凝固原理-7铸件凝固组织控制

合集下载

凝固过程的基本原理

凝固过程的基本原理
k
wS
wL
▪ 在平衡凝固过程中,固相和液相中的溶质质量分数wS与wL是由相图的固相线和
液相线确定的。相图只能确定平衡凝固条件下的溶质分配系数。但在实际情况
下,平衡凝固的情况非常罕见。
▪ 一般将合金的凝固过程分为平衡凝固、近平衡凝固和非平衡凝固过程。对应于 上述凝固过程,k的定义和名称也各不相同,分别称为:平衡溶质分配系数k0, 有效溶质分配系数ke, 非平衡溶质分配系数 (也叫实际溶质分配系数) ka 。
1.相图与凝固---多元合金的凝固过程分析
相图计算的基本原理就 是依据热力学原理,计算
收集评估相图与热力学试验数据
系统的相平衡关系及各种
选择各相的吉布斯自由能模型
热力学数据,并绘制出相 图。热力学计算技术不仅
重新评估实验数据
给模型参数赋初值
能获得多元合金的相图信 息如分凝系数、液相线 (面) 斜率等,同时也能够获得
1.相图与凝固---多元合金的凝固过程分析
▪ 多元合金的溶质再分配分析
同样,对于多元合金,一般是从热力学的基本原理出发,对其溶质再分
配规律作出分析。
在研究多元合金的凝固过程时,仅当发生单相析出时,讨论溶质分配系
数才是有意义的。此时,任一组元i在液相和固相j中的化学位为,
L i
(GL wi
)T,P,WCj
1.相图与凝固---二元合金凝固过程的溶质再分配
▪ 溶质再分配是凝固过程的重要伴随现象,对凝固组织有决定性的影响。正是50~ 60年代以来对凝固过程溶质再分配现象的发现和深入研究,推动了现代凝固理 论的形成和发展。
▪ 描述凝固过程溶质再分配的关键参数是溶质分配系数k,它是凝固过程中固相溶
质质量分数wS与液相溶质质量分数wL之比。可写为,

铸造金属凝固原理介绍课件

铸造金属凝固原理介绍课件

凝固缺陷
01 缩孔:金属凝固过程中,由 于体积收缩,导致内部出现 孔洞
02 疏松:金属凝固过程中,由 于气体析出,导致内部出现 疏松多孔的结构
03 偏析:金属凝固过程中,由 于成分不均匀,导致内部出 现成分分布不均匀的现象
04 裂纹:金属凝固过程中,由 于应力过大,导致内部出现 裂纹
铸造方法
01
砂型铸造:利用砂型制作铸 件,成本低,生产效率高
03
压力铸造:利用高压将熔融 金属压入模具,生产效率高, 适用于薄壁铸件
05
连续铸造:利用连续铸造机 将熔融金属连续铸造成铸件, 适用于大批量生产
02
熔模铸造:利用蜡模制作铸 件,精度高,适用于复杂铸 件
04
离心铸造:利用离心力将熔 融金属甩入模具,适用于管 状铸件
05
凝固原理在铸造工艺优 化中的实例分析
02
凝固原理对铸造工艺 的影响
04
凝固原理在铸造工艺优 化中的具体应用方法
06
凝固原理在铸造工艺优 化中的发展趋势
质量控制
01
凝固原理在铸造过 程中的应用
02
凝固原理在金属材料 质量控制中的作用
03
凝固原理在铸造缺 陷检测中的应用
04
凝固原理在铸造工 艺优化中的作用
新材料研究
01
纳米材料:具有高强度、高韧性、耐腐蚀等优良性能
02
复合材料:结合多种材料的优点,提高性能和降低成本
03
生物材料:利用生物技术制备新型材料,如生物陶瓷、生物高分子等
04
智能材料:具有感知、响应和自适应功能的材料,如形状记忆合金、压电材料等
绿色铸造技术
绿色铸造技术是指在铸造过程中减少环境污染、降低 能耗、提高材料利用率的技术。

《金属凝固原理》思考题解答

《金属凝固原理》思考题解答

金属凝固原理思考题1.表面张力、界面张力在凝固过程的作用和意义。

2. 如何从液态金属的结构特点解释自发形核的机制。

答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。

由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。

当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。

3.从最大形核功的角度,解释0/=∆dr G d 的含义。

4.表面张力、界面张力在凝固过程和液态成形中的意义。

5.在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、0.01μm ,其熔点温度各为多少?已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 26.(与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。

答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。

临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2.对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。

则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。

7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。

8.用相变热力学分析为何形核一定要在过冷的条件下进行。

答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。

令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述

定向凝固制备铸造多晶硅的原理及应用综述摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。

展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。

关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。

实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。

近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。

影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。

由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。

定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。

定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。

定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。

同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。

1. 基本原理多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就是定向凝固原理。

材料成形原理 华科 第五章_铸件凝固组织的形成及控制PPT课件

材料成形原理      华科   第五章_铸件凝固组织的形成及控制PPT课件
0.1~1.0, 与Si-Fe复合
Ti:0.15; Zr:0.2; 复合:Ti0.01 B或C0.05; ≥0.02
加入方法
铁合金
铁合金
Al-Ti, Al-Zr,Al-Ti-B, Al-Ti-C中间合金 Al-P,Cu-P,Fe-P 中间合金
0.02~0.04
纯金属或中间合金 碳化物粉末
表5-1 合金常用孕育剂的主要元素情况
激冷等轴晶型壁脱落与游离理论
在浇注的过程中及 凝固的初期激冷,等 轴晶自型壁脱落与 游离促使等轴晶形 成, 浇注温度低可 以使柱状晶区变窄 而扩大等轴晶区 。
图5-5 型壁处形成的激冷晶向铸件内部的游离 a) 晶体密度比熔体小的情况; b) 晶体密度比熔体大的情况
溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有 “脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固 壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断 “脖颈”,使晶体脱落并游离出去。
对一般钢铁材料和塑性较差的有色金属铸锭,希望获得较多 的甚至是全部细小的等轴晶组织;
对于高温下工作的零件,通过单向结晶消除横向晶界,防止 晶界降低蠕变抗力。
2、铸件宏观组织的控制途径和措施
•等轴晶组织的获得和细化
强化非均匀形核 促进晶粒游离 抑制柱状晶区
(1)加入强生核剂——孕育处理
孕育——向液态金属中添加少量物质以达到增加晶核数、细 化晶粒、改善组织之目的的一种方法。Inoculation
一、合理地控制浇注工艺和冷却条件 二、孕育处理 三、动力学细化
合理的浇注工艺 冷却条件的控制
浇注温度 浇注方式
合理的浇注工艺
合理降低浇注温度是减少柱状晶、获得 及细化等轴晶的有效措施。但过低的浇 注温度将降低液态金属的流动性,导致 浇不足和冷隔等缺陷的产生。

钢液凝固的基本原理

钢液凝固的基本原理

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载钢液凝固的基本原理地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容钢液凝固的基本原理1 钢液的凝固与结晶众所周知,在不同的温度条件下,物质都具有不同的状态。

钢也一样,在加热到一定的温度时,可从固态转化成液态;钢液冷却到某个温度时,将从液态转化为固态。

钢从液态转化成固态称为凝固;从固态转化成液态叫熔化。

钢水凝固的过程主要是晶体或晶粒的生成和长大的过程,所以也叫做结晶。

1.1 钢液的结晶条件(钢液凝固的热力学条件)通常把固体转变为液态的下限温度称为熔点;把液态转变为固态的上限温度叫凝固点,又称理论结晶温度。

凝固点即物质在冷却过程中开始凝固的温度,钢液的结晶只有降温到凝固点以下才能发生。

因为钢液的液相温度在冶炼和浇注操作中是一个关键参数,因此,准确知道要生产的钢的液相线温度对整个炼钢过程至关重要。

出于操作安全性和希望得到尽量多的等轴晶凝固组织而采用低过热度浇铸等因素考虑,一般要求浇注温度确定在液相线以上的一个合适的值。

一般根据钢中元素含量可以计算出该钢的液相线温度值。

通常用TS表示钢的凝固点或理论结晶温度。

对某一具体的钢种,凝固点通常可用以下公式理论计算出:TS=1536℃-(78C%+7.6Si%+4.9Mn%+34P%+30S%+5Cu%+3.1Ni%+2Mo%+2V%+1.3Cr%+3.6Al%+18Ti%)℃降温到TS以下某温度T叫过冷,并把TS与T的温度差值△T叫过冷度,即:△T=TS-T过冷是钢液结晶的必要条件,过冷度的大小决定结晶趋势的大小,即过冷度越大,结晶速度越快;反之,过冷度越小,结晶速度越慢。

1.2 晶核的形成自发形核在过冷钢液中,有一些呈规则排列的原子集团,其中尺寸最大的集团,就是晶体产生的胚,称之为晶胚。

第七章单相固溶体合金及铸锭的凝固

第七章单相固溶体合金及铸锭的凝固
k0c0 k0c1 k0C2 c0
c1
c2
C0
C0
B%
(b)
K 0 1 此阶段满足:固相结晶排向液相 的溶质量>溶质原子离开界面排 1 向液相的溶质量。 l Rx (2)凝固的稳定阶段(Ⅱ阶段): 0 D 当界面成分是C0,前沿的液相成 分为C0/k时,如图(b)的T5温度和 0 图(c)的第Ⅱ阶段直至Ⅱ阶段结束。 此阶段满足:固相结晶排向液相的溶质量=溶质原子离
图7-1不同KO的相图
(液相线与固相线近似为直线时K0为常数)
二.正常凝固时液-固相线中溶液的分布
研究水平园棒的定向凝固,对于KO<1的相图, 成分为C0 ,假设固相中无扩散,液相中可通过 扩散、对流和搅拌使溶液混合。
液相中溶液的混合分为三种: 完全混合、完全无混合、部分混合。
(一)液相完全混合时固相、液相的溶质分布:
(1)初期阶段:
①由于液相原子扩散速度较 小,边界层成分(CL)i与大体 积液相成分(CL)B相差较大, 且: (CL)B>C0
②固相结晶排出溶质部分进 入大体积液相,使边界层中 的浓度梯度不断增大C KC1x L 如图(d)的第Ⅰ阶段。
Ke1 S 00
d c L d x
定向凝固结论: ① 液相混合越充分,铸锭凝固后溶质分布越不均匀, 区域偏析越严重。 ② 利用定向凝固进行提纯材料,液相混合越充分,提 纯效果越好。
§7.2 固溶体合金的成分过冷
一.成份过冷的产生
①设K0<1的相图,液相完全 无混合,合金成分为C0, 进行完全无混合的单向 凝固如图(a); ②液相中实际的温度分布 图(b)为dT/dx>0,只 受壁模和已凝固的固相 散 热 单向散热所控制;

《凝固和组织控制原理》课程教学大纲

《凝固和组织控制原理》课程教学大纲

凝固和组织控制原理一、课程介绍《凝固和组织控制原理》是材料科学与工程专业(金属材料工程模块)的主要学科基础课,是研究金属凝固过程相关现象及其物理本质的专业性课程。

本课程按照理论分析-研究手段-工程控制这一主线,以金属凝固过程的物理本质及影响凝固组织的主要因素作为核心内容,开展相关教学。

本课程旨在加深学生对金属材料凝固相关现象和知识的理解和掌握,为学习后续的课程做必要的知识储备;使学生进一步认识到金属材料的重要性,激发学生开展金属材料凝固相关前沿科学研究、推进凝固相关新技术应用的兴趣和热情。

本课程所涵盖的内容包括液态金属的结构与性质、凝固热力学与动力学、凝固过程中的传热与传质、单相合金,多相合金及金属基复合材料的凝固、凝固组织的控制、凝固缺陷、凝固新技术等内容,共10章,共32学时,全部为理论教学,以期末闭卷考试形式结课。

Introduction‘The principles of solidification and microstructure control’ is a specialized course concerning phenomenon and physical essence of solidification and is as well a required course for university students whose major is materials science and engineering. The course is focusing on the physical essence of solidification and main factors that affect the solidification microstructure, and the teaching activities is organized as theoretical analysis, research techniques and engineering control. The purpose of this course is threefold: Firstly, to deepen the understandings of the students about fundamentals of solidification of metallic materials, making them ready for the subsequent other courses. Secondly, to make students recognize the importance of metallic materials and thirdly, to stimulate their interests in frontier researches and development of novel techniques in solidification of metallic materials.The content of this course includes: structures and properties ofliquid metals, thermodynamics and kinetics of solidification, heat and mass transformation during solidification, solidifications of single-phase alloys, multi-phase alloys and metallic composites, control of solidification microstructures, solidification defects and new technologies of solidification. It will take 32 theoretical lessons. The examination adopts close-book mode.课程基本信息二、教学大纲1、教学目的《凝固和组织控制原理》是面向材料科学与工程专业(金属材料工程模块)本科生的一门学科基础课程。

铸造金属凝固原理

铸造金属凝固原理

铸造:一种液态金属生产制品的工艺方法。

将金属熔化成具有一定化学成分和一定温度的液体,然后在重力或外力(压力、离心力、电磁力等)作用下将其浇注到铸型型腔中,充满型腔(良好流动性的液态)经凝固和冷却后便形成具有铸型型腔形状的制品—铸件特点:①使用范围广,可生产各种形状和大小的铸件②较高的尺寸精度③成本低廉。

一.液态金属的结构与性质1.固体金属的加热、熔化:⑴晶体中的原子结合:1)在一定条件下,金属中的原子具有一定排列的原因:①引力:异性电荷间的库仑引力;②斥力:同性电荷间的库仑斥力与泡利原理引起的斥力之和。

⑵原子间距离为R0时,F(R0)=0,平衡态,W极小值,状态稳定,原子之间保持一定间距F(R)=-əW(R)/əR ⑵金属的加热膨胀:晶体中的原子不是固定不动,只要温度高于热力学温度,原子在平衡位置附近热振动热膨胀:温度升高,振动频率、振幅加大,原子间距离增加原因:①原子间距增大:势能曲线不对称性;斥力>引力②空穴产生:熔点附近,1%空穴数;离子间相互作用——能垒——平衡位置振动;温度升高—部分原子能量>能垒—原子迁移到表面or原子间隙—留下空穴—vacancy产生;空穴形成—能垒下降—其它原子进入—空穴流动⑶金属的熔化:①熔点附近:离位原子多;熔化始于晶界,晶界原子排列相对不规则,势能高,离位原子多,空穴数目可达到原子总数10% ②熔点:外界能量足够大时——熔化潜热,原子间距离大于R1,原子结合键破坏,固态——液态;固态——液态状态突变;性质突变:体积突变;电阻、粘性突变②熔化实质:规则的原子排列突变为紊乱的非晶质结构的过程2.液态金属的结构:⑴液态金属的热物理性质:①体积:S-L:体积增加3~5%,原子平均间距增加1~1.5%;S-g:体积无限膨胀②熔化潜热:S-L(熔化潜热):原子结合键破坏百分之几;S-g(汽化潜热):原子间结合键全部破坏③熵:S-L:熵增加不大⑵液态与固态结构相似,尤在金属过热度不太高(熔点以上100~300℃)的铸造条件下更是如此⑶液体状态的结构特点(熔化-熔点以上不高的温度范围内):①原子间结合能较强、平均原子间距增加不大、原子排列在较小距离内具有规律性②原子间结合部分破坏,原子集团,近程有序(原子在十几~几百个原子组成的集团内规则排列) ③由于能量起伏,原子集团处于瞬息万变状态④原子集团内,公有电子,金属导电;空穴间,自由电子跟随正离子运动,离子导电;most金属熔化时电阻率能突然增加约1~2倍(半导体金属则减小)⑤温度高——原子集团平均尺寸小、“游动”速度快⑷金属液态结构的理论:①空穴理论:由原子集团(规则排列、近程有序)、空穴组成,能量起伏大、热运动激烈②紊乱排列的密集球堆理论(贝纳尔):液体金属是均质、密集、紊乱排列的原子集合体⑸实际金属的液态结构:1)微观上:①游动原子集团:成分和结构不同,近程有序②空穴③游离原子④许多固态、气态或液态的化合物组成,是一种“混浊”的液体2)化学键:金属键、其它多种类型的化学键⑹①能量起伏②结构起伏:液体中大量不停“游动”着的局域有序原子团簇时聚时散、此起彼伏③浓度起伏:同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异。

2006春《凝固原理》试卷参考答案

2006春《凝固原理》试卷参考答案

20006-07[凝固过程及组织控制]试题参考答案一、判断题(每题1分)1.错误 2.正确 3.错误 4.错误 5.正确 6.错误7.错误8.错误9. 正确10.正确11.正确12.错误二、填充(每空格1分)1.能量起伏,结构起伏,近程有序排列,固体,气体2.表面细等轴晶,内部柱状晶,中心粗等轴晶,细等轴晶3.凝固速度快,形状无规则,微观结构4.温度,提拉速度,旋转速度,方便观察,试样直径5.液态金属冷却法,温度梯度,足够长,柱状晶组织6.合金性能,铸型性能,浇注条件,铸件结构7.平整界面,50%,几乎全部三、问答题1.答:凝固区域由补缩边界和倾出边界划分成三个区。

靠近液相依次为Ⅰ区, Ⅱ区,Ⅲ区。

Ⅰ区:固相处于悬浮状态,液相和固相均可以自由运动。

Ⅱ区:固相连成整体的骨架不能自由运动,但液相可以在固相的骨架间自由的运动。

Ⅲ区:固相充分长大,少量的液相处于固相的骨架间被分割成孤立的熔池。

这些熔池的液相凝固收缩时,得不到其它液相的补缩,形成分散的缩孔。

(6分)以糊状凝固方式凝固的合金,凝固区域宽,Ⅲ区宽,容易形成分散的缩孔;凝固收缩受阻产生裂纹时,得不到其它液相的补充、融合,热裂倾向大;容易形成整体的骨架不能自由运动,流动性差。

以逐层凝固方式凝固的合金凝固区域窄,则与之相反。

(4分)2.答:成分过冷判据:G L/R<-mC0(1-k0)/ D L k0(2分)当G L/R≥-mC0(1-k0)/ D L k0时,固-液界面前方不存在成分过冷,晶体以平面生长方式长大,获得成分完全均匀的单相固溶体柱状晶甚至单晶体。

(2分)当G L/R≈<-mC0(1-k0)/ D L k0时,固-液界面前方存在窄的成分过冷,晶体以胞状生长方式长大,获得横向成分不均匀的胞状柱状晶。

(2分)当G L/R<<-mC0(1-k0)/ D L k0时,固-液界面前方存在宽的成分过冷,晶体以枝晶状生长方式长大,获得成分不均匀的枝晶状柱状晶。

第五章 凝固组织的控制

第五章 凝固组织的控制

随着熔体的不断冷却,由于生核及晶粒游离、枝晶熔断 等在柱状晶前沿产生大量等轴晶,并形成内部等轴晶区。
Southin认为内部等 轴晶区的形成不仅要 求界面前方存在有等 轴晶的晶核,而且还 要求这些晶核长到一 定的大小,并形成网 络以阻止柱状晶区的 生长。
2020/7/25
Fredriksson等人则 认为内部等轴晶区的 产生是由一部分游离 晶的沉淀和一部分游 离晶被侧面生长着的 柱状前沿捕获后而形 成的。
2020/7/25
金属凝固原理
第二节 等轴晶的晶粒细化
细化晶粒的主要途径:
①控制传热条件促进熔体生核; ②添加晶粒细化剂,即向液态金属中引入大量形核能力很强 的异质晶核,达到细化晶粒的目的; ③采用机械搅拌、电磁搅拌、铸型振动等力学方法,促使枝 晶折断、破碎,使晶粒数量增多,尺寸减小;
④提高冷却速率使液态金属获得大过冷度,增大形核速率; ⑤去除液相中的异质晶核,抑制低过冷度下的形核,使合金 液获得很大过冷度,并在大过冷度下突然大量形核,获得细小 等轴晶组织。
(2)枝晶熔断
液相流动对枝晶熔断具有重要影响
枝晶生长过程中,在树枝晶各次分枝的根部同样会由于溶质富集产生
“缩颈”现象,并在液流冲刷和热波动的作用下发生熔断、脱落,形成自
由晶体。
人为地进行表面振动有
(3)表面凝固和“晶雨”的形成
利于“晶雨”的形成
表面形成的晶核由于密度比液体大而下沉,另外液相的流动和表面的 扰动会带动表面形成的晶核下落形成“晶雨”。
金属凝固原理
Wizke等及Lipton等的研究 表明,液相流动对凝固界 面前的液相成分过冷度的 形成具有重要影响,而该 过冷度则是决定等轴晶形 成的关键因素,可作为柱 状晶向等轴晶转变的判据。

《 凝固原理》

《 凝固原理》

《凝固原理》实验指导书芦笙编写适用专业:金属材料与工程江苏科技大学材料科学与工程学院2006年4 月前言“凝固原理”是金属材料工程专业学生的一门专业基础选修课,主要介绍金属凝固过程中的基本理论和各种液态金属成型方法的原理和特点,使学生了解与金属凝固、成型相关的理论和工艺方法,并为后续的专业课程打下基础。

通过学习使学生对金属凝固及铸件成型的典型现象、基本概念和凝固控制原理和技术有一定的了解,并能结合材料设计、研究及工程应用中的与凝固相关的现象,进行分析、解决一些实际问题。

课程安排了两个实验,分别为“铸造工艺实验”和“快速凝固实验”,共4学时。

通过实验,使学生对铸造工艺的概念和要求有较深入的了解,并理解快速凝固技术的原理、工艺特点和应用。

实验1:铸造工艺实验实验学时:2实验类型:(验证、综合、设计)实验要求:(必修、选修)一、实验目的通过对汽车飞轮铸件的工艺设计、造型和浇注实验,使学生对了解铸造工对铸件的流动性、成型性和铸件质量的影响,加深对铸造工艺对铸件质量有重要影响的认识。

通过动手参与实验,能对铸造工艺进行简单的分析,为今后从事金属凝固或铸造工作,进行铸造工艺设计和分析等工程实践奠定坚实的实践基础。

二、实验内容1.分析铸件-汽车发动机飞轮的零件图;2.对以下三种铸造工艺方案进行分析和比较;3.按三种铸造工艺方案分别进行造型和浇注,获得铸件;4.观察并分析铸件质量,从而总结铸造工艺对铸件凝固和最终产品质量的影响。

三、实验原理、方法和手段汽车发动机飞轮为HT-24-44灰铁铸件,重量30公斤。

零件为一高速旋转体,要求铸件内部无缩松、缩孔和砂眼,外表面应无气孔、夹渣等缺陷。

根据铸件结构壁较厚大、材质收缩大的特点,一般都确定按顺序凝固原则进行浇注,即设置冒口补缩,以减少缩松和缩孔缺陷。

但浇注位置和分型面可有多种设计方案。

根据多年的生产该铸件有三种工艺方案可供选择,并分别具有特定的浇注系统和分型面。

通过对三种铸造工艺方案进行分析,并结合实验结果,使学生对铸造工艺的重要性有具体的认识。

凝固理论

凝固理论
19
非均质形核与均质形核的临界半径完全相同。但是, 形成球冠比形成相应r* 尺寸球体所需的原子团要小,在相 同的过冷度下球冠更容易形成;并且,质点与晶核润湿性 越好,形成球冠就越容易,所需的过冷度就越小。
质点促进形核并非是以质点为形核中心,而是在质点 表面形成很多晶 如果在结晶的每一个阶段,固、液两相都能进行充分
金属凝固理论
河北联合大学 冶金与能源学院
孙立根
凝固理论的研究对象
凝固是液态金属转变成固态的过程。
不同组织结构的形成
成分偏析
脱氧产物和夹杂物的生成排出
液态
气体的析出 凝固收缩
凝固
固态
钢液的成分
冷却条件
2
凝固现象的范围: 从日常生活到工业生产,凝固现象随处存在。
① 从古代的青铜器到现代的单晶硅,凝固规律都起着重要 的作用。
• 从生核开始直到凝固结束,在整个结晶过程中,固、液两 相内部将不断进行着溶质元素的重新分布,这种现象称为
溶质再分配。它是合金结晶的一大特点,对结晶过程影响 极大。
• 显然,溶质再分配现象起因于平衡凝固的热力学特性,即
由于固液两相的溶解度不同,溶质成分在界面两侧形成差
别。而实际凝固过程中的具体分配形式,则决定于传质过
28
2.4过冷状态对结晶过程的影响 • 成分过冷对一般合金结晶过程的影响与热过冷对纯金属
的影响,两者在本质上是相同的。但由于同时存在着溶 质传质过程的影响,因此情况更为复杂: ① 在无成分过冷的情况下,界面也同样以平面生长方式
长大; ② 随着成分过冷的出现和增大,界面生长方式将逐步转
变为胞状生长方式,然后再过渡到枝晶生长方式。 ③ 主干凝固释放的潜热导致液相温度升高、过冷度降低;

凝固过程与控制

凝固过程与控制

凝固过程与控制
凝固是物质由液态转变为固态的过程。

在材料科学和冶金学中,控制凝固过程对于获得理想的结晶微观结构和性能非常重要。

以下是凝固过程的一些常见控制方法:
1. 温度控制:通过控制凝固过程中的温度变化,可以影响晶体生长速率和晶粒尺寸。

降低温度可以促使晶体生长缓慢而细小,有利于获得细小的晶粒。

2. 界面控制:凝固过程涉及到液-固界面的形成和迁移。

通过调整界面条件,如界面能量和界面活性剂浓度,可以控制晶体生长速率和形态。

3. 搅拌和搅拌控制:在凝固过程中施加搅拌力可以打破液态中的大团聚,增加传质速率,并控制晶体的成长方向和结构。

4. 成核控制:通过添加成核剂或控制成核条件,可以控制凝固过程中的初期晶核数量和分布,从而影响最终的晶体结构。

5. 基底控制:在某些凝固过程中,使用特定的基底材料可以影响晶体的取向和生长速率。

基底的选择和处理可以有针对性地控制晶体的取向和形态。

6. 包封和保护控制:在一些凝固过程中,通过包封或保护液相,可以控制氧气或其他外界物质对凝固过程的影响,以获得所需的结构和性能。

材料科学基础-第七章-凝固理论

材料科学基础-第七章-凝固理论



质 量 浓 度 ρ
s 0 0 1

x L
0 1
0
0 0
表面
位臵x
5
中心
2. 区域熔炼

0 x s 0 1 1 0 e l


如果合金通过由试样一端向另一端局部熔化,经过区域熔炼的固 溶体合金,其溶质浓度随距离的变化与正常凝固有所不同的,其 变化符合区域熔炼方程:P292,7.11式。该式表示经一次区域熔 炼后随凝固距离变化的固溶体质量浓度(不适合多次熔炼,因一 次熔炼后圆棒的成分不均匀;也不适用于最后一个熔区中因为, 熔炼区前进后,熔料的长度小于熔区长度L,得不到dm的表达 式)。 当k0<1时,凝固前端部分的溶质浓度不断降低,后端部分不断地 富集,这使固溶体经区域熔炼后的前端部分因溶质减少而得到提 纯,因此区域熔炼又称为区域提纯(zone refining)。 区域提纯是应用固溶体理论的一个突出成就。区域提纯已广泛应 用于提纯许多半导体材料、金属、有机和无机化合物,如鍺等。
7.4
二元合金的凝固理论
二元合金的凝固理论





液态金属凝固过程除遵循金属结晶的一般规律外, 由于二元合金中第二组元的加入溶质原子要在溶液 中发生重新分布,这对合金的凝固方式和晶体的生 长形态产生影响,会引起微观偏析或宏观偏析。 微观偏析是指一个晶粒内部的成分不均匀现象,在 显微镜下观察得到。可分为胞状偏析、枝晶偏析、 晶界偏析。 宏观偏析是指沿一定方向结晶过程中,在一个区域 范围内,由于结晶先后不同而出现的成分差异。可 分为正常偏析、反偏析、比重偏析。 固溶体的凝固理论 共晶凝固理论 合金铸锭(件)的组织与缺陷
6

材料成形基本原理3版-合工大第7章答案

材料成形基本原理3版-合工大第7章答案

第七章铸件与焊缝宏观组织及其控制1.铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何?答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。

表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。

这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。

柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。

内部等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。

随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。

同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。

2.试分析溶质再分配对游离晶粒的形成及晶粒细化的影响。

答:对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。

当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。

但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。

一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。

凝固技术和凝固组织

凝固技术和凝固组织

凝固技术随着科学技术的发展,对凝固技术的重视和深入研究, 形成了许多种控制凝固组织的方法, 其中快速凝固技术,定向凝固技术,均衡凝固技术等已经取得了较快的发展。

这些新兴的凝固技术以其独特的方法在不同的方向都取得了很好的成果。

在金属,无机非金属,高分子材料中都有应用。

快速凝固快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段, 同时也成了凝固过程研究的一个特殊领域。

过去对凝固过程的模拟考虑了在熔融状态下的热传导和凝固过程潜热的释放,不考虑金属在型腔内必然存在的流动以及金属在凝固过程中存在的流动。

目前快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。

着重于大的温度梯度和快的凝固速度的快速凝固技术,正在走向逐步完善的阶段。

快速凝固技术一般指以大于105K/s-106K/s的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。

快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。

由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。

快速凝固大致有气枪法,悬铸法,工作表面熔化与自淬火法,雾化法,喷射沉积法等。

气枪法:这种方法的基本原理是将熔解的合金液滴,在高压( >50 atm)惰性气体流(如Ar 或He)的突发冲击作用下,射向用高导热率材料(经常为纯铜)制成的急冷衬底上,由于极薄的液态合金与衬底紧密相贴,因而获得极高的冷却速度( >109℃/S) 。

这样得到的是一块多孔的合金薄膜,其最薄的厚度小于0.5~1.0 μm (冷速达109℃/S)。

旋铸法(chill block melt-spinning)。

第7讲凝固组织

第7讲凝固组织

三、凝固过程的基本特征
凝 固 过 程 的 主 要 特 征
四、影响凝固组织的主要因素及晶体生长的基本规律
核心的生成-核心的稳定生长-凝固成形-缺陷伴随着出现
基体质点聚合 - 均质形核
较难
核心生成
附加在外来核心上生长 - 非均质形核
容易、广泛
体积能 降低 原子质点之间 的紧密化
核心的稳定
强冷
达到临界尺寸
克服表面积扩大 (界面能)
核心生长
凝固过程中成分过冷示意图
温度/ 成分
T2
T实
T1 C1
Cs
Ts
距离
界面
距离
界面过冷原理图
柱 状 晶 长 度
(mm)
碳含量 碳含量对柱状晶比例的影响
凝固结构和固相高温力学性能的关系
五、凝固组织解决实际问题实例介绍
实例4:角部裂纹的形成
45
150mm×150mm
三凝固过程的基本特征核心的生成核心的稳定生长凝固成形缺陷伴随着出现核心生成基体质点聚合均质形核附加在外来核心上生长非均质形核容易广泛较难四影响凝固组织的主要因素及晶体生长的基本规律核心的稳定原子质点之间的紧密化体积能降低强冷克服表面积扩大界面能达到临界尺寸凝固过程中成分过冷示意图核心生长距离温度成分界面t实界面过冷原理图c1t2t1tscs距离柱状晶长度mm碳含量碳含量对柱状晶比例的影响凝固结构和固相高温力学性能的关系五凝固组织解决实际问题实例介绍45150mm150mm实例4角部裂纹的形成45150mm150mm实例5中心中间裂纹的形成实例7菱变的形成结束语随着对钢产品性能均匀性的提高对连铸坯均质化要求也越来越高利用凝固过程残留的晶体结构信息来分析连铸坯缺陷的形成是一种重要的冶金手段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
2013/12/16
以Al-Cu( CCu = 4.5% )合金为例,该合金凝固时收缩率为0.057
液 体 流动速度等于 零 的 地方,对于凝 固 时收缩的合金来 说将 产生正偏析。
Al-Cu合金相图
因为对于凝固时收缩的合金来说,它和 凝固 时没有体积变化的合金(凝固时体积不 收缩 也不膨胀)相比,固相分率减少,与之 相对 应,也就是说液相分率增加,而液相内 溶质 浓度是高的,因此,该地区的最终溶质 平均 C 浓度 会增加,形成正偏析。
fS * CS = k0C0 1 − 1 + α k0
τf
k0 −1
α = DSτ f / λ 2
枝 晶 偏析在凝固后的均匀化处理
把铸件加热到低于固相线100~200oC,长期保温,使溶质 原子充分扩散, 假设枝晶偏析值近似地为正弦波,根据扩散第二定律可解出 在一定温度下经τ 时间后的偏析幅值A:
S
会增加 ,形成正偏析,
细小断面积为粗大处的1/9,在 断面突然变化的地方,在铸件的 心部,液体金属为了补偿下部铸 件的收缩,其流动速度必须很大, 即接近于大断面处的9倍。
如果在大断面处,其宏观偏析为 “0”,其:
v / R ≈ −0.06
这样,在断面突变处:
v / R = −0.54
显然,这里会产生大的负偏析,
1. 传热条件控制
大量实验证实,降低浇注温度是减少柱状晶 获得细等轴晶的有 效措施之 一,甚至在减少液体流动的情况下也能得到细等轴晶组织。 合理控制冷却条件从而形成宽 的凝固区域和获得大的过冷可促进 熔体生核和晶粒游离。小的温度梯 度和高的冷却速度可以满足上述要 求。但就铸型的冷却能力而言,除 薄壁铸件外,这两者不可兼得。 由于高的冷却速度不仅使温 度梯度变大,而且在凝固初期还 促使稳定凝固壳层的过早形成。 因此对厚壁铸件,一般采用冷却 能力小的铸型以确保等轴晶的形 成,再辅以其它晶粒细化措施以 得到满意的效果。
(1)浇注过程控制技术
铝合金
Ti+B:0.0l(Ti)、0.005(B) Ti+C:0.0l(Ti)、 中间合金:Al-Ti、 0.005(C) Al-Ti-B、A1-Ti-C Ti:0.15 Zr:0.2 0.0l~0.02 纯金属或合金
4
铅合金
铜合金
0.02 ~0.04
纯金属或合金
(a)
(b)
(c)
(4)液相搅拌 采用机械搅拌、电磁搅拌或气泡搅拌均可造 成液相相 对固相的 运动, 引起枝晶的折断、破碎与增殖,达到细化晶粒的 目的。其 中机械和 电磁搅 拌方法不仅使晶粒细化,而且可使晶粒球化,获得流动性 很好的半 固态金 属,可进行半固态铸造或半固态挤压。 胞状偏析 晶界偏析 低合金钢柱状晶的等浓度面
DS 合金元素的固相扩散系数越大,凝 ② 合金元素的固相扩散系数 固过程的扩散就越充分,该元素的偏析也就越轻 。
③ 溶质平衡分配系数
可见,均匀化时间取决于枝晶间距和扩散系数。 枝晶间距越小,均匀化退火时原子扩散路程越短,故均匀化时间 越短。因此,凡能细化枝晶的各种工艺措施均有利于以后的均匀化 退火。偏析元素的扩散系数愈大,在其它条件相同时,均匀化退火 时间愈短。
枝晶生长过程中,在树枝晶各次分枝的根部 同样会由于溶质富集产生 “缩颈”现象,并在液流冲刷和热波动的作用下发生熔断、脱落, 形成自 由晶体。 (3)表面凝固和“晶雨”的形成
人为 地进行表面振动有 利于“ 晶雨”的形成
表面形成的晶核由于密度比液体大而下沉, 另外液相 的流动和 表面的 扰动会带动表面形成的晶核下落形成“晶雨”。
k0小于1时,其值越小,偏析越严重。
2.凝固组织中的宏观偏析及其控制
铸件 各 部 位之间化学 成 分的 差异
铸件产生宏观偏析的规律与铸件的凝固特点密切相 关。当铸件以逐层凝固方式凝固时,宏观偏析的产生主 要与结晶过程中的溶质再分配有关,可用Scheil方程近 似地描述;当铸件以糊状凝固方式凝固时,铸件产生宏 观偏析的原因主要是凝固早期固相或液相的沉浮以及枝 晶间的液体流动。 液态金属沿枝晶间流动的原因主要有:①凝固收 缩(或膨胀)的抽吸作用促使液体流动;②冷却时液 相和固相的收缩;③由于密度差而发生的对流;④大 容积内液体对流向枝晶间的穿透;⑤固一液两相区内 气体的形成。
(d)
镍基高温 合金

碳化物粉末
利用浇注过程液流控制进行晶粒细化的几种方法
(a)中心浇注法 (b)沿型壁浇注 (c)沿型壁四周浇注 (d)斜板浇注 1—中间包 2—冷却水 3—游离晶 4—铸型
2
2013/12/16
第三节 凝固组织中的偏析及其控制
(2)铸型振动 在凝固过程中振动铸型可使液相和固相发生 相对运动 ,导致枝 晶破碎 形成结晶核心。同时振动铸型可促使“晶雨”的 形成。由于“晶雨”的来 源是液态金属表面的凝固层,当液态金属静止时表面凝固的金属结 壳而不 能下落,铸型振动可使壳层中的枝晶破碎,形成 “晶雨” 。
细化晶粒的主要途径:
①控制传热条件促进熔体生核; ②添加晶粒细化剂,即向液态金属中引入大量形核能力很强 的异质晶核,达到细化晶粒的目的; ③采用机械搅拌、电磁搅拌、铸型振动等力学方法,促使枝 晶折断、破碎,使晶粒数量增多,尺寸减小;
④提高冷却速率使液态金属获得大过冷度,增大形核速率; ⑤去除液相中的异质晶核,抑制低过冷度下的形核,使合金 液获得很大过冷度,并在大过冷度下突然大量形核,获得细小 等轴晶组织。
表面细晶区 内部等轴晶区
表面细晶粒区。它是紧靠型 壁的一个外壳层,由紊乱排 列的细小等轴晶所组成;
平界面
等轴晶
柱状晶
等轴晶
柱状晶区。由自外向内沿着 热流方向彼此平行排列的柱 状晶所组成;
内部等轴晶区。由紊乱排列 的粗大等轴晶所组成。
柱状晶区
铸件典型凝固组织
(a) (b) (c) (d)
铸件凝固过程中的温度分布与凝固方式
金属凝固原理
当液态金属浇入温度较低的铸型中时,型壁附近熔体由 于受到强烈的激冷作用而大量生核加上型壁晶粒脱落、枝晶 熔断和晶粒增殖等各种形式的晶粒游离过程,在铸型表面形 成了无方向性的表面细等轴晶组织。 一旦型壁晶粒互相连接而构成稳定的凝固壳层,处在凝 固界面前沿的晶粒便开始向内生长,在垂直于型壁的单向热 流的作用下,那些择优生长方向与热流方向平行的枝晶,生 长速度快,逐步淘汰取向不利的晶粒而发展成柱状晶组织。 随着熔体的不断冷却,由于生核及晶粒游离、枝晶熔断 等在柱状晶前沿产生大量等轴晶,并形成内部等轴晶区。
悬浮铸造示意图
1.合金粉 2.坩埚 3.金属液流 4.悬浮铸造液
常用合金的晶粒细化剂
合 金 晶粒细化元素 Ti、Zr、Ti+B、 Ti+C Se、Bi2Se3、 Ag2Se、BeSe Zr、Zr+B、 Zr+Mg、 Zr+Mg+Fe+P 碳化物(WC、 NbC)等 加入量(质量分数)/% 加入方法
3. 动力学细化法
3. 等轴晶的形核
(1)型壁处的晶粒游离
合金 的 浇注过热度对游 离晶的形成具有决定性 的影响
液态金属在铸型型壁的激冷作用下依附型壁 形核,这些晶粒在长大过 程中由于根部溶质的富集产生根部“缩颈”现象 ,并在流体的机械冲刷和 温度反复波动的热冲击下,自型壁脱落形成游离 晶。
液相流动对枝晶熔断具有重要影响 (2)枝晶熔断
β = V L − VS V = 1− S VL VL
① 保证合金 成分, 使凝固过程中液体 的密 度差减 到最 小。因 为 液 体 的 密 度 差 是 促使液 体流动的 因素之 一。 ② 适当 的铸件 或 铸 锭高度。因 为液体 的静压头愈 大,流动愈会加剧。 ③ 加入孕育剂细化枝晶组织, 使流动阻力增加, 从而 减小流动速 度。 ④ 在凝固 开始阶段 ,用加速液 体对流的办法,可 以细化晶粒 ,但 在凝固 过 程中 , 应 该使 液体 的对流 运动 停止。 如果自然 对流速 度较 大,应 该外 加磁 场 使 对流 运 动停 止。 可以想象,离心铸件的 宏观 偏析是大的。 ⑤ 加 大冷 却 速 度, 缩短固 /液两 相区的凝固 时间 ,尽量 使R 值增大。浇注 温 度 太 高 、 浇注速度 太快, 均会 延缓铸件冷 却, 从而使 宏观 偏析加剧。
1.凝固组织中的微观偏析及其控制
微观偏析按其形式分为胞状偏析、枝晶 偏析和晶界偏析。它们的表 现 形式虽不同,但形成机理是相似的,都是合金在 结晶过程中溶质再 分配的 必然结果,其中枝晶偏析是微观偏析的主要表现形式。
(3)超声波振动 超声振动可在液相中产生空化作用,形成空隙,当这些空隙崩溃时, 液体迅速补充,液体流动的动量很大,产生很高 的压力, 起到促进 形核的 作用。
第三节 凝固收缩及其控制
减少宏观偏析的措施
消除宏观偏析的条件是:
1. 凝固过 程中的收缩
v β =− R 1− β
(因为此时 CS = C 0 )
也就是:1)v与R两者方向相反;2)
v / R 的绝对值要小,即v要小,而R要大。
1)纯金属 对于纯金属,凝固通常是在恒定的温度下完成的,凝 固期间的体收缩只是相变收缩。凝固收缩率 β 定义为:
2.添加晶粒细化剂法(孕育处理)
异质晶核通过以下途径产生:①晶粒细 化剂中的 高熔点化合物在熔 化过程中不被完全熔化,在随后的凝固过程中成 为异质形 核的核心 。如在高 锰钢中加入锰铁,在高铬钢中加入铬铁都可以直接作为欲 细化相的 非均质晶 核。②晶粒细化剂中的微量元素加入合金液后, 在冷却过程中首先 形成化合 物固相质点,起到异质形核核心的作用。如向铝 合金中加入微量钛 ,在冷却 过程中通过包晶反应形成TiAl3。
4
2013/12/16
2)共 晶
铸件凝固组织控制
凝固原理
李元东
0931-2976795 liyd_sim@
相关文档
最新文档