最新工程力学第三章受力分析

合集下载

工程力学教程第4版第3章思考题答案_副本

工程力学教程第4版第3章思考题答案_副本

工程力学教程第4版第3章思考题答案_副本问题1问题描述:请说明受力分析方法的基本原理,并说明在实际工程中使用受力分析的步骤。

答案:受力分析是工程力学中常用的一种方法,用于分析物体所受的力和力的作用方向,以及这些力对物体的影响。

受力分析的基本原理是根据牛顿第二定律,即物体所受的合力等于物体的质量乘以加速度,通过受力分析可以求解物体在受力作用下的运动情况。

在实际工程中,使用受力分析的步骤如下:1.确定受力的作用方向和大小。

根据问题描述和已知条件,确定受力的作用方向和大小。

可使用向量图形表示受力的方向和大小。

2.绘制受力图。

根据受力的作用方向和大小,在纸上绘制受力图。

受力图可以使用箭头表示力的方向和长度表示力的大小。

3.分解力和合力。

根据受力图,可以将受力分解为多个力的合力。

将合力分解为多个力可以使计算更加简单,并且可以更好地理解力的作用。

4.应用牛顿第二定律求解受力的影响。

根据受力的作用方向和大小,使用牛顿第二定律求解受力的影响。

根据物体的质量和加速度,可以计算物体所受的合力。

使用受力分析可以解决物体的运动问题。

5.检查和验证结果。

在完成受力分析后,应对所得结果进行检查和验证。

可以使用其他方法验证受力分析的结果。

通过以上步骤,可以应用受力分析方法解决实际工程中的问题,该方法可以用于求解任何物体的运动情况。

问题2问题描述:请说明轴力和切力的概念,并分别给出它们的计算公式。

答案:轴力和切力是力学中的两个重要概念,用于描述杆件或梁的受力情况。

轴力是指垂直于横截面的力,也可以理解为沿着杆件轴线的力。

轴力的计算公式为:N = A·σ其中,N表示轴力,A表示横截面积,σ表示单位面积上的轴向应力。

切力是指垂直于杆件轴线的力,作用在杆件截面上的力。

切力的计算公式为:Q = A·τ其中,Q表示切力,A表示横截面积,τ表示单位面积上的切应力。

轴力和切力是杆件或梁内力的两个分量,通过计算轴力和切力可以确定杆件或梁在受力状态下的内力分布情况。

工程力学第三章 受力分析(课堂PPT)

工程力学第三章 受力分析(课堂PPT)

1
31
解:
1.杆AB的受力图。
2. 活塞和连杆的受力图。
E D
B
Aq
C q
B
FBA
A
FA
3. 压块 C 的受力图。
q
FCB
FAB
q
C FCx
F
B
q
FBC
1 FCy
32
例题7
D
A
K
q
C
E
BⅠ Ⅱ
P
如图所示平面构架,由杆AB , DE及DB铰接而成。钢绳一端拴 在K处,另一端绕过定滑轮Ⅰ和 动滑轮Ⅱ后拴在销钉B上。重物 的重量为P,各杆和滑轮的自重 不计。(1)试分别画出各杆, 各滑轮,销钉B以及整个系统的 受力图;(2)画出销钉B与滑轮 Ⅰ一起的受力图;(3)画出杆 AB ,滑轮Ⅰ ,Ⅱ ,钢绳和重物 作为一个系统时的受力图
处必有力,力的方向由约束类型而定。
要注意力是物体之间的相互机械作用。因此对 2、不要多画力 于受力体所受的每一个力,都应能明确地指出
它是哪一个施力体施加的。
1
18
3、不要画错力的方向 约束反力的方向必须严格地按照约束的类型来画,不 能单凭直观或根据主动力的方向来简单推想。在分析 两物体之间的作用力与反作用力时,要注意,作用力 的方向一旦确定,反作用力的方向一定要与之相反, 不要把箭头方向画错。
BB
D
F
A
C
1
7
解: 1. 杆 BC 的受力图。
BB
D
F
A
C
1
FB B
C
FC
8
2. 杆AB 的受力图。
BB
D
F
A
正交分解

《工程力学》第三章 平面一般力系

《工程力学》第三章  平面一般力系
• 运用解析法:在力系所在平面上取坐标系 O -xy(图3-3(a)),应用合力投影定理, 则由(3-2)式得
• 故主矢R′的模为
• 主矢R′的方向从图3-3(b)中可知
图3-3
• 2.对点O的主矩 • 从图3-3(b)中可知,MO应是该平面一般力偶
系m1,m2,…,mn的合力偶矩。由平面力偶 系的合成定理可知,
• 由于Fd也等于力F对B点的矩,mB(F)=Fd,于 是得
• §3-2 平面一般力系向一点的简化 • 一、平面一般力系向一点的简化 • 在力系的作用平面内,被任选的一点O称为简
化中心。将力系中诸力平移至简化中心,同时 附加一个力偶系的过程,称为力系向给定点的 简化。
图3-2
•经 简 化 后 的 平 面 共 点 力 系 合成为一个合力R′,该合力作用点在简化 中心上;把简化后的附加力偶系m1, m2,…,mn合成得一力偶MO(图32(c))。自然,依据力的平移定理,可将 力R′和MO合成为一个力R(图3-2(d)), 这个力R就是原力系F1,F2,…,Fn的合 力。
• 二、截面法求桁架内力
• 截面法一般采用如下步骤:
• (1)先求出桁架支承约束反力。
• (2)如需求某杆的内力,可通过该杆作一 假想截面,将桁架截为两段(只截杆件, 不能截在节点上)。注意被截杆件一般不 能多于三根。任选半边桁架考虑平衡,在 杆件被截处,画出杆件内力,其指向假定 沿杆件而背离杆件被截处。
图3-5
• 二、平面一般力系向一点简化结果分析
• 1.平面一般力系向一点的简化结果
• 平面一般力系向简化中心简化,其结果可能出现 四种情况:
• (1)R′=0,MO=0
• 主矢和主矩均等于零。它表明简化后的平面汇交 力

理论力学课件 受力分析与受力图、第三章

理论力学课件  受力分析与受力图、第三章

5、球铰链
约束结构: 由一物体的球部嵌入另一物体的球窝构成。

约束特性: 允许物体绕球心转动,不能沿半径移动。

约束反力: 通过球心,方向不能预先确定,通常用三个正交分力F x,F y,F z来表示。

人造髋关节
二力杆工程实例
固定端约束除了加约束力,还要加上约束力偶。

运动学角度:固定端既限制线位移,又限制角位移,如果只有约束力,则构件将转动。

必须有约束力偶才行。

力系简化角度:固定端所受的力是一个复杂的平面任意力系,力系向端部某点简化的结果是一力和一力偶。

CD是不是二力
杆?
2.3 受力分析与受力图
刚化原理:若变形体在某一力系作用下处于平衡,则将此变形体刚化为刚体,其平衡状态保持不变。

只有刚化原理没有软化原理。

1. 右拱BC 的受力图。

C
B
解:
F C
F B
2. 左拱AC 的受力图。

A C
F
F Ax C F
F Ay。

工程力学:第三章 空间问题的受力分析

工程力学:第三章 空间问题的受力分析

。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。

工程力学第三章-力系的平衡

工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。

《工程力学第三章》PPT课件

《工程力学第三章》PPT课件
F A y - F Q - F W + F T B sin= 0
FA= y - l- l xFW+F2Q
h
15
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
FTB=FWlxs+ iF nQ2l=2FlWxFQ
解: 3.讨论 由结果可以看出,当x=l,即电动机移动到吊车大梁 右端B点处时,钢索所受拉力最大。钢索拉力最大值为
因此,力系平衡的必要与充分条件是力系的主矢和对任意一 点的主矩同时等于零。这一条件简称为平衡条件
满足平衡条件的力系称为平衡力系。 本章主要介绍构件在平面力系作用下的平衡问题。
h
8
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程
对于平面力系,根据第2章中所得到的主矢和主矩 的表达式,力系的平衡条件可以写成
吊 车 大 梁 AB 上 既 有 未 知 的 A 处 约 束力和钢索的拉力,又作用有已知的 电动机和重物的重力以及大梁的重力。 所以选择吊车大梁AB作为研究对象。 将吊车大梁从吊车中隔离出来。
h
12
平面力系的平衡条件与平衡方程
平面一般力系的平衡条件与平衡方程-例题 1
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
平面一般力系的平衡条件与平衡方程-例题 1
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q2 l- F W xF T Blsi= n0
FTB=FWlxs+ inFQ2l=2FlWxFQ
FAxFTBco= s0
Fy=0
F A= x 2F W x lF Q l co= s3 3 0 F lW xF 2 Q

工程力学受力分析课件

工程力学受力分析课件

02
受力分析基础
力的定义与分类
定义
力是物体之间的相互作用,是改 变物体运动状态的原因。
分类
根据力的作用效果,力可以分为 拉力、压力、剪切力、扭转力等 。根据力的性质,力可以分为重 力、弹性力、摩擦力等。
静力与动力
静力
物体在力的作用下处于平衡状态,即 合外力为零。静力分析主要用于研究 物体的平衡状态和受力情况。
轴的受力分析
转轴的受力分析 转轴的约束条件 转轴的内力和变形
轴的受力分析
转轴的强度和刚度要求 传动轴的受力分析 传动轴的约束条件
轴的受力分析
传动轴的内力和变形
传动轴的强度和刚度要求
轮轴的受力分析
车轮与车轴的连接受力分析 车轮与车轴的连接方式 车轮与车轴的内力和变形
轮轴的受力分析
车轮与车轴的强度和刚度要求 齿轮传动轮轴的受力分析 齿轮传动的特点和应用
详细描述
1. 机器设计:机械系 统的设计过程中,精 确的受力分析是关键 ,通过分析可以优化 机器的结构设计,提 高机器的承载能力和 使用寿命。
2. 零部件优化:针对 关键零部件,受力分 析可以帮助优化其形 状、尺寸和材料选择 ,提高其性能并降低 成本。
3. 动态性能:对于高 速运转的机器,受力 分析需考虑动态载荷 ,以确保机器在各种 工况下的稳定性和可 靠性。
1. 结构设计:建筑结构设计中, 需要精确分析各种受力情况,如 重力、风载、地震载荷等,以确 保建筑的安全性和稳定性。
3. 材料选择与优化:根据受力分 析结果,可以选择合适的材料和 优化结构设计,以降低成本并提 高效率。
机械系统中的受力分析案例
总结词:机械系统中 ,工程力学受力分析 有助于优化机器设计 ,提高机器性能与使 用寿命。

工程力学第3章

工程力学第3章

1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。

=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。

《工程力学》第三章精选习题及解答提示

《工程力学》第三章精选习题及解答提示

《工程力学》第三章精选习题及解答提示3—1 图示空间三力5001=F N ,10002=F N ,7003=F N ,求此三力在x ,y ,z 轴上的投影;并写出三力矢量表达式。

【解】(1)求三力在x ,y ,z 轴上的投影。

力1F的投影: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯=+⨯==⨯=+⨯-=N 224515002110N 447525002122211112211F F y xoz F F F F z y x 轴垂直)坐标面内,与位于—(———=-- 力2F 的投影(采用二次投影法):⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⨯=++⨯=-=⨯-=+⨯+++⨯-=⨯=+⨯+++⨯-=N 26714110003211N 802143100032132132N 53514210003223213222222222222222222222222F F F F F F z y x =-- 力3F 的投影(3F 位于xoy 坐标面内,与x 轴平行同向):⎪⎩⎪⎨⎧====00N 7003333z y x F F F F(2)写出三力的矢量表达式: k i k F j F i F F z y x ⋅+⋅-=⋅+⋅+⋅=2244471111 k j i k F j F i F F z y x ⋅+⋅-⋅-=⋅+⋅+⋅=2678025352222 i k F j F i F F z y x ⋅=⋅+⋅+⋅=7003333 3—2 半径为r 的斜齿轮,其上作用有力F ,如图所示。

已知角α和角β,求力F 沿坐标轴的投影及力F 对y 轴之矩。

【解】(1)求力在坐标轴的投影。

根据图中所示的力F 的位置关系,可知本题宜采用二次投影法:⎪⎩⎪⎨⎧⋅-=⋅⋅-=⋅⋅=αβαβαsin cos cos sin cos F F F F F F z y x(2)求力F 对y 轴之矩: 由图可知,力F 可分解为三个分力,分别是:轴向力a F ;径向力r F ;圆周力t F ,即: t r a F F F F ++=由合力矩定理得:βαβαsin cos sin cos 00)()()()(⋅⋅⋅=⋅⋅⋅++=++=r F r F F m F m F m F m t y r y a y y 3—3 铅垂力500=F N ,作用于曲柄上,如图所示,求该力对于各坐标轴之矩。

工程力学第三章 受力分析

工程力学第三章 受力分析

F
D
C
F C
A
FA
F
FAx A FAy
精品课表件示法二
C
F C
23
例题2
A
如图所示,重物重G = 20 kN,用
60
D
B
钢丝绳挂在支架的滑轮B上,钢丝 绳的另一端绕在铰车D上。杆AB与
BC铰接,并以铰链A,C与墙连接。
30
如两杆与滑轮的自重不计并忽略摩
G
擦 和 滑 轮 的 大 小 , 试 画 出 杆 AB 和
A
F
H
D
E
B
C
F
A
H
FB
D B
FC
E C
精品课件
12
[例5] 画出下列各构件的受力图
O
C
E
DQLeabharlann AB精品课件
13
O
C
E
D
Q
A
B
Ncx Ncy
NBx NBy
精品课件
N’cy
N’cx
14
[例6] 画出下列各构件的受力图
精品课件
15
尖点问题
应去掉约束
精品课件
应去掉约束
16
[例7] 画出下列各构件的受力图
梯子放在光滑水平面上,
若其自重不计,但在AB的 中点处作用一铅直载荷F。 试分别画出梯子的AB,AC
部分以及整个系统的受力
图。
精品课件
10
F
H D B
解: 1.梯子AB 部分的受力图。
FAy
A
FA
FAx
H
E
FB
FD
D
C B
2.梯子AC 部分的受力图。

第三章静定结构的受力分析PPT课件

第三章静定结构的受力分析PPT课件

A
点、集中力偶作用点、分布荷载作用点的起点 FQA
和终点等)为控制界面
MA
⑵ 在两控制截面弯矩值作出的虚线上,
叠加该段简支梁作用荷载时产生的弯矩值。
A
七、简易法作内力图
q
l
q l2 8
MB B
FQB
MB B
利用微分关系定形,利用特殊点的内力值来定值或利用积分关系定值。
基本步骤: 1、确定梁上所有外力(求支座反力); 2、分段 3、利用微分规律判断梁各段内力图的形状; 4、确定控制点内力的数值大小及正负; 5、画内力图。
剪力 — 截面上应力沿杆轴法线方 向的合力, 使杆微段有顺时针方向转动 趋势的为正,画剪力图要注明正负号。
M
M
二、计算截面内力的截面法
弯矩 — 截面上应力对截面形心的 力矩之和。在水平杆件中,当弯矩使杆 件下部受拉时,弯矩为正。弯矩图画在 杆件受拉一侧,不注符号。
⑴ 先求支座反力(悬臂结构除外)
⑵ 将拟求内力的截面断开,选取外力少的部分作隔离体受力图。
m 2
2、力偶作用点 M图有一突变,力矩 为顺时针向下突变; F Q 图没有变化。
五、内力图形状特征
l
ql 2
ql 2
q 8
3、均布荷载作用段 M图为抛物线,荷载向 下曲线亦向下凸; F Q 图为斜直线,荷载向 下直线由左向右下斜
7
1、在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩等于零,有 集中力偶作用,截面弯矩等于集中力偶的值。
2、刚结点上各杆端弯矩及集中力偶应满足结点的力矩平衡。两杆相交刚结 点无 m 作用时,两杆端弯矩等值,同侧受拉。
3、具有定向连结的杆端剪力等于零,如无横向荷载作用,该端弯矩为零。

《工程力学》第三章 杆件基本变形时的内力分析

《工程力学》第三章 杆件基本变形时的内力分析

CD段 FN3 4kN
(2)绘制轴力图。
2
3
2
3
思考题:作用于杆件上的外力(载荷)沿其作用线移动时,其 轴力图有否改变?支座约束力有否改变?
练习: 由一高度为H的正方形截面石柱,顶部作用有轴心压
力FP。已知材料的容重为g,作柱的轴力图。
FP
FP
FN
FP
x
n
n
H
G(x) rAx
-
FN x
FP rAx
m
根据平衡条件,其任
一截面上分布内力系的合 F
力也必与杆的轴线重合,
这种与杆件轴线重合的内
力称为轴力,用FN表示。
轴力的大小由平衡方程求解,若取左段 FN
为研究对象,由
Fx 0 , FN F 0 可得 FN F
FN 观看动画
F F
2. 轴力的正负号规定: 拉伸—拉力,其轴力为正值。方向背离所在截面。 压缩—压力,其轴力为负值。方向指向所在截面。
构件承载能力分析研究的内容和方法:
内容
1.外力
内力
2.材料的力学性质
破坏(失效)的规律 变形的规律
方法
3.截面形状和尺寸与承载关系
1.实验手段 几何方面 2.理论分析 物理方面
静力方面
第三章 杆件基本变形时的内力分析
内力的大小及其分布规律与杆件的变形与失效密切相关,因此 内力分析是解决构件承载能力的基础。本章主要研究杆件的内力及 其沿杆件轴线的变化规律,以便为杆件的强度、刚度和稳定性计算 提供基础。
§3-1 内力与截面法 §3-2 拉压杆的内力与内力图 §3-3 平面弯曲梁的内力与内力图 习题课 §3-4 受扭圆轴的内力与内力图
一、外力及其分类 §3-1 内力与截面法

工程力学第三章 物体的受力分析结构的计算简图

工程力学第三章 物体的受力分析结构的计算简图
所示
系统整体受力图如图(d) 所示
§3–2物体的受力分析及受力图
考虑到左拱 AC 在三个力 作用下平衡,也可按三力平 衡汇交定理画出左拱AC 的 受力图,如图(e)所示
此时整体受力图如图(f) 所示
§3–2物体的受力分析及受力图
例1-5
不计自重的梯子放在光滑 水平地面上,画出绳子、 梯子左右两部分与整个系 统受力图。图(a)
杆的受力图能否画为 图(d)所示?
若这样画,梁AB的受力 图又如何改动?
§3–2物体的受力分析及受力图
例1-4
不计三铰拱桥的自重与摩擦,画 出左、右拱AC,CB的受力图与系 统整体受力图。
解: 右拱CB为二力构件,其受力 图如图(b)所示
§3–2物体的受力分析及受力图
取左拱AC ,其受力图如图(c)
可用二个通过轴心的正交分力Fx, Fy 表
示。
(2) 、光滑圆柱铰链
约束特点:由两个各穿孔的构件及圆柱销钉 组成,如剪刀。
§3–1约束与约束反力
§3–1约束与约束反力
光滑圆柱铰链:亦为孔与轴的配合问题, 与轴承一样,可用两个正交分力表示。
其中有作用反作用关系
Fcx Fcx, Fcy Fcy
解:画出简图 画出主动力
画出约束力
§3–2物体的受力分析及受力图
例1-3
水平均质梁AB重为 P1,电动机重
为 P2,不计杆 CD 的自重,画出杆
P2
CD和梁 AB的受力图。图(a)
解: 取 CD 杆,其为二力构件, 简称二力杆,其受力图如图 (b)
§3–2物体的受力分析及受力图
取AB梁,其受力图如图 (c)
(4)定向支座(滑动铰支座)
§3–1约束与约束反力

工程力学第三章课件

工程力学第三章课件

(F
)
0
附加条件:x(或 y)轴不能垂直于 AB 连线。
三矩式:
M M
A B
(F (F
) )
0 0
MC (F ) 0
附加条件:A,B,C 不在同一直线上。
上式是物体取得平衡的必要条件,但不是充分条件,必 须加上附加条件后,才能成为物体平衡的充分必要条件。
3.3.1 平面任意力系的平衡条件和平衡方程
(1) FR 0,MO 0 ; (3) FR 0,MO 0 ;
(2) FR 0,MO 0 ; (4) FR 0,MO 0 。
3.2.1 平面任意力系简化为一个力偶的情形
如果力系的主矢等于零,而力系对于简化中心的主矩不等于零,则原力系向简化中心等效 平移后的汇交力系已自行平衡,只剩下附加力偶系。
MO (F ) 0
平面任意力系的平衡方程
平面任意力系平衡的解析条件为:所 有各力在两任选坐标轴上的投影的代数 和分别等于零,各力对于任意一点的矩 的件和平衡方程
平面任意力系的平衡方程还有另外两种形式:
二矩式:
Fx M
0 A (F
)
0
M
B
3.2.3 平面任意力系平衡的情形
如果力系的主矢、主矩都等于零,即 FR 0,MO 0 ,则原力系平衡。
03
平面任意力系的平衡方程
3.3.1 平面任意力系的平衡条件和平衡方程
平面任意力系平衡的充要条件是:力系的主矢和对任一点的主矩都为零,即
F R MO
0 0
Fx 0 上述平衡条件也可用解析式表达如下: Fy 0
3.1.1 力的平移定理
力的平移定理:
证明:如图所示,刚体上作用有力 F。在刚体上任取一点 B,并在点 B 加上一对平衡力系 F′和 F′′, 令 F F F 。由静力学公理 3 可知,这三个力与原来的力 F 等效,同时这三个力又可以看成是作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
解:
A
1.梯子AB 部分的受力图。 FAy F
H A
F
H D B
FAx
FAx
FD
A
E
C
FB
D B
FAy
FE
E
FC
2.梯子AC 部分的受力图。
C
11
3.梯子整体的受力图。
F
H
A
F
H E C
A
D
B
FB
D B E
FC
C
12
[例5]
画出下列各构件的受力图
O
C
Q
D A
E B
13
O
C
P1
A
F
D B
q
P2
29
例 题4
解:
1.物块 B 的受力图。
FE
FD D B P2 I H FH P1 D FF FC C G FG
2. 球A 的受力图。
A H C E F G
E
A
F P1
B
qP23.滑轮 C来自的受力图。 30例 题 6
如图所示压榨机中,杆AB
E D
和 BC 的长度相等,自重忽略 不计。 A , B , C , E 处为铰 链连接。已知活塞D上受到油
要注意力是物体之间的相互机械作用。因此对 2、不要多画力 于受力体所受的每一个力,都应能明确地指出 它是哪一个施力体施加的。
18
3、不要画错力的方向 约束反力的方向必须严格地按照约束的类型来画,不
能单凭直观或根据主动力的方向来简单推想。在分析
两物体之间的作用力与反作用力时,要注意,作用力 的方向一旦确定,反作用力的方向一定要与之相反, 不要把箭头方向画错。
Q
D
E
A
B
Ncx Ncy NBx NBy
N’cy N’cx
14
[ 例 6]
画出下列各构件的受力图
15
尖点问题
应去掉约束
应去掉约束
16
[例7]
画出下列各构件的受力图
17
三、画受力图应注意的问题
1、不要漏画力 除主动力外,只要物体相互接触,就一定存 在有机械作用。要分清研究对象(受力体) 都与周围哪些物体(施力体)相接触,接触 处必有力,力的方向由约束类型而定。
F
A
P B
27
例 题3
解:
碾子的受力图为: F F
A
P B
A FNA
P B FNB
28
例 题4
在图示的平面系统中,匀质 球A 重P1,本身重量和摩擦不计 的理想滑轮C 和柔绳维持在仰角
H C E G
是q 的光滑斜面上,绳的一端挂
着重 P2 的物块 B 。试分析物块 B , 球 A 和滑轮 C 的受力情况,并分 别画出平衡时各物体的受力图。
4、受力图上不能再带约束。
即受力图一定要画在分离体上。
19
5、受力图上只画外力,不画内力。
一个力,属于外力还是内力,因研究对象的不同,有 可能不同。当物体系统拆开来分析时,原系统的部分 内力,就成为新研究对象的外力。
6 、同一系统各研究对象的受力图必须整体与局部一致,相
互协调,不能相互矛盾。 对于某一处的约束反力的方向一旦设定,在整体、局 部或单个物体的受力图上要与之保持一致。
FBC
30
FBA
B G
C
FCB
C
25
A D
60
B
3. 滑轮B ( 不带 销钉)的受力图。
FBy F2
D
4. 滑轮B ( 带销 钉)的受力图。
F2
30

FBA FBx
B
30
60
G C
F1
FBC
F1
26
例 题3
用力F 拉动碾子以轧平路面,重为P 的碾子 受到一石块的阻碍,如图所示。试画出碾子的受 力图。
B
A
q
q
C
缸内的总压力为 F 。试画出
杆AB ,活塞和连杆以及压块
C的受力图。
31
解:
1.杆AB的受力图。
2. 活塞和连杆的受力图。
E D A
B
FBA
F
FA
B
A
3. 压块 C 的受力图。
q
C
q
q
FCB FAB C F Cx
B
q
FBC
q
FCy
32
例 题 7
D A
q
K C B Ⅰ
E

P
如图所示平面构架,由杆AB , DE及DB铰接而成。钢绳一端拴 在K处,另一端绕过定滑轮Ⅰ和 动滑轮Ⅱ后拴在销钉B上。重物 的重量为P,各杆和滑轮的自重 不计。(1)试分别画出各杆, 各滑轮,销钉B以及整个系统的 受力图;(2)画出销钉B与滑轮 Ⅰ一起的受力图;(3)画出杆 AB ,滑轮Ⅰ ,Ⅱ ,钢绳和重物 作为一个系统时的受力图
B
用钢丝绳挂在支架的滑轮 B 上,钢 丝绳的另一端绕在铰车 D 上。杆 AB 与 BC 铰接,并以铰链 A , C 与墙连
30
接。如两杆与滑轮的自重不计并忽
G
略摩擦和滑轮的大小,试画出杆AB
和BC以及滑轮B的受力图。
24
C
A D
60
解: 1.杆AB的受力图。
B
FAB
A B
2.杆BC 的受力图。
7 、正确判断二力构件
20
物体的受力分析
P
F
C
如图所示的三铰拱
桥,由左右两拱桥铰接 而成。设各拱桥的自重 不计,在拱上作用有载 荷F,试分别画出左拱
A
B
和右拱的受力图。
21
解:
1. 右拱 BC 的受力图。
F
P
C
A
B
FC
C
B
FB
22
23
例 题 2
A D
60
如图所示,重物重G = 20 kN,
3
二、受力分析的步骤 ① 取研究对象; ② 取分离体;
③ 画上主动力;
④ 找接触点或连接点; ⑤ 画出约束反力。
4
例1 画出图中的球和杆AB的受力分析图
解:
B
B N2 N1 A 600 C P SBC
P
N2 A
XA
YA
画约束反力时,一定要按照约束的固有性质画 5 图,切不可主观臆断!
例2 画出图中球O与杆AB的受力分析图
B B
D
三力平衡汇交
FB
B
FB
B
F
A C
F FAy
A
D
D
F
A
H
FAx
FA
第二种画法
9
第一种画法

4
F
H
A
D
B
E C
如图所示,梯子的两部分 AB和AC在A点铰接,又在 D ,E两点用水平绳连接。 梯子放在光滑水平面上, 若其自重不计,但在AB的 中点处作用一铅直载荷F。 试分别画出梯子的AB,AC 部分以及整个系统的受力 图。
6
例 3
等腰三角形构架ABC 的顶点 A , B , C 都用铰链连接,底边
B B D
AC固定,而AB 边的中点D 作用
有平行于固定边AC 的力F,如图 所示。不计各杆自重,试画出杆 AB 和BC 的受力图。 F
A
C
7
解: 1. 杆 BC 的受力图。
B B D
FB
B
F
A C
C
FC
8
2. 杆AB 的受力图。 正交分解
内容回顾
约束的基本类型和约束反力的特点
1.柔性约束
2.光滑面约束
3.光滑铰链约束
①圆柱形销钉连接 ②固定铰支座 ③活动(可动)铰支座(辊轴支座)
1
本次课主要内容
• 教学内容:
物体的受力分析、受力图
• 教学目标:
熟练掌握物体受力分析和画受力图的方法。
2
§1-4 物体的受力分析和受力图
一、受力分析 无论是研究物体的平衡还是研究物体的运动规律, 都需要分析物体的受力情况。 1.分离体(研究对象) 2.受力分析 3.受力图 作用在物体上的力有:主动力,被动力(约束反力)。
相关文档
最新文档