镁合金防腐蚀方案汇总
热喷涂铝进行镁合金表面防腐蚀
热喷涂铝进行镁合金表面防腐蚀镁的密度小(1.74g/cm3),具有比强度和比刚度高、阻尼性和切削性好,电磁屏蔽性能好、减震抗震性能优良、易于机加工成形和易于回收再利用等优良特点。
镁合金也被公认为当今最有前途的汽车轻量化材料,被誉为21世纪的“绿色”材料。
然而,目前镁合金的应用远不如同期发现的铝合金那么广泛,究其原因则主要是因为其抗腐蚀性差,缺乏有效和积极的腐蚀防护途径。
热喷涂铝涂层是镁合金用来防腐蚀的一种有效的防腐蚀手段,效率高、防腐寿命长、经济效益显著。
然而,到目前为止,选择涂层材料一般是从材料使用性能的角度来考虑,对涂层材料塑性变形后的耐蚀性能研究尚不深入,本实验通过对不同压缩变形量的铝涂层进行抗腐蚀实验测试,为进一步提高铝涂层对镁合金抗腐蚀性能提供理论依据。
实验材料的基体是AZ80镁合金,其化学成分(质量分数,%)为:8.90Al,0.001Ni,0.53Zn,0.20Mn,0.01Si,0.005Fe,0.01Cu,余为Mg。
试样尺寸为20mm×15mm×10mm;实验时,除工作面积外其余全部用环氧树脂密封,工作面积是1cm2;电化学测试和浸泡实验的电解质均为w(NaCl)=3.5%的中性溶液,溶液温度为室温。
铝涂层材料选用的Al粉末,为工业纯铝,其化学成分(质量分数,%)为:Al≥99.7,Fe约0.1,Si约0.1,其他杂质含量≤0.03。
粉末的制备工艺为团聚、烧结,粒径5~30μm。
超音速火焰喷涂用高速火焰喷涂(Intelli-JetAC-HVAF)设备制备涂层。
喷涂工艺:主燃气压力0.54MPa,次燃气压力0.40MPa,空气压力0.59MPa,喷距0.15m,涂层厚度为0.3mm左右。
热挤压在YA32-315四柱式万能液压机上进行,加热温度400℃,压缩变形量分别是15%、30%、45%、60%和80%。
热喷涂铝涂层可以使AZ80镁合金抗腐蚀性能提高;从实验中得到的结果来看,压缩量是60%的热喷涂铝涂层的抗腐蚀性能最佳,原始状态热喷涂铝层镁合金的抗腐蚀性次之。
镁合金腐蚀与防护
镁合金的防护技术
针对镁合金腐蚀的防护研究主要有:①通过净化合金、改良组织结 构等方法来改善合金本身的耐蚀性;②隔绝镁合金与腐蚀介质直接接触。 工业生产过程中多通过表面处理即隔绝镁合金与腐蚀介质直接接触的方
法。表面处理过程的基本流程见图:
化学转化涂层法
镁合金的化学转化涂层法就是通过化 学处理在合金表面形成由氧化物或金属 化合物构成的钝化膜的处理工艺。而一 般以铬酸盐转化膜的防蚀效果最好,通 常采用铬酐或重铬酸盐。若采用铬酸钠 和氟化镁,在镁合金表面生成铬盐及金 属胶状物,这层膜起屏障作用,减缓了 腐蚀,并有自我修复功能。
镁合金表面镀锰铝合金
镁合金表面制备结合力好、均 匀致密的铝锰合金镀层不仅可以单 独作为防护层使用,而且可通过后 续加工处理进一步转化为更加耐蚀 耐磨及高硬度的膜层,以提高镁合 金表面的综合性能。
镁合金的防护技术
电镀铝锰合金后镁合金的腐蚀 电位也得到了很大的提高,这也会 说明材料的腐蚀热力学稳定性得到 了提高。
总腐蚀反应: Mg + 2H2O = Mg (OH)2 + H2 分步反应 : Mg = Mg2++ 2e- (阳极反应)
2H2O + 2e- = H2 + 2OH- (阴 极反应)
Mg2++ 2OH-= Mg(OH)2 (生 成腐蚀产物)
PH值对镁合金腐蚀的 影响
镁合金腐蚀机理及影响因素
pH为3~11.5时镁的电位很低,基本 保持在-1.4V的水平上;pH<3 时,镁的电 位急剧降低,腐蚀速率急剧加快;当 pH >11.5时,镁的电位升高,腐蚀速率显著减 慢。
镁合金的防护技术
有机涂层法
有机物涂层是镁合金保护的一 种常见方法,通常采用环氧树脂、 乙烯树脂以及橡胶等材料。但是单 独的有机物涂层耐蚀性能有限,结 合力也较低,只能用来作为短时间 的防护处理,或者在其它转化膜表 面涂敷作为复合涂层。
镁合金的腐蚀行为与防护
谢谢观看
1、镁合金在化学环境中的腐蚀 行为及其影响
镁合金在化学环境中易发生腐蚀,主要原因是其表面与周围介质发生化学反应 而导致材料损失。镁合金的腐蚀速率受介质温度、湿度、成分等因素影响。在 某些腐蚀介质中,如盐雾试验,镁合金的腐蚀速率甚至高于一些不锈钢。Biblioteka 2、不同镁合金的腐蚀行为差异
镁合金的成分和组织对其腐蚀行为有显著影响。例如,镁-铝-锌系合金(如 Mg-6Al-3Zn)具有较好的耐蚀性,而镁-铝系合金(如Mg-9Al)则较差。此外, 合金中的微量元素如稀土元素也可以提高镁合金的耐蚀性。
结论
镁合金的腐蚀行为与防护是一个重要的研究领域,关系到材料的使用寿命和可 靠性。了解镁合金在不同环境中的腐蚀行为以及不同防护措施的效果,有助于 采取有效的防腐蚀措施,提高镁合金的应用价值和市场竞争力。随着新型镁合 金材料的研发和应用,未来的腐蚀研究和防护措施将更加多样化和精细化。因 此,需要不断深入探究镁合金腐蚀行为与防护的内在规律,为新型镁合金材料 的研发和应用提供理论支持和实践指导。
3、合金化:合金化是提高镁合金耐腐蚀性能的一种有效方法。微弧氧化技术 可以用于制备高耐腐蚀性的镁合金涂层8。例如,Wang等人9通过微弧氧化技 术在镁合金表面制备了含CeO2涂层,显著提高了镁合金在模拟海水中的耐腐蚀 性能。
结论
微弧氧化技术在镁合金腐蚀防护领域具有广泛的应用前景。然而,仍存在一些 问题需要进一步研究和改进,如处理时间较长、能耗较高、设备成本较高等。 未来研究方向应包括优化微弧氧化技术的工艺参数,降低处理温度和时间,提 高处理效率,同时研究新型的镁合金表面处理技术,以实现更加环保和高效的 镁合金防腐蚀保护。
参考内容
引言
镁合金作为一种轻质、高强度的金属材料,在航空、汽车、电子等领域得到了 广泛应用。然而,镁合金的腐蚀问题限制了其使用寿命。微弧氧化技术作为一 种新型的表面处理技术,可以在镁合金表面生成一层致密的氧化物薄膜,有效 提高镁合金的耐腐蚀性能。本次演示将综述微弧氧化技术在镁合金腐蚀防护领 域的研究现状及其进展。
镁合金防腐
摘要镁及其合金具有许多优良的物理和机械性能,具有较高的比强度和比刚度、易于切削加工、易于铸造、减震性好、能承受较大的冲击震动负荷、导电导热性好、磁屏蔽性能优良,是一种理想的现代结构材料[ ,现已广泛应用于汽车、机械制造、航空航天、电子、通讯、军事、光学仪器和计算机制造等领域。
为使镁合金应用于不同的场合,经常需要改变其表面状态以提高耐蚀性、耐磨性、可焊性、装饰性等性能。
目前有许多工艺可在镁及镁合金表面上形成涂覆层,包括电镀、化学镀、转化膜,阳极氧化、氢化膜、有机涂层、气相沉积层等。
其中最为简单有效的方法就是通过电化学方法在基体上镀一层所需性能的金属或合金,即电镀或化学镀。
目录摘要 .........................................................错误!未定义书签。
1.绪论 (2)1.1镁合金表面防腐处理现状 (2)1.1.1镁合金表面防腐重要性 (2)1.1.2镁合金表面防腐常用方法及优缺点 (2)2.镁合金表面防腐综合设计 (6)2.1所选表面处理方法综述 (6)2.1.1所用方法及其国内发展现状 (6)2.1.2所用方法的评价分析 (7)2.1.3具体工艺流程及注意事项 (7)2.2 性能分析与检测 (8)参考文献 (9)绪论镁合金优异的物理和机械性能使其近年来得到广泛关注,镁合金的比强度高、刚性好,具有优良的尺寸稳定性、减振性、热导电性和电磁屏蔽能力,并且镁资源丰富、容易回收,这些优点使镁被誉为“21世纪的绿色金属结构材料”,可广泛应用于汽车零件、3C产品、航空航天和军工等领域[1]。
但是,镁的应用和研究相对其它金属严重滞后,原因在于其韧性低、高温性能和耐腐蚀性能差,而且加工成形比较困难。
与铝、钛能生成自愈钝化膜不同,镁表面生成的氧化膜疏松多孔,不能对基体起有效保护作用,因此,在潮湿的空气、含硫气氛和海洋大气中,镁均会遭受严重的化学腐蚀,这极大地阻碍了其广泛应用。
镁合金改善耐腐蚀性的探讨
收稿日期 :2021-05 作者简介 :刘广超,男,生于 1987 年,汉族,辽宁营口人,硕士研究生,实验员, 实验师,研究方向 :材料加工、相对分子质量。 和——氧化镁和镁的密度。 其次,镁的标准电极电位是在 -2.37V,在常用的金属材料之 中属于最低的电极电位,当镁元素与其他金属磁疗接触之后,如 果形成腐蚀电偶,在此过程中,镁元素就会将阳极牺牲,在此作 用下,提升腐蚀溶解的速度,也就是常说的电偶腐蚀,也可以称 之为接触性腐蚀。
2 镁合金腐蚀性差分析 在工业合金之中,镁是其中具有最高化学活性的一种金属
材料,较比铁材料的标准氢电极电位来说,镁还要低接近 2V 左 右,较比铝来说,还要低 0.7V,并且在经常使用的介质之中,镁 的电位也是处于较低的标准,例如,在氯化钠的 5% 溶液之中, 镁的稳定电位一般维持在 -1.45V,而如果在海水之中,就会在 1.5V~1.6V 的稳定电位,可以说在整体工程合金之中,镁是最负 的材料,从而发生腐蚀的情况也更为容易。
3 镁合金腐蚀的种类分析 镁合金腐蚀的类别如果从行为方面进行分析,可以分为电
偶腐蚀、点蚀、丝状腐蚀等多种腐蚀种类。 3.1 电偶腐蚀
如果金属的电位不同,当其发生接触同时浸入电解液的过程 中,如果金属的电位更负,就会加大金属的腐蚀速率,相反来说, 金属的电位较正情况下,就会减缓腐蚀的速率,从而对金属材料 形成良好的保护。如果电解质发生改变,从而金属的特征电位也 会发生改变,而如果在相同的电解质之中,金属会因为本身的不 同而导致平衡电位的差异。 3.2 点蚀
关键词 :镁合金 ;耐腐蚀性 ;深冷处理
中图分类号 :TG178
文献标识码 :A
文章编号 :11-5004(2021)10-0109-2
镁合金改善耐腐蚀性的探讨
2 镁合金腐蚀种类
镁合金的腐蚀 【,按其腐蚀行 为可分为点 J J 蚀、丝状腐蚀、电偶腐蚀、应力腐蚀等。 a点腐蚀 . Mg是一种 自然钝 化 的金属 , Mg在非 氧 当
断裂是由于氢脆所致 ,但在不含氯离子的铬酸 盐 溶液 中 ,快 速凝 固 Mg A1合金不 会发 生应 力
腐蚀 。
化 性介 质 中遇到 C1 离子 时 V 一1 V,是工 . ~ 5 . 6 程合金中最负的。因此极易发生腐蚀 。 是 由于镁 合 金在 潮湿 空 气 中容易 与水 分 子发生反应 , 生成氧化膜 , 如式 ()所示 ,但 1 表 面形成 的氧化 膜( O Mg )的 P 比为 08< 1 B .1 , 不能形成有效的稳定保护膜 ,这种氧化膜 比较 脆 ,而 且不 像氧 化铝 薄膜 那样 致 密 ,所 以耐蚀
w F ) .3 ( e≤0 2的 w0i) w Ni .0 0 Vn ; ( ) 0 5% ; ≤O
w( u ≤00 %: C ) .7
( 2 ,( e a2 3 ( 03 C ,L ) ,Mg /l MgO 2, A1 0 O) , g 层( ( H) )
稀土 与氧 反应 生 成不 连续 的( e a2 钝 化 保 C ,L ) 03 护膜 ,从 而使 合 金 的 耐蚀 性提 高 。另外 稀 土 的 加 入 , 一 方 面 细 化 了 合 金 的 o Mg 相 和 - pMg1 1相 ,使 得 pMg7 2 — 2A1 7 2 — 1 相对 OMg相 AI - 腐蚀 的 阻碍 作 用增 加 ,另 一 方面 合 金 中的 一 部 分A与R l E形 成 了 A4 E相 ,A4 I R l RE相 较 耐腐 蚀 。通 过极 化 曲线 和 交流 阻抗 的测 定 ,发现 R E 使 镁 合金 的腐 蚀 电流 降 低 ,极 化 电阻增 大 ,容 抗 减小 ,合 金 耐腐 蚀性 提 高 。Sn hkL e等人 u ga e 研 究发 现 :利 用 Y 合金 化 的 A 9 Z 1合 金在 盐
镁合金表面的腐蚀特性及其防护技术
O2 + 2 H2O + 4e - →4O H - . 但是研究表明 ,溶液中 O2 的浓度对镁合金的腐 蚀影响不大. 据此可以推断 ,在溶液中镁合金的腐 蚀应该以析氢腐蚀为主. 1. 3 镁合金腐蚀中的负差数效应
镁合金的腐蚀还表现出一个特殊的现象 ,即 在含 Cl - 腐蚀介质中会出现负差数效应 ( negative different effect , ND E) . 负差数效应是指镁合金在 外加的阳极电流或电位的条件下 ,随阳极极化电 流或电位的增加 ,镁合金的“自腐蚀电流密度”不 减反而增加[14~16 ] . 不仅镁合金存在着这一反常 现象 ,铝合金也有负差数效应.
摘 要 : 从镁合金表面自然氧化膜的微观结构与形成过程入手 ,论述了其表面多孔状的三层氧化膜造成镁 合金基体表面容易发生腐蚀的原因 ,并详述镁合金表面的电化学腐蚀特性与腐蚀机理 ;从三个不同角度分析 其独特的负差数效应 ,并用“部分膜保护机制”对此作出更合理的解释. 讨论了阳极氧化技术及其在此基础之 上发展而来的等离子微弧阳极氧化技术 ,该技术可显著提高镁合金表面氧化膜的耐蚀性与抗磨性. 介绍了包 括激光表面热处理和激光合金化的激光辅助处理技术 ,它能对镁合金表面进行快速 、局部的处理 ,提高材料 的耐腐蚀性能和硬度. 概述了物理气相沉积技术 ,它可为镁合金表面提供耐腐蚀性能 、高结晶度和高强度. 讨 论了目前国内外最新研究的用于取代有毒的铬酸盐转化膜的稀土转化膜工艺的化学法 ;该方法具有操作简 便 、无毒无污染等诸多特点 ,可以明显提高镁合金表面的耐腐蚀性能 ,但机理研究有待于进一步探讨. 关键词 : 镁合金 ;腐蚀 ;防护技术 中图分类号 : T G146 文献标识码 : A 文章编号 : 036726234 (2001) 0620753205
镁合金
摘要镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、汽车制造等工业领域。
然而,镁合金较差的耐腐蚀性能却制约着镁合金的应用拓展。
因此,采用表面改性技术以增强镁合金表面耐腐蚀性能具有重要的现实意义。
本文研究以AZ91D镁合金为试验材料,采用低熔点A1-Si共晶合金粉末在镁合金表面进行同步送粉激光合金化和预置式二步激光熔覆,以期提高镁合金表面耐蚀性能。
同时在镁合金表面探索性的进行Ni-Cr-B-Si粉末材料的激光改性试验,研究镁合金表面高熔点材料激光加工特点与可行性。
研究表明,A1-Si合金化层在固定的激光功率下,随扫描速度的增加,其熔宽、熔高、熔深呈下降趋势;.在一定的扫描速度下,熔宽和熔深随激光功率的增加而增加,而熔高却呈下降趋势。
合金化层组织由仅.Mg和Al固溶体基体与弥散分布其间的M92Si、AIl2Mgiv和A13M92金属间化合物(IMC)相组成。
A1-Si合金化层的硬度分布均匀且明显高于AZ91D母材。
A1-Si合会化层相对于AZ91D具有高极化阻力和低腐蚀率。
极化腐蚀优先发生于于α-Mg和Al固溶体基体中和基体与IMC相的界面部位。
对于A1-Si合金材料激光熔覆,熔覆层与镁合金母材结合方式受激光工艺参数影响明显。
在最佳激光参数范围内可实现熔覆层和母材的冶金结合,且母材中的镁对熔覆层底部有极小的稀释渗透。
熔覆层由树枝晶状的Ⅸ.A1和(a-AI+p-Si)共晶基体组织组成。
A1-Si熔覆层硬度略高于AZ9lD母材。
A1-Si熔覆层相对于AZ91D具有高极化阻力和较低的腐蚀率。
熔覆层极化腐蚀主要发生在作为阳极的仅.AI枝晶上。
盐雾试验定性的验证了阳极极化试验结果,具有最低腐蚀电流的A1-Si合金化层最耐盐雾腐蚀。
Ni-Cr-B-Si材料激光合金化改性层组织呈层状结构,合会涂层与其下的组织硬度差异明显。
不均匀的涂层结构使得涂层具有高于镁合金的腐蚀电势但却表现出高于镁合金的腐蚀电流。
干货一文了解镁合金的腐蚀与防护
干货一文了解镁合金的腐蚀与防护资源消耗和环境污染已成为21世纪人类可持续发展面临的首要问题。
镁合金以质轻、结构性能优异以及易于回收等众多优点成为装备制造业轻量化发展的首选材料;而且,无论在储量、特性、应用范围、循环利用、以及节能环保等方面和钢铁产业相比,镁合金均具有非常明显的优势。
据预测,随着镁合金应用技术和价格两大瓶颈的突破,全球镁合金用量将以每年20%的幅度快速增长,这在近代工程金属材料的应用中是前所未有的。
大规模开发和利用镁合金的时代已经到来,它必将成为未来产业革命可持续开发资源的核心。
然而,由于镁的化学性质十分活泼,标准电极电位很负(-2.36VSCE),导致镁合金的耐腐蚀性很差,在腐蚀性介质中很容易发生严重的腐蚀;并且,镁合金的表面膜疏松多孔,MgO的PBR值为0.81,对基体保护能力差。
不适用于大多数的腐蚀环境。
因此,迄今为止,镁的应用仍然非常有限,镁合金的腐蚀与防护问题越来越受到人们的重视。
镁合金要大规模应用于工业,必须选用或开发适当的合金或对镁合金进行各种表面处理,采取一定的防护措施对镁合金构件进行保护。
在近几年的镁合金腐蚀与防护研究热潮中,具有不同功能特性的镁合金表面防护技术被广泛地研究,同时,针对新型镁合金的成分、结构、组织形态等方面也展开了大量电化学腐蚀机理的研究。
下面我们将简要介绍当前镁合金腐蚀与防护发展的现状。
1 镁合金电化学腐蚀行为及影响因素镁合金腐蚀的直接原因是合金元素和杂质元素的引入导致镁合金中出现第二相,在腐蚀性介质中,化学活性很高的镁基体很容易与合金元素和杂质元素形成腐蚀电池,诱发电偶腐蚀;此外,镁合金的自然腐蚀产物疏松、多孔,保护能力差,导致镁合金的腐蚀反应可以持续发展。
镁合金在潮湿的大气、土壤和海水中均会发生电化学腐蚀。
镁合金的腐蚀与纯镁的腐蚀相近,以析氢为主,氢离子的还原过程和阴极析氢过电位对镁的腐蚀过程起重要作用。
腐蚀过程的反应式为:Mg+2H2O→Mg(OH)2+H2↑。
镁的腐蚀
镁的腐蚀镁是所有工业合金中化学活泼性最高的金属,标准电极电位为-2.37V。
在干燥的大气中,镁表面可以形成氧化物膜层,对基体有一定的保护作用。
但是镁的氧化膜层疏松多孔,其耐蚀性较差,因而呈现出较高的化学活性和电化学活性,尤其是在潮湿的环境中以及Cl-存在的条件下极易发生腐蚀。
镁在大气中腐蚀的阴极进程是氧的去极化,其腐蚀性主要取决于大气的湿度及污染程度。
一般地,潮湿的环境对镁的腐蚀,只有当同时存在腐蚀性颗粒的附着时才发生作用[2]。
如果大气清洁,湿度达到100%时,镁合金表面只有一些分散的腐蚀点。
但当大气污蚀、腐蚀性颗粒在镁合金表面构成阴极时,表面则迅速被腐蚀,而且环境硫化物、氯化物成份的存在将加速镁的腐蚀[3]。
镁合金由于电极电位低,当镁及其合金与其它金属接触时,一般作为阳极发生电偶腐蚀。
阴极可以是与镁直接有外部接触的异种金属,也可以是镁合金内部的第二相或杂质相。
对于氢过电位较低的金属如Fe、Ni、Cu等,作为杂质在合金内部与镁构成腐蚀微电池、导致镁合金发生严重的电偶腐蚀。
而那些具有较高氢过电位的金属,如Al、Zn、Cd等,对镁合金的腐蚀作用相对较小。
镁合金基体与内部第二相形成的电偶腐蚀在宏观上表现为全面腐蚀。
文献[4]研究了AZ91D合金在大气条件下与异种金属的接触腐蚀行为,发现中碳钢和SUS304不锈钢与镁接触其电偶腐蚀,而经阳极氧化的铝合金与镁接触则镁合金的腐蚀效应下降[4]。
镁是自钝化金属,当暴露于含Cl-的非氧化性介质中,在自腐蚀电位下发生点蚀[5]。
将Mg-Al合金侵入Na Cl溶液中,经过一定的诱导期,产生点蚀。
点蚀的发生可能是由于沿Mg17Al12网状结构的选择性侵蚀造成的[2]。
Mg-Mn合金和Mg-Zn-Zr合金对应力腐蚀破裂不敏感,而Mg-Al-Zn合金具有应力腐蚀开裂倾向。
镁的应力腐蚀破裂既有穿晶的,也有晶间型的。
在pH值大于10.2的碱性介质中,镁合金非常耐应力腐蚀破裂,但在含Cl-的中性溶液中甚至在蒸馏水中,镁合金对应力腐蚀破裂非常敏感。
表面防腐技术之镁合金的运用
学长只能帮你到这了~~~化工表面工程题目:表面防腐技术之镁合金的运用、学院:化学与化工学院专业:化学工程与工艺2013年12月24日表面防腐技术之镁合金的运用【摘要】镁合金具有众多的优异性能,但其较低的耐蚀性限制了它的进一步发展和应用。
综述近年来镁合金的表面防腐蚀处理方法,包括化学转化、阳极处理、电化学镀、物理沉积、热喷涂、离子注入、激光处理等,总结出各方法的优缺点,最后就表面防腐蚀的发展提出几点想法。
【关键词】镁合金;腐蚀;表面处理;发展趋势1.前言镁合金优异的物理和机械性能使其近年来得到广泛关注。
镁合金具有较高的比强度和LLNU 度,较强的电磁屏蔽和抗辐射能力,以及良好的减震性、切削加工性能等特点,在汽车、摩托车等交通工具,3C 产品、航空航天、兵器工业等领域的应用日趋广泛。
但是镁是一种电负性极强的金属,标准电极电位为--2.37 V,在潮湿,CO2,SO2,CI 一的环境里极易发生腐蚀。
除此之外,镁合金由于杂质元素和合金元素的存在,还容易产生电偶腐蚀、应力腐蚀开裂以及腐蚀疲劳,大大限制了镁合金在工业、军工等领域的广泛应用。
目前国内外都加大了对镁合金腐蚀问题的研究,以期通过有效的表面处理方法来提高镁合金表面的抗腐蚀能力,使其能够在不同的领域得到更为广泛的应用。
本文综述了镁合金表面处理的方法,并对各种表面处理方法的优缺点及今后的发展方向进行了分析。
2.表面处理的机理和方法2.1化学转化膜处理化学转化是合金在溶液中通过化学反应使表面生成金属胶状物或金属盐膜的过程,其工艺设备便宜、操作简单,主要有含铬转化和无铬转化两种方法,目前发展较成熟的是含铬转化,该方法得到的膜具有较好的防腐效果。
镁合金化学转化膜的防腐蚀效果优于自然氧化膜,并且化学转化膜可提供较好的涂装基底。
传统的化学转化法是铬化处理,其机理是金属表面的原子溶于溶液后,引起金属表面的pH 值上升,在金属表面沉积铬酸盐与金属胶状物的混合物的过程,这种混合物在未失去结晶水时具有自修复功能,因而耐蚀性好。
镁合金牺牲阳极的用途
镁合金牺牲阳极的用途一、引言镁合金牺牲阳极是一种常见的防腐蚀措施,它通过在金属表面形成一个保护层,从而减少金属的腐蚀损失。
本文将详细介绍镁合金牺牲阳极的用途。
二、镁合金牺牲阳极的定义镁合金牺牲阳极是指在阴极保护中,将一种电位更负的材料(即镁合金)与被保护材料(即钢铁等)连接在一起,使之成为整体,从而使得镁合金成为阳极,被保护材料成为阴极。
当外界电流作用于这个系统时,电流优先通过镁合金流入被保护材料,从而实现对被保护材料的防腐蚀作用。
三、镁合金牺牲阳极的原理在海水等含有氯离子和其他电解质的介质中,钢铁会发生电化学反应,并逐渐被腐蚀。
而将一块更容易发生氧化反应的材料(即镁合金)与钢铁连接在一起时,在外界电流作用下,电流会优先通过镁合金,从而使得钢铁成为阴极,镁合金成为阳极。
镁合金在电化学反应中会逐渐被腐蚀,从而形成一层保护层,保护钢铁不被腐蚀。
四、镁合金牺牲阳极的应用范围1. 船舶和海洋工程:在海洋环境中,钢铁结构容易受到海水的侵蚀,使用镁合金牺牲阳极可以有效地延长船舶和海洋工程的使用寿命。
2. 石油和天然气管道:石油和天然气管道经常处于恶劣的环境中,如高温、高压、酸性或碱性介质等。
使用镁合金牺牲阳极可以有效地减少管道的腐蚀损失。
3. 水处理设备:水处理设备通常使用钢铁材料制造,容易受到水质的影响而发生腐蚀。
使用镁合金牺牲阳极可以有效地延长水处理设备的使用寿命。
4. 电力设备:电力设备通常需要在恶劣的环境下运行,如高温、高压等。
使用镁合金牺牲阳极可以延长电力设备的使用寿命。
五、镁合金牺牲阳极的优点1. 镁合金具有良好的耐腐蚀性能,可以有效地保护被保护材料。
2. 镁合金牺牲阳极是一种简单、经济、可靠的防腐蚀措施。
3. 镁合金牺牲阳极可以在不需要停机的情况下进行维护和更换。
六、镁合金牺牲阳极的缺点1. 镁合金具有较高的电位,容易引起电化学反应,从而导致其在短时间内被大量腐蚀而失效。
2. 镁合金在空气中容易氧化,从而降低其防腐蚀性能。
镁合金防腐
摘要镁及其合金具有许多优良的物理和机械性能,具有较高的比强度和比刚度、易于切削加工、易于铸造、减震性好、能承受较大的冲击震动负荷、导电导热性好、磁屏蔽性能优良,是一种理想的现代结构材料[ ,现已广泛应用于汽车、机械制造、航空航天、电子、通讯、军事、光学仪器和计算机制造等领域。
为使镁合金应用于不同的场合,经常需要改变其表面状态以提高耐蚀性、耐磨性、可焊性、装饰性等性能。
目前有许多工艺可在镁及镁合金表面上形成涂覆层,包括电镀、化学镀、转化膜,阳极氧化、氢化膜、有机涂层、气相沉积层等。
其中最为简单有效的方法就是通过电化学方法在基体上镀一层所需性能的金属或合金,即电镀或化学镀。
目录摘要 .........................................................错误!未定义书签。
1.绪论 (2)1.1镁合金表面防腐处理现状 (2)1.1.1镁合金表面防腐重要性 (2)1.1.2镁合金表面防腐常用方法及优缺点 (2)2.镁合金表面防腐综合设计 (6)2.1所选表面处理方法综述 (6)2.1.1所用方法及其国内发展现状 (6)2.1.2所用方法的评价分析 (7)2.1.3具体工艺流程及注意事项 (7)2.2 性能分析与检测 (8)参考文献 (9)绪论镁合金优异的物理和机械性能使其近年来得到广泛关注,镁合金的比强度高、刚性好,具有优良的尺寸稳定性、减振性、热导电性和电磁屏蔽能力,并且镁资源丰富、容易回收,这些优点使镁被誉为“21世纪的绿色金属结构材料”,可广泛应用于汽车零件、3C产品、航空航天和军工等领域[1]。
但是,镁的应用和研究相对其它金属严重滞后,原因在于其韧性低、高温性能和耐腐蚀性能差,而且加工成形比较困难。
与铝、钛能生成自愈钝化膜不同,镁表面生成的氧化膜疏松多孔,不能对基体起有效保护作用,因此,在潮湿的空气、含硫气氛和海洋大气中,镁均会遭受严重的化学腐蚀,这极大地阻碍了其广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镁合金防腐蚀方案汇总
化学转化处理
镁合金的化学转化膜按溶液可分为:铬酸盐系、有机酸系、磷酸盐系、KMnO4系、稀土元素系和锡酸盐系等。
传统的铬酸盐膜以Cr为骨架的结构很致密,含结构水的Cr则具有很好的自修复功能,耐蚀性很强。
但Cr具有较大的毒性,废水处理成本较高,开发无铬转化处理势在必行。
镁合金在KMnO4溶液中处理可得到无定型组织的化学转化膜,耐蚀性与铬酸盐膜相当。
碱性锡酸盐的化学转化处理可作为镁合金化学镀镍的前处理,取代传统的含Cr、F或CN等有害离子的工艺。
化学转化膜多孔的结构在镀前的活化中表现出很好的吸附性,并能改镀镍层的结合力与耐蚀性。
有机酸系处理所获得的转化膜能同时具备腐蚀保护和光学、电子学等综合性能,在化学转化处理的新发展中占有很重要的地位。
化学转化膜较薄、软,防护能力弱,一般只用作装饰或防护层中间层。
阳极氧化
阳极氧化可得到比化学转化更好的耐磨损、耐腐蚀的涂料基底涂层,并兼有良好的结合力、电绝缘性和耐热冲击等性能,是镁合金常用的表面处理技术之一。
传统镁合金阳极氧化的电解液一般都含铬、氟、磷等元素,不仅污染环境,也损害人类健康。
近年来研究开发的环保型工艺所获得的氧化膜耐腐蚀等性能较经典工艺Dow17和HAE有大程度的提高。
优良
的耐蚀性来源于阳极氧化后Al、Si等元素在其表面均匀分布,使形成的氧化膜有很好的致密性和完整性。
一般认为氧化膜中存在的孔隙是影响镁合金耐蚀性能的主要因素。
研究发现通过向阳极氧化溶液中加入适量的硅-铝溶胶成分,一定程度上能改善氧化膜层厚度、致密度,降低孔隙率。
而且溶胶成分会使成膜速度出现阶段性快速和缓慢增长,但基本上不影响膜层的X 射线衍射相结构。
但阳极氧化膜的脆性较大、多孔,在复杂工件上难以得到均匀的氧化膜层。
金属涂层
镁及镁合金是最难镀的金属,其原因如下:
(1)镁合金表面极易形成的氧化镁,不易清除干净,严重影响镀层结合力;
(2)镁的电化学活性太高,所有酸性镀液都会造成镁基体的迅速腐蚀,或与其它金属离子的置换反应十分强烈,置换后的镀层结合十分松散;
(3)第二相(如稀土相、γ相等)具有不同的电化学特性,可能导致沉积不均匀;
(4)镀层标准电位远高于镁合金基体,任何一处通孔都会增大腐蚀电流,引起严重的电化学腐蚀,而镁的电极电位很负,施镀时造成针孔的析氢很难避免;
(5)镁合金铸件的致密性都不是很高,表面存在杂质,可能成为
镀层孔隙的来源。
因此,一般采用化学转化膜法先浸锌或锰等,再镀铜,然后再进行其它电镀或化学镀处理,以增加镀层的结合力。
镁合金电镀层有Zn、Ni、Cu-Ni-Cr、Zn-Ni等涂层,化学镀层主要是Ni-P、Ni-W-P 等镀层。
单一化学镀镍层有时不足以很好地保护镁合金。
有研究通过将化学镀Ni层与碱性电镀Zn-Ni镀层组合,约35μm厚的镀层经钝化后可承受800-1000h的中性盐雾腐蚀。
也有人采用化学镀镍作为底层,再用直流电镀镍能得到微晶镍镀层,平均结晶颗粒大小为40nm,因晶粒的细化而使镀层孔隙率大大降低,结构更致密。
电镀或化学镀是同时获得优越耐蚀性和电学、电磁学和装饰性能的表面处理方法。
缺点是前处理中的Cr、F及镀液对环境污染严重;镀层中多数含有重金属元素,增加了回收的难度与成本。
由于镁基体的特性,对结合力还需要改善。
激光处理
激光处理主要有激光表面热处理和激光表面合金化两种。
激光表面热处理又称为激光退火,实际上是一种表面快速凝固处理方式。
而激光表面合金化是一种基于激光表面热处理的新技术。
激光表面合金化能获得不同硬度的合金层,具有冶金结合的界面。
利用激光辐照源的熔覆作用在高纯镁合金上还可制得单层和多层合金化层。
采用宽带激光在镁合金表面制备Cu-Zr-Al合金熔覆涂层时,由
于涂层中形成的多种金属间化合物的增强作用,使合金涂层具有高的硬度、弹性模量、耐磨性和耐蚀性。
而由于稀土元素Nd的存在,在经过激光快速熔凝处理之后得到的激光多层涂敷,晶粒得到明显细化,能提高熔覆层的致密性和完整性。
激光处理能处理复杂几何形状的表面,但镁合金在激光处理时易发生氧化、蒸发和产生汽化、气孔以及热应力等问题,设计正确的处理工艺至关重要。
其他表面处理技术
离子注入是在高真空状态下,在十至数百KV电压的静电场作用下,经加速的高能离子(Al、Cr、Cu等)以高速冲击要处理的表面而注入样品内部的方法。
注入的离子被中和并留在样品固溶体的空位或间隙位置,形成非平衡表面层。
有研究认为耐蚀性能的提高是由于自然氧化物的致密化、注入离子的辐射和形成镁的氮化物的结果。
所得改性层的性能与所注入离子的量和改性层的厚度有关,而基体表面的MgO对改性层的耐蚀性能的提高也有一定的促进作用。
气相沉积即蒸发沉积涂层,有物理气相沉积(PVD)和化学气相沉积(CVD)两种。
它是利用能使镁合金中的Fe、Mo、Ni等杂质含量大幅度降低,同时利用涂层覆盖基体的各种缺陷,避免形成局部腐蚀电池,从而达到改善防腐性能的目的。
与镁合金的其他表面处理技术相比,有机涂层保护技术具有品种和颜色多样、适应性广、成本低、工艺简单的优点。
目前广泛使用的
主要是溶剂型的有机涂料。
粉末型的有机涂层因无溶剂,和具备污染少、厚度均匀以及较佳耐蚀性能等特点,近几年来在汽车、电脑壳体等镁合金部件上的应用较受欢迎。
镁合金压铸件由于锁模力不足、合模不良、模具强度不足、熔汤温度太高等问题会出现表面有毛刺的现象,这种现象叫做产品披锋,往往是企业必须要面对的后处理加工工序.目前主要是根据产品性质运用手工打磨,氢氧爆炸以及昭凌冷冻抛丸机去解决。