(完整版)平面向量应用举例练习题含答案
平面向量专题练习(带答案详解)
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
(完整版)平面向量练习题(附答案)
(完整版)平⾯向量练习题(附答案)平⾯向量练习题1 . AC DB CD BA 等于______________ .2. 若向量a =( 3, 2), b =( 0,—1),则向量2b —a的坐标是 _____________ .3. ______________ 平⾯上有三个点A (1, 3), B (2, 2), C (7, x),若/ ABC = 90°,贝U x 的值为 .4. _________________________________________________________________________ 向量a、b满⾜|a|=1,bl=J2 ,(a+b)丄(2a-b),则向量a与b的夹⾓为 _______________ .f f ⼻5. 已知向量a = (1 , 2), b = (3 , 1),那么向量2a ——b的坐标是___________ .6. 已知A (—1 , 2), B (2 , 4), C (4, —3), D (x , 1),若AB 与CD 共线,则| BD |的值等于________ .7. 将点A (2 , 4)按向量a =(—5, —2)平移后,所得到的对应点A'的坐标是 ______ .8. 已知a=(1, —2),b=(1,x),若a丄b,则x 等于__9. 已知向量a,b的夹⾓为120,且|a|=2,|b|=5则(2a-b) ? a= _______10. 设a=(2,—3),b=(x,2x),且3a- b=4,则x 等于____11. 已知AB (6,1),BC (x,y),CD ( 2, 3),且BC // DA ,则x+2y 的值为________________12. 已知向量a+3b,a-4b分别与7a-5b,7a-2b垂直,且|a|z 0,|b|z 0,贝U a与b的夹⾓为__________uuu uuu imr13. 在⼛ABC中,O为中线AM上的⼀个动点,若AM=2 ,则OA OB OC 的最⼩值是___________________ .14. ___________________________________________________________________________将圆x2y22按向量v= (2 , 1 )平移后,与直线x y 0相切,则⼊的值为______________________ .⼆.解答题。
高中数学第二章平面向量向量应用举例例题与探究(含解析)
2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
平面向量及其应用经典试题(含答案)百度文库
一、多选题1.题目文件丢失!2.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 3.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 4.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)5.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<6.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-7.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D .38.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列各组向量中,不能作为基底的是( )A .()10,0e =,()21,1=eB .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e10.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=11.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=12.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=- 13.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同 14.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =15.题目文件丢失!二、平面向量及其应用选择题16.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7217.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( )A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭ 19.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形20.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个21.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形22.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC的面积为1),则b c +=( )A .5B.C .4D .1623.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13-D .34-24.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能25.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.题目文件丢失!27.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .228.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B C .-4 D .429.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .430.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8331.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( )A .()8bc b c +>B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( )A .(-∞B .)+∞C .(-∞D .)+∞33.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形34.题目文件丢失!35.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.BD 【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a ba b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.3.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题.【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a ba b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.4.ABC 【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C .()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.5.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.6.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.7.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,.故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.8.BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确; 对于C ,,则或与共线,故C 错误; 对于D ,在四边形中,若解析:BD 【分析】根据平面向量的数量积及平行向量共线定理判断可得; 【详解】解:对于A ,00a ⨯=,故A 错误; 对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD 【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属于基础题.10.ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知成立, 故也成立;由向量加法的三角形法则,知成立,不成立. 故选:ABD 【点睛】 本题主要考查解析:ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立. 故选:ABD 【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.11.AB【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为,正确;,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】本题主要考查了向量加法的解析:AB 【解析】 【分析】根据向量加法化简即可判断真假. 【详解】 因为0ABBA AB AB,正确;AB BCAC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B . 【点睛】本题主要考查了向量加法的运算,属于容易题.12.AB 【分析】若,则反向,从而; 若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立. 【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.13.AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.14.ABD 【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确. 对解析:ABD 【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确. 故选:ABD . 【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.15.无二、平面向量及其应用选择题16.B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题. 17.C 【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ⋅=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 18.C 【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 19.D 【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状. 【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B , 所以()sin 0B A -=,所以A B =, 又因为2B A C B π=+=-,所以3B π=,所以3A B π==,所以ABC 是等边三角形.故选:D. 【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 20.B 【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误. 【详解】①由正弦定理及大边对大角可知①正确; ②可得A B =或2A B π+=,ABC 是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sin A B B A C -=, 结合()sin sin sin cos sin cos C A B A B B A =+=+可知cos sin 0=A B ,因为sin 0B ≠,所以cos 0A =, 因为0A π<<,所以2A π=,因此③正确;④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin A ⎫∈⎪⎪⎝⎭,即)b ∈,故④错误.故选:B 【点睛】本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题. 21.A 【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<< 90A ∴=︒,则此三角形形状为直角三角形. 故选:A 【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 22.C 【分析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可. 【详解】ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABCSbc A ===-, ∴bc=6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题. 23.B 【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果. 【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+,56λ∴=-,16μ=,23λμ∴+=-.故选:B. 【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题. 24.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
(完整版)平面向量练习题集答案(可编辑修改word版)
a •aa •a平面向量练习题集答案典例精析题型一向量的有关概念【例1】下列命题:①向量AB 的长度与BA 的长度相等;②向量a 与向量b 平行,则 a 与 b 的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB 与向量CD 是共线向量,则A、B、C、D 必在同一直线上.其中真命题的序号是.【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB 与CD 是共线向量,则A、B、C、D 可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.【变式训练1】下列各式:①|a|=;②(a •b) •c=a •(b •c);③OA -OB =BA ;④在任意四边形ABCD 中,M 为AD 的中点,N 为BC 的中点,则AB +DC =2 MN ;⑤a=(cos α,sin α),b=(cos β,sin β),且a 与 b 不共线,则(a+b)⊥(a-b).其中正确的个数为( )A.1B.2C.3D.4【解析】选D.| a|=正确;(a •b) •c≠a •(b •c);OA -OB =BA 正确;如下图所示,MN = MD + DC + CN 且MN = MA + AB + BN ,两式相加可得2 MN =AB +DC ,即命题④正确;因为a,b 不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得(a+b)⊥(a-b).所以命题①③④⑤正确.题型二与向量线性运算有关的问题【例2】如图,ABCD 是平行四边形,AC、BD 交于点O,点M 在线段DO上,且 DM = 1 DO ,点 N 在线段 OC 上,且ON = 1OC ,设 AB =a , AD =b ,试用 a 、b 表示 AM , AN ,33MN .【解析】在▱ABCD 中,AC ,BD 交于点 O ,1 1 1所以 DO = DB = ( AB - AD )= (a -b ),2 2 2 AO = OC =1 AC =1( AB + AD )=1+b ).(a2 2 2 1 1又 DM = DO , ON = OC ,3 31所以 AM = AD + DM =b + DO31 1 1 5 =b + × (a -b )= a + b ,3 2 6 6AN = AO + ON = OC 1+ OC34 4 1 2 = OC = × (a +b )= (a +b ). 3 3 2 3所以 MN = AN - AM 2 1 5 1 1 = (a +b )-( a + b )= a - b . 3 6 6 2 6【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.【变式训练 2】O 是平面 α 上一点,A 、B 、C 是平面 α 上不共线的三点,平面 α 内的动点 P 满足OP =1OA +λ( AB + AC ),若 λ= 时,则 PA • ( PB + PC )的值为 .2【解析】由已知得OP - OA =λ( AB + AC ),1 1即 AP =λ( AB + AC ),当 λ= 时,得 AP = ( AB + AC ),2 2所以 2 AP = AB + AC ,即 AP - AB = AC - AP , 所以 = ,所以 + = + =0,所以 PA • ( PB + PC )= PA • 0=0,故填 0. 题型三 向量共线问题【例 3】 设两个非零向量 a 与 b 不共线.(1) 若 AB =a +b , BC =2a +8b , CD =3(a -b ), 求证:A ,B ,D 三点共线;(2)试确定实数 k ,使 k a +b 和 a +k b 共线.【解析】(1)证明:因为 AB =a +b , BC =2a +8b , CD =3(a -b ), 所以 BD = BC + CD =2a +8b +3(a -b )=5(a +b )=5 AB , 所以 , 共线.又因为它们有公共点 B , 所以 A ,B ,D 三点共线. (2)因为 k a +b 和 a +k b 共线, 所以存在实数 λ,使 k a +b =λ(a +k b ), 所以(k -λ)a =(λk -1)b .因为 a 与 b 是不共线的两个非零向量,所以 k -λ=λk -1=0,所以 k 2-1=0,所以 k =±1.【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.【变式训练 3】已知 O 是正三角形 BAC 内部一点, OA +2 OB +3 OC =0,则△ OAC 的面积与△OAB 的面积之比是()3 A.2 2 B.3 1 C.2D.3【解析】如图,在三角形 ABC 中, OA +2 OB +3 OC =0,整理可得OA + OC +2( OB + OC )=0.1令三角形 ABC 中 AC 边的中点为 E ,BC 边的中点为 F ,则点 O 在点 F 与点 E 连线的 处,即 OE =2OF .31 h h 1设三角形 ABC 中 AB 边上的高为 h ,则 S △OAC =S △OAE +S △OEC = • OE • ( + )= OE ·h ,2 2 2 21 1 1S △OAB = AB • h = AB ·h ,2 2 42由于 AB =2EF ,OE = EF ,所以 AB =3OE ,3 1S △ OAC OE • h 2 所以 = 2 = .故选 B.S △ OAB 总结提高1 AB • h 341. 向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形.2. 判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3. 当向量 a 与 b 共线同向时,|a +b |=|a |+|b |;当向量 a 与 b 共线反向时,|a +b |=||a |-|b ||; 当向量 a 与 b 不共线时,|a +b |<|a|+|b |.典例精析题型一 平面向量基本定理的应用【例 1】如图▱ABCD 中,M ,N 分别是 DC ,BC 中点.已知 AM =a , AN =b ,试用 a ,b 表示 AB , AD 与 AC【解析】易知 AM = AD + DM1= AD + AB ,21AN = AB + BN = AB + AD ,2⎧AD + 1 AB = a , ⎪即⎨⎪AB + ⎩ 2 1AD = b . 2 2 2所以 AB = (2b -a ), AD = (2a -b ).3 32所以 AC = AB + AD = (a +b ).3【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.【变式训练1】已知D 为△ABC 的边BC 上的中点,△ABC 所在平面内有一点P ,满足 PA + BP + CP =| PD |0,则1 等于( )1A.3B.2C.1D.2【解析】由于 D 为 BC 边上的中点,因此由向量加法的平行四边形法则,易知 PB + PC =2 PD ,因| PD |此结合 PA + BP + CP =0 即得 PA =2 PD ,因此易得 P ,A ,D 三点共线且 D 是 PA 的中点,所以即选 C.题型二 向量的坐标运算【例 2】 已知 a =(1,1),b =(x ,1),u =a +2b ,v =2a -b . (1)若 u =3v ,求 x ;(2)若 u ∥v ,求 x . 【解析】因为 a =(1,1),b =(x ,1),所以 u =(1,1)+2(x ,1)=(1,1)+(2x ,2)=(2x +1,3), v =2(1,1)-(x ,1)=(2-x ,1).=1,⎪3 3 3⎨(1)u =3v ⇔(2x +1,3)=3(2-x ,1) ⇔(2x +1,3)=(6-3x ,3), 所以 2x +1=6-3x ,解得 x =1. (2)u ∥v ⇔(2x +1,3)=λ(2-x ,1)⎧2x +1 = (2 - x ),⇔ ⎩3 =⇔(2x +1)-3(2-x )=0⇔x =1.【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. n π n π【变式训练 2】已知向量 a n =(cos 7 ,sin 7 )(n ∈N *),|b|=1.则函数 y =|a 1+b|2+|a 2+b|2+|a 3+b|2+…+|a 141+b|2 的最大值为.π【解析】设 b =(cos θ,sin θ),所以 y =|a 1+b|2+|a2+b|2+|a 3+b|2+…+|a 141+b|2=(a 1)2+b 2+2(cos7,sin π 141π 141π π 7)(cos θ,sin θ)+… +(a 141)2+b 2+2(cos 7 ,sin 7 )(cos θ,sin θ)=282+2cos(7-θ),所以 y 的最大值为 284. 题型三 平行(共线)向量的坐标运算【例 3】已知△ABC 的角 A ,B ,C 所对的边分别是 a ,b ,c ,设向量 m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2). (1)若 m ∥n ,求证:△ABC 为等腰三角形; π(2) 若 m ⊥p ,边长 c =2,角 C =3,求△ABC 的面积.【解析】(1)证明:因为 m ∥n ,所以 a sin A =b sin B . 由正弦定理,得 a 2=b 2,即 a =b .所以△ABC 为等腰三角形. (2)因为 m ⊥p ,所以 m ·p =0,即 a (b -2)+b (a -2)=0,所以 a +b =ab .由余弦定理,得 4=a 2+b 2-ab =(a +b )2-3ab , 所以(ab )2-3ab -4=0. 所以 ab =4 或 ab =-1(舍去). 1 1 3 所以 S △ABC = ab sin C = ×4× = 3.2 2 2 【点拨】设 m =(x 1,y 1),n =(x 2,y 2),则 ①m ∥n ⇔x 1y 2=x 2y 1;②m ⊥n ⇔x 1x 2+y 1y 2=0.【变式训练 3】已知 a ,b ,c 分别为△ABC 的三个内角 A ,B ,C 的对边,向量 m =(2cos C -1,-2),n =(cos C ,cos C +1).若 m ⊥n ,且 a +b =10,则△ABC 周长的最小值为()A.10-5B.10+5C.10-2D.10+2 1 【解析】由 m ⊥n 得 2cos 2C -3cos C -2=0,解得 cos C =- 或cos C =2(舍去),所以 c 2=a 2+b 2-2ab cos 2C =a 2+b 2+ab =(a +b )2-ab =100-ab ,由 10=a +b ≥2 ab ⇒ab ≤25,所以 c 2≥75,即 c ≥5 3,所以 a +b +312 4 ×2 3 c ≥10+5 3,当且仅当 a =b =5 时,等号成立.故选 B.典例精析题型一 利用平面向量数量积解决模、夹角问题 【例 1】 已知 a ,b 夹角为 120°,且|a |=4,|b |=2,求: (1)|a +b |;(2)(a +2b ) ·(a +b );(3) a 与(a +b )的夹角 θ.【解析】(1)(a +b )2=a 2+b 2+2a ·b 1 =16+4-2×4×2× =12,2 所以|a +b |=2 3.(2)(a +2b ) ·(a +b )=a 2+3a ·b +2b 2 1 =16-3×4×2× +2×4=12.21(3)a ·(a +b )=a 2+a ·b =16-4×2× =12.2 所以 cos θ= a • (a + b ) = = | a || a + b |3 ,所以 2 πθ=6.【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题.【变式训练 1】已知向量 a ,b ,c 满足:|a|=1,|b|=2,c =a +b ,且 c ⊥a ,则 a 与 b 的夹角大小是 .【解析】由 c ⊥a ⇒c ·a =0⇒a 2+a ·b =0, 1所以 cos θ=- ,所以 θ=120°.2题型二 利用数量积来解决垂直与平行的问题【例 2】 在△ABC 中, AB =(2,3), AC =(1,k ),且△ABC 的一个内角为直角,求 k 的值.【解析】①当∠A =90°时,有 AB · AC =0, 2 所以 2×1+3·k =0,所以 k =- ;3②当∠B =90°时,有 AB · BC =0,又 BC = AC - AB =(1-2,k -3)=(-1,k -3), 11 所以 2×(-1)+3×(k -3)=0⇒k = 3 ;③当∠C =90°时,有 AC · BC =0, 所以-1+k ·(k -3)=0, 所以 k 2-3k -1=0⇒k =3 ±213.2 113 ±13所以k 的取值为-,或.3 3 2【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角.【变式训练2】△ABC 中,AB=4,BC=5,AC=6,求AB ·BC +BC ·CA +CA ·AB .【解析】因为2 AB ·BC +2 BC ·CA +2 CA ·AB=( AB ·BC +CA ·AB )+( CA ·AB +BC ·CA )+( BC ·CA +BC ·AB )( AB +BC )+BC ·( CA +AB )( BC +CA )+CA ·=AB ·C B=AB ·BA +C A ·AC +BC ·=-42-62-52=-77.77所以AB ·BC +BC ·CA +CA ·AB =-.2题型三平面向量的数量积的综合问题π,构成一个平面斜坐标系,e1,e2分别是与Ox,Oy 同向【例3】数轴Ox,Oy 交于点O,且∠xOy=3的单位向量,设P 为坐标平面内一点,且OP =x e1+y e2,则点P 的坐标为(x,y),已知Q(-1,2). (1)求| OQ |的值及OQ 与Ox 的夹角;(2)过点Q 的直线l⊥OQ,求l 的直线方程(在斜坐标系中).1e2=,【解析】(1)依题意知,e1·2且OQ =-e1+2e2,所以OQ 2=(-e1+2e2)2=1+4-4e1·e2=3.所以| OQ |=3.e1=-e21+2e1•e2=0.又OQ ·e1=(-e1+2e2) ·所以OQ ⊥e1,即OQ 与Ox 成90°角.(2)设l 上动点P(x,y),即OP =x e1+y e2,又OQ ⊥l,故OQ ⊥ QP ,(-e1+2e2)=0.即[(x+1)e1+(y-2)e2] ·1所以-(x+1)+(x+1)-(y-2) ·+2(y-2)=0,2所以y=2,即为所求直线l 的方程.【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解析几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势.k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k 2+a 2k 4 k + k 2+a 2k 4 k + k 2+a 2k 4 【变式训练 3】在平面直角坐标系 xOy 中,点 A (5,0).对于某个正实数 k ,存在函数 f (x )=ax 2(a >0),使得OP =λ • (OAOQ+ | OQ |)(λ 为常数),其中点 P ,Q 的坐标分别为(1,f (1)),(k ,f (k )),则 k 的取值范围为()A.(2,+∞)B.(3,+∞)C.(4,+∞)D.(8,+∞)【解析】如图所示,设OA= OM ,| OA |OQ= ON , OM + ON = OG ,则OP =λ OG .因为 P (1,a ), | OQ | kak 2kak 2Q (k ,ak 2), OM =(1,0), ON =(, ), OG =( +1, ),则直线 OG 的ak 2 ak 2方程为 y = x ,又OP =λ OG ,所以 P (1,a )在直线 OG 上,所以 a = ,所以 a 2=1-2k . 因为| OP |=1+a 2>1,所以 1 2 0,所以 k >2. 故选 A.- > k。
平面向量练习题及答案
平面向量练习题及答案1. 向量初步概念和运算(1) 已知向量a=3i+4j,求向量a的模长。
答案:|a| = √(3^2 + 4^2) = 5(2) 已知向量b=-2i+5j,求向量b的模长。
答案:|b| = √((-2)^2 + 5^2) = √29(3) 已知向量c=2i+3j,求向量c的模长和方向角(与x轴正方向的夹角)。
答案:|c| = √(2^2 + 3^2) = √13方向角θ = arctan(3/2)2. 向量的线性运算(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a+b。
答案:a+b = (3-2)i + (4+5)j = i + 9j(2) 已知向量a=3i+4j,向量b=2i-7j,求向量a-b。
答案:a-b = (3-2)i + (4-(-7))j = i + 11j(3) 已知向量a=3i+4j,求向量-2a的模长。
答案:|-2a| = |-2(3i+4j)| = |-6i-8j| = √((-6)^2 + (-8)^2) = 103. 向量的数量积与投影(1) 已知向量a=3i+4j,向量b=-2i+5j,求向量a·b的值。
答案:a·b = (3*-2) + (4*5) = -6 + 20 = 14(2) 已知向量a=3i+4j,向量b=-2i+5j,求向量a在b方向上的投影。
答案:a在b方向上的投影= (a·b)/|b| = 14/√294. 向量的夹角和垂直判定(1) 判断向量a=3i+4j和向量b=-2i+5j是否相互垂直。
答案:两个向量相互垂直的条件是a·b = 0。
计算得到a·b = 14,因此向量a和向量b不相互垂直。
(2) 已知向量a=3i+4j,向量b=-8i+6j,求向量a和向量b的夹角。
答案:向量a和向量b的夹角θ = arccos((a·b)/(∣a∣*∣b∣)) = arccos((-66)/(√25*√100))5. 向量共线和平面向量的应用(1) 已知向量a=3i+4j,向量b=-6i-8j,判断向量a和向量b是否共线。
平面向量习题及答案
平面向量习题及答案平面向量习题及答案引言:平面向量是高中数学中的重要内容之一,它在几何、代数和物理等领域中都有广泛的应用。
通过解决平面向量习题,我们可以加深对平面向量的理解,提高解题能力。
本文将介绍几个常见的平面向量习题,并给出详细的解答过程。
一、向量的加法和减法1. 已知向量a=2i+3j,b=4i-5j,求a+b和a-b。
解答:a+b=(2+4)i+(3-5)j=6i-2ja-b=(2-4)i+(3+5)j=-2i+8j2. 已知向量a=3i+2j,b=-i+4j,求2a-3b。
解答:2a-3b=2(3i+2j)-3(-i+4j)=6i+4j+3i-12j=9i-8j二、向量的数量积和向量积1. 已知向量a=2i+3j,b=-i+4j,求a·b和|a×b|。
解答:a·b=(2)(-1)+(3)(4)=-2+12=10|a×b|=|(2)(4)-(3)(-1)|=|8+3|=112. 已知向量a=3i+2j,b=4i-5j,求a×b的模长和方向角。
解答:a×b=(3)(-5)-(2)(4)=-15-8=-23|a×b|=|-23|=23设a×b与x轴正向的夹角为θ,则cosθ=(4)/√(4^2+(-23)^2)=4/√545θ≈84.3°三、向量的共线与垂直1. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否共线。
解答:若a和b共线,则存在实数k,使得a=kb。
2i+3j=k(-4i-6j)2i+3j=-4ki-6kj2=-4k,3=-6k解得k=-1/2所以,a和b共线。
2. 已知向量a=2i+3j,b=-4i-6j,判断a和b是否垂直。
解答:若a和b垂直,则a·b=0。
a·b=(2)(-4)+(3)(-6)=-8-18=-26-26≠0所以,a和b不垂直。
结论:通过解答上述平面向量习题,我们可以巩固向量的加法、减法、数量积、向量积等基本概念和运算规则。
平面向量及其应用练习题(有答案) 百度文库
一、多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是43.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =36.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD7.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-8.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 10.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅- 12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形17.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥18.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:5 19.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形20.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +21.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .7323D .832323.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A .3B .1C .12D .3224.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =,则边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 25.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33(,)2B .3(,3)2 C .3(,3]2D .3(,3)226.题目文件丢失!27.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 28.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-429.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B .3C .3D .30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF的中点,若1AM =,则λμ+的最大值为( )A B .3C .2D 31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,角A ,B ,C所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A .4B .14C .4D .234.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( )A .(-8,1)B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确;若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】 由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=, ∴sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<,故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.5.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =︒,三角形面积33S =11sin 3sin 603322S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,13a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,,故A 正确;对于B ,,故B 错误;对于C ,,故C 错误;对于D ,,,故D 正确.故选:AD.【点睛】本题考查三角形解析:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,2cos AB AB ACAB AC A AB AC AB AC ,故A 正确; 对于B ,2cos cos CB CB AC CB AC C CB AC C CB AC CB AC ,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BD BD AB ,故C 错误; 对于D ,2cos BDBA BD BA BD ABD BA BD BD BA ,2cos BD BC BDBC BD CBD BC BD BD BC ,故D 正确. 故选:AD.【点睛】 本题考查三角形中的向量的数量积问题,属于基础题.7.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】 对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 8.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且, 所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.BD【分析】由三角形的面积公式求出即得解.【详解】 因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=, 0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.17.A【分析】直接利用向量的基础知识的应用求出结果.对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.18.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.19.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 20.D根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 21.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.22.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.23.B【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a.【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a c b B ac π+-===, 因此13a ccosπ==选B.【点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】 0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B c C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 25.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos sin )66223A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.26.无27.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 28.D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC +=设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系. 29.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 342ABC S bc A c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 30.C 【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立. 故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 33.B 【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.A 【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形. 【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-=, ∴22222a a c b c ac +-= 220c b ∴-= ,∴c b ABC =,是等腰三角形. 【点睛】本题考查余弦定理的应用问题,是基础题. 35.B 【分析】由向量相等的坐标表示,列方程组求解即可. 【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭,故选B. 【点睛】本题考查了平面向量的坐标运算,属基础题.。
(完整版)《平面向量》测试题及答案
(完整版)《平面向量》测试题及答案《平面向量》测试题一、选择题1.若三点P (1,1),A (2,-4),B (x,-9)共线,则()A.x=-1B.x=3C.x=29D.x=512.与向量a=(-5,4)平行的向量是()A.(-5k,4k )B.(-k 5,-k 4)C.(-10,2)D.(5k,4k) 3.若点P 分所成的比为43,则A 分所成的比是()A.73B. 37C.- 37D.-73 4.已知向量a 、b ,a ·b=-40,|a|=10,|b|=8,则向量a 与b 的夹角为() A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a|=4,|b|=5,则向量a ·b=() A.103B.-103C.102D.106.(浙江)已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.? ????79,73B.? ????-73,-79C.? ????73,79D.? ????-79,-737.已知向量a=(3,4),b=(2,-1),如果向量(a+x )·b 与b 垂直,则x 的值为() A.323B.233C.2D.-52 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是() A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9.设四边形ABCD 中,有DC =21,且||=|BC |,则这个四边形是() A.平行四边形 B.矩形 C.等腰梯形 D.菱形10.将y=x+2的图像C 按a=(6,-2)平移后得C ′的解析式为()A.y=x+10B.y=x-6C.y=x+6D.y=x-1011.将函数y=x 2+4x+5的图像按向量a 经过一次平移后,得到y=x 2的图像,则a 等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题13.设向量a=(2,-1),向量b 与a 共线且b 与a 同向,b 的模为25,则b= 。
平面向量经典练习题(含答案)
平面向量经典练习题(含答案)1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是(8,22)。
2、已知向量a与b的夹角为60°,a=(3,4),|b|=1,则|a+5b|=√61.3、已知点A(1,2),B(2,1),若AP=(3,4),则BP=(-1,-1)。
4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|=2.5、向量a、b满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a与b的夹角为30°。
6、设向量a,b满足|a+b|=10,|a-b|=6,则a·b=7.7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是60°。
8、在△ABC中,D为AB边上一点,AD=2DB,CD=3CA+mCB,则m=1.9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是53.13°。
10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD上,且AP=2PD,则点C的坐标是(6,-3)。
二、选择题1、设向量OA=(6,2),OB=(-2,4),向量OC垂直于向量OB,向量BC平行于OA,若OD+OA=OC,则OD坐标=(11,6)。
2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标(4,2)。
3、已知向量a,b,若a为单位向量,且|a|=|2b|,则(2a+b)⊥(a-2b),则向量a与b的夹角是30°。
4、已知向量ab的夹角60°,|a|=2,b=(-1,√3),则|2a-3b|=13.5、在菱形ABCD中,∠DAB=60°,|2·0C+CD|=4,则|BC+CD|=2.6、略。
7、略。
8、若向量a=(3,4),向量b=(2,1),则a在b方向上的投影为2.9、略。
(完整版)平面向量专项训练(含答案)
平面向量专题训练知识点回顾1.向量的三种线性运算及运算的三种形式。
向量的加减法,实数与向量的乘积,两个向量的数量积都称为向量的线性运算,前两者的结果是向量,两个向量数量积的结果是数量。
每一种运算都可以有三种表现形式:图形、符号、坐标语言。
主要内容列表如下:运 算图形语言符号语言坐标语言加法与减法→--OA +→--OB =→--OC→--OB -→--OA =→--AB记→--OA =(x 1,y 1),→--OB =(x 1,y 2) 则→--OA +→--OB =(x 1+x 2,y 1+y 2)AB OB --→=u u u r -→--OA =(x 2-x 1,y 2-y 1)→--OA +→--AB =→--OB实数与向量 的乘积→--AB =λ→aλ∈R记→a =(x,y) 则λ→a =(λx,λy)两个向量 的数量积→a ·→b =|→a ||→b | cos<→a ,→b >记→a =(x 1,y 1), →b =(x 2,y 2) 则→a ·→b =x 1x 2+y 1y 2(3)两个向量平行 :设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔a b λ=r r⇔x 1y 2-x 2y 1=0(4)两个向量垂直:设→a =(x 1,y 1), →b =(x 2,y 2),则→a ⊥→b⇔a 0b •=r r ⇔x 1x 2+y 1y 2=0 课堂精练一、选择题1. 已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线2. 已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93--ECBA 3.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d 那么 ( ) A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向 4已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.设P 是△ABC 所在平面内的一点,2BC BA BP +=u u u r u u u r u u u r,则( )A.0PA PB +=u u u r u u u r rB.0PC PA +=u u u r u u u r rC.0PB PC +=u u u r u u u r rD.0PA PB PC ++=u u u r u u u r u u u r r6.已知向量a = (2,1),a ·b = 10,︱a + b ︱=b ︱=( ) 7.设a 、b 、c 是单位向量,且a ·b =0,则()()a c bc -•-的最小值为( )A.2-2C.1-D.18已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a( )A .1BC .2D .49平面向量a 与b 的夹角为060,(2,0)a =,1b= 则2ab +=( )B.10.若向量a=(1,1),b=(-1,1),c=(4,2),则c=( )A.3a+bB. 3a-bC.-a+3bD. a+3b11.如图1, D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则 ( )A .0AD BE CF ++=u u u r u u u r u u u r rB .0BD CF DF -+=u u u r u u u r u u u r rC .0AD CE CF +-=u u u r u u u r u u u r rD .0BD BE FC --=u u u r u u u r u u u r r12.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( )A.AO OD =u u u r u u u rB.2AO OD =u u u r u u u rC.3AO OD =u u u r u u u rD.2AO OD =u u u r u u u r13.设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a ,( )A .150° B.120° C.60° D.30°14.已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.1615.已知1,6,()2==-=g a b a b a ,则向量a 与向量b 的夹角是( )A .6πB .4π C .3π D .2π16.已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是 ( ) A .-2B .0C .1D .217.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ( )A .2133+b cB .5233-c bC .2133-b c D .1233+b c 18.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =u u u r ,(1,3)AC =u u u r ,则BD =u u u r ( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)19.设)2,1(-=,)4,3(-=,)2,3(=则=⋅+)2( ( )A.(15,12)-B.0C.3-D.11- 二、填空题1.若向量a r ,b r 满足12a b ==r r ,且a r 与b r 的夹角为3π,则a b +=r r .2.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ3.已知向量a 与b 的夹角为120o,且4==a b ,那么(2)+gb a b 的值为4.已知平面向量(2,4)a =r ,(1,2)b =-r .若()c a a b b =-⋅r r r r r ,则||c =r____________.5.a r ,b r 的夹角为120︒,1a =r,3b =r 则5a b -=r r .6.已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是7.若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+=8.已知向量(3,1)a =r ,(1,3)b =r , (,2)c k =r ,若()a c b -⊥r r r则k = .9.已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = .10.在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为__________.平面向量专题训练答案:一选择题1 C2 D3 D 4D 5 B 6 C 7 D 8 C 9 B 10 B11 A 12 A 13 B 14 A 15 C 16 D 17 A 18 B 19 C 二 填空题2 23 0 _4 285 76 -37 -18 09 5 10_(0,-2)。
平面向量练习题大全及答案
平面向量练习题大全及答案平面向量练习题大全及答案平面向量是数学中的重要概念,广泛应用于几何、物理等领域。
通过练习平面向量的题目,可以帮助我们巩固和深化对平面向量的理解。
本文将为大家提供一些平面向量的练习题,并给出详细的答案解析。
一、基础练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的和。
解析:向量的和等于对应分量相加,所以a + b = (2 + (-1), 3 + 4) = (1, 7)。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的差。
解析:向量的差等于对应分量相减,所以a - b = (3 - 5, -2 - 1) = (-2, -3)。
3. 已知向量a = (4, 5),求向量a的模长。
解析:向量的模长等于各分量平方和的平方根,所以|a| = √(4^2 + 5^2) =√(16 + 25) = √41。
4. 已知向量a = (3, -2),求向量a的单位向量。
解析:向量的单位向量等于将向量除以其模长,所以a的单位向量为a/|a| = (3/√41, -2/√41)。
二、综合练习题1. 已知向量a = (2, 3)和向量b = (-1, 4),求向量a与向量b的数量积。
解析:向量的数量积等于对应分量相乘再相加,所以a·b = 2*(-1) + 3*4 = -2 + 12 = 10。
2. 已知向量a = (3, -2)和向量b = (5, 1),求向量a与向量b的向量积。
解析:向量的向量积等于两个向量的模长乘以它们夹角的正弦值,所以a×b =|a|*|b|*sinθ,其中θ为a和b的夹角。
首先计算|a|和|b|:|a| = √(3^2 + (-2)^2) = √(9 + 4) = √13,|b| = √(5^2 +1^2) = √(25 + 1) = √26。
然后计算夹角θ的正弦值:sinθ = |a×b|/(|a|*|b|),其中|a×b|为向量a×b的模长。
高中数学第六章平面向量及其应用经典大题例题(带答案)
高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。
平面向量及其应用练习题(有答案)
一、多选题1.已知非零平面向量a ,b ,c ,则( )A .存在唯一的实数对,m n ,使c ma nb =+B .若0⋅=⋅=a b a c ,则//b cC .若////a b c ,则a b c a b c =++++D .若0a b ⋅=,则a b a b +=- 2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是4 4.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是5.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( )A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫ ⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭6.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C =B .若sin 2sin 2A B =,则a b =C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C7.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6π B .3π C .23π D .2π 8.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 9.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-10.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=11.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=14.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =15.已知ABC ∆的面积为32,且2,b c ==,则A =( )A .30°B .60°C .150°D .120°二、平面向量及其应用选择题16.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2317.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.已知非零向量AB ,AC 满足0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,且1||||2AB AC AB AC =,则ABC ∆的形状是( ) A .三边均不相等的三角形 B .直角三角形 C .等腰(非等边)三角形D .等边三角形19.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,42c =45B =︒,则sin C 的值等于( )A .441B .45C .425D .414121.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S = A .310 B .38C .25D .42122.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .3C .12D .18323.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米24.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭25.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 19.题目文件丢失!27.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形28.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .229.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .430.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-31.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .432.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定33.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,BC 3EC =,F 为AE 的中点,则BF =( )A .2133AB AD - B .1233AB AD - C .2133AB AD -+ D .1233AB AD -+34.题目文件丢失!35.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-【参考答案】***试卷处理标记,请不要删除一、多选题 1.BD【分析】假设与共线,与,都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若与共线,与,都 解析:BD 【分析】假设a 与b 共线,c 与a ,b 都不共线,即可判断A 错;根据向量垂直的数量积表示,可判断B 正确;向量共线可以是反向共线,故C 错;根据向量数量积法则,可判断D 正确. 【详解】A 选项,若a 与b 共线,c 与a ,b 都不共线,则ma nb +与c 不可能共线,故A 错;B 选项,因为a ,b ,c 是非零平面向量,若0⋅=⋅=a b a c ,则a b ⊥,a c ⊥,所以//b c ,即B 正确;C 选项,因为向量共线可以是反向共线,所以由////a b c 不能推出a b c a b c =++++;如a 与b 同向,c 与a 反向,且a b c +>,则a b c a b c =+-++,故C 错;D 选项,若0a b ⋅=,则()222222a b a b a b a b a b+=+=++⋅=+,()222222a b a ba b a b a b -=-=+-⋅=+,所以a b a b +=-,即D 正确.故选:BD. 【点睛】本题主要考查共线向量的有关判定,以及向量数量积的相关计算,属于基础题型.2.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.3.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc ==因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.4.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.5.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩, 解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.6.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b c R A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b c R A B C===,则2sin 2sin 2sin sin sin sin b c R B R C R B C B C++==++,故D 正确. 故选:ACD.【点睛】本题考查正弦定理的应用,属于基础题.7.AD 【分析】由余弦定理得,解得或,分别讨论即可.【详解】由余弦定理,得,即,解得或.当时,此时为等腰三角形,,所以;当时,,此时为直角三角形,所以.故选:AD【点睛】本题考查余弦解析:AD【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可.【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π.【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.8.AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D .【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D .【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a 与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC .【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题. 9.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 10.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB 正确,当不是单位向量时,不正确,,所以D 正确.故选:ABD解析:ABD【分析】 首先理解a a表示与向量a 同方向的单位向量,然后分别判断选项. 【详解】 a a 表示与向量a 同方向的单位向量,所以1a a =正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,a a a =不正确, cos 0a a a a a a a a a a⋅==⨯=,所以D 正确. 故选:ABD【点睛】本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解a a表示与向量a 同方向的单位向量.【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且,所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.ABD【分析】根据平行四边形及向量的加法法则即可判断.【详解】由向量加法的平行四边形法则,知成立,故也成立;由向量加法的三角形法则,知成立,不成立.故选:ABD【点睛】本题主要考查解析:ABD【分析】根据平行四边形及向量的加法法则即可判断.由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立.故选:ABD【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.14.ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等, 解析:ABD【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确.故选:ABD【点睛】本小题主要考查向量数乘运算,属于基础题.15.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD由三角形的面积公式求出sin A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.二、平面向量及其应用选择题16.A【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=, 所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭,则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 17.D【分析】先根据cos cos b A a B =得到,A B 之间的关系,再根据B 是,A C 的等差中项计算出B 的大小,由此再判断ABC 的形状.【详解】因为cos cos b A a B =,所以sin cos sin cos =B A A B ,所以()sin 0B A -=,所以A B =,又因为2B A C B π=+=-,所以3B π=, 所以3A B π==,所以ABC 是等边三角形.故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b 是,a c 的等差中项,则有2b a c =+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.D【分析】 先根据0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,判断出A ∠的角平分线与BC 垂直,进而推断三角形为等腰三角形进而根据向量的数量积公式求得C ,判断出三角形的形状.【详解】 解:0||||AB AC BC AB AC ⎛⎫+= ⎪ ⎪⎝⎭,||AB AB ,||AC AC 分别为单位向量, A ∴∠的角平分线与BC 垂直,AB AC ∴=, 1cos ||||2AB AC A AB AC ==, 3A π∴∠=,3B C A π∴∠=∠=∠=,∴三角形为等边三角形.故选:D .【点睛】本题主要考查了平面向量的数量积的运算,三角形形状的判断.考查了学生综合分析能力,属于中档题.19.C【分析】取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C .【点睛】本题考查了单位向量,意在考查学生的推断能力.20.B【分析】在三角形ABC 中,根据1a=,c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】 在三角形ABC 中, 1a=,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,13221252=+-⨯⨯=, 所以5b =,由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.A【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+.设AC 中点为M ,BC 中点为N ,则23OM ON =-,∵MN 为ABC 的中位线,且32OMON =, ∴36132255410OAC OMC CMN ABC ABC S S S S S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A . 22.A【分析】 由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤∴113sin 48123222ABC S ab C ∆=≤⨯⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值23.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.24.C【解析】【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围. 【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属25.A【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】 因为1a =,3b =,a 与b 的夹角为60︒, 所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 26.无27.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=,0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.28.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.29.D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD=AC+CD=AC+12CB=-CA-12BC=-b-12a,故①正确.②BE=BC+CE=BC+12 CA=a+12b,故②正确.③CF=CA+AE=CA+12AB=b+12(-a-b)=-12a+12b,故③正确.④AD+BE+CF=-DA+BE+CF =-(DC+CA)+BE+CF=-(12a+b)+a+12b-12a+12b=0,故④正确.故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.30.B【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD,BM,然后结合平面向量的运算法则即可求得最终结果.如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以: ()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.31.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.【详解】 根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=, 即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以25425422t t t t x +-+-≤≤, 54(13)t m m -=≤≤2254(2)178t t m ++---+=,当2m =时,22(2)1717288t m +--+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.32.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=, 所以AC AB CB →→→==,ABC 是等边三角形.故选:B【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题.33.C【分析】根据平面向量的三角形法则和共线定理即可得答案.【详解】 解:111222BF BA AF BA AE AB AD AB CE ⎛⎫=+=+=-+++ ⎪⎝⎭111223AB AD AB CB ⎛⎫=-+++ ⎪⎝⎭ 111246AB AD AB CB =-+++ ()111246AB AD AB CD DA AB =-+++++ 11112462AB AD AB AB AD AB ⎛⎫=-+++--+ ⎪⎝⎭ 111124126AB AD AB AB AD =-+++- 2133AB AD =-+ 故选:C .【点睛】本题考查用基底表示向量,向量的线性运算,是中档题.34.无35.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+, ∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=. 解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.。
平面向量及其应用练习题(有答案)
一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+3.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为2 4.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =35.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC << 6.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.ABC 中,4a =,5b =,面积53S =,则边c =( ) A .21B .61C .41D .258.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆外接圆半径为8779.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+10.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-12.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-13.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 17.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角18.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能19.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则::PAB PAC PBC S S S =△△△( )A .1∶2∶ 3B .1∶2∶1C .2∶1∶1D .1∶1∶220.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭21.在△ABC 中,内角A 、B 、C 所对边分别为a 、b 、c ,若2cosA 3cosB 5cosCa b c==,则∠B 的大小是( )A .12πB .6π C .4π D .3π 22.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)223.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪=++ ⎪⎝⎭,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心B .内心C .外心D .垂心24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 19.题目文件丢失!27.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-428.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .429.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( )A .3B .3C .2D 30.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .431.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B C .D32.已知ABC 中,1,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°33.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形35.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .300【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.ABD 【分析】 A.根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误; D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.3.CD 【分析】对于A ,利用平面向量的数量积运算判断;对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.4.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.5.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.6.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.7.AB 【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解. 【详解】中,因为,,面积, 所以,所以,解得或,当时,由余弦定理得:, 解得,当时,由余弦定理得:, 解得 所以或解析:AB 【分析】在ABC 中,根据4a =,5b =,由1sin 2ABCSab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABCS=所以1sin 2ABCSab C ==所以sin C =60C =或120C =, 当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】 本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题.8.ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯, 所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确;由正弦定理得:2sin c R C =,又237sin 1cos C C =-= 所以237R = ,解得:87R =,所以D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.9.ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确;对于B 选项,,由于为三解析:ABD【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD本题考查向量加法与减法的运算法则,是基础题.10.BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确;故选:BCD【点睛】本题考查了向量的定义和性质,属于简单题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.12.CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B 错误,D 正确;由,所以,故A 错误;由,所以,故C 正确.故选:CD【点睛】解析:CD【分析】 分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】 分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误;由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.13.BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确;向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误; AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.D【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +, E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).17.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确;,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.18.C【分析】 AB AB 和AC AC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC AB AC ⋅=可求出A ∠,即得三角形形状。
平面向量应用(一)(习题及答案)
AB ⋅ BC + ( AB ) ( AB ) AB ⋅ AC AB ⋅ CB BC ⋅ C A平面向量应用(一)(习题)1. 若−−→ −−→ −−→ 2 = 0 ,则△ABC 必定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形2. 若 O 是△ABC 所在平面内一点,且满足|OB -OC |=|OB +OC -2OA |,则△ABC 的形状为()A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形3. 已知△ABC 三个顶点 A ,B ,C ,若−−→ 2 = −−→ −−→+ −−→ −−→+ −−→ −−→ ,则△ABC 为() A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形−−→ −−→−−→ −−→ −−→ AB 4.已知非零向量 , 和 满足( + AC −−→ ) ⋅ 0 , AB AC BC −−→ −−→ | AB | | AC | BC = −−→ −−→且 AC ⋅ BC = −−→ −−→ | AC | ⋅ | BC | 2 ,则△ABC 为( )2 A .等边三角形B .等腰非直角三角形C .非等腰三角形D .等腰直角三角形5.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动−−→ −−→ −−→ −−→点 P 满足OP = OA + λ( AB + AC ) ,λ∈[0,+ ∞) ,则点 P 的轨 迹一定通过△ABC 的() A .外心 B .内心 C .重心 D .垂心16.O 是平面 ABC 内的一定点,P 是平面 ABC 内的一动点,若−−→ −−→ −−→ −−→ −−→ −−→ −−→ −−→ ( PB - PC ) ⋅ (OB + OC ) = (PC - PA ) ⋅ (OA + OC ) = 0 ,则 O 为△ABC 的() A .内心 B .外心 C .重心 D .垂心7. O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,若 −−→ 2 + −−→ 2 = −−→ 2 + −−→ 2 = −−→ 2 + −−→ 2 ,则O 是 (OA ) (BC ) (OB ) (CA ) (OC ) ( AB )△ABC 的() A .外心B .内心C .重心D .垂心−−→ −−→ −−→ −−→8. △ABC 的外接圆的圆心为 O ,若OH = OA + OB + OC 是△ABC 的() ,则 HA .外心B .内心C .重心D .垂心−−→ −−→ −−→9.已知 O ,N ,P 在△ABC 所在平面内,且| OA |=| OB |=| OC | , −−→ −−→ −−→ −−→ −−→ −−→ −−→ −−→ −−→NA + NB + NC = 0 ,且 PA ⋅ PB = PB ⋅ PC = PC ⋅ PA O ,N ,P 依次是△ABC 的() ,则点 A .重心 外心 垂心B .重心 外心 内心C .外心 重心 垂心D .外心 重心 内心10. 设 P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1= S △PBC ,λ2= S △PCA ,λ3= S △PAB ,定义 f (P )=(λ1,λ2,λ3),S △ A BC S △ A BC S △ ABC若 G 是△ABC 的重心,f (Q )=( 1 2 , 1 , 3 1 ),则( ) 6A .点 Q 在△GAB 内 B .点 Q 在△GBC 内C .点 Q 在△GCA 内D .点 Q 与点 G 重合233C . = 1 11. 如图,在△ABC 中,AD ,BE ,CF 分别是边 BC ,AC ,AB 上的中线,设它们的交点为 G ,则下列各式不正确的是() −−→ A . BG = 2 −−→ BE 3−−→ −−→ B . CG = 2GF −−→ 1 −−→ DG AG −−→ D . DA +−−→ FC = 1 −−→ BC 2 3 3 2 12. 已知点 O (0,0),A (0,b ),B (a ,a 3),若△OAB 为直角三角形,则必有() A .b =a 3B . b = a 3 + 1 aC . (b - a 3 )(b - a 3 - 1) = 0 aD . b - a 3 + b - a 3 - 1 = 0 a−−→ −−→ 13. 已知点 O 为△ABC 的外心,且| AB | = 2 ,| AC |= 4 ,则−−→ −−→AO ⋅ BC = () A .2B .4C .6D . 2−−→ −−→ −−→ 14. △ABC 的外接圆的圆心为 O ,半径为 2, OA + AB + AC = 0 且 −−→ −−→ −−→ −−→| OA | =| AB | ,则向量 CA 在 CB 上的投影为() A . B .3 C . - D .-3332AO15. 已知 A ,B ,C 为圆 O 上的三点,若 −−→ = 1 2−−→ −−→ ( AB + AC ) −−→ ,则 AB −−→与 AC 的夹角为.−−→ 16. 已知△ABD 是等边三角形,且 1 −−→= −−→ , −−→ = , AB + AD AC 2| CD | 那么四边形 ABCD 的面积为 .17. 若点 D 是△ABC 内一点,并且满足 AB 2+CD 2=AC 2+BD 2,求证:AD ⊥BC .18. 如图,已知在平行四边形 ABCD 中,E ,F 是对角线 AC 上的两点,且 AE = FC = 1 AC ,用向量方法证明四边形 DEBF 也 4是平行四边形.43【参考答案】1.B2.B3.C4.D5.C6.B7.D8.D9.C10.A11.C12.C13.C14.A 15.90°16. 17. 略 18. 略5 3 2 2。
平面向量及其应用练习题(有答案)百度文库(1)
一、多选题1.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( )A .::sin :sin :sin a b c ABC = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C2.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C3.已知M 为ABC 的重心,D 为BC 的中点,则下列等式成立的是( ) A .1122AD AB AC =+ B .0MA MB MC ++= C .2133BM BA BD =+ D .1233CM CA CD =+4.在ABC 中,15a =,20b =,30A =,则cos B =( )A .B .23C .23-D .35.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=e B .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=-⎪⎝⎭e D .()12,6=e ,()21,3=--e6.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量7.设a 为非零向量,下列有关向量||aa 的描述正确的是( ) A .||1||a a =B .//||a a aC .||a a a =D .||||a a a a ⋅=8.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-9.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-10.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-11.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个12.已知ABC ∆中,角A,B,C 的对边分别为a ,b ,c ,且满足,33B a c b π=+=,则ac=( ) A .2B .3C .12 D .1313.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°14.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同 15.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+- C .OA OD AD -+D .NQ QP MN MP ++-二、平面向量及其应用选择题16.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(2a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .3)2B .(2C .3(2D .3(217.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定18.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4C .2D .2219.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,c =45B =︒,则sin C 的值等于( )A .441B .45C .425D .4121.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .B .C .12D .22.已知ABC 的面积为30,且12cos 13A =,则AB AC ⋅等于( ) A .72B .144C .150D .30023.在ABC ∆中,601ABC A b S ∆∠=︒=,,则2sin 2sin sin a b cA B C-+-+的值等于( )A B C D .24.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为1),则b c +=( )A .5B .C .4D .1625.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-26.设ABC ∆中BC 边上的中线为AD ,点O 满足2AO OD =,则OC =( )A .1233AB AC -+ B .2133AB AC - C .1233AB AC -D .2133AB AC -+ 27.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .428.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形29.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .530.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为A BC .4D .531.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B C D .32.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +> C .612abc ≤≤D .1224abc ≤≤33.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 34.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B 33C .33D 335.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .259【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角 解析:ACD【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 2.ACD【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得为三等分点靠近点的点.对于A 选项,根据向量加法的平行四边形法则易得,故A 正确; 对于B 选项,,由于为三解析:ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点. 对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD本题考查向量加法与减法的运算法则,是基础题.4.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.5.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.本题主要考查平面向量的基本定理及基底的定义,属于基础题.6.AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;对于B选项,若a b=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.7.ABD【分析】首先理解表示与向量同方向的单位向量,然后分别判断选项.【详解】表示与向量同方向的单位向量,所以正确,正确,所以AB正确,当不是单位向量时,不正确,,所以D正确.故选:ABD解析:ABD【分析】首先理解aa表示与向量a同方向的单位向量,然后分别判断选项.【详解】a a 表示与向量a 同方向的单位向量,所以1aa=正确,//a a a 正确,所以AB 正确,当a 不是单位向量时,aa a=不正确,cos 0a a aa a a a a a a⋅==⨯=,所以D 正确. 故选:ABD 【点睛】 本题重点考查向量a a 的理解,和简单计算,应用,属于基础题型,本题的关键是理解aa表示与向量a 同方向的单位向量.8.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.9.BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解.菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且,所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误; 因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.10.AB【分析】若,则反向,从而;若,则,从而可得; 若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB.【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.11.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈,得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈,得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.12.AC【分析】将两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】∵,∴①,由余弦定理可得,②,联立①②,可得,即,解得或.故选:AC.【点睛】本题考查余弦定理的应解析:AC【分析】 将3a c b +=两边同时平方,可得一个关系式,再结合余弦定理可得结果.【详解】 ∵,33B a c b π=+=,∴2222()23a c a c ac b +=++=①,由余弦定理可得,2222cos 3a c ac b π+-=②,联立①②,可得222520a ac c -+=, 即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2a c =或12a c =. 故选:AC.【点睛】 本题考查余弦定理的应用,考查计算能力,是基础题.13.BD【分析】由三角形的面积公式求出即得解.【详解】因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】 因为13sin 22S bc A ==,所以13222A ⨯=,所以sin 2A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.14.ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有.当同向时解析:ABD【分析】根据平面向量的平行四边形法则与三角不等式分析即可.【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+.当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-.当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.15.ABCD【分析】根据向量的线性运算逐个选项求解即可.【详解】;;;.故选:ABCD【点睛】本题主要考查了向量的线性运算,属于基础题型.解析:ABCD【分析】根据向量的线性运算逐个选项求解即可.【详解】0AB BC CA AC CA ++=+=;()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=;()0OA OD AD OA AD OD OD OD -+=+-=-=;0NQ QP MN MP NP PM MN NM NM ++-=++=-=.故选:ABCD【点睛】本题主要考查了向量的线性运算,属于基础题型.二、平面向量及其应用选择题16.A【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围. 【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos )6623A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A . 【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.17.B 【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a aθ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题. 18.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sinsin a b c r A B C === 已知sin cos sin a b c A B B ===sin cos B B =和sin sin C B =, 所以45B =,45C=,所以ABC 是等腰直角三角形, 由条件可知ABC,即等腰直角三角形的斜边长为 所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 19.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.20.B【分析】在三角形ABC 中,根据1a =,42c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】 在三角形ABC 中, 1a =,42c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,21322142252=+-⨯⨯=, 所以5b =, 由正弦定理得:sin sin b c B C=, 所以242sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值22.B【分析】首先利用三角函数的平方关系得到sin A ,然后根据平面向量的数量积公式得到所求.【详解】解:因为ABC 的面积为30,且12cos 13A =,所以5sin 13A =,所以1||||sin 302AB AC A ⨯=,得到||||626AB AC ⨯=⨯, 所以12|||||cos 62614413AB AC AB AC A =⨯=⨯⨯=; 故选:B .【点睛】 本题考查了平面向量的数量积以及三角形的面积;属于中档题.23.A【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中,利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =, 又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =,由正弦定理得2sin 2sin sin sin a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.24.C【分析】 根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =,再代入余弦定理求解即可.【详解】 ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=, 又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈, ∴4A π=.∵1sin 1)24ABC S bc A ===-, ∴bc=6(2,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.25.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+,∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=.解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去. 15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.26.A【分析】作出图形,利用AB 、AC 表示AO ,然后利用平面向量减法的三角形法则可得出OC AC AO =-可得出结果.【详解】如下图所示:D 为BC 的中点,则()1122AD AB BD AB BC AB AC AB =+=+=+-1122AB AC =+, 2AO OD =,211333AO AD AB AC ∴==+, 11123333OC AC AO AC AB AC AB AC ⎛⎫∴=-=-+=-+ ⎪⎝⎭, 故选:A.【点睛】本题考查利用基底表示向量,考查了平面向量减法和加法三角形法则的应用,考查计算能力,属于中等题.27.D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF=-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.28.D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=,∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.29.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 30.B【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值.【详解】()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m n m m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+,令()(0x x f x x n =<≤=,则()'1f x =,令()'0f x =,得x =∴当0x << ()'0f x >x << ()'0f x <, ∴当2x =时, ()f x 取得最大值2f ⎛= ⎝⎭,故选B. 【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 31.A【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 42ABC S bc A c ∆====利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b c A B C==故2sin 2sin sin sin 32a b c a A B C A ++===++ 故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 32.A【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+, 即()()1sin 2sin sin 2A ABC A B C +-+++-=, 即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=, 即()()12sin cos 2sin cos 2A B C A B C -++-=, 即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=, 设ABC ∆的外接圆半径为R ,则2sin sin sin a b c R A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立.故选:A.【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 33.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△, 则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-, 所以184AB AN AB AN ⎛⎫-=- ⎪⎝⎭,即28AB AN AB AN -=-,得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+,所以1377AF AB AC →→→=+. 故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 34.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,① 由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =, 则ABC 的面积为11333sin 622S ab C ==⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.35.C【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BC R A=求解. 【详解】在ABC 中,5AB AC ==,6BC =,由余弦定理得:2222225567 cos225525 AB AC BCAAB AC+-+-===⋅⨯⨯,所以24 sin25 A==,由正弦定理得:625224sin425BCRA===,所以258R=,此三角形的外接圆半径是25 8故选:C【点睛】本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量应用举例练习题一、选择题1.一物体受到相互垂直的两个力f 1、f 2的作用,两力大小都为53N ,则两个力的合力的大小为( )A .103NB .0NC .56N D.562N2.河水的流速为2m/s ,一艘小船想以垂直于河岸方向10m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10m/sB .226m/sC .46m/sD .12m/s3.(2010·山东日照一中)已知向量a =(x 1,y 1),b =(x 2,y 2),若|a |=2,|b |=3,a ·b =-6,则x 1+y 1x 2+y 2的值为( )A.23B .-23 C.56D .-564.已知一物体在共点力F 1=(lg2,lg2),F 2=(lg5,lg2)的作用下产生位移S =(2lg5,1),则共点力对物体做的功W 为( )A .lg2B .lg5C .1D .25.在△ABC 所在的平面内有一点P ,满足P A →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是( )A.13 B.12C.23D.346.点P 在平面上作匀速直线运动,速度v =(4,-3),设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(速度单位:m/s ,长度单位:m)( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)7.已知向量a ,e 满足:a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )8.已知|OA →|=1,|OB →|=3,OA →⊥OB →,点C 在∠AOB 内,∠AOC =30°,设OC→=mOA→+nOB →,则m n=( ) A.13B .3C .3 3D.332二、填空题9.已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围是________.10.已知直线ax +by +c =0与圆O :x 2+y 2=4相交于A 、B 两点,且|AB |=23,则OA →·OB→=________.三、解答题11.已知△ABC 是直角三角形,CA =CB ,D 是CB 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE .12.△ABC 是等腰直角三角形,∠B =90°,D 是BC 边的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连结DF ,求证:∠ADB =∠FDC .13.(2010·江苏,15)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1)(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC→=0,求t 的值.14.一条宽为3km 的河,水流速度为2km/h ,在河两岸有两个码头A 、B ,已知AB =3km ,船在水中最大航速为4km/h ,问该船从A 码头到B 码头怎样安排航行速度可使它最快到达彼岸B 码头?用时多少?15.在▱ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD ,求证:M ,N ,C 三点共线.16.如图所示,正方形ABCD 中,P 为对角线BD 上的一点,PECF 是矩形,用向量方法证明P A =EF .17.如图所示,在△ABC中,AB=AC,D是BC的中点,DE⊥AC,E是垂足,F是DE的中点,求证AF⊥BE.平面向量应用举例参考答案1.[答案] C[解析]根据向量加法的平行四边形法则,合力f的大小为2×53=56(N).2. [答案] B[解析]设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1.∴v2=v-v1,v·v1=0,∴|v2|=v2-2v·v1+v21=100-0+4=104=226.3.[答案] B[解析]因为|a|=2,|b|=3,又a·b=|a||b|cos〈a,b〉=2×3×cos〈a,b〉=-6,可得cos〈a,b〉=-1.即a,b为共线向量且反向,又|a|=2,|b|=3,所以有3(x1,y1)=-2(x2,y2)⇒x1=-23x2,y1=-23y2,所以x1+y1x2+y2=-23(x2+y2)x2+y2=-23,从而选B.4.[答案] D[解析]W=(F1+F2)·S=(lg2+lg5,2lg2)·(2lg5,1)=(1,2lg2)·(2lg5,1)=2lg5+2lg2=2,故选D.5.[答案] C[解析]由P A→+PB→+PC→=AB→,得P A→+PB→+BA→+PC→=0,即PC→=2AP→,所以点P是CA边上的三等分点,如图所示.故S△PBCS△ABC=PCAC=23.6.[答案] C[解析]5秒后点P的坐标为:(-10,10)+5(4,-3)=(10,-5).7[答案]C[解析]由条件可知|a-t e|2≥|a-e|2对t∈R恒成立,又∵|e|=1,∴t 2-2a ·e ·t +2a ·e -1≥0对t ∈R 恒成立,即Δ=4(a ·e )2-8a ·e +4≤0恒成立.∴(a ·e -1)2≤0恒成立,而(a ·e -1)2≥0,∴a ·e -1=0.即a ·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ). 8.[答案] B[解析] ∵OC →·OA →=m |OA →|2+nOA →·OB→=m , OC →·OB →=mOA →·OB →+n ·|OB →|2=3n ,∴m 3n =|OC →|·|OA →|·cos30°|OC →|·|OB →|·cos60°=1,∴m n =3.二、填空题9. [答案] λ>-53且λ≠0[解析] ∵a 与a +λb 均不是零向量,夹角为锐角,∴a ·(a +λb )>0,∴5+3λ>0,∴λ>-53.当a 与a +λb 同向时,a +λb =m a (m >0),即(1+λ,2+λ)=(m,2m ).∴⎩⎪⎨⎪⎧ 1+λ=m 2+λ=2m ,得⎩⎪⎨⎪⎧λ=0m =1,∴λ>-53且λ≠0. 10. [答案] -2[解析] ∵|AB |=23,|OA |=|OB |=2,∴∠AOB =120°. ∴OA →·OB →=|OA →|·|OB →|·cos120°=-2. 三、解答题11.[证明] 以C 为原点,CA 所在直线为x 轴,建立平面直角坐标系. 设AC =a ,则A (a,0),B (0,a ),D ⎝ ⎛⎭⎪⎫0,a 2,C (0,0),E ⎝ ⎛⎭⎪⎫13a ,23a . ∴AD →=⎝ ⎛⎭⎪⎫-a ,a 2,CE →=⎝ ⎛⎭⎪⎫13a ,23a .∵AD →·CE →=-a ·13a +a 2·23a =0,∴AD ⊥CE .12. [证明] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC→=(2,-2)设AF→=λAC →, 则BF→=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ),又DA →=(-1,2) 由题设BF →⊥DA →,∴BF →·DA→=0,∴-2λ+2(2-2λ)=0,∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,∴DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23,又DC →=(1,0), ∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB 、∠FDC ∈(0,π),∴∠ADB =∠FDC .13.[解析] (1)由题设知AB→=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4).所以|AB→+AC →|=210,|AB →-AC →|=4 2.故所求的两条对角线长分别为42和210.(2)由题设知OC→=(-2,-1),AB →-tOC →=(3+2t,5+t ).由(AB →-tOC →)·OC →=0,得(3+2t,5+t )·(-2,-1)=0,从而5t =-11,所以t =-115.14. [解析] 如图所示,设AC→为水流速度,AD →为航行速度,以AC 和AD 为邻边作▱ACED 且当AE 与AB 重合时能最快到达彼岸.根据题意AC ⊥AE ,在Rt △ADE 和▱ACED 中,|DE →|=|AC →|=2,|AD →|=4,∠AED =90°.∴|AE →|=|AD→|2-|DE →|2=23,sin ∠EAD =12,∴∠EAD =30°,用时0.5h.答:船实际航行速度大小为4km/h ,与水流成120°角时能最快到达B 码头,用时半小时.15.[证明] MN→=BN →-BM →. 因为BM→=12BA →,BN →=13BD →=13(BA →+BC →),所以MN →=13BA →+13BC →-12BA →, =13BC →-16BA →. 由于MC→=BC →-BM →=BC →-12BA →,可知MC →=3MN →,即MC →∥MN →.又因为MC 、MN 有公共点M ,所以M 、N 、C 三点共线.16[分析] 本题所给图形为正方形,故可考虑建立平面直角坐标系,用向量坐标来解决,为此只要写出P A →和EF→的坐标,证明其模相等即可.[证明] 建立如图所示的平面直角坐标系,设正方形的边长为a ,则A (0,a ).设|DP→|=λ(λ>0),则F ⎝ ⎛⎭⎪⎫22λ,0,P ⎝ ⎛⎭⎪⎫22λ,22λ,E ⎝ ⎛⎭⎪⎫a ,22λ, 所以EF →=⎝ ⎛⎭⎪⎫22λ-a ,-22λ,P A →=⎝ ⎛⎭⎪⎫-22λ,a -22λ,因为|EF →|2=λ2-2aλ+a 2,|P A →|2=λ2-2aλ+a 2,所以|EF →|=|P A →|, 即P A =EF .17.[证明] ∵AB =AC ,且D 是BC 的中点,∴AD →⊥BC →,∴AD →·BD →=0.又DE →⊥AC →,∴DE →·AE →=0. ∵BD→=DC →,F 是DE 的中点,∴EF →=-12DE →. ∴AF →·BE →=(AE →+EF →)·(BD →+DE →) =AE →·BD →+AE →·DE →+EF →·BD →+EF →·DE → =AE →·BD →+EF →·BD →+EF →·DE → =(AD →+DE →)·BD →+EF →·BD →+EF →·DE → =AD →·BD →+DE →·BD →+EF →·BD →+EF →·DE → =DE →·DC →-12DE →·DC →-12DE →·DE → =12DE →·DC →-12DE →·DE →=12DE →·(DC →-DE →)=12DE →·EC →=0. ∴AF →⊥BE →,∴AF ⊥BE .。