冷机站群控

合集下载

空调主机和暖通系统群控(含冷机群控)的知识分享

空调主机和暖通系统群控(含冷机群控)的知识分享

制冷季节
制冷季节
参数设定
冷冻水出水温度设定为8℃,1#、2#、3#、4#冷机 冷冻水出水温度设定为6℃,1#、2#、3#、4#冷机纳
纳入群控。
入群控。
闭店延时模式
开机
开机时间到,首先开启第一台大冷机;
开机时间到,首先开启第1~2台大冷机;
加载 减载
(1)第一台离心机组开启后50分钟后,冷冻水总 管供水温度大于8℃且第一名离心冷机负荷大于95%,(1)当冷冻水总管供水温度大于t℃且2台冷机离心 持续10分钟,开启第二名冷机;当冷冻水总管供水 冷机负荷均大于95%,持续10分钟,开启第三台冷机。 温度大于8℃且2台冷机离心冷机负荷均大于95%, 持续10分钟,开启第三台冷机。
机组根据回风温度与设定值偏差自动调节送风机转速,机组回风温度比设定值高2度时, 自动提高风机转速;机组回风温度比设定值低2度时,自动降低风机转速;
二、空调末端调控的逻辑
二、新风机组
a) 新风机组根据送风温度与设定值偏差自动调节空调水阀开度。 ● 夏季工况下,当送风温度高于设定值2℃时,自动加大水阀开度;当送风温度 低于设定值2℃时,自动减小水阀开度。 ● 冬季工况下,当送风温度高于设定值2℃时,自动减小水阀开度;当送风温度 低于设定值2℃时,自动加大水阀开度。 ● 过渡季通风工况下,水阀关闭。
钟后,关闭第三名离心冷机。
关闭第三名离心冷机。
一、冷机群控的逻辑
一、冷机加减载
拓展问题: 1、为什么过渡季节优先开启大冷机而不是小冷机? 2、冷机的负荷系数小于55%时为什么就要减载?
一、冷机群控的逻辑
二、冷冻水泵变频
2) 冷冻水泵的自动控制逻辑 根据供回水总管的压差或温差自动调整冷冻水泵的运行转速(偏差值可设定): ● 压差低于设定值-偏差或温差高于设定值+偏差时,增加水泵频率 ● 压差高于设定值+偏差或温差低于设定值-偏差时,降低水泵频率。频率不应低 于35Hz。 ● 单台水泵运行且水泵频率降至下限,压差仍高于设定值+偏差或温差仍低于设 定值-偏差时,水泵频率不变,开启压差旁通阀调节开度。

冷机群控控制逻辑说明

冷机群控控制逻辑说明
冷机群控逻辑说明
一 正常供冷
正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机 会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器和蒸发器侧的出 水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机.冷 冻水泵以及冷却水泵的数量与主机开启的数量是一致的,冷却塔风机最少开启的数量是主机 的两倍,如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度,并维持 5 分钟以上,则加一组 冷却塔,以此类推,一直加到没有可加冷却塔为止.具体如下: (1)冷冻水侧逻辑
以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵.相应的,水泵能开启 的条件就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败. 水泵切换 时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵.
2. 冷却水泵的频率调节是根据冷却平均回水温度及设定值比较,PID 调节冷却水泵频率. 温度越高,频率越高;冷冻水泵最小频率目前设定 40Hz.
始运行; 3. 一次只能有一个蓄冷罐充冷,无论在手动还是自动模式.
三 蓄冷罐放冷
(1) 放冷条件 在放冷总开关处于启用状态下: 1. 没有一台冷水机组开启; 2. 冷冻水总管平均供水温度高于设定值并维持一定时间; 3. 所有机组都处于失电报警状态下.
当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷 罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就 会放冷.
2. 放冷结速后至少要两个小时后才能充冷; 以上两个条件必须要同时满足才能充冷.
(2) 充冷模式 在满足上述两个充冷条件下,充冷有两种模式.
1. 一种是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况. 2. 另一种是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开

CCN冷机群控系统功能介绍及操作说明

CCN冷机群控系统功能介绍及操作说明

CCN冷机群控系统功能介绍及操作说明一、功能介绍:1.监控功能:CCN冷机群控系统能够实时监控每台冷机的运行状态,包括冷却水温度、压力和流量等参数。

通过监控功能,用户可以随时了解冷机的运行情况,及时发现异常并采取相应的措施。

2.控制功能:CCN冷机群控系统能够远程控制每台冷机的开关机状态和运行模式。

用户可以根据需要,设置每台冷机的运行时间和模式,调整冷机的输出功率,以实现能源的合理利用和降低能耗。

3.调度功能:CCN冷机群控系统能够自动调度多台冷机的运行时间和运行模式,合理分配冷机的负载。

通过调度功能,系统能够根据需求实时调整冷机的运行状态,以实现冷机的优化运行和降低运维成本。

4.报警功能:CCN冷机群控系统具备报警功能,可以监测冷机运行中的异常情况,并及时发送报警信息给用户。

用户可以通过系统接收报警信息,并迅速采取措施修复故障,避免损失。

5.数据分析功能:CCN冷机群控系统能够对冷机的运行数据进行收集和分析,包括能耗数据、负载分布和运行效率等。

通过数据分析功能,用户可以了解冷机的实际运行情况,优化能源管理策略,提高冷机的运行效率。

二、操作说明:1.系统登录:用户在使用CCN冷机群控系统时,首先需要登录系统。

用户可以通过输入用户名和密码登录系统。

如果是首次登录,用户需要进行账号注册和设置登录密码。

2.设备连接:用户在登录系统后,需要将每台冷机与系统进行连接。

冷机需要具备相应的接口和通信功能,以便能够与系统进行通信和控制。

用户可以通过系统提供的连接指南,将冷机与系统进行配对和连接。

3.监控功能:在系统登录和设备连接成功后,用户可以查看每台冷机的监控数据。

系统会实时显示冷却水温度、压力和流量等参数。

用户可以根据需要选择查看单个冷机或多台冷机的监控数据。

4.控制功能:用户可以通过系统对每台冷机进行开关机和运行模式的控制。

用户可以手动控制,也可以根据实际需求设置自动控制模式。

系统提供了简单直观的操作界面,用户可以通过鼠标点击或者手动输入来实现冷机的控制。

冷机群控控制方案

冷机群控控制方案

冷机群控控制方案背景:随着现代工业和商业活动的发展,人们对冷却设备的需求日益增长。

冷机作为主要的冷却设备之一,被广泛应用于建筑、工厂、医院、超市等场所,带来了许多便利。

然而,随着冷机数量的增加,如何有效地管理和控制这些冷机成为了重要的问题。

为了提高冷机的运行效率和降低能耗,冷机群控技术应运而生。

一、冷机群控系统的基本原理冷机群控系统是一种将多台冷机集中控制的技术方案。

它通过集中控制器实时监测和调度冷机的运行状态,以达到统一管理、优化调度、提高能效的目的。

冷机群控系统的基本组成包括以下几个方面:1.集中控制器集中控制器是冷机群控系统的核心设备,负责实时监测和调度冷机的运行状态。

它可以通过与冷机的通信接口实现对冷机的远程监控和控制。

2.数据采集器数据采集器负责采集冷机运行相关的数据,并将数据传输给集中控制器。

数据采集器可以直接连接到冷机,也可以通过无线传输的方式实现与集中控制器的通信。

3.远程监控终端远程监控终端允许用户通过电脑、手机等设备实时监控冷机群控系统的运行状态。

用户可以在远程监控终端上查看冷机的运行数据、历史记录、报警信息等。

4.云平台云平台是冷机群控系统的数据存储和管理中心。

它可以存储和管理冷机运行数据、历史记录、报警信息等,并提供数据分析和报表生成功能。

二、冷机群控系统的优势冷机群控系统相比传统的单独控制方式具有以下优势:1.能耗优化通过冷机群控系统,可以对冷机进行统一调度和优化控制,根据场所的需求实时调整冷机的运行状态,从而达到最佳能效的目的。

这将显著降低能耗并降低运营成本。

2.故障预警冷机群控系统可以实时监测冷机的运行状态,并根据设定的阈值进行故障预警。

一旦冷机发生故障或运行异常,系统将立即发送报警信息给相关人员,以便及时处理并减少停机时间。

3.远程监控冷机群控系统具有远程监控功能,可以通过电脑、手机等设备随时随地监控冷机的运行状态,提供实时数据和报警信息,方便管理人员进行决策和调度。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案一、概述:冷水机组群控系统是一种用于实现多台冷水机组的集中控制和管理的系统。

通过该系统,用户可以实时监测和调整每台冷水机组的工作状态,优化冷水机组的运行效率,达到节能降耗的目的。

二、系统架构:冷水机组群控系统由以下几个部分组成:1. 冷水机组控制器:每台冷水机组都配备一个控制器,负责监测和控制该台冷水机组的运行状态。

控制器与主控制系统之间通过通信线路进行数据传输。

2. 主控制系统:主控制系统是整个冷水机组群控系统的核心部分,负责接收和处理来自各个冷水机组控制器的数据,并对冷水机组进行集中控制和管理。

主控制系统可以通过人机界面提供给用户进行操作和监测。

3. 通信线路:通信线路是冷水机组控制器与主控制系统之间的物理连接,可选择有线或无线通信方式,例如以太网、Modbus等。

通信线路要保证稳定可靠的数据传输,以确保系统正常运行。

4. 数据存储与管理:主控制系统可以将冷水机组的历史数据进行存储和管理,以便进行数据分析和查阅。

三、功能模块:1. 实时监测:主控制系统可以实时监测每台冷水机组的运行状态,包括温度、压力、流量等参数。

主控制系统可以监测设备故障,及时发出预警并记录故障信息。

2. 集中控制:主控制系统可以对冷水机组进行集中控制,包括开关机、设定温度、调整运行模式等。

通过集中控制,有效提高冷水机组的运行效率,降低能耗。

3. 能耗分析:主控制系统可以对冷水机组的能耗进行分析,提供能耗统计和报表,帮助用户了解冷水机组的能耗情况,找出节能的潜力。

4. 优化调度:主控制系统可以根据冷水机组的负荷情况进行优化调度,自动分配冷水机组的运行状态,以达到最佳的工作效果和节能效果。

5. 远程监控:主控制系统支持远程监控功能,用户可以通过手机APP或网页进行远程监控和操作,方便用户实时了解冷水机组的运行情况。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案一、概述冷水机组是工业和商业建筑中最常见的冷却设备之一,其通过制冷剂循环、换热和输送等工作方式将室内的温度降低至所需温度,从而满足室内制冷需求。

随着可编程智能化技术的发展,冷水机组的控制方式也发生了重大变化,群控系统成为冷水机组控制的一种先进控制方式,具有高效、可靠、节能等优点。

本文将为大家介绍一种适用于冷水机组群控的系统方案和技术特点。

该方案可以实现对多个冷水机组集中控制和监测,提高控制精度和运行效率,节能降耗,为用户提供更好的冷却服务。

二、方案设计1、系统结构冷水机组群控系统由服务器、控制器、通讯网和各个设备组成,采用B/S结构设计,主要包括以下模块:(1)数据管理模块:负责冷水机组的数据存储、管理和分析。

(2)协议转换模块:负责将冷水机组的各种通讯协议转换为标准协议。

(3)控制模块:负责对冷水机组的运行状态进行监测、控制和调节。

(4)报警模块:负责对冷水机组异常信息的监测和处理。

(5)用户界面模块:负责向用户提供图形界面,以便用户可以方便地设置和监测冷水机组的运行状态。

2、技术特点(1)系统高度集成化,可以实现对多台冷水机组的集中控制和管理,便于用户查看和操作。

(2)支持多种通讯协议,如Modbus、LonWorks、BACnet等,并能将其转换为标准协议,提高系统兼容性和通用性。

(3)系统具有严格的安全性和可靠性,能够对用户权限进行控制和管理,防止系统被未经授权的用户篡改和操作。

(4)系统能够实时监测冷水机组的运行状态和能耗情况,根据实际情况自动调节设备运行参数,降低设备能耗。

(5)系统提供灵活的设置界面、运行监测界面及历史数据查询界面,可方便的定制化用户需求,提供更好的操作交互体验。

(6)系统对控制器进行集成管理,可以对控制器进行简单的配置和维护,并对各类异常情况及时报警提示。

三、总结该冷水机组群控系统方案为广大客户提供了一种高效、可靠、节能的控制方式,可以大大提高多个冷水机组的控制精度和运行效率,减少对设备的损耗,延长设备使用寿命,并简化了操作和维护流程。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控控制逻辑说明冷机群控逻辑说明⼀正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷⽔机组,主机接到开机指令后,主机会发出⽔泵需求指令,控制器接到⽔泵需求指令后,开启相应冷⽔机组冷凝器和蒸发器侧的出⽔电动蝶阀,以及冷却塔上的进出⽔电动蝶阀, 同时开启冷冻⽔泵,冷却⽔泵,冷却塔风机.冷冻⽔泵以及冷却⽔泵的数量与主机开启的数量是⼀致的,冷却塔风机最少开启的数量是主机的两倍,如果冷却塔冷却后的温度还⾼于设定值1度以上含1度,并维持5分钟以上,则加⼀组冷却塔,以此类推,⼀直加到没有可加冷却塔为⽌.具体如下:(1)冷冻⽔侧逻辑当主机接到开机指令时,延时⼀定时间后会发出⼀个⽔泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷⽔机组蒸发器侧的出⽔电动蝶阀,同时会开启相应数量的冷冻⽔泵.1. 冷冻⽔泵切换条件如下:1.1冷冻⽔泵有故障;1.2冷冻⽔泵检测不到⾃动状态,既冷冻⽔泵强电控制柜上的⼿⾃动没转到”⾃动”时,电脑上显⽰”本地”时期1.3当冷冻⽔泵接到了开泵指令后,延时8秒钟后,控制器还没检测到⽔泵运⾏状态开启时,程序会认为此⽔泵开启失败.以上三个条件只要有⼀个, 冷冻⽔泵就会切换到另⼀台⽔泵.相应的,⽔泵能开启的条件就是:⽔泵⽆故障,⼿⾃动转换开关打到”⾃动”档,⽔泵⽆开启失败. ⽔泵切换时,会⾃动选择同时满⾜以上三点并运⾏时间最少的冷冻⽔泵.2.冷冻⽔泵的频率调节是根据冷冻⽔供回⽔压⼒差值及冷冻⽔供回⽔压差设定值⽐较,PID调节冷冻⽔泵频率. 供回⽔压⼒差值越⼩,频率越⾼; 冷冻⽔泵最⼩频率⽬前设定38Hz.3.根据冷冻⽔供回⽔压差值与冷冻⽔供回⽔压差设定值⽐较PID调节冷冻⽔旁通阀.压差越⾼,旁通阀开度越⼤.(2)冷却⽔侧逻辑当主机接到开机指令时,延时⼀定时间后会发出⼀个冷却⽔泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷⽔机组冷凝器侧的出⽔电动蝶阀,同时会开启相应数量的冷却⽔泵.1. 冷却⽔泵切换条件如下:1.1冷却⽔泵有故障;1.2冷却⽔泵检测不到⾃动状态,既冷却⽔泵强电控制柜上的⼿⾃动没转到”⾃动”时,电脑上显⽰”本地”时期.1.3当冷却⽔泵接到了开泵指令后,延时8秒钟后,控制器还没检测到⽔泵运⾏状态开启时,程序会认为此⽔泵开启失败.以上三个条件只要有⼀个, 冷却⽔泵就会切换到另⼀台⽔泵.相应的,⽔泵能开启的条件就是:⽔泵⽆故障,⼿⾃动转换开关打到”⾃动”档,⽔泵⽆开启失败. ⽔泵切换时,会⾃动选择同时满⾜以上三点并运⾏时间最少的冷冻⽔泵.2. 冷却⽔泵的频率调节是根据冷却平均回⽔温度及设定值⽐较,PID调节冷却⽔泵频率. 温度越⾼,频率越⾼;冷冻⽔泵最⼩频率⽬前设定40Hz.3.根据各⾃冷却⽔回⽔温度与设定值⽐较PID调节冷却⽔旁通阀.温度越⾼,旁通阀开度越⼩(3)冷却塔逻辑当主机接到开机指令时,延时⼀定时间后会发出⼀个冷却⽔泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷⽔机组冷凝器侧的出⽔电动蝶阀以及开启相应数量的冷却⽔泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进⽔阀,两个出⽔阀)的数量与主机开启的数量是⼀致的.同时会开启相应的电动蝶阀.1. 冷却塔风机切换条件如下:1.1冷却塔风机有故障;1.2冷却塔风机塔检测不到⾃动状态,既冷却⽔泵强电控制柜上的⼿⾃动没转到”⾃动”时,电脑上显⽰”本地”时期.1.3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运⾏状态开启时,程序会认为此⽔泵开启失败.以上三个条件只要有⼀个,就会造成风机锁定不能开启. 能开启的条件就是: 风机⽆故障,⼿⾃动转换开关打到”⾃动”档,⽔泵⽆开启失败.当以上条件造成了同⼀组冷塔⾥的两台风机同时不能开启时, 会⾃动选择同时满⾜以上三点并运⾏时间最少的冷却塔组.2. 冷却塔风机的频率调节是根据冷却平均回⽔温度及设定值⽐较,PID调节冷却塔风机频率. 温度越⾼,频率越⾼; 冷却塔风机最⼩频率⽬前设定40Hz.3. 如果冷却塔冷却后的温度还⾼于设定值1度以上含1度,并维持5分钟以上,则加⼀组冷却塔,以此类推,⼀直加到没有可加冷却塔为⽌,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少⼀组塔,但开启的塔组数不会少于冷机数量.⼆蓄冷罐充冷(1)充冷条件1.⾄少要有⼀台冷⽔机组开启;2.放冷结速后⾄少要两个⼩时后才能充冷;以上两个条件必须要同时满⾜才能充冷.(2)充冷模式在满⾜上述两个充冷条件下,充冷有两种模式.1.⼀种是⼿动模式,在⼿动模式下,⽤户可以⾃⾏开启,关闭各个蓄冷罐的充冷⼯况.2.另⼀种是⾃动模式,在⾃动模式下,当蓄冷罐⾥的平均温度⾼于设定值时,充冷⼯况开始运⾏;3.⼀次只能有⼀个蓄冷罐充冷,⽆论在⼿动还是⾃动模式.三蓄冷罐放冷(1)放冷条件在放冷总开关处于启⽤状态下:1. 没有⼀台冷⽔机组开启;2.冷冻⽔总管平均供⽔温度⾼于设定值并维持⼀定时间;3.所有机组都处于失电报警状态下.当放冷总开关处于启⽤状态时,以上三个条件只要任何⼀个,同时相应充许放冷的蓄冷罐平均温度不⾼于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷.(2)放冷时,冷冻⽔泵开启的数量与蓄冷罐放冷的数量是⼀样的,同时也会执⾏与正常供冷时的轮换与故障切泵.四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a.当ACR温度传感器所测的冷冻⽔供⽔温度,⾼于当前的冷冻⽔供⽔温度设定点与⼀个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分⽔器温度平均值,冷冻⽔供⽔温度设定点=12 o C,温度偏差值=0.6 o C,平均温度>(12+0.6)即12.6 o C时条件满⾜b.运⾏冷⽔机组的温度降低速率⼩于1.5oC /分钟c.有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警)*以上各项要求a~c均能满⾜,才进⼊以下机组加载程序d.新冷⽔机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满⾜,新冷⽔机组⽴即启动参数设置原则,1)上述温度设定12根据供⽔要求2)温度偏差0.6和延时15分钟为了在满⾜正常使⽤情况下,系统更稳定加载减少制冷需求Reduce Cooling Required – RCR 卸载的流程a.⽬前运⾏的机组台数多于⼀台(均运⾏于CCN模式)b.运⾏机组的平均负载电流百分⽐⼩于卸载电流百分⽐IDC:例如已运⾏2台机组,1号负载电流百分⽐51%,2号负载电流百分⽐47%,如运算卸载电流百分⽐=54%,平均负载=(51%+47%)/2=49%)则条件满⾜c.当RCR温度传感器所测的冷冻⽔供⽔温度,⼩于当前的冷冻⽔供⽔温度设定点与⼀个可调整温度偏差值的0.6倍相加后的所得值。

冷机群控方案

冷机群控方案

冷机群控方案随着科技的不断发展和进步,冷机群控方案在工业和商业领域中得到了广泛应用。

冷机群控方案基于先进的控制系统和网络技术,能够实现对多台冷机的集中控制和调度,有效提高冷却系统的性能和运行效率。

本文将介绍冷机群控方案的运作原理、优势和应用场景。

一、冷机群控方案的原理冷机群控方案采用了现代化的监控和控制技术,通过与冷机系统的传感器和执行器连接,实现对冷机的智能控制。

具体而言,冷机群控方案主要包括以下几个方面:1. 传感器网络:通过在冷机系统中安装传感器,实时监测冷却水温度、冷却水流量、冷机负荷等参数,并将数据传输给控制中心。

2. 控制中心:冷机群控方案的核心是控制中心,它采集来自传感器的数据,并根据预设的控制策略进行冷机的控制和调度。

控制中心还可以实现对冷机系统的参数设置、故障诊断和报警处理等功能。

3. 通信网络:冷机群控方案通过通信网络将传感器和控制中心连接起来,实现数据的传输和控制指令的下发。

通信网络可以采用有线或无线的方式,如以太网、Modbus、CAN等。

4. 控制策略:冷机群控方案基于先进的控制算法,结合实时的冷机工作条件和运行要求,自动调节冷机的工作模式,以满足系统的冷却需求,并尽量降低能耗。

二、冷机群控方案的优势冷机群控方案相比传统的单机控制方式,具有以下几个显著的优势:1. 高效节能:通过对多台冷机进行集中控制和调度,可以实现冷机的最优运行,避免冷机的空转和重复操作,从而提高冷却系统的能效。

2. 系统可靠性提高:冷机群控方案具备故障诊断和报警功能,能够及时发现和处理冷机系统中的故障,保证系统的正常运行,减少故障停机时间。

3. 远程监控和管理:控制中心可以通过互联网远程监控和管理冷机系统,实时获取冷机运行数据和报警信息,方便运维人员进行远程诊断和维护。

4. 灵活可扩展性:冷机群控方案支持冷机系统的灵活扩展,可以方便地增加或替换冷机设备,满足不同负载工况下的需求。

三、冷机群控方案的应用场景冷机群控方案适用于各种规模的冷却系统,特别是那些需要同时控制多台冷机的场景。

冷机群控系统

冷机群控系统

冷机群控的控制对象
1、冷水 主机
2、冷冻 水系统
3、冷却 水系统
4、冷却 塔
1、冷水主机
冷水主机控制可以通过网关接口读取冷水主机的运行参数, 根据需要启停冷机台数和冷机运行负荷率。 监控冷水主机的冷冻水、冷却水回水状态,确保在冷冻水 与冷却水系统运行的状态台下才能开启冷水主机,保证冷 监控冷水主机的冷冻水、冷却水的阀门,保证不需要开启 水主机的安全运行。 的冷水主机的阀门处于关闭转态,确保运行中的冷水主机 的最大能效比和冷水系统的最小运行负荷,达到节能的目 的。
冷却水系统根据冷水主机的需求,保证供水流量 的状态下最小负荷运行,保证冷却水系统最节能 运行。
冷却泵运行参数界面
4、冷却塔系统
冷却塔部分控制冷却塔供回水阀门和冷却风机的 启停。 冷却塔根据冷却水供回水温度确定开启的冷却塔 台数和冷却风机的运行台数,确保冷却塔最大效 率的运行,达到节电节水运行的目的。
冷水主机监控图
2、冷冻水系统
冷冻水系统监控冷冻水泵的变频运行,压差旁通 阀的调节,冷冻水系统的供回水温度和压力,流 量,为节能运行提供依据。 冷冻水系统根据末端需求,保证供水压力的状态 下最小负荷运行,保证冷冻水系统最节能运行。
冷冻泵运行参数界面
3、冷却水系统
冷却水系统监控冷却水泵的变频运行,冷却水系 统的供回水温度和压力,为节能运行提供依据。
冷却塔运行参数界面
பைடு நூலகம்
冷机群控系统
冷机群控的目的
1、保护设备、延长使用寿命。
按照特定的程序连锁启停设备,保证设备的安全运行。 自动完成设备的轮换使用,保证主备用设备平均使用。 2、自动控制、节约能源、节省人力。
自动判断建筑的负荷需求,按需开启冷水机组。

冷水机组群控

冷水机组群控

1、冷水机组群控的意义1.1 节能–根据系统负荷的大小,开启相应的机组,从而节能,并节省运行费用。

–停开相应水泵,或降低水泵电机转速,从而达到节能的目的。

1.2 长寿命运转–积极群控,有助于延长机组寿命,提高设备利用效率。

1.3 设备保护–合理群控,使系统更舒适,避免过冷,更容易达到设计要求2、几种可能的群控模式分析2.1 回水温度控制法2.1.1 回水温度控制法原理通过测量空调系统中冷冻水系统回水的温度,根据其值的大小,从而决定开启冷水机组的台数,达到控制冷水机组台数的目的。

2.1.2 回水温度控制法控制流程图12.1.3 回水温度控制法的分析1:回水温度适应性较差,尤其温差小时,误差大,对节能不利。

2:可用于冷冻机的低温保护和报警。

3:但装置简单,价格便宜。

4:判据不明确。

2.2 流量控制法2.2.1 流量控制法控制原理通过测量冷冻水流量获得流量信号,然后再把此流量值与冷水机组的额定流量进行比较,从而实现对冷水机组的台数控制。

2.2.2 有关流量控制法的分析流量控制的原理是基于这样三个假定1:负荷与流量成正比2:冷冻水供回水温差恒定3:在设计工况之下运行但实际上,这三个假定一个也不能成立,更不可能同时成立。

流量控制法虽能保证系统流量,避免冷水机组蒸发器结冰,但并不能很好的适应系统负荷的变化。

因为盘管的传热量和流量并不是线性关系。

实验和研究表明,冷冻水流量和建筑物热负荷之间呈对数关系。

这种关系伴随着冷冻水入口温度、盘管尺寸结构和盘管表面积和盘管表面接触的空气温度以及气流速度的不同而变化,所以它不仅是非线性的,还是一个随着多种因素变动的曲线。

不能反映负荷的变化,因而不能有效节能。

2.2 热量控制法2.3.1 热量控制法控制原理通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,然后将两个信号依据热力学公式计算实际的需冷量,再把此冷量值与冷水机组的产冷量进行比较,从而实现对冷水机组的台数控制。

浅析BA系统中冷水机组群控策略

浅析BA系统中冷水机组群控策略

浅析BA系统中冷水机组群控策略目前随着中央空调系统的广泛应用,系统节能已经成为最终用户所关注的焦点。

对于空调系统中能耗最大的冷水机组系统,它的高效节能成为空调系统节能的关键问题。

实现冷水机组节能高效稳定运行的一个非常有效的技术手段就是采用冷水机组群控。

冷水机组群控是利用自动控制技术对制冷站内部的相关设备〔冷水机组、水泵、冷却塔、阀门〕进展自动化的监控,使制冷站内的设备到达最高效率的运行状态。

1、冷水机组群控的目的〔1〕节能:根据系统负荷的大小,准确控制制冷机组的运行数量和每台制冷机组的运行工况,从而到达节能并降低运行费用的目的。

〔2〕延长机组使用寿命:通过机组轮换、故障保护、负荷调节等控制程序,确保冷水机组的平安,延长机组的使用寿命,提高设备利用效率。

〔3〕设备保护:合理群控,使系统更舒适,防止过冷,更容易到达设计要求。

2、几种常见的群控模式分析第一种:每30分钟把计算出的实际冷负荷与当前运行机组的额定冷量比拟,当实际冷负荷小于当前机组的额定总负荷一定量时,减少相应的机组运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组运行。

这种控制策略的采用其结果是可悲的,因为空调冷负荷的实测量不可能大于目前正在运行的冷机所提供的冷量。

打个比方:有一台电扇〔在常规的环境和标准的供电下,其出厂的标注是〕最大转速25转/秒,但你说在同样的环境、条件下,通过某种“科学〞手段实测出的转速是30转/秒,大于25转/秒。

这显然是不符的,有点本末倒置。

实际运行中发现,机组根本无法实现根据实际冷负荷调整冷水机组的台数控制。

例如,实际情况开启冷水机组的冷量负荷远不能满足空调末端需要,此时,冷冻水温由于制冷负荷的缺乏而水温升高,冷水机组出水温度超过设定值,冷水与盘管内空气的热交换效率不断下降,供回水温差减小,供水流量未发生变化,而计算出的冷负荷却减小。

这显然非真实所需的冷负荷。

实际运行中发现,分水器的水温达16℃℃,而冷却量计算的负荷却很小,不需增加冷水机组的台数。

冷水机组群控策略

冷水机组群控策略

冷水机组群控策略新办公室空调系统冷冻站群控说明一.空调水系统监控设备与监控内容详细监控内容如下:1.冷水机组开启台数控制1)根据供回水总管的温差,或回水总管回水温度,对冷水机组进行群控。

冷水机组加载控制――常规运行模式下(夏季运行模式),默认开启水冷螺杆式冷水机组CH-1。

采用回水温度控制法对冷水机组进行加载控制。

根据供水总管上的温度传感器监测回水温度,根据供水温度的变化,当供水温度>9℃时,开启一台风冷热泵机组;继续监测回水温度,如30min后供水温度仍然>9℃时,开启两台风冷热泵机组。

冷水机组卸载控制――常规运行模式下(夏季运行模式),当水冷螺杆式冷水机组CH-1与两台风冷热泵机组CH-2,3同时开启时,采用供水温度控制及供回水总管温差控制对冷水机组进行卸载控制。

根据供、回水总管上的温度传感器监测供回水温度,根据二者的变化,当供水温度<7℃,且供回水温差<1℃时,卸载一台风冷热泵机组;继续监测供、回水温度,如30min后回水温度仍然<8℃,且供回水温差仍然<1℃时,卸载两台风冷热泵机组。

冬夏季模式转换为人工手动转换。

(注:冬夏季模式转换需能达到以下要求;①需设置权限,仅操作管理人员具有该权限;②需设置物理保护,以防止错误操作,如任一冷冻泵开启,即表明系统在供冷模式下运行,此时,即使手动进行冬夏季模式转换都不能实现。

) 2)冷水系统运行时间控制。

工作日情况下,早上7:50开启水冷螺杆式冷水机组CH-1,下午5:15,所有冷水机组停止运行,冷冻水泵延时15分钟停止。

低温冷水机组为手动控制。

●机组启动后通过彩色图形显示,显示不同的状态和报警,显示每个参数的值,通过鼠标任意修改设定值,以达到最佳的工况;●机组的每一点都有趋势显示图,报警显示;●设备发生故障时,自动切换;●程序控制冷冻水系统,目的是达到最低的能耗,最低的主机折旧;●根据程序或办公室的日程安排自动开关冷冻机组。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案冷水机组群控系统是指控制多台冷水机组同时运行、停止、调节参数和故障报警等功能的系统。

随着制冷技术的发展和应用需求的不断提高,冷水机组群控系统越来越受到工程设计和用户的重视。

本文将就冷水机组群控系统的方案进行详细的介绍,从系统组成、工作原理、控制策略、应用优势等方面进行论述。

一、系统组成冷水机组群控系统由主控制器、冷水机组控制器、监控显示器、传感器和执行器等部分组成。

主控制器负责整个系统的调度和协调,冷水机组控制器负责单台冷水机组的控制和运行,监控显示器用于实时显示系统运行状态,传感器和执行器用于检测和执行系统的各种操作。

二、工作原理三、控制策略冷水机组群控系统的控制策略一般包括负荷分配、轮换运行和故障自动切换等。

负荷分配是根据系统负荷需求,动态调整各个冷水机组的运行状态,保证系统在部分负荷和全负荷时的运行效果。

轮换运行是指在系统负荷需求较小时,通过轮换运行各个冷水机组,延长设备寿命和提高效能。

故障自动切换则是在某个冷水机组出现故障时,系统能够自动切换到其他正常运行的冷水机组,保证系统的连续运行。

四、应用优势冷水机组群控系统相比单台冷水机组的控制具有以下优势:1. 提高运行效率:通过对多台冷水机组的协同控制和轮换运行,提高了系统的运行效率,降低了能耗和运行成本。

2. 提高稳定性:系统可以根据系统的负荷需求和运行状态,动态调整各个冷水机组的运行状态,保证系统的稳定运行。

3. 提高可靠性:系统故障自动切换功能可以在某个冷水机组出现故障时,自动切换到其他正常运行的冷水机组,保证系统连续运行。

5. 减少维护成本:通过对冷水机组的协同控制和轮换运行,延长了各个设备的使用寿命,降低了设备的维护成本。

冷水机组群控系统在大型制冷系统中的应用前景广阔,可以提高能源利用率、减少运行成本、提高系统稳定性和可靠性,是制冷技术领域的一项重要技术创新。

通过不断改进和完善系统方案,将能够更好地满足用户的实际需求,推动制冷技术的发展和应用。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案随着现代化程度的不断提高,人们对于工厂、医院、大型商场等场所的空调需求越来越高。

为了满足这些需求,冷水机组已经成为空调系统的重要组成部分,在空调领域中得到了广泛应用。

冷水机组南北配合,实现热源与冷源的互换,调节室内的温度、湿度、洁净度及新鲜度,满足人们各种各样的需求。

在此背景下,群控系统方案的出现也变得日益重要。

1.工作原理群控系统方案是指将多台冷水机组打造成一个整体,通过集中控制的方式,实现对多个冷水机组的远程监测和控制。

具体来说,群控系统方案由一个中央控制器和多个从控制器组成,中央控制器作为群控系统的核心,负责群控系统的整体管理,从控制器则负责与各个冷水机组进行通信,实现对冷水机组的远程控制。

通过该群控系统,用户可以随时随地对多个冷水机组进行远程控制,大大提高了工作的效率和便利性。

2.系统组成群控系统方案主要由如下组成部分:(1)中央控制器:中央控制器是群控系统的核心,可以实现对所有从控制器进行管理和控制。

中央控制器可以通过局域网、互联网等方式接入到计算机或其他设备中,提供各种查询、监测和控制服务的功能。

(2)从控制器:从控制器是连接冷水机组和中央控制器之间的桥梁,可以实现对单个或多个冷水机组的远程监测和控制。

从控制器通过自己的独立网络与中央控制器进行通信。

(3)冷水机组:冷水机组是群控系统的最终执行对象,是实现空调需求的核心设备。

冷水机组包括冷却水泵、制冷机组、冷却塔、阀组等零部件,是将室外的冷热源与室内的风机盘管结合在一起的关键设备。

(4)传感器:传感器可以实现对空调系统的各种参数进行监测和反馈,例如温度、湿度、压力等。

传感器将这些参数的变化转化为电信号,传输到中央控制器中,帮助用户更精准地了解冷水机组的工作状态。

3.方案优点(1)集中管理:群控系统方案可以将多个冷水机组集中在一个中央控制器下管理,实现对冷水机组的一次性配置和控制,确保系统运行的标准化和统一性。

(2)远程控制:群控系统方案可以实现对冷水机组的远程监测和控制,用户不必亲自前往现场进行操作,大大提高了操作的便利性和效率。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案冷水机组群控系统方案随着现代制造业的不断发展,工业自动化也越来越普及和重要。

在冷水机组的使用和管理中,群控系统起到了关键的作用。

冷水机组群控系统是一个将多个冷水机组连接起来的电气设备,用于监控、控制和调节冷水机组的运行状态,以提高冷水机组的使用效率和降低运行成本。

冷水机组群控系统的主要组成部分包括:集中控制器、数据采集系统、控制面板、通讯接口、传感器和执行机构等。

其中,集中控制器是整个系统的核心,负责控制系统全局状态的监控、数据采集、运算处理和控制执行等功能。

数据采集系统负责对冷水机组各个参数进行数据采集,并将采集到的数据传送给集中控制器。

控制面板用于设定冷水机组的运行参数和状态显示,通讯接口用于与外部系统进行数据交互和控制命令传输。

传感器和执行机构则是冷水机组群控系统中最重要的组成部分之一,传感器用于收集冷水机组的运行数据,执行机构则通过在冷水机组中调节阀门、泵和压缩机等关键装置,实现对冷水机组的控制和调节。

冷水机组群控系统的工作原理如下:首先,数据采集系统采集冷水机组各个参数的运行数据,并将这些数据传送给集中控制器;然后,集中控制器对接收到的数据进行处理和计算,生成相应的控制信号并通过通讯接口传输给执行机构;最后,执行机构根据接收到的控制信号对冷水机组进行控制和调节,以达到预设的运行状态。

整个过程实现了对多个冷水机组的自动化控制和监控。

冷水机组群控系统的优点包括:(1)提高了冷水机组的工作效率和运行可靠性,降低了能源消耗和维护成本;(2)实现了远程监控和控制,方便操作和管理;(3)具有较高的灵活性和可扩展性,可根据实际需要进行调整和优化;(4)能够提高生产效率,减少生产成本,优化生产工艺。

总之,冷水机组群控系统是现代工业生产中不可缺少的设备,它为冷水机组的安全稳定运行提供了可靠的技术支持,对现代工业自动化化生产也具有非常重要的意义。

冷机群控控制逻辑说明

冷机群控控制逻辑说明

冷机群控逻辑说明一正常供冷正常供冷时,冷机群控模块会根据需求开启相应的冷水机组,主机接到开机指令后,主机会发出水泵需求指令,控制器接到水泵需求指令后,开启相应冷水机组冷凝器与蒸发器侧的出水电动蝶阀,以及冷却塔上的进出水电动蝶阀, 同时开启冷冻水泵,冷却水泵,冷却塔风机、冷冻水泵以及冷却水泵的数量与主机开启的数量就是一致的,冷却塔风机最少开启的数量就是主机的两倍,如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止、具体如下:(1)冷冻水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组蒸发器侧的出水电动蝶阀,同时会开启相应数量的冷冻水泵、1、冷冻水泵切换条件如下:1.1冷冻水泵有故障;1.2冷冻水泵检测不到自动状态,既冷冻水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期1.3当冷冻水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷冻水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2.冷冻水泵的频率调节就是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比较,PID调节冷冻水泵频率、供回水压力差值越小,频率越高; 冷冻水泵最小频率目前设定38Hz、3.根据冷冻水供回水压差值与冷冻水供回水压差设定值比较PID调节冷冻水旁通阀、压差越高,旁通阀开度越大、(2)冷却水侧逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,会开启相应冷水机组冷凝器侧的出水电动蝶阀,同时会开启相应数量的冷却水泵、1、冷却水泵切换条件如下:1、1冷却水泵有故障;1、2冷却水泵检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当冷却水泵接到了开泵指令后,延时8秒钟后,控制器还没检测到水泵运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个, 冷却水泵就会切换到另一台水泵、相应的,水泵能开启的条件就就是:水泵无故障,手自动转换开关打到”自动”档,水泵无开启失败、水泵切换时,会自动选择同时满足以上三点并运行时间最少的冷冻水泵、2、冷却水泵的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却水泵频率、温度越高,频率越高;冷冻水泵最小频率目前设定40Hz、3、根据各自冷却水回水温度与设定值比较PID调节冷却水旁通阀、温度越高,旁通阀开度越小(3)冷却塔逻辑当主机接到开机指令时,延时一定时间后会发出一个冷却水泵需求指令给相应的控制器,控制器接到指令后,除了会开启相应冷水机组冷凝器侧的出水电动蝶阀以及开启相应数量的冷却水泵外,还会发出冷却塔的需求指令,刚开始时,冷却塔组(每个塔组含两个风机,两个进水阀,两个出水阀)的数量与主机开启的数量就是一致的、同时会开启相应的电动蝶阀、1、冷却塔风机切换条件如下:1、1冷却塔风机有故障;1、2冷却塔风机塔检测不到自动状态,既冷却水泵强电控制柜上的手自动没转到”自动”时,电脑上显示”本地”时期、1、3当发出了开冷却塔风机指令后,延时8秒钟后,控制器还没检测到冷却塔风机运行状态开启时,程序会认为此水泵开启失败、以上三个条件只要有一个,就会造成风机锁定不能开启、能开启的条件就就是: 风机无故障,手自动转换开关打到”自动”档,水泵无开启失败、当以上条件造成了同一组冷塔里的两台风机同时不能开启时, 会自动选择同时满足以上三点并运行时间最少的冷却塔组、2、冷却塔风机的频率调节就是根据冷却平均回水温度及设定值比较,PID调节冷却塔风机频率、温度越高,频率越高; 冷却塔风机最小频率目前设定40Hz、3、如果冷却塔冷却后的温度还高于设定值1度以上含1度,并维持5分钟以上,则加一组冷却塔,以此类推,一直加到没有可加冷却塔为止,与此相反, 如果冷却塔冷却后的温度低于设定值1度以上含1度,并维持5分钟以上,则会减少一组塔,但开启的塔组数不会少于冷机数量、二蓄冷罐充冷(1)充冷条件1.至少要有一台冷水机组开启;2.放冷结速后至少要两个小时后才能充冷;以上两个条件必须要同时满足才能充冷、(2)充冷模式在满足上述两个充冷条件下,充冷有两种模式、1.一种就是手动模式,在手动模式下,用户可以自行开启,关闭各个蓄冷罐的充冷工况、2.另一种就是自动模式,在自动模式下,当蓄冷罐里的平均温度高于设定值时,充冷工况开始运行;3.一次只能有一个蓄冷罐充冷,无论在手动还就是自动模式、三蓄冷罐放冷(1)放冷条件在放冷总开关处于启用状态下:1、没有一台冷水机组开启;2.冷冻水总管平均供水温度高于设定值并维持一定时间;3.所有机组都处于失电报警状态下、当放冷总开关处于启用状态时,以上三个条件只要任何一个,同时相应充许放冷的蓄冷罐平均温度不高于设定值,以及单个蓄冷罐的放冷开关打到”ON”时, 此时相应的蓄冷罐就会放冷、(2)放冷时,冷冻水泵开启的数量与蓄冷罐放冷的数量就是一样的,同时也会执行与正常供冷时的轮换与故障切泵、四系统加减机功能增加制冷需求Additional Cooling Required – ACR 加载的流程a. 当ACR温度传感器所测的冷冻水供水温度,高于当前的冷冻水供水温度设定点与一个可调整的温度偏差值相加后的所得值IDC:ACR温度传感器=南北侧集分水器温度平均值,冷冻水供水温度设定点=12 o C,温度偏差值=0、6 o C,平均温度>(12+0、6)即12、6 o C时条件满足b. 运行冷水机组的温度降低速率小于1、5oC /分钟c. 有可加载的机组IDC:有未开启的机组,且该机组的控制模式=CCN,且该机组的报警状态=Normal(未报警) *以上各项要求a~c均能满足,才进入以下机组加载程序d. 新冷水机组启动的延迟时间已经结束(延迟时间可以设定)IDC:延时时间=15分钟以上各项要求均能满足,新冷水机组立即启动参数设置原则,1)上述温度设定12根据供水要求2)温度偏差0、6与延时15分钟为了在满足正常使用情况下,系统更稳定加载。

冷水机组群控系统方案

冷水机组群控系统方案

冷水机组群控系统方案冷水机组群控系统方案是一种智能化的控制系统方案,旨在对冷水机组进行集中监控和控制,提高系统的运行效率和能耗管理能力。

该方案通过自动化控制,实现对多台冷水机组的集中管理,包括温度设定、运行模式选择、能源消耗监测等功能。

以下是一个详细的冷水机组群控系统方案。

一、系统架构冷水机组群控系统由服务器、监控主机和冷水机组组成。

服务器作为系统的核心,负责数据的采集、处理和存储;监控主机用于人机交互,提供操作界面;冷水机组通过传感器与监控主机连接,实现控制指令的传输和数据的反馈。

二、功能模块1. 数据采集模块:通过传感器实时采集冷水机组各项参数数据,包括进出水温度、冷却水流量、电源电压等。

2. 数据处理模块:对采集到的数据进行处理,筛选异常值,并将有效数据上传至服务器进行存储。

3. 运行控制模块:根据系统设定的运行逻辑和策略,自动控制冷水机组的开关机、模式选择、温度设定等。

4. 告警管理模块:监控系统的运行状态,一旦发现异常情况,如机组故障、温度超标等,及时发出告警信息,并采取相应的应急措施。

5. 数据分析模块:对历史数据进行分析和统计,生成报表和趋势图,用于评估冷水机组的运行状态和能耗情况。

6. 远程监控模块:通过互联网或局域网,实现对冷水机组的远程监控和控制,方便用户进行实时查看和操作。

三、系统优势1. 实时性:系统采用实时数据采集和处理,能够及时反馈冷水机组的各项参数和运行状态。

2. 高效性:通过自动化控制,减少了人工干预,降低了运行成本,提高了系统的运行效率。

3. 可视化:系统提供直观的界面展示,用户可以清晰地查看冷水机组的运行情况和能耗情况。

4. 可拓展性:系统可根据实际需求进行功能模块的添加和调整,满足不同规模和复杂度的应用场景。

5. 灵活性:系统支持远程监控和控制,用户可以随时随地对冷水机组进行操作和管理。

四、系统应用冷水机组群控系统适用于大型商业建筑、医院、工业厂房等场所,特别是需要同时运行多台冷水机组的场合。

冷机站群控

冷机站群控
冷机站电功率比较图
210 27.34 190 24.07 25.00 30.00
平均电功率 (kW)
170 150 130 110 90 70 六月 七月 九月 9.30 17.76
未优化 节能比例(%)
15.00
10.00
5.00
0.00 十月
月份
节能比例 (%)
优化
20.00
21
HONEYWELL - CONFIDENTIAL
17
HONEYWELL - CONFIDENTIAL
File Number
方便快捷的节能改造方案 (针对无自动化系统的用户)
远程工作站(可选)
含先进控制模块的 控制柜
传感器和执行 机构

18
HONEYWELL - CONFIDENTIAL
File Number
案例分析(I)
• Atrium医院
- 位于荷兰Heerlen地区 - 1230张病床 - 供热、冷、蒸汽和电力 - 热负荷 13246 MWh - 冷负荷 3789 MWh - 蒸汽负荷 3007 MWh - 电力负荷 11826 MWh
• 建筑面积-220,000 m2
• 主要用途:办公和商场
• 450 家租户 18,000 工作人员
• 采用运行优化系统仅制冷机部分
负荷水平
HONEYWELL - CONFIDENTIAL
5382.4688 5419.7621 5572.9113 7571.4271 7808.9471 8017.4846 8200.1115 9378.8775 10421.7682 10631.5851 10985.3024
超出传统控制系统的考虑范围
8 HONEYWELL - CONFIDENTIAL

冷机群控监测内容

冷机群控监测内容

冷机群控监测内容开利WebCTRL系统冷站监控图XXX项目包括北区、东区及酒店共7个冷站机房,各机房冷水机组2-5台不等,冷冻水泵、冷却水泵若干。

现场控制器DDC对其进行群控,实现以下监视控制功能冷冻站群控系统主要监控以下内容:⏹冷冻机组运行状态⏹冷冻机组故障⏹冷冻机组启停⏹冷冻/冷却水泵运行状态⏹冷冻/冷却水泵故障报警状态⏹冷冻/冷却水泵启停⏹冷冻水总管供/回水温度检测测⏹冷却塔运行状态⏹冷却塔故障报警⏹冷却塔手自动切换⏹冷却塔启停⏹冷却塔蝶阀开关及状态反馈⏹冷冻水旁通阀的开度调节⏹冷冻机、冷冻水泵、冷却水泵运行时间累积以上有部分监控点位未能详述,详见群控点表。

⏹冷冻站的启动顺序:Step1启动冷却水泵Step2启动冷却塔Step3启动冷冻水泵Step4启动冷水主机⏹冷冻站的停止顺序:Step1停止冷水主机Step2停止冷冻水泵Step3停止冷却塔风机Step4停止冷却水泵⏹机组循环启停顺序:为平衡冷冻机的使用时间,使每台机组保持基本一致的运行时间以延长机组寿命,系统为用户提供了一个循环冷冻机启停顺序的程序,可在操作平台自定义循环周期,即用户可自定义冷冻机的循环方式及循环时间。

同时自动平衡水泵和冷却塔的运行时间,延长设备的使用寿命。

Carrier冷机监测冷机群控系统中的一个重要要求是可以监测每台冷机的所有工作参数。

这个要求对楼宇自控系统来说是十分困难的,而开利的WebCTRL冷机群控系统可以轻易的实现这个要求。

只要把全部冷机联入WebCTRL网络即可采集每台冷机的内部所有参数。

如上图所示,冷机中的各类温度、压力、压差、百分比、设定值等参数一目了然。

这对于了解冷机的工作情况,故障分析、能量计算等都十分方便和必须。

图形中的一些关键参数如超限将会自动报警,提醒操作者注意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷机站先进控制系统
—全新技术降低建筑物能耗
霍尼韦尔综合科技(中国)有限公司
目录 • 运行优化 vs.改造节能 • 面临的挑战
• 全新的优化解决方案
• 案例介绍 • 总结
2
HONEYWELL - CONFIDENTIAL
File Number
运行优化 vs.改造节能
改造节能 使用目的 对日常运行的指导 设计和改造 较少或无 日常运行 实时优化各项设定,提高系统效率 监测各设备运行状态和性能 对运行及维修计划的生成和修改提供决策 支持 迅速应对意外事件 动态变化的工况(设备性能、能源价格、天 气等) 通常较低(可以利用现有的设备,不改变现 有管网、不影响正常使用) 通常较低(优化过程完全基于系统的真实性 能) 一到两年 经过短期培训的普通人员 运行优化√
冷机先进控制系统
模型库 用户界面
数据库
故障诊断
优化引擎
数据接口
实时数据 (上传), 优化指令与参 数 (下传)
数据校验
实时数据 (上传), 优化指令与参 数 (下传) 楼宇自动化系统
末端信息
冷机
水泵
冷却塔
锅炉等
16
HONEYWELL - CONFIDENTIAL
File Number
方便快捷的节能改造方案(针对含自动化系统的用户)
一次泵负荷 (%) 冷机站平均 功耗 (kW) 117.23 131.52 143.87 冷机站制 冷量(kW) 系统 COP
33 66 100
降低冷却水温通常能提高系统COP 提高冰水温度通常能提高系统COP
202 269 289
1.72 2.05 2.01
某种工况下,当一次泵负荷为66%时冷机站达到最 高效率
• 建筑面积-220,000 m2
• 主要用途:办公和商场
• 450 家租户 18,000 工作人员
• 采用运行优化系统仅制冷机部分
负荷水平
HONEYWELL - CONFIDENTIAL
5382.4688 5419.7621 5572.9113 7571.4271 7808.9471 8017.4846 8200.1115 9378.8775 10421.7682 10631.5851 10985.3024
长期 (24 小时)负荷 预测
短期 (半小时) 负荷 预测
用户的使用偏好
依据多种因素预测真实负荷
13 HONEYWELL - CONFIDENTIAL
File Number
全新的优化解决方案-动态规划
最小化
设备u 1
设备u在当前时刻能耗
N
将来
最小化
时间t 当前 设备u 1

设备u在t时刻能耗
不变应万变?
7 HONEYWELL - CONFIDENTIAL
File Number
冷机站面临的挑战-运行参数
• 保证安全和舒适度要求下,是否存在最佳参数最大化系统效率 - 冷却水流量 - 冷却水温度(只是中间变量) - 冷冻水流量 - 冷冻水温度(只是中间变量) - 冷机的负荷水平 - 水泵的负荷水平
—邬贺铨院士(中国工程院副院长)
2020年,我国的建筑能耗将达到29430亿度电,比三峡电站34年的发电量总和还要多。
—龙惟定教授 (同济大学建筑节能中心副主任)
4
HONEYWELL - CONFIDENTIAL
File Number
冷机站面临的挑战
冷却塔的开启 台数? 真实的负荷? 短期内负荷将 如何变化?
负荷计算
压差法、温差法、或温差流量法 (不能准确反映真实的负荷需求 )
人工设计(取决于设计人员的业 务水平和工作态度,不可能考虑 各种可能的情况,维护困难) 静态的经验型策略,适用程度有 限(受限于系统设计、设备性能 的退化、设计的变更、以及各种 故障) 水系统为主 不检测 不考虑(缺乏动态规划引擎) 不考虑 不提供 受限于系统运行管理水平
File Number
案例分析(III)-日能耗比较
休息日
22 HONEYWELL - CONFIDENTIAL
File Number
案例分析(III)-更经济的预制冷
23
HONEYWELL - CONFIDENTIAL
File Number
案例分析(IV)-宾馆+写字楼
• • • • • • •
控制逻辑
优化策略
优化范围 设备性能 蓄冷能力及电价的波 动 能效审计 维护建议 节能效果
基于现场设备模型与动态规划
11 HONEYWELL - CONFIDENTIAL
File Number
全新的优化解决方案-先进控制的优化策略
运行计划与运行参数 (冷机、冷却塔、水 泵的启停时间、工作 点设置等)
最优的冷却水 温设定?
楼宇
楼宇的热响应 状况 最优的冷冻水 流量? 最优的冷冻水 温设定
冷却水泵的开 启台数?
制冷机的开启 台数? 最优的冷冻水 温设定
不同负荷下最 优的冷源选择?
何时蓄冷何时 放冷以及蓄冷 放冷进度?
最佳蓄冷量?
制冷机房
地源热泵系统的 效率退化?
冷机站能耗约占建筑物总能耗的40%~60%
制冷机的开启 台数? 冷机的出水温 度设定
设备性能
不同负荷下最 优的冷源选择?
何时蓄冷何时 放冷以及蓄冷 放冷进度?
优化设定
先进控 制系统
地源热泵系统的 效率退化?
最佳蓄冷量?
制冷机房
10
HONEYWELL - CONFIDENTIAL
File Number
全新的优化解决方案-系统特点
传统控制 先进控制
超出传统控制系统的考虑范围
8 HONEYWELL - CONFIDENTIAL
File Number
冷机站面临的挑战-维护信息
• 作为能耗大户,冷机站通常缺少 - 设备在不同的工况下的运行效率(单台冷机的COP曲线,系统COP曲线) - 各种类型的设备性能退化 - 维护工作的后效分析 - 班组绩效考评
- 约占全社会总能耗的30Fra bibliotek - 与工业和交通运输并列
其它
20%
空调
40%
空调 照明 办公设备 其它
- 中央空调是最主要的“能耗大户”
办公设备
20%
• 然而长期以来,作为能耗大户的中央空调系统:
照明
20%
- 运行管理水平低 - 人为疏忽和经验错误泛滥 - 能源浪费严重
建筑物运行能耗的构成
我国建筑能耗目前已经超过一次能源消费总量的四分之一,达到27%左右,是世界同纬度国家的3倍。
冷机站电功率比较图
210 27.34 190 24.07 25.00 30.00
平均电功率 (kW)
170 150 130 110 90 70 六月 七月 九月 9.30 17.76
未优化 节能比例(%)
15.00
10.00
5.00
0.00 十月
月份
节能比例 (%)
优化
20.00
21
HONEYWELL - CONFIDENTIAL
压差法、或温差流量法更能反映实际的负荷需求
量出为入
- 自动分析设备的实际性能和大楼的冷/热响应特性 - 同时考虑近百个影响冷机站效率的变量,包括流量
?
不能为冷机站维护提供决策支持
9 HONEYWELL - CONFIDENTIAL
File Number
全新的优化解决方案
冷却塔的开启 台数? 真实的负荷? 短期内负荷将 如何变化?
最优的冷却水 温设定?
楼宇
楼宇的热响应 状况 最优的冷冻水 流量? 最优的冷冻水 温设定
冷却水泵的开 启台数?
负荷需求
根据大楼温度分布估计的实际负荷+负荷 趋势(根据天气、季节、时段等因素预测 并校正)
根据冷机站的设计和设备状态自动生成, 大大提高了控制系统的灵活性、可靠性、 和可维护性 自适应模型(不依赖人工经验和预设逻辑 ,与现场实际保持一致)+动态优化引擎 (真正求解复杂的优化问题)。 能够同时兼顾各种考量,并根据系统状态 的变化动态修改 水系统+冷机,并可扩展到用户端(例如 新风冷却) 自动检测并作为优化问题的输入 作为优化问题的一部分考虑 提供机组和全系统的能效数据并可保存长 达10年的运行历史记录 自动检测机组效率的下降 超过15%
17
HONEYWELL - CONFIDENTIAL
File Number
方便快捷的节能改造方案 (针对无自动化系统的用户)
远程工作站(可选)
含先进控制模块的 控制柜
传感器和执行 机构

18
HONEYWELL - CONFIDENTIAL
File Number
案例分析(I)
• Atrium医院
- 位于荷兰Heerlen地区 - 1230张病床 - 供热、冷、蒸汽和电力 - 热负荷 13246 MWh - 冷负荷 3789 MWh - 蒸汽负荷 3007 MWh - 电力负荷 11826 MWh
Saving(%)
File Number
案例分析(III)
• • • • • • 建筑面积-7,000 m2 300 工作人员 主要用途:办公 4 台风冷热泵机组,2台定速泵 年制冷、热费用70万元 采用运行优化系统可提高系统效率8 %,并降低20%(月平均) 的能耗(单 日最高可达50%) • 提高了室温稳定程度
N 1...
冷机站动态仿真模型
运行结果评估与改进
最优计划与参数 个 小 时 2
2…
运行结果(能耗、效率、温度变化等)
评估→改进→再评估→再改进→…→最优结果
基于动态仿真模型、万里挑一的优化策略
相关文档
最新文档