不明确的,所以对于界限不明确的模式识别就称为模糊模式识别。

模糊模式识别主要分为三个步骤:(1)、提取特征(2)、建立标准类型模型(3)、建立识别判决准则例如:医疗诊断问题,通过病人的症状对病人进行诊断。

设病人集合为P={p1,p2,p3,p4},症状结合X={x1(发烧),x2(头痛),x3(胃疼),x4(咳嗽),x5(胸痛)},诊断结论的集合D={A1(病毒性感冒),A2(疟疾),A3(伤寒),A4(胃病),A5(胸部问题)}。

通过专家经验数据,可以得到症状与诊断结果的关系,然后通过数据关系建立症状与诊断结果的标准模型,最后经过判别准则对新的病人进行诊断。

这里判别准则大致有以下几种,最大隶属度原则、阈值原则、折近原则等等。

2、模糊聚类分析“聚类”就是按照一定的要求和规律对事物进行区分和分类,传统的聚类分析是一种硬划分,他把每个待分类的对象严格的划分到某类中,即划分界限是明确的。

生活中对象大多数都没有明确的界限划分,所以,需要利用模糊集的理论来对对象进行分类,这种聚类分析叫做模糊聚类分析。

常用的模糊聚类分析大致分为两类,其一是基于模糊关系(矩阵)的聚类分析,其二是基于目标函数的聚类分析。

基于模糊关系的聚类分析:即利用模糊集合之间的相似程度来对对象进行分类,大致步骤为:(1)、数据规格化(2)、构造模糊相似矩阵(3)、模糊分类数据规格化的方法有:(1)标准化方法(2)均值规格化方法(3)中心规格化方法(4)最大值规格化方法相似矩阵的构造方法(1)数量积法(2)夹角余弦法(3)相关系数法(4)距离法(5)绝对值倒数法(6)主观评定法模糊分类方法(1)利用模糊传递闭包进行模糊分类(2)直接聚类法(3)最大树聚类法(4)编网聚类法基于目标函数的聚类分析:基于目标函数的模糊聚类方法是把聚类归结成一个带约束的线性规划问题,通过优化求解得数据集的模糊划分和聚类。

模糊模式识别在计算机识别中的应用

模糊模式识别在计算机识别中的应用

未来发展方向与挑战
01 02
数据质量和标注问题
在许多实际应用中,数据质量和标注问题仍然是制约模糊模式识别性能 的重要因素。如何有效利用无标注数据进行半监督学习或无监督学习是 一个值得探讨的问题。
可解释性和鲁重要方向,有助于 增强其在关键领域的应用信心。
VS
详细描述
在场景理解与解析中,模糊模式识别技术 可以帮助计算机对场景中的对象、关系和 上下文进行深入分析。通过构建模糊逻辑 系统和引入隶属度函数,计算机能够更好 地处理场景中的不确定性,并实现更准确 的语义理解和描述。这有助于提高计算机 对人类视觉世界的理解能力。
04
模糊模式识别在自然语言处理 中的应用
模糊模式识别在计算机识别 中的应用
汇报人: 2024-01-09
目录
• 模糊模式识别概述 • 模糊模式识别的基本方法 • 模糊模式识别在计算机视觉中
的应用 • 模糊模式识别在自然语言处理
中的应用
目录
• 模糊模式识别在其他领域的应 用
• 总结与展望
01
模糊模式识别概述
模糊模式识别的定义
模糊模式识别是一种基于模糊逻辑和 模糊集合理论的识别方法,用于处理 具有不确定性、不完全性和模糊性的 信息。
02
模糊模式识别的基本方法
模糊逻辑
模糊逻辑是一种处理不确定性和模糊性的逻辑方法,它允许 将模糊的输入映射到模糊的输出,从而在不确定的情况下进 行推理和决策。
模糊逻辑通过使用隶属度函数来描述模糊集合,将精确的逻 辑转换为模糊逻辑,使得计算机能够处理不确定和模糊的信 息。
模糊集合
模糊集合是传统集合的扩展,它允许元素属于集合的程度 在0和1之间变化。
详细描述
通过利用模糊模式识别技术,计算机能够更好地处理目标形状、颜色和运动的不确定性,从而提高跟 踪和识别的性能。这种方法能够适应目标的变化和遮挡,并在复杂场景中实现更可靠的目标检测和识 别。

教学大纲_模糊数学

教学大纲_模糊数学

《模糊数学》教学大纲课程编号:121082B课程类型:□通识教育必修课□通识教育选修课□专业必修课□√专业选修课□学科基础课总学时:32 讲课学时:32 实验(上机)学时:0学分:2适用对象:金融数学专业先修课程:数学分析、高等代数、概率论与数理统计毕业要求:1.掌握数学、统计及计算机的基本理论和方法2.具备国际视野,能够与同行及社会公众进行有效沟通和交流一、教学目标模糊数学是统计学院金融数学专业选修的基础课之一。

通过本课程的学习,使学生对模糊数学的原理和思想方法有一个基本的认识。

掌握应用模糊数学的原理分析和解题的基本技巧。

了解模糊数学方法在各个领域的应用,为应用模糊数学知识解决问题打下基础。

二、教学基本要求本课以课堂讲授为主。

适当补充一些模糊数学在实际中应用的实例,理论联系实际。

在各章中均可安排一些内容引导学生自学,通过布置作业和讨论题,提高学生自己解决问题与分析问题的能力。

同时,也可适当让学生自己来寻找一些实际问题,应用学过的知识来进行分析、综合、评判,以期达到更好的巩固、应用的目的。

(一) 模糊数学的基本理论和基本原理1、模糊集合是处理模糊事物的新的数学概念,是模糊数学的基础。

理解模糊集的定义、表示方法、模糊集的运算。

了解模糊算子的定义及各种模糊算子,了解模糊集的模糊度定义。

2、理解模糊集截集的定义及性质,掌握模糊数学的基本原理:分解定理(联系普通集与模糊集的桥梁)、扩张原理。

了解模糊数及模糊数的运算。

(二) 模糊数学方法及其在各领域中的应用1、理解模糊关系的概念及性质,深入理解在有限域的情况下,模糊关系可以用矩阵表示。

理解模糊关系合成的定义及性质。

理解掌握贴近度概念及最大隶属原则和择近原则。

了解模糊变换以及模糊控制。

2、对于模糊数学方法的应用。

重点掌握模糊模式识别、模糊聚类分析、模糊综合评判决策,以及了解它们在不同领域的应用举例。

每章节后的习题要求全部完成;本课程建议使用形成性和终结性考试相结合,并各占50%比例。

模糊模式识别

模糊模式识别

N 2 ( A, B)


2 ( A(u ) B(u ))du A(u )du


B (u )du
2019/1/9
14
格贴近度
2019/1/9
15
模糊向量

有限论域上的模糊集合可以表示成模糊向 量的形式

模糊集合的第三种记法

例如:X={x1 , x2 , x3 , x4 ,, x5}上的模糊集合 A=(μ1 , μ2 , μ3 , μ4 ,, μ5)
2019/1/9
2
模式识别

日常和实际问题中,有些模式界线是明确的, 如识别英文字母、阿拉伯数字、车牌号码、手 写体汉字识别等,它们很清楚。 而有些模式界线是不明确的,如识别一个人的 高、矮、胖、瘦等。

2019/1/9
3
何谓模糊模式识别?

界线不明确的模式,称为模糊模式,相应的问 题称为模糊模式识别问题。用模糊集理论来处 理模糊识别问题的方法称为模糊模式识别方法。 模糊模式识别问题一般可分为两类:
2019/1/9 5
模糊模式识别例2

模式是论域上的模糊集;

待识别对象也是模糊的;
例如:医生给病人诊断
论域U={各种疾病的症候},标准模式库 ={心脏病,胃溃疡,感冒,…} 待识别对象:一个病人的症状
2019/1/9
6
本章内容
模糊集的贴近度 31 . 模糊模式识别理论 格贴近度 最大隶属原则 3. 2 模糊模式识别方法 择近原则 条形码识别 3. 3 模糊模式识别实例 几何图形识别 手写文字识别


模式库是模糊的,而待识别对象是分明的,要用模 糊模式识别的直接方法解决; 模式库和待识别对象都是模糊的,要用模糊模式识 别的间接方法来解决。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欧几里得贴近度
若U={u1, u2,…, un}, 则
当U为实数域上的闭区间[a,b],则有
例题3.3
设论域R={1,2,3,4,5}, A,B ∈F(R),且
A=(0.2, 0.3, 0.6, 0.1, 0.9), B=(0.1, 0.2, 0.7, 0.2, 0) 求欧几里得贴近度
黎曼贴近度
例题3.12
一个公司在社会上的声誉是个模糊概念,它是 由多个因素决定的。设U={x1,x2,x3,x4,x5,x6}. 其中x1:质量管理;x2:员工才能;x3:长期投资 价值;x4:财务健全;x5:善用公司资产;x6:产 品质量和服务质量。 表中给出4个公司的声誉模型Ai和管理模式Di 以及待识别的公司的声誉B 判断待识别公司的管理模式和哪个靠近?
x1 A1 A2 A3 A4 B 0.92 0.88 0.89 0.35 0.91
x2 0.83 0.86 0.86 0.34 0.85
x3 0.88 0.85 0.86 0.32 0.88
x4 0.90 0.96 0.94 0.40 0.90
x5 0.83 0.92 0.86 0.48 0.85
例题3.6
设 A=(0.1, 0.5, 0, 0.6), B=(0.2, 0, 0.7, 0.3), 求
格贴近度—内积与外积
定义1 (任意论域U上) 设A,B∈F(U),称
为模糊集A,B的内积
为模糊集A,B的外积
例题
设U={x1,x2,x3,x4,x5,x6}, A=0.6/x1+0.8/x2+1/x3+0.8/x4+0.6/x5+0.4/x6, B=0.4/x1+0.6/x2+0.8/x3+1/x4+0.8/x5+0.6/x6, 分别求
模糊模式识别
标本或待识别物具有模糊性时,利用模糊数学方法 处理模式识别问题
例题3.1
桔子的分级问题
设论域U={若干桔子}。一般按照桔子的大小,色 泽,有无损伤等特征来分级。 标准模型库={一级,二级,三级,四级},其中的 模型一级,二级,三级,四级是模糊的。 元素对标准模糊集的识别问题: 拿到一个桔子后怎么放的问题
隶属函数的确定
模糊数学的基本思想—隶属程度的思想 建立符合实际的隶属函数则成为关键
至今尚未完全解决的问题
隶属度是主观的还是客观的呢?
模糊统计试验
模糊统计试验包含4个要素 论域U; U中的一个固定元素u0; U中的一个随机运动集合A*; U U中的一个以A*作为弹性边界的模糊子集A, 制约着A*运动。 A A, A 设做n次试验后, u0对A的隶属频率= 隶属频率呈现稳定性则表明了隶属度的客观存在
引理
设A,B∈F(U),令
列结论成立: (1) (2) (3) (4) 特别当 ,则下
.
格贴近度
定理1 设A,B∈F(U), 则
是模糊集A,B的贴近度,叫做A,B的格贴近度。 记为
U为有限域
U为无限域
格贴近度
各种形式的贴近度计算公式各有优缺点,但若 隶属函数为连续函数时,而且满足格贴近度条 件时,用格贴近度较简单。
模糊集的贴近度
贴近度 对两个模糊集接近程度的一种度量 定义1 设A,B,C∈F(U),若映射 满足条件:
则称N(A,B)为模糊集A与B的贴近度。N称为F(U)上的贴 近度函数
海明贴近度
若U={u1, u2,…, un}, 则
当U为实数域上的闭区间[a,b],则有
例题3.2
设模糊集 A=0.6/u1+0.8/u2+1/u3+0.8/u4+0.6/u5+0.2/u6 B=0.4/u1+0.6/u2+0.5/u3+1/u4+0.8/u5+0.3/u6 试应用海明贴近度计算N(A,B)
不足25岁的一定为年轻人,故选a=25岁。“年轻 人”的隶属度随年龄的增大而减少,并且衰减明显 且不是线性。为方便,选β=2;又因为30岁最模糊, 故可选α=1/25,使A(30)=0.5。于是
小结
贴近度 格贴近度 模糊模式识别原则
最大隶属原则 择近原则
确定隶属函数方法
模糊统计试验法 模糊分布
x6 0.90 0.90 0.88 0.40 0.90
管理模式
D1 D2 D3 D4 ?
课堂练习
在小麦亲本识别中,以小麦百粒重为论域,记为X。五 个基本类型用模糊集表示: 早熟 矮杆 大粒 高肥丰产 中肥丰产 (1) 现测得一个小麦品种的样品的百粒重为x0=4.6,试 判定x0代表的品种属于哪个亲本? (2) 现有一小麦品种B,用统计方法得知它的百粒重隶属 函数为 ,问B隶属于哪一品种?
偏小型 偏大型 中间型
1
1
1
0
a
x
0
a
x
0
a
b
x
梯形分布与半梯形分布
偏小型
抛物型分布
偏大型
中间型

1
1
1
0
a
b
x
0
a
b
x
0a
b
c
d x
正态分布
偏小型 偏大型 中间型
例题
“年轻人”的隶属函数确定
首先,根据统计资料,发现“年轻人”的隶属函数 与Gauss分布的偏小型接近,故选用Gauss分布偏 小型隶属函数。
择近原则(群体模糊模式识别问题)
设Ai,B ∈F(U)(i=1,2,…,n),若存在i0,是使
则认为B与Ai最贴近,即判定B与Ai为一类。
识别对象是模糊集而不是一个单元 贴近度最大的两个模糊集为一类
例题3.11
现有茶叶等级标准样品五种:Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ及待识别 的茶叶模型A,确定A的型号 反映茶叶质量的因素为论域U 即U={条索,色泽,净度,汤色,香气,滋味} Ⅰ=(0.5,0.4,0.3,0.6,0.5,0.4), Ⅱ=(0.3,0.2,0.2,0.1,0.2,0.2), Ⅲ=(0.2,0.2,0.2,0.1,0.1,0.2), Ⅳ=(0,0.1,0.2,0.1,0.1,0.1), Ⅴ=(0,0.1,0.1,0.1,0.1,0.1), A=(0.4,0.2,0.1,0.4,0.5,0.6)
例题3.7
设论域为实数域,其上有两个正态模糊集A,B, 它们的隶属函数分别为
试求
内积与外积的性质
性质1 证
扎德算子的对偶律
峰值与谷值
定义 对A∈F(U), 令

分别叫做模糊集A的峰值与谷值
性质2 性质3 性质5 性质6
内积,外积与模糊集的贴近程度
图a所表示的两个模糊集A,B交点的纵坐标(隶属度)越大 时,A和B越贴近。这个交点的纵坐标是由A和B的内积来 表示的。 内积越大,模糊集越贴近 图b所表示的两个模糊集C,D交点的纵坐标越小,C和D越 贴近。而这时焦点的纵坐标是由C和D的外积来表示的 外积越小,模糊集越贴近
若U为实数域,被积函数为黎曼可积且广义积 分收敛,则
例题3.4
设U=[0,100],且
求黎曼贴近度N1(A,B)
例题3.5
设U=R(实数域),正态型隶属函数
求当
时,N(A,B)
有限论域上的F向量的内积与外积
称向量 A=(a1,a2,a3,…,an), 为有限论域上的模糊向量。 模糊向量的内积和外积的定义 A=(a1,a2,a3,…,an), B=(b1,b2,b3,…,bn)
N
课堂练习
设论域R=[0,3], 且
试用格贴近度求N(A,B)
模糊模式识别原则
模糊模式识别
最大隶属原则(直接方法) 择近原则 (间接方法)
最大隶属原则(个体模糊模式识别问题)
设Ai∈ F(U)(i=1,2,…,n),对u0 ∈U,若存在i0,使
则认为u0相对地隶属于Ai0,这就是最大隶属原则
例题3.9
模糊数学基础
第二节 模糊模式识别
主讲:贺蓉(信息科学与工程学院)
Outline
模糊集的贴近度
海明贴近度 欧几里得贴近度 黎曼贴近度
格贴近度
内积与外积 格贴近度
模糊模式识别
最大隶属原则 择近原则
几何图形识别 确定隶属函数的方法综述
模式识别
模式识别
模式(pattern):供模仿用的样本 模式识别:判定给定的事物与哪个样本相同或相近 例如,文字识别;图像识别;声音识别; 2个特征:一是事先已知标准模型库;二是有待识 别对象。
考虑人的年龄问题,分为年轻,中年,老年三 类,分别对应三个模糊集A1, A2, A3.设论域 U=(0,100],且对x ∈ (0,100],有
40岁的人是哪一类人?35岁呢?Biblioteka 例题3.10(几何图形识别)
细胞染色体形状的模糊识别。通常主要将几何图形划分为若 干三角形图形进行模糊识别。设论域为三角形全体,即 标准模型库={正三角形E,直角三角形R,等腰三角形I,等腰直 角三角形I∩R,任意三角形T}。 某人在实验中观察到染色体的形状,测得起三个内角分别为 (94度,50度,36度),问此三角形属于哪一种三角形?
例题3.14
参见书pp.41-42 首先用模糊统计试验确定u0=27对A的隶属度
A(27)=0.78
其次,考虑<青年人>的隶属函数
模糊集A =“青年人”, u0=13.5-14.5,14.5-15.5,...,24.5-25.5,…35.5-36.5 试验次数n=129, 隶属次数(频数)m 隶属频率f=m/n 在此基础上,作出A(青年人)的隶属函数A(x) 隶属函数曲线见图2-7(p.42)
F分布
什么是F分布? 实数R上F集的隶属函数成为F分布。 在客观事物中,通常是以实数R作论域 给出常用的几种F分布。
相关文档
最新文档