凝固原理-7铸件凝固组织控制

凝固原理-7铸件凝固组织控制
凝固原理-7铸件凝固组织控制

铸造-宏观凝固组织

第一章:铸造凝固组织的形成和控制 1.1铸件宏观凝固组织的特征 1.1.1特征 根据液态金属的成份、铸型的性质、浇注及冷却条件,宏观凝固组织一般包括如下三个部分:表面细晶区,中间柱状晶去,内部等轴晶区。 图:p97 图8-1,b), (1)表面细晶区:紧靠铸型型壁的激冷组织,因此也称激冷区;由无规则的细小等轴晶组成。特点:非常薄,只有几个晶粒厚。 (2) 中间柱状晶区:紧连细晶区;垂青于型壁(散热方向);彼此平行排列;断面形状为柱状。 特殊情况:全部是柱状晶区,p97 图8-1,a) (3)内部等轴晶区:各相同性;没有方向性;晶粒尺寸远大于表面细晶区。 特殊情况:全部是等轴晶区:

表面细晶区的数量非常小,对工件的整体性能影响不大,而柱状晶区和内部等轴晶区的数量非常大,因此,材料的性能主要取决于这两个相的相对比例。具体的影响下面再谈。 1.1.2 铸件结晶组织对铸件性能的影响: (1)表面细晶区: 特点:晶粒细且没有方向性;性能非常好;非常薄——几个晶粒的厚度:小于1mm。 对铸件性能的影响:对于薄壁铸件:如厚度在4~6mm的铸件,具有一定的意义 对于大部分铸件:意义不大,这个厚度所占比例非常小:结论:一般不给与特别重视。对于特别薄的铸件有一定的意义。 (2)中间柱状晶区:特点:a)晶粒长、粗大、晶界面积小、排列位向一致, b)杂质、非金属夹杂、气体等,一般存在在结晶界面上,特别是最后结晶的界面上。 而在柱状晶区,这些杂质主要存在于柱状晶与柱状晶或柱状晶与等轴晶的界面上,形成性能弱面。 C)进一步的加工,如塑性加工或轧制:在杂质较多的结合界面上产生裂纹。 性能:有方向性;纵向好,横向差;有性能弱面。 结论:一般情况下尽量避免。特殊情况下充分利用。 举例:高锰钢锤头锤柄。工况条件,旋转,打击、破碎。 高锰钢成分:Mn=13,C=1.2

金属凝固原理思考题

金属凝固原理思考题 1.表面张力、界面张力在凝固过程的作用和意义。 2.如何从液态金属的结构特点解释自发形核的机制。 3.从最大形核功德角度,解释0 /= ?dr G d的含义。 4.表面张力、界面张力在凝固过程和液态成形中的意义。 5.在曲率为零时,纯镍的平衡熔点喂1723K,假设镍的球形试样半径是1cm,1μm、μm,其 熔点温度各为多少已知△H=18058J/mol,V m =606cm3/mol,σ=255×107J/cm2 6.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 9.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 8.试导出平衡凝固及液相完全混合条件下凝固时T*与f s 的关系。 9.Ge-Ga锭中含有Ga10ppm(质量分数),凝固速度R为8×10-3J/s,无对流现象,试绘出凝 固后锭长度上的成分分布图,给出最初成分、最后过渡区的长度。设D L =5×10-5cm2/s, k = 10.从溶质再分配的角度出发,解释合金铸件中宏观偏析形成的原因及其影响因素。 12.根据成分过冷理论,阐述工艺和合金两个方面的因素对结晶形貌的影响方式。 13.在揭示铸件内部等轴晶的形成机制和控制铸件凝固组织方面,大野美的实验有何意义。14.在片层状规则共晶的生长过程中,界面上各组元原子的扩散运动规律及其与生长速度的关系。 15.在长大速度一定的条件下,温度梯度G L 是否影响规则共晶的片层间距原因何在 16.如何认识液态金属的结构特征,液态金属的结构特征对形核有何影响。 17.试分析表面张力和界面张力形成的物理原因及其与物质原子间结合力的关系。 18.证明在相同的过冷度下均质形核时,体积相同的球形晶核与立方形晶核哪种更易形成。 试导出平衡凝固及液相完全混合条件下T* L 与f L 的关系。19。Al-Cu(w C =1%)合金于单向 凝固中生长速度为3×10-4cm/s,完全没有对流(合金相图中C E =33%(Cu),C Sm =%(Cu),

-铸件的凝固时间和凝固速度

铸件的凝固时间和凝固速度 铸件的凝固时间是指从液态金属充满铸型后至凝固完毕所需要的时间,单位时间凝固层增长的厚度则称为凝固速度。铸件的凝固时间是设计冒口尺寸的依据。合理地确定冒口和冷铁的位置,控制铸件各部分的凝固速度,使其按一定的顺序或方向进行凝固,是获得致密健全铸件的重要条件。另外,对大型或重要铸件,为了控制开箱时间,需对凝固时间和凝固速度进行估算。下面介绍两种计算方法。 (1)平方根定律 对铸件的凝固过程进行传热计算,可以推导出凝固层厚度随时间的变化规律: t K =0δ 或 220K t δ= (1) t K dt d v 20 ==δ (2) 式中 δ0——凝固层厚度(cm); K ——凝固系数(cm/min 1/2); t ——凝固时间(min); υ——凝固速度(cm/min)。 式(1)就是平方根定律,表明在砂型或金属型铸造条件下凝固层厚度δ0与凝固时间t 的平方根成正比。凝固系数K 值与许多因素有关,实际中常用实验方法测得,见表1。铸件凝固完毕,凝固层厚度到达壁厚中心,将壁厚的一半(δ0/2)代入式(1),即可求得凝固时间。 表1 各种合金的凝固系数

平方根定律的推导,本身对铸件的凝固过程作了一些假设,故其仅适用于大型平板类结晶温度间隔较小的合金铸件,求得近似值。 (2)模数法 当合金、铸型和浇注条件确定之后,铸件凝固时间决定于铸件的体积与散热表面积之比,即铸件的模数M C (M C = V c / S),也称折算厚度或当量厚度。可以推出 2 2221??????== S V K K M t C C (3) 式中 t ——铸件凝固时间; V c ——铸件体积; S ——铸件散热表面积; M C ——铸件模数。 图1是各种形状的铸钢件(重量从10kg 到65t )实测凝固时间与模数的关系。 图1 实测凝固时间与模数的关系 模数法由于考虑了铸件结构形状的影响,使计算值更接近于实际。 由模数法可知,即使铸件的体积和重量相等,如果其几何形状不同,则铸件模数及其凝固时间均不相等。反之,不论铸件的体积和形状如何,只要其模数相等,则凝固时间相近。

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因 影响铸件收缩的因素: 化学成分与合金类别:如铸钢的收缩最大,灰铸铁最小。 浇注温度:合金浇注温度越高,过热度越大,液体收缩越大。 铸件结构和铸型工艺条件:铸件的收缩并非自由收缩,而是受阻收缩。1)铸件中各部分冷却速度不同,收缩先后不一致,相互制约产生阻力;2)铸型等对铸件收缩产生的机械阻力。 铸件在冷却和凝固过程中,若液态收缩和凝固收缩所缩减的体积得不到补充,往往在铸件最后凝固的地方出现孔洞。容积大而且比较集中的孔洞—缩孔;细小而且分散的孔洞—缩松。 产生原因:液态收缩和凝固收缩值大于固态收缩值 缩孔和缩松存在:铸件有效承载面积减小,引起应力集中,力学性能下降,还降低气密性和物理性能。 缩孔的形成:在铸件上部或最后凝固的部位; 其外形特征是:近于倒圆锥形。 缩松的形成:由于结晶温度范围较宽,树枝晶发达,流动性低、液态和凝固收缩所形成的细小、分散孔洞得不到液态金属补充而造成。 纯金属和共晶成分的合金,易形成集中缩 如何防止缩孔和缩松: 防止措施①合理选用铸造合金②按照定向凝固原则进行凝固采用各种措施保证铸件结构上各部分按照远离冒口的部分先凝固然后是靠近冒口部分最后是冒口本身的凝固③合理选择浇注系统和浇注位置④合理地应用冒口、冷铁和补贴等工艺措施。附缩孔补救措施焊补。挖去缺陷区金属用与基体金属相同或相容的焊条焊补缺陷区焊后修平进行焊后热处理。 举例: Ti-47Al-2Cr-2Nb合金铸锭有很强的柱状晶生长趋势,在轴线附近区域形成分散的缩松;加入0.8%B(原子分数)后,铸锭的组织得到细化,并削弱了柱状晶生长趋势,收缩缺陷分布集中以大缩孔方式存在,显微缩松的密度和尺寸均降低.添加0.1%C(原子分数)后,铸锭的组织和缩孔缩松与Ti-47Al-2Cr-2Nb比均无明显变化. 热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。为铸造残留应力 减少或消除应力的方法: 减少铸件各部位的温差,尽量形成同时凝固。 改善铸型和型芯的退让性,以减少收缩的机械阻力。 在性能满足的前提下,选择弹性模量E小和收缩系数小的合金。 消除应力方法:1)人工失效:去应力退火 2)自然失效 3)振动时效 铸件内应力的预防措施铸件产生铸造内应力的主要原因是合金的固态收缩。为了减小铸造内应力在铸造工艺上可采取同时凝固原则。所谓同时凝固原则就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小使各部分同时凝固。此外还可以采取去应力退火或自然时效等方法将残余应力消除。

金属凝固原理思考题解答.docx

金属凝固原理思考题 1.表面张力、界面张力在凝固过程的作用和意义。 2. 如何从液态金属的结构特点解释自发形核的机制。 答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。 3.从最大形核功的角度,解释 d G / dr 0 的含义。 4.表面张力、界面张力在凝固过程和液态成形中的意义。 5. 在曲率为零时,纯镍的平衡熔点为 1723K ,假设镍的球形试样半径是 1cm ,1μm 、μ m , 3 7 2 其熔点温度各为多少已知△ H=18058J/mol , V m =606cm/mol ,σ =255×10 J/cm 6.(与第 18 题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易 形成。 答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为 G=( 4πr 3 V ) G/3 2 σ。临界晶核的半径为 * ,由 d * =-2 σ / v mm T ,则临界形 +4πr r G/dr=0 求得: r G=2σT /L 核的功及形核功为: * 3 /3 2 3 2 2 G 球=16πσ G v =16πσ T m /3(L m T) . 对于立方形晶核:同理推得临界半径形 r * =-4 σ/ G v ,形核功 * 3 / 2 。 G 方 =32σ G v * * 则 G 球 < G 方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。 7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的 平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 答:在一定温度下,从一相转变为另一相的自由能变化: G= H-T S 。令液相到固相 转变的单位体积自由能变化为: G V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能) 。由 G=H-S 可知, G V =(H S -H L ) —T(S S -S L ) 。由于恒压下, H P =H S -H L =—L m , S m =S S -S L =— L m /T m ,(L m 为熔化热, S m 为熔化熵)。整理以上各式得: G V L m T ,其中 m -T 。由上式可知: T m T=T 要使 G V <0,必须使 T>0,即 T

材料成型第二章重难点复习题解答

第二章凝固温度场 第一节传热基本原理 一、填空 1. 温度梯度指温度随距离的变化率,对于一定温度场,沿等温面或等温线法线方向的温度梯度最大,图形上沿着该方向的等温面(或等温线)最密集。 2. 根据传热学的基本理论,热量传递的基本方式有热传导、热对流和热辐射三种。在连续介质内部或相互接触的物体之间不发生相对位移而仅依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传输称为热传导。 3. 铸造过程中液态金属在充型时与铸型间的热量交换以热对流为主,铸件在铸型中的凝固、冷却过程以热传导为主。 4. 不仅在空间上变化并且也随时间变化的温度场称为不稳定温度场。熔焊时焊件各部位的温度随热源的施加及移动而变,属于不稳定温度场,又称之为焊接热循环。 5. 傅里叶定律是热传导过程的数学模型,求解该偏微分方程的主要方法有解析方法与数值方法,后者是用计算机程序来求解数学模型的近似解,最常用的数值解法是差分法和有限元法。 6. 在求解热传导过程中的温度场时需要根据具体问题给出导热体的边界条件,一般将边界条件分为三类,其中以换热边界条件最为常见。对于不稳定温度场的求解,除了边界条件之外,还要提供导热体的初始条件。 二、单选题: 1. 熔焊过程中热源与焊件间的热量传递方式属于:(4) (1)热传导(2)热对流(3)热辐射(4)以上全部 2. 熔焊过程中熔池内部的热量传递以( 2 )方式为主。 (1)热传导(2)热对流(3)热辐射(4)以上全部 3. 熔焊过程中焊件内部的热量传递以( 1 )方式为主。 (1)热传导(2)热对流(3)热辐射(4)以上全部 4. 熔焊过程中焊件表面与周围空气介质之间的热量传递方式属于:(4) (1)热传导(2)热对流(3)热辐射(4)以上全部 三、简答

金属凝固习题答案

《液态金属成型原理》习题一 (第一章 第三章) 1. 根据实验现象说明液态金属结构。描述实际液态金属结构。 实验依据: 1)多数金属熔化有约3-5%的体积膨胀,表明原子间距增加1-1.5%; 2)熔化时熵增大,表明原子排列混乱程度增加,有序性下降; 3)汽化潜热远大于熔化潜热, 比值=15-28,液态结构更接近固态; 4)衍射图的特征可以用近程有序概括;仅在几个原子间距范围内,质点的排列与固态相似,排列有序; 液态金属结构:液体是原子或分子的均质的、密集的、“短程有序”的随机堆积集合体。其中既无晶体区域,也无大到足以容纳另一原子的空穴。与理想结构不同,实际金属含有杂质和合金元素,存在着能量起伏、结实验数据 液体结构定性推论 熔化时,约 3-5%的体积膨 胀。 原子间距增加1-1.5%,排列松散 Lb>>Lm 与固态相比,金属原子的结合键破坏很少部分 熔化时熵增大 排列的有序性下降,混乱度增加 气、液、固相比较,液态金属结构更接近固态

构起伏和成分起伏。 2.估计压力变化10kbar引起的铜的平衡熔点的变化。已知液体铜的摩尔 体积为8.0?10-6m3/mol,固态为7.6?10-6m3/mol,熔化潜热Lm=13.05kJ/mol,熔点为1085?C。 41.56K 3.推导凝固驱动力的计算公式,指出各符号的意义并说明凝固驱动力的本 质。 本质:凝固驱动力是由过冷度提供的,过冷度越大,凝固驱动力越大。 4.在环境压力为100kPa下,在紧靠熔融金属的表面处形成一个直径为2μm 的稳定气泡时,设气泡与液体金属的σ=0.84N/m,求气泡的内压力。 P=100kPa +( 2*0.84N/m)/(1*10-6m)=1780kPa 5.如何区分固—液界面的微观结构? 界面结构判据:Jackson因子α≤2,X=0.5时,?G=min,粗糙界面; α≥3,X→ 0或1时,?G=min,光滑界面; 6.推导均质形核下临界晶核半径和临界形核功,并说明过冷度对二者的影 响

钢的凝固收缩系数

钢的凝固收缩系数 1、钢凝固收缩过程的三个阶段:液态收缩、凝固收缩和固态收缩 钢的总体收缩为上述三个阶段收缩之和。它与合金的成分、温度和相变有关。不同合金收缩率是不同的。 2、影响收缩的因素 (1)化学成分 碳素钢随含碳量增加,凝固收缩增加,而固态收缩略。灰铸铁中,碳是形成石墨化元素,硅是促进石墨化元素,所以碳硅含量增加,收缩率减小。硫阻碍石墨的析出,使铸铁的收缩率增大。适量的锰,可与硫合成MnS,抵硫对石墨的阻碍作用,使收缩率减小。但含锰量过高,铸铁的收缩率又有增加。 (2)浇注温度 浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构 铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 铸件的实际线收缩率比自由线收缩率小。因此设计模具时,应根据合金的种类、铸件的形状、尺寸等因素,选取适合的收缩率。 3、钢水凝固过程中的收缩: 钢水由液态转变为固态,随着温度下降,收缩可分为: (1)液态收缩:由浇注温度降到液相线温度的收缩。对于低碳钢一般为1%; (2)凝固收缩:液体完全变为固体的体积收缩。对于钢一般为3~4%。体积收缩会在钢锭中留下缩孔。 (3)固态收缩:从固相线温度冷却到室温的收缩。一般为7~8%。固态收缩表现为整个钢锭的线收缩,它与钢冷却过程的相变有关。对钢锭产生裂纹有重要影响。 液体钢密度为7.0g/cm3,固体钢密度为7.8g/cm3,则液体变为固体收缩量为:((7.8-7.0)/7.0)×100%=11.4%,其中液态收缩量约1%,凝固收缩3~6%,固态收缩7~8%。凝固时3~4%的体积收缩在钢锭中会留下缩孔,采用保护帽使缩孔集中在钢锭头部。而连铸时钢水不断补充到液相,故连铸坯中无集中缩孔。而带

金属凝固原理复习思考题-2011

凝固过程模型的作用。(1)物理模型和数学模型可以定性和定量的描述凝固现象。(2)通过电子计算机数值模拟对凝固过程的研究,有效的控制凝固过程,保证铸件的质量。 为什么说液态金属的结构更接近固态而非气态。(1)能量角度:以面心立方结构其汽化潜热比熔化潜热约大28倍。(2)液态与固态相比,其原子结合键的削弱是不大的。(3)金属由固态转变为液态过程中熵的增值小,可以再次说明,在熔点附近金属的液态结构与固态结构相差不会太大。 液态金属的微观结构有何特点。(1)液体金属原子以近程有序排列排列(2)有能量起伏现象:由于液体中原子热运动的能量较大,每个原子在三维方向都有相邻的原子,经常相互碰撞,交换能量。(3)存在结构起伏:液体中存在的能量起伏造成每个原子集团内具有较大动能的原子能克服邻近原子的束缚,(除了在集团内产生很强的热运动外)还能成簇地脱离原有集团而加入到别的原子集团中,或组成新的原子集团。 液态金属的性质对铸件质量有何影响。 ①粘度对铸坯质量的影响(1)对液态金属流动状态的影响:液态金属流动状态分为紊流和层流。受粘度影响液态金属的流动阻力流动状态。而流动状态直接影响铸坯宏观质量,如气孔等。(2)对液态金属对流的影响:运动粘度越大,对流强度越小。近期研究表明,铸坯的宏观偏析主要受对流的影响。(3)对液态金属净化的影响:粘度越大,夹杂物上浮速度越小,越容易滞留在铸坯中。 ②表面张力对铸坯质量的影响(1)表面张力产生附加压力P=2σ/r,提高金属液中气体析出的阻力。(2)表面张力产生附加压力P=2σ/r,影响金属液与铸型的相互作用。附加压力为正值时(润湿),铸坯表面光滑,但反映铸型型腔的能力较差。附加压力为负值时(不润湿),金属液能很好地反映铸型型腔,但是容易与铸型粘结(粘砂),阻碍收缩,甚至产生裂纹。宽、窄结晶温度范围合金流动停止的机理和特点。 纯金属和窄结晶温度范围:(a)过热量未完全散失前为纯液态流动。(b)冷的前端在型壁上凝固结壳。(c)后边的金属液在被加热的管道中流动,冷却强度下降。由于液流通过I 区终点时,尚有一定的过热度,将已经凝固的壳重新熔化,为第II区。所以,该区是先形成凝固壳,又被完全熔化。第III区是末被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热热量。在IV区,液相和固相具有相同的温度——结晶温度。由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。前端液态金属凝固收缩,形成吸力,产生喇叭状缩孔。 宽结晶温度范围合金:(a)有过热,纯液态流动。(b)温度低于液相线,析出晶体。析出的晶体顺流前进,并不断长大。前端冷却快,晶粒粗大。(c)前端晶粒达到一定数量,结成一个连续的网络,阻碍后边的液态金属流动,流动停止。所联成的网受到后面液态金属向前的推力,造成前突特征。

快速凝固技术

快速凝固技术的研究进展 摘要:快速凝固技术是当材料科学与工程中研究比较活跃的领域之一,目前已成为一种金属材料潜在性能与开发新材料的重要手段。快速凝固技术得到的合金与常规合金有着不同的组织和结构特征,对材料科学和其它学科的理论研究以及开展实际生产应用起了重要的作用。介绍了快速凝固技术的原理和特点、主要方法和在实际中的应用和存在的问题。 关键词:快速凝固技术;合金;应用;存在问题

1 引言 随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域[1]。过去常规铸造合金之所以会出现晶粒粗大,偏析严重、铸造性能差等缺陷的主要原因是合金凝固时的过冷度和凝固速度很小,这是由于它们凝固时的冷速很小而引起的。要消除铸造合金存在的这些缺陷,突破研制新型合金的障碍,核心是要提高熔体凝固时的过冷度,从而提高凝固速度,因此出现了快速凝固技术。 目前,快速凝固技术作为一种研制新型合金材料的技术已开始研究了合金在凝固时的各种组织形态的变化以及如何控制才能得到符合实际生活、生产要求的合金。着重于大的温度梯度和快的凝固速度的快速凝固技术,正在走向逐步完善的阶段。 2 快速凝固技术 1960年美国的Duwez等用铜辊快淬法,首次使液态合金在大于107K/S的冷却速度下凝固,在Cu—Si合金中发现了无限固溶的连续固溶体;在Ag—Ge合金中出现新的亚稳相;在Au—Si合金中形成非晶结构。在快速冷却所形成的亚稳结晶组织中,出现了一系列前所未见的重要的结构特征,表现出各种各样比常规合金优异的使用性能[2]。此后,快速凝固技术和理论得到迅速发展,成为材料科学与工程研究的一个热点。 快速凝固是指通过对合金熔体的快速冷却(≥104~106 K/s)或非均质形核被遏制,使合金在很大过冷度下,发生高生长速率(≥1~100 cm/s)凝固[3]。通过快速凝固技术获取的粉末和材料会具有特殊的性能和用途。由于它是一种非平衡的凝固过程[4],详细的说就是凝固过程中的快冷、起始形核过冷度大,生长速率高,促使固液界面偏离平衡,生成亚稳相(非晶、准晶、微晶和纳米晶),从

金属凝固组织的细化方法和机理

课程名称:金属凝固指导老师:宋长江,翟启杰教授 金属凝固组织的细化方法和机理 摘要:金属组织细化细化是提高材料性能的一种有效手段。在材料科学领域里,控制金属的凝固过程以细化金属凝固组织是提高铸件性能的重要途径之一,在已有的研究中,控制金属凝固过程以细化凝固组织的方法主要有两类:一是物理细化法,如低温浇注、电磁搅拌、机械振动、超声波细化等,二是化学细化法,如添加形核剂和长大抑制剂等。物理细化方法处理材料纯净度高,不会对金属熔体带来外来夹杂,细化效果好;化学添加剂法细化效果稳定、作用快、操作方便、适应性强,是目前最普遍的细化方法。 关键词:组织细化;细化方法;细化剂;变质剂 Refinement methods and mechanism of solidification structure of metals Abstract: Metal microstructure refinement is an effective means to improve the properties of materials.In the field of meterial science, To contol the metal solidification process to refine the metal solidification structure is an important way of improving the casting performance. There are two main ways in the previous study: the first one is Physical refining method,such as cast cold, electromagnetic stirring, mechanical vibration, ultrasonic Refining and so on. The other one is chemical method, like the addition of nucleating agents and growth inhibitors. Physical refining method can make the material more pure,and there is no inclusion along with. The chemical method is the most common method of refinement because it’s faster and more stable and easy to operate. Key words:structure refinement; refine method; refiners; modifier

《金属凝固原理》思考题解答

金属凝固原理思考题 1. 表面张力、界面张力在凝固过程的作用和意义。 2. 如何从液态金属的结构特点解释自发形核的机制。 答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。 3. 从最大形核功的角度,解释0/=?dr G d 的含义。 4. 表面张力、界面张力在凝固过程和液态成形中的意义。 5. 在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、μm ,其熔点温度各为多少已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 2 6. (与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2. 对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。 则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。 7. 用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。由G=H-S 可知,ΔG V =(H S -H L )—T(S S -S L )。由于恒压下,ΔH P =H S -H L =—L m ,ΔS m =S S -S L =—L m /T m ,(L m 为熔化热,ΔS m 为熔化熵)。整理以上各式得:m m V T T L G ?-= ?,其中ΔT=T m -T 。由上式可知:要使V G ?<0,必须使ΔT>0,即T

铸造工艺理论基础测验题

第一讲铸造工艺理论基础测验题 1. 液态合金在冷凝过程中,有可能产生缩孔。缩孔往往产生在铸件最后凝固的部位 2. 冒口的主要作用是补缩 3. 为防止铸件中产生热应力,正确的工艺措施是同时凝固 4 .预防热应力的基本途径是铸件各部位的温度差尽量减少 5. 铸件热裂纹的形状特征是缝内有氧化色 5. 铸造性能属于工艺性能 6. 影响合金流动性的因素很多,但以的影响最为显着化学成分 6. 铸件产生冷隔的原因是:。浇注温度太低 6. 为防止铸件上产生缩孔,正确的工艺措施为。顺序凝固 6. 降低铸件凝固时的温度梯度,可以使铸件凝固区域减小 增加铸件结晶时的凝固区域,有利于防止铸件产生缩松 为了消除铸件中的机械应力,可在铸造后对铸件采用时效处理 去应力退火是消除机械应力最有效的工艺措施 7. 拟生产一批小铸铁件,力学性能要求不高,但要求越薄越好。在下列措施中哪些是有用的 提高铁水的浇注温度 提高铸型的退让性以便在浇铸时使铸型中的气体尽快排出 选用含碳量为%的共析钢。 选用金属铸型以提高铸型的强度。 8. 图示铸件,在冷却到室温后,可能 产生左右两端向上,中部向下的弯曲变形 在上半部分内部产生纵向残余拉应力 产生左右两端向下,中部向上的弯曲变形 在下半部分内部形成纵向残余拉应力 产生比较大的扭转变形 9. 铸造时,提高液态合金的浇注温度将使铸件产生缩孔的倾向增加1 9. HT200的流动性好于ZG175-570 9 凝固温度范围大的合金,铸造时铸件中容易产生缩松。 9. 当铸型温度等其他条件相同时,含碳%的铸铁比含碳%的铸铁更容易补缩。 10. 为了使铸件实现同时凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩2 11. 顺序凝固”是防止铸件的应力、变形和缩孔等缺陷有效的工艺措施 12. 合金的流动性愈好,充型能力愈强,愈有利于得到薄而复杂的铸件 13. 纯金属具有较好流动性 13.提高浇注温度和充型压力,有助于使合金实现顺序凝固,从而提高合金的充型能力 13. 当铸件壁厚相差较大时,铸件产生缩孔可能性也将增大。 14. 铸造时,提高液态合金的浇注温度将使铸件产生缩孔的倾向增加 15. 铸型上设置冒口的目的是为了排出浇注时注入的多余铁水 16. 为了使铸件实现同时凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩

第四章课后作业解答

第四章课后作业解答 练习一 一、判断题(T 或F ) 1、T; 2、F; 3、F; 4、T; 5、F; 6、T; 7、T; 8、F; 9、T; 10、 二、问答题 1、答: (1)图(a )及图(b)分别属于“固相无扩散而液相充分混合均匀”及“平衡凝固”溶质再分配情况。 (2)图(b)中: C s C S =?的物理内涵为:液固界面上刚刚析出的固相成分与固相整体平均成分一致。从另一角度说,固相不同部位的成分处处相同。 C 的物理内涵为:液固界面上的液相成分与液相整体平均成分一致。从另一角度说,液相不同部位的成分处处相同。 L L C =?上述物理内涵的原因在于,在图(b)描述的 “平衡凝固”溶质再分配情况下,固相、液相的成分在凝固过程的任一瞬间(或温度)与平衡相图的固相线、液相线吻合,固相及液相成分能够及时地、充分地均匀化。 2、答:(1)、(2)、(3)、(4)的内容见下图。 C 0 C 0 K C 0/K 0 X (5)若凝固速度R 突然降低到R 12定值时,在新、旧 稳定状态之间,由于< K C ,所以C ? L C S <C 0。重新恢复到稳定时,C S 又回到C 。如右图所示。 03、答:在“液相中部分混合”的溶质再分配条件下,当达到稳定状态时,由于C 表 达式右端分母必然大于平衡分配系数K ?L ,所以其C ?值必然小于C /K 000L ,即稳定状态时,其C ?值小于“液相只有有限扩散”的C ;又因为C = K ?L L ?S 0 C ,所以其时C 也小于C ?L ? S (“液相只有有限扩散” 稳定状态的C ?) 。 0S 从实际物理过程看,由于“液相只有有限扩散”条件下液相无对流存在,而“液

快速凝固习题

1、试比较快速凝固技术和雾化制粉技术的异同 答:快速凝固指的是在比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。要求金属与合金凝固时具有极大的过冷度。 雾化制粉是以快速运动的流体(雾化介质)冲击或以其他方式将金属或合金液体破碎为细小液滴,继之冷凝为固体粉末的粉末制取方法。雾化法是生产完全合金化粉末的最好方法,其产品称为预合金粉。 快速凝固具有凝固速度快,从而可以使金属在液态中的溶解度得到扩大,这样是其材料的密度有所改变,材料各部位的组织更加的紧密,改变金属中各元素的所含比例,从而可以改变该材料的性质,使其达到某种用途的需求。由于凝固的速度比一般铸造的快,这样得到的凝固结晶会更加的细小,晶粒的分布更加的均匀,一定程度减少了杂质的混入,提高材料的质量,由于晶粒组织的优化,该材料的力学,化学性质会得到提高,从而使其得到更广的运用。由于快速凝固给材料带来的溶解度的扩大,更加精细的晶粒的析出,从而赋予了材料的高强度,高韧度,以及高耐腐蚀性。这是快速凝固技术能在工业领域得到广泛运用的硬道理。除了金属的快速凝固,还有一种快速凝固非晶态合金。其特点和上类似,可以使材料具有极高的强度,硬度。又因为其实处于非晶态,它在具有高强度的同时也具有较好的韧性。同时,因为非晶态这种特殊形态,可以使材料具有良好的半导体性能,这是传统铸造方法所不能达到的。 而雾化技术这种粉的每个颗粒不仅具有与既定熔融合金完全相同的均匀化学成分,而且由于快速凝固作用而细化了结晶结构;消除了第二相的宏观偏析。雾化制粉法分“双流法”(以雾化介质流破碎合金液流)和“单流法”(以其他方式破碎合金液流)两大类。前者的雾化介质又分气体(氦、氲、氮、空气)和液体(水、油);后者如离心雾化和溶气真空雾化。 2、试论金属热处理在快速凝固材料制备工艺中的应用 答:金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。快速凝固时由液相到固相的相变过程进行得非常快,从而获得普通铸件和铸锭无法获得的成分、相结构和显微结构的凝固过程。其从液态到固态的冷却速度大于某一临界冷却速率。通过金属热处理可以控制金属相变的过程和速率,金属热处理在快速凝固材料制备

铸件的凝固方式

铸件的凝固方式:逐层凝固,中间凝固,糊状凝固 合金的结晶温度范围越小,铸件断面的温度梯度越大,铸件越倾向于逐层凝固方式,也越容易铸造 一,合金的收缩分类及导致的缺陷、缩孔与缩松形成原因及防止 答:分类:1.液态收缩2.凝固收缩3.固态收缩。会导致如缩孔、缩松、变形、裂纹、残余应力等缺陷。形成原因:合金液在铸型内冷凝过程中,若其体积收缩得不到补充时,将在铸件最后凝固的部位形成孔洞,容积较大的孔洞叫缩孔,细小而分散的孔叫缩松。防止:1.合理选择铸造合金。2.合理选用凝固原则。铸件的凝固原则分为“顺序凝固”和“同时凝固”两种。实现顺序凝固的办法:1,在铸件的厚大部位安放冒口2.安放冷铁3.设置补贴 浇注位置的选择原则:1.铸件的重要加工面或质量要求高的面,尽可能置于铸件的下部或处于侧立位置2.大平面的浇注位置是将铸件的大平面朝下,以免在此面上出现气孔和夹砂等缺陷3.具有大面积薄壁的铸件,应将薄壁部分放在铸型的下部或处于侧立位置,以免产生浇不足和冷隔等缺陷 4.为防止铸件产生缩孔缺陷,应把铸件容易产生缩孔的厚大部位置于铸型的顶部和侧面 拔模斜度与结构斜度:为使模样(或型芯)易从铸型(或芯盒)中取出,在制造模样或芯盒时,凡平行于拔模方向上的壁,需给出一定的斜度,此斜度称为拔模斜度(拔模斜度);铸件上凡垂直于分型面的不加工面都应有一定的倾斜度,即结构斜度。 浇注系统的分类:1.顶注式浇注系统:优点容易实现顺序凝固和进行补缩。缺点是金属液对铸型冲击大,容易产生飞溅,氧化和卷入空气。适于高度不大,形状简单,薄壁或中等壁厚的铸件。2.中注式浇注系统:其横浇道和内浇道均开设在分型面上,易于操作,便于控制金属夜的流量分布和铸型的热分布。3.底注式浇注系统:优点金属液的充型过程平稳,无飞溅,型腔中的气体易于排出,挡渣效果好,缺点是不能利用金属夜的自重进行补缩 压力铸造的特点:1.生产效率高,便于实现自动化2.获得铸件的尺寸精度高(11~13),表面粗糙度低(3.2~0.8),一些铸件无需机加工可直接使用3.可获得细晶粒组织的铸件,机械强度比砂型铸造高4.便于实在嵌铸 自由锻的基本工序:墩粗和拔长。墩粗是降低高度,增大横截面积。拔长是减小横截面积,增大长度 板料冲压的基本工序:分离工序和变形工序。变形工序:弯曲,拉深 冒口与冷铁:冒口:补给铸件凝固收缩时所需的金属,避免产生缩孔;冷铁:为增加铸件局部冷却速度,在砂型、砂芯表面或型腔内安放的金属激冷物。 焊接的特点:优点:1.接头牢靠,密封性好2.可化大为小,以小拼大3.可实现异种金属的连接4.重量轻,加工装配简单5.焊接结构不可拆卸。缺点:焊接应力变形大,接头容易产生裂纹,夹渣,气孔等缺陷 实现切削加工的三个条件:1.工件与刀具知己要有相对运动即切削运动2.刀具材料必须具有一定的切削能力3.刀具必须具有适当的几何参数即切削角度等 切削用量三要素:切削速度,进给量和背吃刀量 冲孔与落料:落料和冲孔是使坯料按封闭轮廓分离。这两个过程中坯料变形过程和模具结构相同,只是用途不同。落料是被分离的部分为所需要的工件,而留下的周边部分是废料;冲孔则相反。 一、自由锻工序(种类)及含义,典型零件的自由锻工序、反复镦粗拔长的目的。 答:工序有:拔长、墩粗、冲孔、弯曲、扭转、错移、切割。自由锻是金属在锤面与砧面之间受压变形的加工方法。典型工序:1.压肩2.拔长一端切去料头3.调头压肩4.拔长,倒棱,滚圆5.端部拔长切去料头6.全部滚圆并校直。目的:可以提高后续拔长工序的锻造比;同时使晶体更细小,力学性能更好。

第二章作业答案

第二章作业答案 1. 凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析可以通过哪些工艺措施来改变或控制凝固速度? 解:①改变铸件的浇注温度、浇铸方式与浇铸速度; ②选用适当的铸型材料和起始(预热)温度; ③在铸型中适当布置冷铁、冒口与浇口; ④在铸型型腔内表面涂敷适当厚度与性能的涂料。 2. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。 解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。 (2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。 3.补充题一:金属铸件的凝固方式分为哪几种?他们是如何划分的?高碳钢和低碳钢在砂型凝固时,分别属于哪种凝固方式。 解:根据固液两相区的宽度,可将凝固过程分为逐层凝固方式与体积凝固方式(或糊状凝固方式); 当固液两相区很窄时称为逐层凝固方式,反之为糊状凝固方式,固液两相区宽度介于两者之间的称为中间凝固方式; 高碳钢属于体积凝固,低碳钢属于逐层凝固。 4.补充题二:给出式(2-17)和(2-18)的推导过程。 解:省略。 5.附加题:实验设计题:设置一个实验来验证半无限大平板铸铁分别在砂型和金属型铸型中在不同时刻(一般取3个时刻)的温度分布曲线,并得出结论。要求:思路、原理阐述清楚;需要的主要设备选择恰当;实验结果的处理与实验结论。 省略。

第五章 凝固组织的控制

第五章铸件凝固组织控制?铸件凝固组织的形成 ?等轴晶的晶粒细化 ?凝固组织中的偏析及其控制?凝固收缩及其控制 ?半固态金属的特性及半固态铸造

第一节铸件凝固组织的形成1.凝固条件与凝固方式 平界面等轴晶柱状晶等轴晶 (a)(b)(c)(d) 铸件凝固过程中的温度分布与凝固方式

2. 铸件的典型凝固组织与形成过程铸件典型凝固组织内部等轴晶区表面细晶区柱状晶区表面细晶粒区。它是紧靠型 壁的一个外壳层,由紊乱排列的细小等轴晶所组成; 柱状晶区。由自外向内沿着 热流方向彼此平行排列的柱状晶所组成; 内部等轴晶区。由紊乱排列 的粗大等轴晶所组成。

当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用而大量生核加上型壁晶粒脱落、枝晶熔断和晶粒增殖等各种形式的晶粒游离过程,在铸型表面形成了无方向性的表面细等轴晶组织。 一旦型壁晶粒互相连接而构成稳定的凝固壳层,处在凝固界面前沿的晶粒便开始向内生长,在垂直于型壁的单向热流的作用下,那些择优生长方向与热流方向平行的枝晶,生长速度快,逐步淘汰取向不利的晶粒而发展成柱状晶组织。 随着熔体的不断冷却,由于生核及晶粒游离、枝晶熔断等在柱状晶前沿产生大量等轴晶,并形成内部等轴晶区。 Southin认为内部等轴晶区的形成不仅要求界面前方存在有等轴晶的晶核,而且还要求这些晶核长到一定的大小,并形成网络以阻止柱状晶区的生长。Fredriksson等人则 认为内部等轴晶区的 产生是由一部分游离 晶的沉淀和一部分游 离晶被侧面生长着的 柱状前沿捕获后而形 成的。 Wizke等及Lipton等的研究 表明,液相流动对凝固界 面前的液相成分过冷度的 形成具有重要影响,而该 过冷度则是决定等轴晶形 成的关键因素,可作为柱 状晶向等轴晶转变的判据。

铸件缩松浅析

铸件缩松浅析 一、缩松的定义 缩松分为宏观缩松和显微缩松(显微缩松也称之为疏松)。 宏观缩松是用肉眼或放大镜可以看出的分散的细小缩孔; 显微缩松是铸件凝固缓慢的区域因微观补缩通道堵塞而在枝晶间及枝晶的晶臂之间形成的微小缩孔。疏松的宏观端口形貌与缩松相似,微观形貌为分布在晶界和晶臂间,伴有粗大树枝晶的显微空穴。 二、缩松的形成原因 当合金结晶温度范围较宽时,在铸件表面结壳后,内部有一个较宽的液、固两相共存的凝固区域。继续凝固,固相不断增多。凝固后期,先生成的树枝晶相互接触,将合金液分割成许多小的封闭区域,当封闭区域内合金液凝固收缩得不到补充时,就形成了缩松。缩松可以看成为许多分散的小缩孔,合金的结晶温度范围愈宽,愈易形成缩松。缩松一般出现在铸件壁的轴线区域、热节处、冒口根部和内浇口附近,也常分布在集中缩孔的下方。 缩松的产生原因主要可分为合金特性、熔炼工艺、铸造工艺等几大方面: 1、合金特性: (1)凝固温度间隔宽的合金具有体积凝固(糊状凝固)特性,补缩困难,易形成疏松; (2)合金凝固温度间隔过宽,糊状凝固倾向强,使低熔点成分最后凝固时得不到有效补缩,易形成疏松; (3)合金中易形成低熔点相的杂质元素含量过多,使凝固温度间隔增大。例如,铸铁中硫、磷含量过多时会在凝固后期形成低熔点共晶,使铸件产生疏松。 2、熔炼工艺: (4)炉料含气量太多:合金中杂质和溶解的气体过多,在合金凝固过程中杂质和析出的气体被推向结晶前沿,阻塞补缩通道,使疏松加重; (5)合金晶粒粗大:合金中缺少晶粒细化元素,凝固组织晶粒粗大,易阻塞补缩通道,形成疏松; (6)浇注工艺的不当:浇注温度过低易产生疏松;浇注温度过高,浇注速度太快使凝固后期得不到足够的铁液补缩; 3、铸造工艺: (7)铸件在铸型中的位置不当 (8)浇注系统、冒口、冷铁、补贴等设置不当,使铸件在凝固时得不到有效补缩; (9)铸件结构不合理,壁厚变化突然,孤立的热节得不到补缩; (10)冒口补缩作用差:冒口数量、尺寸、形状、设置部位以及冒口与铸件连接不合理,补缩效果差; (11)内浇道尺寸或位置不当,使铸件不能顺序凝固或在铸件中形成局部热节;

相关文档
最新文档