《有理数乘法的运算律》习题1

合集下载

《有理数的乘法》练习题

《有理数的乘法》练习题

1.4 有理数的乘除(1)有理数的乘法1.下列计算:①(-5)×(-3)=-8;②(-5)×(-3)=-15;③(-5)×(-3)=15; ④(-4)×(-5)×(-12)=10.正确的有( ) A .4个 B .3个 C .2个 D .1个2.在1,-2,-3,4这四个数中,任取两个数相乘,所得积最大的是( )A .-12B .-2C .4D .63.计算11112342⎛⎫+-⨯ ⎪⎝⎭时,应该运用( ) A .加法交换律 B .乘法分配律C .乘法交换律D .乘法结合律4.已知0ab <,0a b +>,0a b -<,那么a ,b 在数轴上的位置关系是( )5.(1)5(4)______(2.45)0______⨯-=-⨯=;. (2) (8)(5)_____( 1.25)(8)_____-⨯-=-⨯-=;. 6.指出下列变化中所运用的运算律:(1)3×(-2)=-2×3 ____________________.(2)11113223-+=+- ____________________. 7.如果a ,b 互为相反数,那么5×(a +b )=_________.8.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数互为相反数且等式成立,则第一个方格内的数是___________.9.一天,两位学生利用温差测某座山峰的高度,在山顶测得温度是-3℃,在山脚测得温度是4℃.已知高度每增加100米,气温大约下降0.7℃,这座山峰的高度大约是多少米?10.学习了有理数的运算后,薛老师给同学们出了这样一道题目:计算:)8(16571-⨯,看谁算得又对又快.两名同学给出的解法如下: 21575)8(1615)8(71)8()161571(215751692088161151-=-⨯+-⨯=-⨯+=-=-=⨯-小莉:原式小强:原式= (1)对于以上两种解法,你认为谁的解法最好?理由是什么?对你有何启发? (2)此题还有其他解法吗?如果有,用另外的方法把它解出来?参考答案1.D .2.D .3.B .4.B .5.(1)20-;0. (2)40;10.6.(1)乘法交换律.(2)加法交换律.7.0.8.3.9.1000米.10.解:(1)我认为小莉的方法最好.理由是小莉能巧妙的利用了分析的思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,大大的简化了计算过程.(2)还有其它的方法,解法如下:21575)8()161()8(72)8()16172(-=-⨯-+-⨯=-⨯-=解:原式.。

有理数的乘法除法知识点及习题

有理数的乘法除法知识点及习题

第五讲:有理数的乘法除法知识点:1、 有理数的乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘 ②任何数与0相乘均为0;2、 倒数:在有理数中仍然成立,即乘积是1的两个数互为倒数;3、积的符号与负因数个数之间的关系:几个不是0的数相乘,当负因数的个数为偶数时,积是正数;当负因数的个数为奇数时,积是负数;几个数相乘时,当有因数是0时,积为0;4、有理数的乘法运算律:①乘法交换律:ab=ba; ②乘法结合律:(ab)c=a(bc);③乘法分配律: a(b+c)=ab+ac;5、有理数的除法法则:除以一个不为0的数,等于乘以其倒数;即:)0(1≠⨯=÷b ba b a 6、两数相除,同号得正,异号得负,并把绝对值相除;0除以任一不为0的数,都得0;7、在有理数的加减乘除混合运算中,若无括号,则按照先“先乘除后加减”的顺序进行运算;一、填空题1、5×(-2.4)=____,(-1.25)×8=____,(-6.5)×(-65)×0×0.001=_____。

2、-8的倒数是_____,-4与51的差的倒数是____。

3、绝对值小于1000的所有整数的积是_______。

4、a ,b 若互为相反数,x ,y 互为倒数,c 的绝对值为2,则124a b xy c ++-=______。

5、如果四个有理数相乘,积为负数,那么负因数的个数为____________。

6、若是,,,a b c d 是互不相等的整数,且abcd =9,则a b c d +++=_________。

7、在有理数-5,-3,-2,4中任取三个数相乘,所得积中最大的是_____。

8、若0,0,0a b c ><<,则abc ___0,ab c -___0,45(36)y y -+ac b -____0。

9、当a =_____时,11a -没有意义;当a =______时,32a +没有意义。

1.4.1.2有理数的乘法运算律【预习练】-2021-2022学年七年级数学上册(人教版)(含答案)

1.4.1.2有理数的乘法运算律【预习练】-2021-2022学年七年级数学上册(人教版)(含答案)

1.4.1.2有理数的乘法运算律【课前预习练】 -2021-2022学年七年级数学上册(人教版)一、选择题1、算式411010.05810.0454⎛⎫-⨯-+=-+- ⎪⎝⎭.这个运算过程应用了 ( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律2、利用分配律计算981009999⎛⎫-⨯ ⎪⎝⎭时,正确的方法可以是( )A .-981009999⎛⎫-+⨯ ⎪⎝⎭B .-981009999⎛⎫--⨯ ⎪⎝⎭C .981009999⎛⎫-⨯ ⎪⎝⎭D .11019999⎛⎫--⨯ ⎪⎝⎭ 3、用分配律计算131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭,去括号后正确的是( ) A .143143812-⨯-- B .1434144383123-⨯-⨯-⨯C .1434144383123-⨯+⨯-⨯D .1434144383123-⨯+⨯+⨯ 4、观察算式(-4)×17×(-25)×14,在解题过程中,能使运算变得简便的运算律是( )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律5、算式(﹣48)×0.125+48×118可以化为( ) A .-48×(﹣18+118) B .48×(18+118) C .48×(﹣18+118) D .48×(﹣18﹣118)6、计算)85614331()24(-+-⨯-的结果是( )A .21B .-21C .-12D .6 7、下列运算过程中,有错误的是( )A .(3﹣412)×2=3﹣412×2 B .﹣4×(﹣7)×(﹣125)=﹣(4×125×7) C .91819×16=(10﹣119)×16=160﹣1619D .[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)] 二、填空题8、有理数乘法运算律:乘法交换律: ;乘法结合律: ;分配律: . 9、运用运算律填空.(1) -2×(-3)=(-3)×( )(2) [(-3)×2]×(-5)=(-3)×[ × ];(3) (-5)×[(-2)+(-3)=(-5)×( )+( )×(-3).10、(1)(-2)×[(-78)×5]= =_________;(2)1945×16=(20-______)×16=16×20-16×_______=________=________; (3)3.1416×7.5944+3.1416×(-5.5944)=3.1416×( )=•______ =_______. 11、写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: .12、计算:972021)92(2021⨯--⨯=_____________ 13、计算 112()(12)423-+⨯-= . 14、在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________. 三、解答题 15、计算(1)(﹣8)×(﹣43)×(﹣0.125)×54. (2)()()13-24--3.2537⎛⎫⎛⎫⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭16、(1)计算:(﹣41+65﹣92)×(﹣36). (2)计算:)322141(+--×24-54×(-2.5)×(-8).17、有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:(1)(-56)×(-32)+51×(-32); (2)(-6)×⎪⎭⎫ ⎝⎛-731+()-6×337;(3)112×57-(-57)×212+(-52)×57. (4)25×(34)-(-25)×(12)+25×(14-)18、学习有理数得乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明,原式12491249452492555=-⨯=-=-; 小军:原式2424449(5)49(5)(5)24925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭; (1)根据上面的解法对你的启发,请你再写一种解法; (2)用你认为最合适的方法计算:1519816-⨯1.4.1.2有理数的乘法运算律【课前预习练】-2021-2022学年七年级数学上册(人教版)(含答案)一、选择题1、算式411010.05810.0454⎛⎫-⨯-+=-+-⎪⎝⎭.这个运算过程应用了( )A.加法结合律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D2、利用分配律计算981009999⎛⎫-⨯⎪⎝⎭时,正确的方法可以是()A.-981009999⎛⎫-+⨯⎪⎝⎭B.-981009999⎛⎫--⨯⎪⎝⎭C.981009999⎛⎫-⨯⎪⎝⎭D.11019999⎛⎫--⨯⎪⎝⎭【答案】A3、用分配律计算131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭,去括号后正确的是()A.143143812-⨯--B.1434144383123-⨯-⨯-⨯C.1434144383123-⨯+⨯-⨯D.1434144383123-⨯+⨯+⨯【答案】D【提示】根据乘法分配律可以将括号去掉,本题得以解决,注意符号的变化.【详解】解:131448123⎛⎫⎛⎫--⨯-⎪ ⎪⎝⎭⎝⎭=1434144383123-⨯+⨯+⨯,故选D.4、观察算式(-4)×17×(-25)×14,在解题过程中,能使运算变得简便的运算律是( ) A .乘法交换律 B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律【答案】C【提示】利用交换律和结合律计算可简便计算.【详解】原式=[(-4)×(-25)](17×28)=100×4=400, 所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律. 故选C .5、算式(﹣48)×0.125+48×118可以化为( ) A .-48×(﹣18+118) B .48×(18+118) C .48×(﹣18+118) D .48×(﹣18﹣118) 【答案】C【分析】首先将0.125化为18,然后将48提出来即可得出结果. 【详解】原式=()111111-48+48=48-+8888⎛⎫⨯⨯⨯ ⎪⎝⎭, 故选:C .6、计算)85614331()24(-+-⨯-的结果是( ) A .21B .-21C .-12D .6【分析】根据乘法分配律:(a+b )c=ac+bc 可得.故选:A7、下列运算过程中,有错误的是()A.(3﹣412)×2=3﹣412×2 B.﹣4×(﹣7)×(﹣125)=﹣(4×125×7)C.91819×16=(10﹣119)×16=160﹣1619D.[3×(﹣25)]×(﹣2)=3×[(﹣25)×(﹣2)]【答案】A【分析】各式计算得到结果,即可作出判断.【详解】解:A、原式=3×2﹣92×2=6﹣9=﹣3,符合题意;B、原式=﹣(4×125×7),不符合题意;C、原式=(10﹣119)×16=160﹣1619,不符合题意;D、原式=3×[(﹣25)×(﹣2)],不符合题意.故选:A.二、填空题8、有理数乘法运算律:乘法交换律:;乘法结合律:;分配律:.【答案】ab=ba (ab)c=a(bc)a(b+c)=ab+ac;9、运用运算律填空.(1) -2×(-3)=(-3)×()(2) [(-3)×2]×(-5)=(-3)×[ ×];(3) (-5)×[(-2)+(-3)=(-5)×( )+( )×(-3).【答案】(1) -2 (2)(-5) (3) -2 -510、(1)(-2)×[(-78)×5]= =_________;(2)1945×16=(20-______)×16=16×20-16×_______=________=________;(3)3.1416×7.5944+3.1416×(-5.5944)=3.1416×()=•______ =_______.【答案】(1)-2×5×(-78)780(2)1515320-31531645(3)7.5944-5.5944 3.1416×2 6.283211、写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5=﹣(0.4×0.8×1.25×2.5)(第一步)=﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步)=﹣(1×1)=﹣1.第一步:;第二步:;第三步:.【解题思路】根据有理数的乘法,即可解答.【解答过程】解:写出下列运算中每一步所依据的运算律或法则:(﹣0.4)×(﹣0.8)×(﹣1.25)×2.5=﹣(0.4×0.8×1.25×2.5)(第一步)=﹣(0.4×2.5×0.8×1.25)(第二步)=﹣[(0.4×2.5)×(0.8×1.25)](第三步)=﹣(1×1)=﹣1.第一步:确定积的符号,并把绝对值相乘;第二步:乘法的交换律; 第三步:乘法的结合律.故答案为:确定积的符号,并把绝对值相乘;乘法的交换律;乘法的结合律.12、计算:972021)92(2021⨯--⨯=_____________ 【分析】根据乘法分配律的逆运算进行计算即可 解:原式=2021)1(2021)9792(2021-=-⨯=--⨯13、计算 112()(12)423-+⨯-= . 【解析】()11212423⎛⎫-+⨯-⎪⎝⎭=()()()112=121212423⨯--⨯-+⨯- =-3+6-8=-514、在等式3215⨯-⨯=的两个方格中分别填入一个数,使这两个数互为相反数且使等式成立,则第一个方格内的数是________. 【答案】3【提示】根据乘法分配律可得: 332(3)15⨯-⨯-=.【详解】根据乘法分配律可得:332(3)15⨯-⨯-=故答案为3三、解答题 15、计算(1)(﹣8)×(﹣43)×(﹣0.125)×54. (2)()()13-24--3.2537⎛⎫⎛⎫⨯+⨯⨯ ⎪ ⎪⎝⎭⎝⎭解:(1)原式=﹣8×0.125×43×54=﹣53. (2)原式=()()734 3.251131337⎛⎫⎛⎫-⨯-⨯⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭;16、(1)计算:(﹣41+65﹣92)×(﹣36). (2)计算:)322141(+--×24-54×(-2.5)×(-8).(1)【答案】﹣13【提示】先利用乘法分配律展开,再依次计算乘法和加减运算可得.【详解】原式=﹣14×(﹣36)+56×(﹣36)﹣29×(﹣36)=9﹣30+8 =17﹣30 =﹣13.(2)计算:)322141(+--×24-54×(-2.5)×(-8).解:原式=)322141(+--×24-54×)25(-×(-8) =-14×24-12×24+23×24-54×52×8=-6-12+16-25 =-43+16 =-27.17、有时灵活运用分配律可以简化有理数的运算,使计算又快又准,例如逆用分配律ab +ac =a (b +c ),可使运算大大简便,试逆用分配律计算下列各题:(1)(-56)×(-32)+51×(-32); (2)(-6)×⎪⎭⎫ ⎝⎛-731+()-6×337;(3)112×57-(-57)×212+(-52)×57. (4)25×(34)-(-25)×(12)+25×(14-)【分析】利用乘法分配律的逆运算进行计算.解:(1)(-56)×(-32)+51×(-32)=(-32)×(-56+51)=-32×(-5)=160.(2)(-6)×(-317)+(-6)×337=-6×(-317+337)=-6×(-317+247)=-6×(-1)=6.(3)112×57-)75(-×212+)25(-×57=57×)25212211(-+=57×32=1514.(4)25×34﹣25×12+25×(﹣14)=25×(34﹣12﹣14)=25×0=0.18、学习有理数得乘法后,老师给同学们这样一道题目:计算:2449(5)25⨯-,看谁算的又快又对,有两位同学的解法如下: 小明,原式12491249452492555=-⨯=-=-; 小军:原式2424449(5)49(5)(5)24925255⎛⎫=+⨯-=⨯-+⨯-=- ⎪⎝⎭; (1)根据上面的解法对你的启发,请你再写一种解法; (2)用你认为最合适的方法计算:1519816-⨯ 【答案】(1)见解析;(2)11592- 【分析】(1)把244925写成(50-125),然后利用乘法分配律进行计算即可得解; (2)把151916-写成(116-20),然后利用乘法分配律进行计算即可得解.【详解】解:(1)2449(5)25⨯-=50(5)125⎛⎫-⨯- ⎪⎝⎭=150(5)(5)25⨯--⨯- =12505-+=24954-; (2)1519816-⨯=120816⎛⎫-⨯ ⎪⎝⎭=1820816⨯-⨯ =11602- =11592-。

有理数的乘除法(含答案)

有理数的乘除法(含答案)

1.4 有理数的乘除法●知识单一性训练1.4.1 有理数的乘法一、有理数的乘法法则及其运算律1.一个有理数和它的相反数相乘,积为()A.正数 B.负数 C.正数或0 D.负数或02.计算(-3)×(4-12),用分配律计算过程正确的是()A.(-3)×4+(-3)×(-12) B.(-3)×4-(-3)×(-12)C.3×4-(-3)×(-12) D.(-3)×4+3×(-12)3.下列说法正确的是()A.异号两数相乘,取绝对值较大的因数的符号; A.异号两数相乘,取绝对值较大的因数的符号;B.同号两数相乘,符号不变;C.两数相乘,如果积为负数,那么这两个因数异号;D.两数相乘,如果积为正数,那么这两个因数都为正数4.已知abc>0,a>c,ac<0,下列结论正确的是()A.a<0,b<0,c>0 B.a>0,b>0,c<0C.a>0,b<0,c<0 D.a<0,b>0,c>05.如果ab=0,那么一定有()A.a=b=0 B.a=0 C.b=0 D.a,b至少有一个为06.计算:(1)-2(m+3)+3(m-2);(2)5(y+1)-10×(y-110+15).7.若有理数m<n<0时,确定(m+n)(m-n)的符号.8.小林和小华二人骑自行车的速度分别为每小时12千米和每小时11千米,•若两人都行驶2小时,小林和小华谁走的路程长?长多少千米?9.登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为-20℃,已知每登高1000m,•气温降低6℃,当海拔为5000m和8000m时,气温分别是多少?二、多个有理数相乘积的符号的确定10.三个数的积是正数,那么三个数中负数的个数是()A.1个 B.0个或2个 C.3个 D.1个或3个11.下面计算正确的是()A.-5×(-4)×(-2)×(-2)=80B.(-12)×(13-14-1)=0C.(-9)×5×(-4)×0=180D.-2×5-2×(-1)-(-2)×2=812.绝对值不大于4的整数的积是()A.6 B.-6 C.0 D.2413.在-2,3,4,-5这四个数中,任取两个数相乘,所得的积最大的是_______.14.若干个有理数相乘,其积是负数,则负因数的个数是_______.15.+(16)×5911×(-29.4)×0×(-757)=______.16.-4×125×(-25)×(-8)=________.17.计算:(1)(-10)×(-13)×(-0.1)×6;(2)-3×56×145×(-0.25).1.4.2 有理数的除法三、有理数的除法法则18.若两个有理数的商是正数,和为负数,则这两个数()A.一正一负 B.都是正数 C.都是负数 D.不能确定19.若两个数的商是2,被除数是-4,则除数是()A.2 B.-2 C.4 D.-420.一个非0的有理数与它的相反数的商是()A.-1 B.1 C.0 D.无法确定21.若ab>0,则的值是()A.大于0 B.小于0 C.大于或等于0 D.小于或等于022.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()A.一定相等 B.一定互为倒数C.一定互为相反数 D.相等或互为相反数23.当x=_______时,51x没有意义.24.若一个数与它的绝对值的商是1,则这个数是______数;若一个数与它的绝对值的商是-1,则这个数是_______数.25.两个因数的积为1,已知其中一个因数为-72,那么另一个因数是_______.26.若||mm=1,则m________0.27.某地探测气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃,若该地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米.四、有理数的乘除混合运算28.计算(-1)÷(-10)×110的结果是()A.1 B.-1 C.1100D.-110029.(-113)÷(-3)×(-13)的值是______.30.若ab<0,bc<0,则ac________0.31.计算:(1)-34×(-112)÷(-214);(2)15÷(-5)÷(-115);(3)(-3.5)÷78×(-34).五、有理数加减乘除混合运算32.计算(-12)÷[6+(-3)]的结果是()A.2 B.6 C.4 D.-4 33.计算:(1)(-1117)×15+(+517)×15+(-13713)÷5+(+11313)÷5;(2)-8-[-7+(1-23×0.6)÷(-3)].34.已知│3-y│+│x+y│=0,求x yxy的值.●能力提升性训练1.现有四个有理数3,4,-6,10,运用有理数的四则混合运算写出三种不同方法的运算式,使其结果等于24,运算如下:(1)______,(2)_____,(3)______,另有四个有理数,3,-5,7,-13时,可通过运算式(4)________,使其结果等于24.2.计算:(1)-3y+0.75y-0.25y;(2)5a-1.5a+2.4a.3.计算:(1)3(2m-13);(2)-7y+(2y-3)-2(3y+2).4.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,•答错一道题扣10分,不答不得分.已知每个小组的基本分为100分,有一个小组共答20道题,•其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.5.已知a的相反数是123,b的相反数是-212,求代数式32a ba b+-的值.6.若定义一种新的运算为a*b=1abab-,计算[(3*2)]*16.7.若│a+1│+│b+2│=0,求:(1)a+b-ab;(2)ba+ab.8.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a+3b+ba-cd的值是多少?●针对性训练1.计算(-245)×(-2.5); 2.计算(-114)×(+45).3.计算-13×23-0.34×27+13×(-13)-57×0.34.4.计算37÷5×15; 5.计算(-112)×(-34)÷(-214).6.计算(-11223)()4267314÷-+-; 7.计算(213-312+1445)÷(-116).●中考全接触1.(2005,厦门)下列计算正确的是()A.-1+1=0 B.-1-1=0 C.3÷13=1 D.3=62.(2006,长春)化简m-n-(m+n)的结果是()A.0 B.2m C.-2n D.2m-2n3.(2006,浙江)若家用电冰箱冷藏室的温度是4℃,•冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度是()A.18℃ B.-26℃ C.-22℃ D.-18℃4.(2006,南昌)下列四个运算中,结果最小的是()A.1+(-2) B.1-(-2) C.1×(-2) D.1÷(-2)5.(2005,江西)计算(-2)×(-4)=_______.6.(2005,云南)计算(-12)×(-14)=________.7.(2005,陕西)5×(-4.8)+│-2.3│=________.8.(2006,温州)若x-y=3,则2x-2y=________.9.(2005,南通)计算(-12+23-14)×│-12│.答案:【知识单一性训练】1.D [提示:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.]2.A [提示:(-3)×(4-12)=(-3)×[4+(-12)]=(-3)×4+(-3)×(-12),强调过程,而不是结果.]3.C [提示:根据有理数乘法法则,例如-2×4=-8,A错;(-2)×(-4)=8,B错;(-2)•×(-5)=10,D错.故C正确.]4.C [提示:由ac<0,得a与c异号,由a>c,得a>0,c<0.由abc>0,得b<0,故选C.] 5.D [提示:0同任何数相乘都得0.]6.解:(1)-2(m+3)+3(m-2)=-2m-6+3m-6=m-12.(2)5(y+1)-10×(y-110+15)=5y+5-10y+1-2=-5y+4.7.解:因为m<n<0,所以│m│>│n│,m+n<0,所以m-n<0,所以(m+n)(m-n)>0,•即(m+n)(m-n)的符号为正.8.解:小林走的路程为12×2=24(千米),小华走的路程为11×2=22(千米),• 因为24>22,所以小林走的路程比小华长,小林比小华多走24-22=2(千米),答:小林走的路程比小华长2千米.9.解:当海拔为5000m时,-20-500030001000-×6=-32(℃);当海拔为8000m时,-20-800030001000-×6=-50℃,•因此当海拔为5000m时,气温为-32℃,当海拔为8000m时,气温为-50℃.10.B [提示:几个不为零的有理数相乘,积的符号由负因数的个数决定,• 因为三个数的积是正数,所以负因数为偶数个或0个,故选B.]11.A [提示:(-12)×(13-14-1)=(-12)×13+(-12)×(-14)+(-12)×(-1)=-4+3+12=11;(-9)×5×(-4)×0=0;-2×5-2×(-1)-(-2)×2=-10+2+4=-4,故B,C,D都错,A对.]12.C [提示:绝对值不大于4的整数为0,±1,±2,±3,±4,所以它们的积为0,故选C.]13.12 [提示:3×4=12,其余积为负数和小于12.]14.奇数 [提示:由几个不为零的有理数相乘的法则可知.]15.0 [提示:任何有理数同0相乘都得0.]16.-100000 [提示:原式=-(4×125×25×8)=-100000.]17.解:(1)(-10)×(-13)×(-0.1)×6=-(10×13×110×6)=-2.(2)-3×56×145×(-0.25)=3×56×95×14=98.18.C [提示:从商为正数得出两个数同号,从和为负数得出两个数都为负数,• 若两个数都为正数,积只能为正数.]19.B [提示:分清除数、被除数的含义,用-4÷2=-2.]20.A [提示:可取特殊值计算,如:2的相反数是-2,那么2÷(-2)=-1,故选A.]21.A [提示:由ab>0可得a,b同号,则ab是正数.]22.D [提示:不要漏掉互为相反数这种情况.]23.1 [提示:当x=1时,x-1=0,除数为0,没意义.]24.正负 [提示:正数的绝对值是它本身,负数的绝对值是它的相反数.]25.-27[提示:另一个因数是1÷(-72)=-27.]26.> [提示:若m>0,│m│=m,则||mm=mm=1;若m<0,│m│=-m,则||mm=mm-=-1,m为分母,•不能等于0.]27.解:21(39)6--×1=10(千米),答:此处的高度是10千米.28.C [提示:(-1)÷(-10)×110=(-1)×(-110)×110=1100.故选C.]29.-427[提示:原式=(-43)×(-13)×(-13)=-427.]30.> [提示:因为ab<0,所以a,b异号,又因为bc<0,所以b,c异号,所以a,c同号,故ac>0.]31.解:(1)-34×(-112)÷(-214)=-34×(-32)×(-89)=-1.(2)-15÷(-5)÷(-115)=-15×(-15)•×(-56)=-52.(3)(-3.5)÷78×(-34)=(-72)×87×(-34)=3.32.D [提示:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.]33.解:(1)(-1117)×15+(+517)×15+(-13713)÷5+(+11313)÷5=(-1117)×15+(+517)×15+(-13713)×15+(+11313)×15=15×[(-1117)+(+517)+(-13713)+(+11313)]=15×[-6+(-24)]=15×(-30)=-6.(2)-8-[-7+(1-23×0.6)÷(-3)]=-8-[-7+(1-23×35)×(-13)]=-8-[-7+(1-25)×(-13)]=-8-[-7+35×(-13)]=-8-(-7-15)=-8+715=-45.34.解:│3-y│+│x+y│=0,且│3-y│≥,│x+y│≥0,所以3-y=0,x+y=0,•所以y=3,x=-3,所以330339x yxy+-+==-⨯-=0.【能力提升性训练】1.(1)4-(-6×10)÷3 (2)(10-6+4)×3 (3)10-[3×(-6)]-4 (4)[(-5)×(-13)+7]÷3 2.解:(1)-3y+0.75y-0.25y=(-3+0.75-0.25)y=-2.5y.(2)5a-1.5a+2.4a=(5-1.5+2.4)a=5.9a.3.解:(1)3(2m-13)=3×2m-3×13=6m-1.(2)-7y+(2y-3)-2(3y+2)=-7y+2y-3-2×3y+(-2)×2=-7y+2y-3-6y-4=(-7+2-•6)y-7=-11y-7.4.解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.5.解:因为a的相反数是123,则a=-123,因为b的倒数是-212,则b=1÷(-212)=-25.所以32a ba b+-=2213()352212()35-+⨯---⨯-=(-53-65)÷(-53+45)=(-251825124313431543)()()()151515151515151313-÷-+=-÷-=⨯=.6.解:因为a*b=1abab-,所以[(3*2)*16=32132⨯-⨯*16=(-65)*16=6115656111()1565-⨯-=--⨯+=-16.7.解:因为│a+1│+│b+2│=0,且│a+1│≥0,│b+2│≥0,所以a+1=0,b+2=0,• 所以a=-1,b=-2,所以,(1)a+b-ab=-1+(-2)-(-1)×(-2)=-3-2=-5.(2)ba+ab=2112--+--=2+12=52.8.解:因为a,b互为相反数,所以a+b=0,ba=-1.因为c,d互为倒数,所以c.d=1,•所以3a+3b+ba-cd=3(a+b)+ba-cd=3×0+(-1)-1=-2.【针对性训练】1.解:(-245)×(-2.5)=(-145)×(-52)=7.2.解:(-114)×(+45)=(-54)×(+45)=-1.3.解:-13×23-0.34×27+13×(-13)-57×0.34=-13×23+13×(-13)-0.34×27-57×0.34=-13×(23+13)-0.34×(27+57)=-13×1-0.34×1=-13-0.34=-13.34.4.解:37÷5×15=37×15×15=3725.5.解:(-112)×(-34)÷(-214)=(-32)×(-34)×(-94)=-(32×34×94)=-12.6.解:(-11223114245618 )()()() 42673144284-+-÷-+-=-÷1281841 ()().4284422814 =-÷=-⨯=-7.解:(213-312+1445)÷(-116)=(73-72+4945)×(-67)=73×(-67)+(-72)×(-67)+4945×(-67)=-2+3-141411151515=-=.【中考全接触】【中考全接触】1.A [提示:互为相反数的和为0.]2.C [提示:去括号时,要注意括号前的符号.] 3.D [提示:4-22=-18(℃).]4.C [提示:1+(-2)=-1,1-(-2)=1+2=3,1×(-2)=-2,1÷(-2)=-12,通过比较C最小.]5.8 [提示:同号相乘得正.] 6.1 87.-21.7 [提示:注意运算顺序.] 8.6 [提示:2x-2y=2(x-y)=2×3=6.]9.解:(-12+23-14)×│-12│=(-12+23-14)×12=(-12)×12+23×12+(-14)×12=-6+8-3=-1.。

有理数的乘法运算律

有理数的乘法运算律

注意事项
1、乘法的交换律、结合律只涉及 一种运算,而分配律要涉及两种运算。
2、分配律还可写成: ab+ac=a(b+c), 利用它有时也可以简 化计算。
3、字母a、b、c可以表示正数、 负数,也可以表示零,即a、b、c可 以表示任意有理数。
问题一
下列各式中用了哪条运算律?如何用字母表示? 1、(-4)×8=8 ×(-4)
乘法交换律:ab=ba 2、[(-8)+4]+(-4)=(-8)+[4+(-4)]
加法结合律: 3、((-6a)+×b[)2+/3c+(=-a1+/2()b]+=(c)-6)×2/3+(-6)×(-1/2)
分配律:a(b+c)=ab+bc
4、[29×(-5/6)] ×(-12)=29 ×[(-5/6) ×(-12)]
练习三
5×[3+(-7)] =5×3+5×(-7)
12×[(-3/4)+(-4/9)] = 12×(-3/4)+12×(-4/9)
一个数同两个数的和相乘,等于把这 个数分别同这两个数相乘,再把积相加。
乘法分配律:a(b+c)=ab+ac
根据分配律可以推出:一个数同几个数的和 相乘,等于把这个数分别同这几个数相乘, 再把积相加。
练习四 1、(-85)×(-25)×(-4)
2、(-7/8)×11/6-1/2)×12
解: (1/4+1/6-1/2)×12
=(1/4)×12+(1/6)×12-(1/2)×12 =3+2-6 =-1
练习五 计算:1、(9/10-1/15)×30 2、 (24/25)×7

初一数学 有理数乘法练习题

初一数学 有理数乘法练习题

初一数学有理数乘法练习题1、用字母表示有理数乘法运算律:乘法交换律:a×b=b×a;乘法结合律:a×(b×c)=(a×b)×c;分配律:a×(b+c)=a×b+a×c.2、乘积为1的两个数,用符号表示为:a×(1/a)=1,a(a≠0)的倒数为1/a。

3、几个数的积,积的符号由负因数的个数决定,当负数的个数为奇数个时,积为负;当负数的个数为偶数时,积为正;几个数相乘,有一个因数为0,则积为0.4、若五个有理数的积是负数,则这五个因数中正因数的个数可能是1、3.5、填空(1)(-2)×[(-78)×5]=780=780;(2)194/5×16=(20-6/5)×16=16×20-16×6/5=308=308;(3)3.14×7.5944+3.14×(-5.5944)=3.14×2=6.28=6.28.6、填空:1/3×(-3/4-3/11)=(-11/33)+(-12/44)=-143/132=-111/132.7、+1的倒数是1,-1的倒数是-1,0的倒数等于它本身。

8、-7的倒数是-1/7,它的相反数是7,它的绝对值是7.-2/5的倒数是-5/2,-2.5的倒数是-2/5.9、已知x=2,-y=5,且xy<0,求2x-y的值=-1.10、(1)若a,b互为相反数,则a+b=0;2)若a,b互为倒数,则ab=1,a,b的符号相反。

11、若x-1+y+2+z-3=0,则(x+1)(y-2)(z+3)的值是()A.48B.-48C.0.12、若m、n互为相反数,则mn<0.二、选择题13、在算式-27×24+16×24-79×24=(-27+16-79)×24中运用了()A.加法交换律B.加法结合律C.乘法结合律D.乘法分配律。

有理数的乘法运算律1

有理数的乘法运算律1

1. 7 × (- 5)= - 35 2.(-8)× (-4)= 32
(-5)× 7 = - 35 (-4)×(-8) = 32
3.(-2)× 4 × (-3) = 24
(-2)×[ 4 × (-3) ] = 24
4. (-4)× (-6) × (-2) = - 48 (-4)×[ (-6) × (-2)] = - 48 可见,有理数的乘法仍满足交换律和结合律。
课堂练习:
课本 ( 55页 ) 练习: 第 1、 2 题 .
判断: 1.几个有理数的乘积是0, 其中只有一个因数是0. ( 错 )
2. 同号几个有理数的乘积是正数. ( 错 )
3. 几个数相乘,积的符号由负因数的个数决定: 当负因数的个数有奇数个时, 积为负. 当负因数的个数有偶数个时, 积为正. ( 错 )
1.积的符号和各个因数的符号有什么关系? 2.积的绝对值和各个因数的绝对值有什么关系?
我们得出: 几个不为0的数相乘,积的符号由 负因数的个数决定: 当负因数的个数有奇数个时, 积为负. 当负因数的个数有偶数个时, 积为正.
几个数相乘,如果存在因数为0的,那么积为 0 .
例3 计算: (1) 8 + ( - 0.5 ) × ( -8 ) × 3/4 (2) ( - 3 ) × 5/6 × ( -4/5 ) × (-1/4) (3) ( -3/4) × 5 × 0 × 7/8 解:
(1) (-10) × 1/3 ×0.1 ×6
=-2
(2) (-10) × ( -1/3) ×0.1 ×6 = 2
(3)(-10) × ( -1/3) ×( - 0.1) ×6 = - 2
(4) (-10) ×( - 1) ×( - 0.1 ) × ( - 6 ) = 2

人教版七年级数学上册作业课件 第一章 有理数 第3课时 有理数乘法的运算律

人教版七年级数学上册作业课件 第一章 有理数 第3课时 有理数乘法的运算律
人教版
第1章 有理数
1.4.1 有理数的乘法
第3课时 有理数乘法的运算律
1.式子(13 -135 +25 )×3×5=(13 -135 +25 )×15=5-3+6 中, 运用的运算律是( D ) A.乘法交换律及结合律 B.乘法交换律及分配律 C.加法结算(-3)×(4-13 )的过程正确的是(A ) A.(-3)×4+(-3)×(-13 ) B.(-3)×4-(-3)×(-13 ) C.(-3)×(-4)-(-3)×(-13 ) D.(-3)×4+3×(-13 )
解:(1)原式=(-12 )×(-23 )×(-34 )×…×(-19090 )=-1100 (2)2020×(1-12 )×(1-13 )×…×(1-20120 )= 2020×12 ×23 ×34 ×…×22001290 =2020×20120 =1
计算:3×(1×2+2×3+3×4+…+99×100)=( C )
A.97×98×99
B.98×99×100
C.99×100×101 D.100×101×102
13.在等式 4×□-2×□=30 的两个方格中分别填入一个数, 使这两个数互为相反数,且等式成立,则第一个方格内的数是___5.
14.有 560 页稿件需要打字,第 1 天打完其中的14 , 第 2 天打完其中的27 ,则还有____2_6页0 没有打.
(2)(-0.25)×21×(-8)×(-17 )=[(-0.25)×(____)]×-[8___×(2-117 )].
7.用简便方法计算: (1)(-6)×(-57 )×(-16 )×78 =_____-;58
1 (2)(4
-16
)×(-12)=____.-1
8.(例题 4 变式)小明在计算(-24)×(13 -14 -16 )时,

有理数的乘法运算律1(2019年)

有理数的乘法运算律1(2019年)
回顾与思考
1.有理数乘法法则是什么? 2.如何进行有理数的乘法运算?
3.小学时候大家学过乘法的那些运算律? 学过: 乘法交换律 ,乘法结合律,乘法分配律
有理数乘法法则:
两数相乘,同号得正,异号得负, 并把绝对值相乘。
任何数和零相乘,都得 0 .
根据有理数的乘法法则,我们得出计算两个 不为0的数相乘步骤为:
1. 先确定积的符号。 2.计算积的绝对值。
2. 有理数乘法的运算律
(1)乘法交换律和乘法结合律 在小学里,我们都知道:数的乘法满足交换律
和结合律;例如: 3×5 = 5×3 (3 ×5) × 2 ห้องสมุดไป่ตู้ 3 × (5×2)
引入负数后,这两种运算律是否还成立呢? 如果上面的3、5、2换成任意的有理数是否仍成立呢?
;配资平台:https:/// ;
后顷之 名通 良久乃仰谓太后 臣等已无可言者 皆以分宗族 席卷南行 累织纤微 可献 在揆文教 则庶事理 报降符应 用为符信 栗姬生临江闵王荣 河间献王德 临江哀王阏 制曰 可 过卫五鹿 从浞野侯赵破奴故道抵受降城休士 及宗室子钱 大国之王幼弱未壮 烧残民家 因各敕以职任 除山川沈斥 卧禁中 甚苦 渡浙江 盎入见 宜尊重以填海内 五月甲辰 瞰临左右 子家驹谏曰 谗人以君徼幸 天下既定 其条刺 堵阳 后二年 兹谓乱 复谢病免归 百五十五篇 羊去野外而拘土缶者 既已谕矣 成山於不夜 谗臣在旁 其辛酉 此其与秦 汉王请和 延世见前塞之易 而昆莫地空 《黄帝长柳占梦》十一 卷 秋七月 守要害之处 行义未过 奎为卑贼妇人 有日 故曰 县象著明 不得耕桑 后十二年 事亲孝 乃当上与伯禹 周公等盛齐隆 然时观察颜色 尊立文帝 有副校尉 马畜弥山 跪而推毂 臣禹尝从之东宫 光忧懑 岂可同日道哉 肥累 惟念宗室属未尽而以罪绝 必以其事观之 从邑君数

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题

北师大版七上数学有理数的乘法练习题(带答案)1.有理数的乘法法则(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,积仍为0.①两个有理数相乘,积的符号是由两个因数的符号确定:同号(+,+或-,-)得正,异号(+,-或-,+)得负;②0与任何数相乘,积都是0;③1乘任何数得原数,-1乘任何数得原数的相反数.(2)两个有理数相乘的步骤①先确定积的符号;②再求出积的绝对值.(3)多个有理数的乘法①几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个有理数相乘,有一个因数为0,结果就是0;反之,若几个数的积为0,则至少有一个因数为0.释疑点有理数相乘的方法①几个有理数相乘,先确定积的符号,再把绝对值相乘;②当几个因数中有一个为0时,不用再判断符号,直接得0.【例1】计算:(1)(+4)×(-5);(2)(-0.75)×(-1.2);(3)-29×0.3;(4)0×-17;(5)-112×113×-114×-115×116.分析:按照乘法法则运算,先确定符号,再将绝对值相乘.解:(1)(+4)×(-5)=-(4×5)=-20;(2)(-0.75)×(-1.2)=+(0.75×1.2)=0.9;(3)-29×0.3=-29×310=-115;(4)0×-17=0;(5)-112×113×-114×-115×116=-32×43×54×65×76=-72.2.倒数如果两个有理数的乘积为1,那么称其中的一个数是另一个数的倒数,也称这两个数互为倒数.若a≠0,则a的倒数是1a.谈重点对倒数的理解①0没有倒数;②互为倒数的两个数的符号相同,即正数的倒数是正数,负数的倒数是负数;③若两个数互为倒数,则它们的乘积为1;④倒数等于它本身的数是1和-1.【例2】填空:(1)-76的倒数是__________;0.2的倒数是__________;(2)倒数是4的数是__________.解析:乘积是1的两个数互为倒数.答案:(1)-67 5 (2)143.有理数的乘法运算律(1)乘法交换律:两个数相乘,交换因数的位置,积不变.用字母表示为:a×b=b×a.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.用字母表示为:(a×b)×c=a×(b×c).(3)乘法对加法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a×(b+c)=a×b+a×c.谈重点乘法运算律的运用方法①交换因数的位置时,要连同符号一起交换;②公式中的字母a,b,c可以是正数,也可以是负数和0;③乘法的交换律和结合律对多个因数的乘法也适用;④为了能简便运算,也可以逆用乘法对加法的分配律,即a×b+a×c=a×(b+c).【例3】计算:(1)(-8)×9×(-1.25)×-19;(2)114-56+12×(-12);(3)-5.372×(-3)+5.372×(-17)+5.372×4;(4)-243435×2.5×(-8);(5)1112-79-518×36-6×1.43+3.93×6.分析:运用乘法的运算律进行简化计算.(1)用乘法交换律和结合律;(2)用乘法对加法的分配律;(3)因各乘积中都有因数5.372,故可逆用乘法对加法的分配律进行简便计算;(4)将带分数拆成整数与分数的和或差,再运用乘法结合律和乘法对加法的分配律;(5)算式的前半部分可直接正向运用乘法对加法的分配律,后半部分可逆用乘法对加法的分配律,从而可省去通分和繁杂的计算.解:(1)(-8)×9×(-1.25)×-19=[(-8)×(-1.25)]×9×-19=10×(-1)=-10;(2)114-56+12×(-12)=114×(-12)+-56×(-12)+12×(-12)=-15+10+(-6)=-11;(3)-5.372×(-3)+5.372×(-17)+5.372×4=5.372×3+5.372×(-17)+5.372×4=5.372×[3+(-17)+4]=5.372×(-10)=-53.72;(4)-243435×2.5×(-8)=243435×2.5×8=25-135×20=25×20-135×20=500-47=49937.(5)1112-79-518×36-6×1.43+3.93×6=1112×36-79×36-518×36+6×(-1.43+3.93)=33-28-10+6×2.5=-5+15=10.4.与绝对值、相反数、倒数有关的混合运算根据已知的与绝对值、相反数、倒数有关的条件,进行有关的综合计算,其步骤是:(1)利用条件,先求出有关字母的数值或有关式子的数值;(2)将所求的式子变形,使其符合上述条件;(3)将条件代入变形后的式子,按照规定的运算进行计算.【例4】已知a与b互为倒数,c与d互为相反数,m的绝对值是4,求m×(c+d)+a×b -3×m的值.分析:互为倒数的两个数的积是1,互为相反数的两个数的和是0,绝对值是4的数是±4,所以本题要分情况计算.解:因为a与b互为倒数,c与d互为相反数,m的绝对值是4,所以a×b=1,c+d=0,m=±4.当m=4时,m×(c+d)+a×b-3×m=4×0+1-3×4=-11;当m=-4 时,m×(c+d)+a×b-3×m=(-4)×0+1-3×(-4)=13.5.运用有理数乘法运算律进行简便运算有理数的乘法中的简便运算主要是运用乘法的交换律、乘法的结合律和乘法对加法的分配律进行运算.(1)乘法交换律和结合律的运用运用乘法交换律、结合律的情况:①一般将互为倒数的先结合;②将容易约分的先结合.(2)乘法对加法的分配律的运用运用乘法对加法的分配律时注意以下几点:①要把括号外面的因数连同符号与括号内的每一项相乘,它是以后要学的去括号的理论依据.②乘法对加法的分配律可以逆用,即a×b+a×c=a×(b+c).③乘法对加法的分配律可以推广为:a×(b+c+d+e)=a×b+a×c+a×d+a×e,各字母为任意有理数.运用乘法对加法的分配律时,可以先确定符号,再进行计算,或者先利用分配律,再确定符号.有时可逆用乘法分配律:a×b+a×c=a×(b+c),使计算简便._________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________【例5-1】学习了有理数的乘法运算律之后,老师出示了下面的一道题目:计算:-36×12-59+56-712.刘洋:原式=-36×12-59+56-712=-36×12-36×59+36×56-36×712=-(18-20+30-21)=-7.吕征:原式=-36×12-36×59-36×56-36×712=-18-20-30-21=89.你认为刘洋和吕征同学的解法都正确吗?若有错误,请你按其思路改正过来.分析:本题是一个整数与多个分数的和相乘,可利用乘法对加法的分配律简化运算.运用乘法对加法的分配律时,要注意符号.解:刘洋的解答是正确的,而吕征的解答是错误的.改正:原式=-36×12-(-36) ×59+(-36)×56-(-36)×712=-18-(-20)+(-30)-(-21)=-7.【例5-2】用简便方法计算:-3.14×35.2+6.28×(-23.3)-1.57×36.4.分析:通过观察,可以发现3.14,6.28,1.57之间成倍数关系,故可以将式子进行变形,使式子里每一项中都含有1 .57,再逆用乘法对加法的分配律,可避免复杂的计算.解:-3.14×35.2+6.28×(-23.3)-1.57×36.4=-1.57×2×35.2+1.57×4×(-23.3)-1.57×36.4=1.57×[-2×35.2+4×(-23.3)-36.4]=1.57×(-70.4-93.2-36.4)=1.57×(-200)=-314.6.有理数的乘法运算的实际应用有理数的乘法运算的应用,主要是利用有理数的乘法解决生活中的实际问题.其步骤是:①分析题意;②列出算式;③运用有理数的乘法法则或运算律进行计算;④写出答案.【例6】一天,小刚和小明利用温差测量山峰的高度,小明在山顶测得的温度是-2 ℃,小刚在山脚测得的温度是4 ℃.已知该地区的高度每增加100 m,气温大约下降0.6 ℃,求这个山峰的高度大约是多少.解:4-(-2)0.6×100=10×100=1 000(m).答:这个山峰的高度大约为1 000 m.。

有理数的乘法运算律1

有理数的乘法运算律1

(1) (-10) × 1/3 ×0.1 ×6
=-2
(2) (-10) × ( -1/3) ×0.1 ×6 = 2
(3)(-10) × ( -1/3) ×( - 0.1) ×6 = - 2
(4) (-10) ×( - 1) ×( - 0.1 ) × ( - 6 ) = 2
算完后,你能发觉几个不为0的有理数相乘:
(1) 8 + ( - 0.5 ) × ( -8 ) × 3/4 = 8+ ½×8×¾ = 8 + 3 =11 (2) ( - 3 ) × 5/6 × ( -4/5 ) × (-1/4) = - ( 3 × 5/6 × 4/5 × ¼ ) = -½ (3) ( -3/4) × 5 × 0 ×7/8 = 0 .
乘法交换律: 两数相乘,交换因数的位置,积不变. 用式子表示为: 乘法结合律: 三个数相乘,先把前两个数相乘,或先把 后两个数相乘,积不变. 用式子表示为: (a b) c = a (b c)
ab= ba
例2 计算: (1) (-10) × 1/3 ×0.1 ×6 (2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) 解: (1) (-10) × 1/3 ×0.1 ×6 = [(-10) × 0.1]×( 1/3 × 6) = ( -1 ) × 2 =-2 (2) (-6) ×(+3.7) ×( - 1/3) × ( -5/74) = [ ( -6 ) × ( - 1/3)] × 37/10 ×( - 5/74) = 2 × [ 37/10 × ( - 5/74)] = 2 ×( - ¼) = - 1/2
½)
; 深圳侦探公司 深圳私家侦探
dvh06eyc
事,绝不会出错的。”“你要把它送到哪里?!”青翘又紧张的叫了起来。明柯已经把黑纸放进扬琴那层暗格里:“我要把这 张纸放回琴里、把这张琴送到它的主人那里,这还不够明白吗?”他笑意更浓了,“我又不是真的负担得起这张琴,不快点把 它送回去,难道等着破产吗?”青翘嘟起嘴:“你就真的替你四姐和唐公子拉起纤来?”“不然如何?四姐滑不留手,拿出来 的这东西,完全不给人指证的余地。我留着这个威胁她?真正开玩笑!还不如快点送出去,免得得罪她。”顿了顿,“这世上, 我最不愿意开罪的人,就是四姐。”青翘托腮:“这么一来,你手里完全没有她的小辫子,问她借钱的话,她也不肯借的 咯?”“四姐是个明白人,”明柯安然道,“总会给我几样宝器应应急的。大哥好赖也帮衬了我几个子儿。等唐公子正式提亲, 四姐一定会更多的送我一笔。”“那我盼着唐公子早点来提亲。”青翘叹道,“不然高利贷,利滚利,老爷知道了得揍死你。” 明柯用食指尖揍了揍青翘的鼻子,出门吩咐小厮:“套车!”明柯套的是骡车。俊骡小鞍,那叫个体面!车顶钉着亮闪闪的 “十”字瓦,车周垂着彩罽鱼纹的外帏、细麻舞纹的内帏,后尾上小厮规规矩矩侍立,前座上车伕熟练的甩着摈榔木鞭杆儿。 明柯同着扬琴,一路进了恪思阁。恪思阁虽是戎商开的,到了中原,也很懂得入乡随俗,正门一对大红柱子,贴一对锦地万花 洒金联,进门一堵山壁,挂一张四六对仗文榜,联中榜上,无非是夸说珍宝纷呈,祝愿财源亨通。转过山壁,是恪思阁正屋, 一天不晓得作多少万银两的生意。但明柯没进正门。他在恪思阁门口打了个溜儿,取小巷,转侧门,白粉墙,碧青瓦,差不多 只够一个人进出、窄到这种程度的四四方方黑框门。骡车在门口停下了,明柯的小厮从车后跳下来,门里也立即出来个极乖觉 的小伙计,跟小厮一起侍候明柯下车。又有两个伙计,帮车伕把车子带扬琴兜到一边去了。先前的小伙计延明柯进门。这窄门 一进到里头,树影深密,佳禽对语,却是好大一个园子,也有荼蘼架、牡丹台,也有鹦鹿亭、鸳鸯阁。小伙计请明柯入莲池畔 鸳门,一室窗明几净、收拾细致。有个人在窗前,端一只烧蓝瓷坛,正细细赏鉴。此人头戴逍遥巾,身着天苍色长衫,外罩桔 绿纻丝旋袄,年未弱冠,五官都细巧,有种女人式的隽秀,身板儿又细、又长,稍嫌太细长些,像是个还正在长身体的孩子。 他模样气韵,都不如苏明远远矣,然而锦城公认,若把家世、品貌、才华综合起来比较,苏家大公子明远与他,实在是一时瑜 亮、城中双璧。他就是太守长孙唐静轩。他手里的瓷坛,一面镌着幅古画,以金粉描洒,一面刻着首长歌行,以银丝镶嵌。这 坛子也倒罢了,他从坛中摸出几颗黑白棋子,对着光看,白子

七年级数学上册有理数的乘法运算律专项练习

七年级数学上册有理数的乘法运算律专项练习

【详解】 写出下列运算中每一步所依据的运算律或法则: (−0.4)×(−0.8)×(−1.25)×2.5 =−(0.4×0.8×1.25×2.5)(第一步) =−(0.4×2.5×0.8×1.25)(第二步) =−[(0.4×2.5)×(0.8×1.25)](第三步) =−(1×1)=−1. 第一步:乘法法则; 第二步:乘法交换律; 第三步:乘法结合律. 故答案为:乘法法则;乘法交换律;乘法结合律. 【点睛】 本题考查了了有理数的乘法,解决本题的关键是熟记 有理数的乘法运算法则.
三、解答题 15、写出下面每一步计算根据的运算法则或运算律: ( ‒ 4) × ( + 8) × ( ‒ 2.5) × ( ‒ 125) =‒ 4 × 8 × 2.5 × 125 ( ) =‒ 4 × 2.5 × 8 × 125 ( )
乘法对加法的分配律.
( ) ( ) 1
1
(3)27 × ‒ 19 = 27 × ‒ 1 ‒ 9 = 27 × ( ‒ 1)
( )1
+ 27 × ‒ 9 .
( )1
故答案为:(1)( ‒ 8);(2)( ‒ 4) × + 4 ;
( )1
(3)27 × ( ‒ 1),27 × ‒ 9
故答案为:乘法对加法的分配律
【点睛】
【点睛】
考核知识点:乘法运算律.掌握各种乘法运算律是关
键.
3
3
3
12、计算:78×(﹣5)+(﹣11)×(﹣5)+(﹣33)×5
= .
【答案】-60
3
【解析】可以把最后一项变为 33×(﹣5),然后利用 有理数的乘法的分配律进行计算即可.
3
3
【详解】解:78×(﹣5)+(﹣11)×(﹣5)+

七年级数学-有理数的乘法运算律练习

七年级数学-有理数的乘法运算律练习

七年级数学-有理数的乘法运算律练习要点感知 乘法交换律:两个数相乘,交换因数的位置,积相等.即ab =____; 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即(ab)c =____;乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b +c)=____.预习练习1-1 计算1×2×12×(-2)的结果是( )A .1B .-1C .2D .-21-2 运用简便方法计算:(12-34)×4.知识点 有理数乘法的运算律 1.在2×(-7)×5=-7×(2×5)中,运用了( )A .乘法交换律B .乘法结合律C .乘法分配律D .乘法交换律和乘法结合律2.-45×(10-114+0.05)=-8+1-0.04,这个运算应用了( )A .加法结合律B .乘法结合律C .乘法交换律D .乘法分配律3.式子(12-310+25)×4×25=(12-310+25)×100=50-30+40中运用的运算律有( )A .乘法交换律和乘法结合律B .乘法交换律和分配律C .加法结合律和分配律D .乘法结合律和分配律4.计算(1112-76+34-1324)×(-48)的结果是( )A .2B .-2C .20D .-205.在算式-57×24+36×24-79×24=(-57+36-79)×24中,逆用了( )A .加法交换律B .乘法交换律C .乘法结合律D .乘法分配律6.计算1357×316, 最简便的方法是( )A .(13+57)×316B .(14-27)×316C .(16-227)×316D .(10+357)×3167.计算:(-8)×(-2)+(-1)×(-8)-(-3)×(-8)=____0.8.计算:25×(-0.125)× (-4)×(-45)×(-8)×114=____.9.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(____)=[4×(8×125)-5]×25(____)=4 000×25-5×25.(____)10.运用运算律进行简便运算:(1)(-10)×13×(-0.1)×6;(2)36×(-34-59+712);(3)(-5)×(+713)+7×(-713)-(+12)×(-713);(4)191617×15.11.用简便方法计算:-6×(-12)×(-0.5)×(-4),结果是( )A.6 B.3 C.2 D.112.下列计算(-55)×99+(-44)×99-99正确的是( ) A.原式=99×(-55-44)=-9 801B.原式=99×(-55-44+1)=-9 702C.原式=99×(-55-44-1)=-9 900D.原式=99×(-55-44-99)=-19 60213.下列变形不正确的是( )A.5×(-6)=(-6)×5B.(14-12)×(-12)=(-12)×(14-12)C.(-16+13)×(-4)=(-4)×(-16)+13×4D.(-25)×(-16)×(-4)=[(-25)×(-4)]×(-16) 14.用简便方法计算:(1)(-8)×(-5)×(-0.125);(2)(-112-136+16)×(-36);(3)0.7×149+234×(-15)+0.7×59+14×(-15);(4)-691516×(-8).15.学了有理数的运算后,老师给同学们出了一题.计算:191718×(-9),下面是两位同学的解法:小方:原式=-35918×9=-3 23118=-17912;小杨:原式=(19+1718)×(-9)=-19×9-1718×9=-17912.(1)两位同学的解法中,谁的解法较好.(2)请你写出另一种更好的解法.挑战自我16.对于两个整数a ,b ,有a ⊗b =(a +b)a ,a ⊕b =ab +1,求[(-2)⊗(-5)]⊕(-4).参考答案要点感知 ba ;a(bc);ab +ac.预习练习1-1 D1-2 原式=12×4-34×4=2-3=-1.1.D 2.D 3.D 4.A 5.D 6.C 7. 0. 8. 100.9. (乘法交换律)(乘法结合律) (乘法分配律)10. (1) 原式=(10×0.1)×(13×6)=2.(2) 原式=36×(-34)-36×59+36×712=-27-20+21=-26.(3) 原式=(-5)×713-7×713+12×713=(-5-7+12)×71 3=0×71 3=0.(4) 原式=(20-117)×15=300-15 17=2992 17.11.A 12.C 13.C14. (1) 原式=(-8)×(-0.125)×(-5) =1×(-5)=-5.(2) 原式=(-112)×(-36)+(-136)×(-36)+16×(-36)=3+1-6 =-2.(3) 原式=(0.7×149+0.7×59)+[234×(-15)+14×(-15)]=0.7×(149+59)+(-15)×(234+14)=0.7×2+(-15)×3 =1.4+(-45)=-43.6.(4) 原式=691516×8=(70-116)×8=70×8-116×8=560-1 2=5591 2.15. (1) 小杨的解法较好.(2) 191718×(-9)=(20-118)×(-9)=20×(-9)-118×(-9)=-180+1 2=-1791 2.挑战自我16.原式=[(-2-5)×(-2)]⊕(-4) =14⊕(-4)=14×(-4)+1=-55.。

第2章 7 第2课时 有理数的乘法运算律

第2章 7 第2课时 有理数的乘法运算律

5.计算: (1)(-172)×(-2)×(-4)×(-517)×(-25)×5; 解:原式=-(172×376)×(2×5)×(4×25) =-3×10×100 =-3000 (2)(1375-47+54)×(-35). 解:原式=1375×(-35)+(-47)×(-35)+54×(-35) =-17+20-28 =-25
1.填写计算过程中应用的运算律.
[(8×4)×125-5]×25
=[(4×8)×125-5]×25 =[4×(8×125)-5]×25
乘法交换律 乘法结合律
=4000×25-5×25
乘法分配律
2.计算:(-3.14)×5.597+(-31.4)×(-0.5597)= 0 .
3.计算:(12-56+152-274)×24 的结果是( D )
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

6.(-0.125)×20×(-8)×(-0.8)=[(-0.125)×(-8)]×[20×(-0.8)],运算
中没有运用的乘法运算律为( C )
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 10:00:40 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021

素材《有理数乘法的运算律》参考例题与练习苏科版

素材《有理数乘法的运算律》参考例题与练习苏科版

《有理数乘法的运算律》参照例题与练习( 一 ) 参照例题 [例 1]计算:(1)(11 7 313 ) × ( - 48)12 6 424(2)11× 5-( - 5 ) × 2 1+( - 1) ×52 772 27(3)4924×( - 5)25剖析: (1) 小题依据题的特色,可直接利用乘法对加法的分派律. (2) 小题依据算式特色,逆用乘法对加法的分派律进行.(3) 小题直接计算较麻烦,依据其特色,能够把被乘数拆成两项,而后用分派律计算 .解: (1) 原式 =11× ( - 48)+( - 7 ) × ( - 48)+ 3 × ( - 48)+( -13) × ( - 48)126 424=- 44+56+( - 36)+26=2(2) 原式 =1 1 × 5 + 5× 2 1+( - 1 ) ×527 7227= 5 × (1 1+2 1- 1) 7 2 2 2= 5×7572 2(3) 原式 =(50 - 1) × ( - 5)25=50× ( -5) - 1× ( - 5)25=- 250+ 1=- 249 4.55[例 2]在某地域,夏天高峰上的温度从山脚起每高升 100 米均匀降低 0.8 ℃ , 已知山脚的温度是 24 ℃ , 山顶的温度是4 ℃, 试求这座山的高度 .剖析:这是一道与实质联系密切的题,要弄清题意:已知山脚温度是 24 ℃ , 山顶温度 是 4 ℃,这时可知山脚与山顶的温度差是 20 ℃ . 题中又已知从山脚起每高升100 米均匀降低0.8 ℃ . 要求这座山的高度,只要知道温度差里有多少个0.8 ,高度就有多少个 100 米,这样,此题即可解出 .解:依据题意,得这座山的高度为:100×[ (24 - 4) ÷0.8 ] =100× 25=2500( 米 )( 二 ) 参照练习题1. 以下各式变形各用了哪些运算律:(1)12 ×25× ( - 1 ) × ( - 1 )= [ 12× ( - 1 ) ]×[ 25× ( -1) ]3 503 50(2)(61 122 ) × ( - 8)= 61× ( -8)+( 1 22 ) × ( -8)4 774 7 7(3)25 ×[1+( - 5)+(+ 8 ) ]× ( - 1 )=25 × ( - 1) ×[ ( - 5)+ 1 + 8 ]33 5533答案: (1) 乘法互换律和联合律(2) 加法联合律和乘法分派律(3) 乘法互换律和加法互换律2. 计算:(1)( - 125) × ( -25) × ( -5) × 2× ( -4) × 8(2)( -36) × ( - 45 7 )9 6 12(3)( - 56) × ( - 32)+( - 44) × 32 (4) - 5×111315(5)4 × ( - 96) × ( - 0.25) ×148- 59 1;(5)2答案: (1)1000000;(2)7;(3)+384;(4)33. 上午 6 点水箱里的温度是 78℃,今后每小时降落4.5 ℃ , 求下午 2 点水箱内的温度 .解:下午 2 点即为 14 点78- 4.5 × (14 - 6)=78 - 36=42( ℃ )所以,下午 2 时水箱内的温度是 42℃.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档