电路实验报告12 有源滤波器设计

合集下载

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告一、实验目的。

本实验旨在通过对有源滤波器的实验研究,掌握有源滤波器的基本原理、特性和设计方法,加深对电子电路理论的理解,提高实验操作能力。

二、实验仪器和设备。

1. 信号发生器。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容、运算放大器等元器件。

5. 电路实验箱。

三、实验原理。

有源滤波器是利用运算放大器的高输入阻抗和低输出阻抗的特性,结合电容和电阻等元件构成的一种滤波器。

根据不同的电路连接方式和元器件参数,可以实现对不同频率信号的滤波作用。

四、实验内容。

1. 搭建低通有源滤波器电路。

2. 搭建高通有源滤波器电路。

3. 测量并记录滤波器的幅频特性曲线。

4. 测量并记录滤波器的相频特性曲线。

五、实验步骤。

1. 按照电路图搭建低通有源滤波器电路,并接通电源。

2. 调节信号发生器输出正弦波信号,接入滤波器输入端,通过示波器观察输出波形,记录频率和幅值。

3. 依次改变输入信号频率,记录输出波形的变化,绘制幅频特性曲线。

4. 根据测量数据计算并绘制滤波器的相频特性曲线。

5. 重复以上步骤,搭建高通有源滤波器电路,进行相同的测量和记录。

六、实验数据记录与处理。

1. 低通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 2.5。

500 2.3。

1000 2.0。

5000 1.5。

10000 1.2。

... ...2. 低通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 0。

500 -45。

1000 -90。

5000 -180。

10000 -270。

... ...3. 高通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 0.5。

500 0.8。

1000 1.2。

5000 2.0。

10000 2.5。

... ...4. 高通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 180。

500 135。

1000 90。

5000 0。

10000 -90。

有源滤波器实验报告总结

有源滤波器实验报告总结

有源滤波器实验报告总结一、引言有源滤波器是一种电子滤波器,它利用放大器来增强信号的幅度并同时进行滤波。

在本次实验中,我们设计了一个有源低通滤波器,并通过实验验证了其性能。

二、实验步骤1. 设计滤波器电路:根据所需的滤波特性,我们选择了适当的电路拓扑结构,并计算了元件的数值。

然后,我们根据计算结果选择了合适的电阻、电容和放大器。

2. 搭建电路:根据设计好的电路图,我们按照所需的元件数值和连接方式搭建了有源滤波器电路。

3. 测试电路:接下来,我们使用信号发生器产生不同频率的正弦信号作为输入信号,通过有源滤波器后,使用示波器观察输出信号的波形和频率响应。

4. 记录实验数据:我们记录了不同频率下输入和输出信号的幅度,以及相位差,并绘制了频率响应曲线。

三、实验结果通过实验,我们得到了有源滤波器的频率响应曲线。

曲线显示,在低频段时,输出信号幅度较大,而在高频段时,输出信号幅度逐渐衰减。

这符合我们设计的低通滤波器的特性。

四、讨论与分析根据实验结果,我们可以得出以下结论:1. 有源滤波器能够对输入信号进行增强和滤波。

2. 频率响应曲线显示了有源滤波器的滤波特性,能够滤除高频信号,保留低频信号。

我们还发现了一些问题和改进的空间:1. 在实际搭建电路的过程中,可能会遇到元件误差和放大器非线性等问题,这都会对滤波器的性能产生影响,需要进一步优化和调整电路。

2. 在选择元件数值时,需要根据具体要求和条件进行综合考虑,以获得更好的滤波效果。

五、总结通过本次实验,我们成功设计并搭建了一个有源低通滤波器,并验证了其滤波特性。

实验结果表明,有源滤波器具有良好的滤波效果,能够滤除高频信号,保留低频信号。

在实际应用中,有源滤波器在音频处理、通信系统等领域具有广泛的应用前景。

六、参考文献1. 张宇. 电子技术实验教程[M]. 北京:高等教育出版社,2015.2. Sedra A S, Smith K C. Microelectronic Circuits[M]. OxfordUniversity Press, 2010.注:本文仅为实验报告总结,旨在总结有源滤波器实验的过程和结果,并对实验中的问题和改进进行讨论。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告1. 引言有源滤波器是一种结合了被动元件和有源放大器的滤波器,能够实现对电路信号进行滤波和放大。

本实验旨在通过实际搭建有源滤波器电路并进行实验测量,以验证其性能和功能。

2. 实验目的本实验的主要目的如下:1.理解有源滤波器的基本原理和工作方式;2.掌握有源滤波器的搭建方法和测量技巧;3.分析和评估实验结果,对有源滤波器性能进行验证;3. 实验原理有源滤波器是一种基于放大器的滤波器,其基本原理是利用放大器对输入信号进行放大,并利用电容、电感等被动元件完成滤波功能。

根据放大器的类型和反馈方式的不同,有源滤波器可以分为多种类型,如比例型、积分型、微分型等。

在本实验中,我们将搭建一个基于运算放大器的积分型有源滤波器。

该滤波器的电路图如下所示:有源滤波器电路图有源滤波器电路图其中,R1、R2、R3、C1和OA分别代表电阻、电容和运算放大器,上标“+”和“-”分别表示正反馈和负反馈连接。

有源滤波器工作的基本原理是:输入信号经过R1和C1形成了积分电路,然后通过运算放大器(OA)的负反馈放大输出,最终得到经过滤波和放大后的输出信号。

4. 实验步骤根据上述电路图,我们可以按照以下步骤进行有源滤波器的实验:1.按照电路图搭建实验电路,并确保连接正确可靠。

2.使用函数发生器产生一个正弦波信号作为输入信号,并连接到电路的输入端。

输入信号频率:10kHz幅度:1Vpp3.使用示波器测量电路的输入输出电压,并记录测量结果。

示波器通道1连接到输入信号的输入端示波器通道2连接到电路的输出端4.分别改变输入信号的频率,并记录相应的输入输出电压值,形成频率响应曲线。

频率范围:100Hz ~ 10kHz步进:100Hz5.根据实验结果,分析并讨论有源滤波器的频率响应特性、增益和相位差等指标。

5. 实验结果与分析根据实验步骤中记录的输入输出电压值,我们可以绘制出有源滤波器的频率响应曲线。

下图展示了在不同频率下的输入输出电压值:![频率响应曲线图](./response_curve.png)根据实验结果可以发现,有源滤波器在低频时,对信号的放大倍数较小,随着频率的增加,放大倍数逐渐增大;在高频时,放大倍数趋于稳定。

有源滤波器设计 实验报告

有源滤波器设计 实验报告

有源滤波器设计实验报告有源滤波器设计实验报告引言:滤波器是电子电路中常见的重要组成部分,用于对信号进行滤波和处理。

有源滤波器是一种采用有源元件(如放大器)来增强信号处理能力的滤波器。

本实验旨在设计并实现一个有源滤波器,通过实验验证其滤波性能。

一、实验目的本实验的主要目的是设计和实现一个有源滤波器,通过调整电路参数和元件值,实现对不同频率信号的滤波。

同时,通过实验结果的分析,了解有源滤波器的工作原理和性能。

二、实验原理有源滤波器是一种利用有源元件(如运算放大器)来增强滤波器性能的电路。

常见的有源滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

它们分别通过选择合适的元件和电路拓扑结构来实现对不同频率信号的滤波。

三、实验步骤1. 根据设计要求,选择合适的电路拓扑结构和元件。

2. 按照电路图连接电路,并确保连接正确无误。

3. 根据设计要求,选择合适的元件值,并进行元件的选取和调整。

4. 使用信号发生器产生测试信号,并连接到有源滤波器的输入端。

5. 使用示波器测量有源滤波器的输出信号,并记录实验数据。

6. 根据实验数据,分析有源滤波器的滤波性能。

四、实验结果与分析通过实验,我们设计并实现了一个二阶有源低通滤波器。

在实验中,我们选择了合适的运算放大器和电容、电阻元件,并根据设计要求进行了调整。

实验结果显示,该有源滤波器能够有效滤除高频信号,只保留低频信号。

通过调整电路参数,我们还可以改变滤波器的截止频率,实现对不同频率信号的滤波。

五、实验总结本实验通过设计和实现有源滤波器,验证了其滤波性能。

通过调整电路参数和元件值,我们可以实现对不同频率信号的滤波。

有源滤波器在电子电路中具有重要的应用价值,能够对信号进行精确的滤波和处理。

通过本实验,我们对有源滤波器的工作原理和性能有了更深入的了解。

六、实验感想通过本次实验,我对有源滤波器的设计和实现有了更深入的理解。

在实验过程中,我遇到了一些问题,如电路连接错误和元件值选择不准确等。

有源滤波器的设计实验报告

有源滤波器的设计实验报告

有源滤波器的设计实验报告有源滤波器的设计实验报告引言:滤波器是电子工程中常见的设备,用于去除信号中的噪声或者选择特定频率范围内的信号。

有源滤波器是一种常见的滤波器类型,它利用放大器的特性来增强滤波效果。

本实验旨在设计一个有源滤波器,探索其原理和应用。

一、实验背景滤波器是信号处理中重要的组成部分,广泛应用于通信、音频处理、图像处理等领域。

有源滤波器通过引入放大器来增强滤波效果,使得滤波器具有更好的性能和灵活性。

本实验将设计一个有源滤波器,以探索其在信号处理中的应用。

二、实验目的1. 了解有源滤波器的工作原理和特点;2. 学习有源滤波器的设计方法和步骤;3. 掌握实际搭建有源滤波器的技巧和调试方法;4. 分析有源滤波器的性能指标,如增益、带宽等。

三、实验原理有源滤波器由放大器和被动滤波器组成。

放大器起到放大输入信号的作用,同时也引入了放大器的特性和非线性失真。

被动滤波器则通过电容、电感和电阻等元件来选择特定频率范围内的信号。

有源滤波器的设计需要考虑放大器的增益、带宽和稳定性等因素。

四、实验步骤1. 确定滤波器的类型和频率范围。

根据实际需求选择低通、高通、带通或带阻滤波器,并确定所需的截止频率。

2. 选择适当的放大器。

根据滤波器的要求选择合适的放大器,考虑增益、带宽和稳定性等因素。

3. 计算滤波器的元件数值。

根据滤波器类型和截止频率计算所需的电容、电感和电阻数值。

4. 搭建滤波器电路。

根据计算结果,选择合适的元件进行电路搭建。

5. 进行滤波器的调试和优化。

通过实际测试,调整电路参数,优化滤波器的性能。

6. 测试滤波器的性能指标。

测量滤波器的增益、带宽和相位响应等指标,评估滤波器的性能。

五、实验结果与分析通过实验,我们成功设计并搭建了一个低通滤波器。

经过调试和优化,该滤波器在截止频率为1kHz时,具有20dB的增益,-3dB的带宽为500Hz。

实验结果表明,有源滤波器可以有效地选择特定频率范围内的信号,并增强滤波效果。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告有源滤波器实验报告引言:在电子电路实验中,滤波器是一种常见的电路元件,用于对信号进行滤波处理。

滤波器可以将某个频率范围内的信号通过,而将其他频率范围内的信号削弱或者抑制。

本实验旨在研究有源滤波器的工作原理和特性,并通过实验验证其有效性。

实验目的:1. 理解有源滤波器的基本原理;2. 掌握有源滤波器的设计和调试方法;3. 通过实验验证有源滤波器的性能。

实验原理:有源滤波器是由一个放大器和一个被动滤波器组成的。

被动滤波器是由电阻、电容和电感等被动元件组成的,其频率响应特性由被动元件的参数决定。

而有源滤波器通过加入一个放大器,可以增加滤波器的增益和频率选择性。

实验步骤:1. 搭建有源低通滤波器电路。

根据实验要求,选择合适的被动滤波器参数和放大器类型,搭建电路。

2. 进行电路调试。

通过信号发生器输入不同频率的正弦波信号,观察输出波形,并调整电路参数,使得输出波形满足实验要求。

3. 测量电路参数。

使用示波器测量电路的输入输出电压,并记录下来。

4. 更换被动滤波器参数,重复步骤2和3,以验证不同参数对滤波器性能的影响。

5. 分析实验数据。

根据测量结果,绘制电路的频率响应曲线,并分析滤波器的特性。

实验结果:通过实验,我们成功搭建了有源低通滤波器电路,并进行了调试和测量。

实验数据显示,该滤波器在截止频率以下的频率范围内,可以将输入信号通过,并且增益较高;而在截止频率以上的频率范围内,输出信号的幅值逐渐下降,达到了滤波的效果。

进一步分析实验数据,我们发现滤波器的截止频率与被动滤波器的参数有关。

当电容或电感的数值增大时,截止频率也会相应增大,滤波器的频率选择性变弱。

而当电阻的数值增大时,滤波器的增益减小,输出信号的幅值也会减小。

讨论与总结:有源滤波器是一种常见的电子电路元件,广泛应用于各种电子设备中。

本实验通过搭建和调试有源滤波器电路,验证了其滤波效果和特性。

在实验过程中,我们发现滤波器的性能受到被动滤波器参数的影响。

无源滤波器和有源滤波器实验报告

无源滤波器和有源滤波器实验报告

无源滤波器和有源滤波器实验报告无源滤波器和有源滤波器实验报告引言滤波器在电子领域中起着至关重要的作用,它可以帮助我们去除信号中的噪声,提高信号的质量。

无源滤波器和有源滤波器是两种常见的滤波器类型,它们在电路结构和性能特点上有所不同。

本实验旨在通过搭建无源滤波器和有源滤波器电路,比较它们的滤波效果和特点。

实验一:无源滤波器无源滤波器是由被动元件(如电阻、电容、电感)构成的滤波电路。

在本实验中,我们选择了RC低通滤波器进行研究。

1. 实验目的通过搭建RC低通滤波器电路,研究其频率特性和滤波效果。

2. 实验步骤a. 准备工作:收集所需器件和元件,包括电源、电阻、电容、示波器等。

b. 搭建电路:按照电路图连接电阻和电容,接入电源和示波器。

c. 调节参数:调节电源电压和示波器参数,使电路正常工作。

d. 测试频率响应:输入不同频率的信号,观察输出波形和幅度变化。

3. 实验结果通过实验观察,我们得到了RC低通滤波器的频率响应曲线。

在低频情况下,输出信号基本与输入信号保持一致;而在高频情况下,输出信号的幅度会逐渐降低,起到了滤波的作用。

这是因为电容器在高频情况下的阻抗较小,导致信号通过电容器的路径而绕过电阻。

实验二:有源滤波器有源滤波器是由主动元件(如运算放大器)和被动元件组成的滤波电路。

在本实验中,我们选择了Sallen-Key低通滤波器进行研究。

1. 实验目的通过搭建Sallen-Key低通滤波器电路,研究其频率特性和滤波效果。

2. 实验步骤a. 准备工作:收集所需器件和元件,包括电源、运算放大器、电阻、电容、示波器等。

b. 搭建电路:按照电路图连接运算放大器、电阻和电容,接入电源和示波器。

c. 调节参数:调节电源电压和示波器参数,使电路正常工作。

d. 测试频率响应:输入不同频率的信号,观察输出波形和幅度变化。

3. 实验结果通过实验观察,我们得到了Sallen-Key低通滤波器的频率响应曲线。

与RC滤波器相比,Sallen-Key滤波器具有更好的滤波效果和增益稳定性。

有源无源滤波器实验报告

有源无源滤波器实验报告

有源无源滤波器实验报告实验目的,通过实验,掌握有源和无源滤波器的基本原理和特点,了解其在电路中的应用。

一、实验原理。

有源滤波器是利用放大器的放大作用和反馈作用,通过RC、RL等滤波电路实现滤波功能。

无源滤波器是利用电感、电容等被动元件组成的滤波电路实现滤波功能。

有源滤波器一般具有较高的输入电阻和较低的输出电阻,可以满足各种输入输出阻抗的匹配。

无源滤波器一般具有较低的输入电阻和较高的输出电阻,适合于与高阻抗的负载匹配。

二、实验仪器和器件。

1. 信号发生器。

2. 示波器。

3. 电阻、电容、电感。

4. 运算放大器。

5. 电路板、连接线等。

三、实验内容。

1. 有源低通滤波器的实验。

(1)按照实验电路图连接电路;(2)调节信号发生器的频率和幅值,观察输出波形,并记录实验数据;(3)分析实验数据,得出有源低通滤波器的频率特性曲线。

2. 无源高通滤波器的实验。

(1)按照实验电路图连接电路;(2)调节信号发生器的频率和幅值,观察输出波形,并记录实验数据;(3)分析实验数据,得出无源高通滤波器的频率特性曲线。

四、实验结果与分析。

通过实验数据的记录和分析,我们得出了有源低通滤波器和无源高通滤波器的频率特性曲线。

可以清楚地看到,在一定频率范围内,有源滤波器和无源滤波器对信号的响应特性,从而验证了它们的滤波功能。

五、实验总结。

通过本次实验,我们深入理解了有源和无源滤波器的原理和特点,掌握了它们在电路中的应用。

同时,通过实验操作,提高了我们的动手能力和实验数据处理能力。

六、实验心得。

本次实验让我对有源无源滤波器有了更深入的了解,也提高了我的实验操作能力和数据分析能力。

在未来的学习和工作中,我会更加注重理论与实践相结合,不断提高自己的专业能力。

以上就是本次有源无源滤波器实验的实验报告,希望能对大家有所帮助。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验目的,通过实验了解有源滤波器的基本原理和性能特点,掌握有源滤波器的设计和调试方法。

一、实验原理。

有源滤波器是利用运算放大器等有源元件构成的滤波器。

有源滤波器有很高的输入阻抗,可以避免负载效应,同时具有较高的增益,能够提供滤波器所需的电压增益。

有源滤波器的频率特性由运算放大器和被动元件的特性共同决定,因此可以通过调整被动元件的数值来改变滤波器的频率特性。

二、实验仪器与设备。

1. 示波器。

2. 函数信号发生器。

3. 直流稳压电源。

4. 电阻、电容、运算放大器等元器件。

5. 面包板、连接线等。

三、实验步骤。

1. 按照设计要求,选择合适的运算放大器和被动元件,并按照电路图连接电阻、电容和运算放大器等元器件。

2. 将函数信号发生器的输出端与有源滤波器的输入端相连,调节函数信号发生器的频率和幅度,观察有源滤波器的输入输出波形。

3. 将示波器的探头分别连接到有源滤波器的输入端和输出端,调节函数信号发生器的频率,观察示波器上的输入输出波形,并记录波形的变化。

4. 分别测量不同频率下有源滤波器的输入输出电压,绘制输入输出电压与频率的关系曲线。

5. 对有源滤波器的电路参数进行调整,观察滤波器的频率特性的变化。

四、实验结果与分析。

通过实验测量得到了有源滤波器的输入输出波形和输入输出电压随频率变化的曲线。

从实验结果可以看出,有源滤波器能够实现对不同频率信号的滤波处理,同时具有较高的增益。

通过调整电路参数,可以改变有源滤波器的频率特性,实现对不同频率信号的滤波效果。

五、实验总结。

本实验通过对有源滤波器的基本原理和性能特点进行了实验验证,掌握了有源滤波器的设计和调试方法。

通过实验,加深了对有源滤波器的工作原理的理解,提高了实验操作能力和实验数据处理能力。

六、实验心得。

通过本次实验,我深刻理解了有源滤波器的原理和性能特点,掌握了有源滤波器的设计和调试方法。

在实验中,我遇到了一些问题,但通过认真思考和实验操作,最终取得了满意的实验结果。

有源滤波器的实验

有源滤波器的实验

实验十二有源滤波器的研究一、实验目的1.掌握测定有源滤波器的幅频特性的方法。

2.了解由运算放大器构成的一些二阶有源滤波器电路及其特性。

3.通过理论分析和实验测试加深对有源滤波器的认识。

二、实验原理从上世纪二十年代至六十年代,电滤波器主要由无源元件R、L、C构成,称为无源滤波器。

为了提高无源滤波器的质量,要求所用的电感元件具有较高的品质因数Q L,但同时又要求有一定的电感量,这就必然增加电感元件的体积,重量与成本。

这种矛盾在低频时尤为突出。

为了解决这一矛盾,五十年代有人提出用由电阻、电容与晶体管组成的有源网络替代电感元件,由此产生了用有源元件和无源元件(一般是R和C)共同组成的电滤波器,称为有源滤波器。

六十年代末由分立元件组成的有源滤波器得到应用。

七十年代以来,由薄膜电容、薄膜电阻和硅集成电路运算放大器构成的薄膜混合集成电路提供了大量质优价廉的小型和微型有源RC滤波器。

集成电路技术的出现和迅速发展给有源滤波器赋予巨大的生命力。

集成电路有源滤波器不但从根本上克服了R、L、C无源滤波器在低频时存在的体积和重量上的严重问题,而且成本低、质量可靠及寄生影响小。

和无源滤波器相比,它的设计和调整过程较简便,此外还能提供增益。

当然,有源滤波器也有如下缺点:1.由于有源元件固有的带宽限制,使绝大多数有源滤波器仅限于音频范围(f≤20KHZ)内应用,而无源滤波器没有这种上界频率限制,适用的频率范围可高达500MHZ。

2.生产工艺和环境变化所造成的元件偏差对有源滤波器的影响较大。

3.有源元件要消耗功率。

尽管如此,在声频(f≤4KHZ)范围内有源滤波器在经济和性能上要比无源滤波器优越得多,因此在世界各国先进的电话通信系统中得到极其广泛的应用。

任何复杂的n阶有源滤波器总是由若干个二阶有源基本节和一阶无源基本节连接而成,其中二阶有源基本节尤为重要。

三、实验内容1.二阶有源RC低通滤波器(1)二阶有源RC低通滤波器的幅频特性图附录2—1图附录2—1所示电路为二阶有源RC 低通滤波器,运算放大器A 构成同相放大器,其闭环增益为211=+=R R A F, (利用这一点可以判断运算放大器工作是否正常)。

有源滤波电路实验报告

有源滤波电路实验报告

有源滤波电路实验报告有源滤波电路实验报告引言:有源滤波电路是电子工程中常用的一种电路,用于滤除信号中的杂波和噪声,使得输出信号更加纯净和稳定。

本实验旨在通过搭建有源滤波电路并进行实际测试,了解其工作原理和性能特点。

实验目的:1. 理解有源滤波电路的基本原理;2. 掌握有源滤波电路的设计和搭建方法;3. 测试并分析不同类型有源滤波电路的频率响应和幅频特性。

实验器材和元件:1. 函数发生器2. 示波器3. 直流电源4. 电阻、电容、放大器等元件实验步骤:1. 准备工作:检查实验器材和元件的连接是否正确,确保实验环境安全和稳定。

2. 搭建低通滤波电路:根据给定的电路图,按照正确的连接方式搭建低通滤波电路。

3. 调节函数发生器:将函数发生器的频率调节到一定范围内,以便测试低通滤波电路的频率响应。

4. 测试低通滤波电路:将函数发生器的输出信号连接到低通滤波电路的输入端,将示波器的探头分别连接到输入端和输出端,观察并记录输出信号的波形和幅度。

5. 分析实验结果:根据所得到的波形和幅度数据,绘制频率响应曲线和幅频特性图,并进行相应的分析和讨论。

6. 搭建高通滤波电路:按照同样的方法搭建高通滤波电路,并进行相应的测试和分析。

7. 搭建带通滤波电路:按照同样的方法搭建带通滤波电路,并进行相应的测试和分析。

实验结果与分析:通过实验测试,我们得到了低通滤波电路、高通滤波电路和带通滤波电路的频率响应曲线和幅频特性图。

从实验结果可以看出,低通滤波电路能够有效滤除高频信号,使得输出信号更加平滑和稳定;高通滤波电路则能够滤除低频信号,使得输出信号更加清晰和锐利;而带通滤波电路则能够选择性地滤除某一频段的信号,适用于特定的应用场景。

结论:有源滤波电路是一种常用的电子电路,能够滤除信号中的杂波和噪声,提高信号的质量和可靠性。

本实验通过搭建低通滤波电路、高通滤波电路和带通滤波电路,并进行相应的测试和分析,深入了解了有源滤波电路的工作原理和性能特点。

有源滤波器 实验报告

有源滤波器 实验报告

有源滤波器实验报告有源滤波器实验报告引言:有源滤波器是一种电子电路,可以通过放大器的反馈作用来实现信号的滤波功能。

在本次实验中,我们将学习和探索有源滤波器的原理和性能,并通过实验验证其滤波效果。

实验目的:1. 了解有源滤波器的基本原理和分类;2. 掌握有源低通滤波器和有源高通滤波器的设计和实现方法;3. 通过实验验证有源滤波器的性能和滤波效果。

实验仪器和材料:1. 函数发生器2. 示波器3. 电阻、电容、放大器等元器件4. 电路连接线实验步骤:1. 准备工作:根据实验要求,选择合适的电阻、电容和放大器等元器件,并连接电路;2. 实验一:有源低通滤波器a. 将函数发生器输出的正弦信号接入有源低通滤波器的输入端;b. 调节函数发生器的频率和幅度,观察滤波器输出端的波形,并记录实验数据;c. 根据实验数据,分析滤波器的截止频率和幅频特性;d. 调节电阻和电容的数值,观察滤波器的变化情况,并记录实验数据。

3. 实验二:有源高通滤波器a. 将函数发生器输出的正弦信号接入有源高通滤波器的输入端;b. 调节函数发生器的频率和幅度,观察滤波器输出端的波形,并记录实验数据;c. 根据实验数据,分析滤波器的截止频率和幅频特性;d. 调节电阻和电容的数值,观察滤波器的变化情况,并记录实验数据。

实验结果与分析:1. 有源低通滤波器实验结果:a. 在不同频率下,滤波器输出端的波形呈现出不同的衰减特性;b. 实验数据显示,滤波器的截止频率与电阻和电容的数值相关,数值越大,截止频率越低;c. 通过调节电阻和电容的数值,可以改变滤波器的截止频率,从而实现对不同频率信号的滤波。

2. 有源高通滤波器实验结果:a. 在不同频率下,滤波器输出端的波形呈现出不同的增益特性;b. 实验数据显示,滤波器的截止频率与电阻和电容的数值相关,数值越大,截止频率越高;c. 通过调节电阻和电容的数值,可以改变滤波器的截止频率,从而实现对不同频率信号的滤波。

有源无源滤波器实验报告

有源无源滤波器实验报告

有源无源滤波器实验报告有源无源滤波器实验报告引言:滤波器是电子电路中常见的一个组件,它可以根据不同的频率特性来选择性地通过或者阻断信号。

有源滤波器和无源滤波器是两种常见的滤波器类型,它们在电路结构和性能上有所不同。

本实验旨在通过实际搭建电路并进行测试,比较有源滤波器和无源滤波器的特性和性能。

实验材料和方法:本实验使用的主要材料包括电阻、电容、电感、运放等。

实验中,我们将分别搭建有源低通滤波器和无源低通滤波器电路,并通过示波器观察和记录其频率响应曲线。

实验过程和结果:1. 有源滤波器实验首先,我们搭建了一个有源低通滤波器电路。

该电路由一个运放和几个电阻、电容组成。

我们通过改变电容的值,观察了滤波器的截止频率对输出信号的影响。

实验结果显示,当截止频率较低时,滤波器能够有效地滤除高频噪声,输出信号更为稳定。

但当截止频率较高时,滤波器的效果变差,输出信号中的高频成分较多。

2. 无源滤波器实验接下来,我们搭建了一个无源低通滤波器电路。

该电路由电阻和电容组成,没有运放等主动元件。

同样地,我们改变了电容的值,并观察了滤波器的截止频率对输出信号的影响。

与有源滤波器相比,无源滤波器的效果稍差。

在截止频率较低时,无源滤波器能够滤除一部分高频噪声,但仍有一些高频成分通过。

而在截止频率较高时,无源滤波器的滤波效果几乎可以忽略不计。

3. 比较和分析通过对比两种滤波器的实验结果,我们可以得出以下结论:(1)有源滤波器的性能优于无源滤波器。

有源滤波器通过运放等主动元件的放大作用,能够更有效地滤除高频噪声,输出信号更为纯净。

(2)无源滤波器虽然性能较差,但在一些简单的应用场景中仍然具有一定的实用性。

由于无源滤波器的结构简单,成本低廉,可以满足一些对滤波效果要求不高的应用需求。

(3)在实际应用中,我们需要根据具体的需求和预算来选择合适的滤波器类型。

如果对滤波效果有较高要求,有源滤波器是更好的选择;而对于一些预算有限的应用,无源滤波器可以作为一种经济实用的替代方案。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验目的:1.了解有源滤波器的基本结构和工作原理;2.掌握有源滤波器的设计和调试方法;3.分析实验结果,验证有源滤波器的性能。

实验原理:在实验中,我们使用了一种常见的有源滤波器结构,Sallen-Key低通滤波器,其电路图如下所示:[图片]该电路由一个放大器、两个电容和两个电阻组成。

放大器起到放大信号的作用,电容和电阻则决定了滤波器的截止频率和滤波器特性。

实验步骤:1. 搭建Sallen-Key低通滤波器电路,按照电路图连接好放大器、电容和电阻。

2.使用函数发生器产生一个正弦信号作为输入信号,将信号的频率设置为10kHz,幅值设置为1V。

3.将信号输入到滤波器电路的输入端,并将滤波器的输出端连接到示波器的输入端。

4.调节放大器的增益,使得在输出信号的幅值最大时不失真。

5.调节滤波器的电容和电阻,改变滤波器的截止频率,观察输出信号的变化。

6.记录并分析实验数据,绘制滤波器的频率响应曲线。

实验数据:在实验过程中,我们记录了不同频率下滤波器输出信号的幅值,并绘制了频率响应曲线,结果如下所示:[数据表格][频率响应曲线]实验结果分析:根据实验数据和频率响应曲线可以看出,随着输入信号频率的增加,滤波器的输出信号幅值逐渐减小。

当输入信号频率接近滤波器的截止频率时,输出信号的幅值明显减小,说明滤波器对高频信号有良好的抑制作用。

而当输入信号频率远小于滤波器的截止频率时,输出信号的幅值几乎保持不变。

实验总结:通过本次实验,我们学习了有源滤波器的基本原理和设计方法,并成功搭建了Sallen-Key低通滤波器电路。

实验结果表明,滤波器具有对高频信号抑制的能力,能够有效滤除高频噪声。

在今后的实际应用中,有源滤波器将发挥重要的作用,如音频处理、通信系统等领域。

因此,掌握有源滤波器的原理和设计方法对我们的学习和工作都具有重要的意义。

有源滤波器实验报告总结

有源滤波器实验报告总结

有源滤波器实验报告总结引言:有源滤波器是一种能够改变信号频率响应的电路,它通过引入有源元件(如放大器)来增强信号的幅度或改变相位,以实现滤波功能。

本实验旨在通过搭建有源滤波器电路并进行实验,验证其滤波效果,并对实验结果进行总结和分析。

实验方法:1. 实验器材准备:准备好实验所需的放大器、电阻、电容等器件,并按照电路图连接好。

2. 实验电路搭建:根据给定的电路图,按照正确的连接方式搭建有源滤波器电路。

3. 实验信号输入:将待滤波的信号输入到电路的输入端口。

4. 信号输出测量:将滤波后的信号输出到示波器上,并观察信号的波形、幅度和相位等特征。

5. 实验数据记录:记录实验中所得到的信号波形和相关参数的数值。

6. 实验结果分析:根据实验数据进行结果分析和总结。

实验结果:通过本次实验,我们成功搭建了一个有源滤波器电路,并进行了信号输入和输出的测量。

实验结果显示,该有源滤波器能够有效地滤除输入信号中的高频成分,使得输出信号的频率响应呈现出一定的滤波效果。

在实验中,我们分别输入了不同频率的信号,并观察了输出信号的波形和幅度。

实验结果表明,当输入信号的频率较低时,输出信号的幅度相对较大,而当输入信号的频率较高时,输出信号的幅度显著降低。

这说明该有源滤波器能够有效地滤除高频成分,使得输出信号更加接近输入信号的低频部分。

我们还观察到输出信号的相位与输入信号的相位存在一定的差异。

实验结果显示,当输入信号的频率发生变化时,输出信号的相位也会随之发生变化。

这说明该有源滤波器在滤波的同时,也对信号的相位进行了一定的调整。

实验总结:通过本次有源滤波器实验,我们深入了解了有源滤波器的原理和工作机制,并验证了其滤波效果。

实验结果表明,有源滤波器能够有效地滤除高频成分,并对信号的幅度和相位进行调整,使得输出信号更加接近输入信号的低频部分。

在实验过程中,我们还发现有源滤波器的滤波效果与电路参数的选择有关。

例如,改变电阻和电容的数值,可以调整滤波器的截止频率和带宽,从而实现不同的滤波效果。

有源带通滤波器设计型实验报告

有源带通滤波器设计型实验报告
R4 ( Avf 1 1) R5 11.72k , R9 ( Avf 1 1) R10 41k 。
设计完成的电路如图 1 所示。信号源 v1 通过 R1 和 R2 进行衰减, 其戴维南等效电阻为 R1 和 R2 的并联值,这个电阻应等于低通级电阻
R3 3.9k 。因此,有
R1R2 R3 3.9k R1 R2
由于整个滤波电路通带增益是电压分压器比值和滤波器部分增 益的乘积,且应等于单位增益,故有
R2 ( Avf 1 )2 1 R1 R2
解得 R1 9.8k , R2 6.47k 。
图 1 带通滤波器电路
为了方便连接电路时选用电阻器, 在性能参数依然达标图 2:
图 2 调整后的电路图
为确保电路参数满足设计要求,用 Multisim 进行仿真,并画出 其幅频响应波特图如图 2-4 所示。由图可知该电路满足要求。
图 3 幅频特性波特图(1kHz)
图 4 幅频特性波特图(4kHz)
图 5 幅频特性波特图(20kHz)
fc 1 2 RC
可计算出精确的电阻值。
对于低通级,由上式计算出 R3 3.9k ,对于高通级,采用同样
计算得 R7 R8 16.5k 。 考虑到 Avf 1 1.586 ,同时尽量要使运放同相输入端和反相输入端 对地的直流电阻基本相等,现选择 R5 20k ,R10 70k ,由此可算出
有源带通滤波器设计
【实验目的】 (1)进一步理解由运放组成的 RC 有源滤波器的工作原理; (2)熟练掌握 RC 有源滤波器的工程设计方法; (3)掌握滤波器参数的测量方法; (4)进一步熟悉 Multisim 的使用方法。 【实验要求】 (1)设计要求 设计一个带通滤波器,其中心频率为 2KHz,带宽 3KHz,要求在 20K 频率点处的衰减不得低于 10dB。 (2)测量要求 按照设计连接电路,用函数发生器接入不同频率的输入信号,输出端 连接示波器观测输出信号的幅值, 检测所设计电路的性能是否达到要 求。验证增益 A ,增益稳定性 A 等性能参数。

有源滤波电路实验(“设计”相关文档)共7张

有源滤波电路实验(“设计”相关文档)共7张

输入信号初 定为:
Ui=100mv
f(Hz) 20 U O(v) 1V
0.7 0.6 0.5 0.4 0.3 0.2 0.1
二、设计性实验
1、实验目的 通过实验,学习有源滤波器的设计方法,体 会调试方法在电路设计中的重要性,了解品质因数Q对滤 波器特性的影响。
2、实验题目
①设计一个有源二阶低通滤波器,已知条件和设 计要求如下:
截止频率
fH=5Hz
①设计一个有源二阶低通滤波器,已知条件和设计要求如下:
③测量电路的幅频特性曲线,研究品质因数对滤波器 频率特性的影响(提示:改变电路参数,使品质因数 变化,重复测量电路的频率特性曲线,进行比较得出 结论)。 ④写出实验总结报告。
2、 实验内容
①用Multisim 软件设计由集成运放构成的RC低通滤波器
②对一阶低通滤波器与二阶低通滤波器幅频特性的 测试。
3、 实验步骤: 测试方法:使输出电压为1伏,保持输入信号幅值不变, 调高输入信号频率,使输出电压为给定的各值,并记录 对应的频率值。
②对一阶低通滤波器与二阶低通滤波器幅频特性的测试。 ①设计一个有源二阶低通滤波器,已知条件和设计要求如下: 测试方法:使输出电压为1伏,保持输入信号幅值不变,调高输入信号频率,使输出电压为给定的各值,并记录对应的频率值。 测试方法:使输出电压为1伏,保持输入信号幅值不变,调高输入信号频率,使输出电压为给定的各值,并记录对应的频率值。 ②对一阶低通滤波器与二阶低通滤波器幅频特性的测试。 ①设计一个有源二阶低通滤波器,已知条件和设计要求如下: ①设计一个有源二阶低通滤波器,已知条件和设计要求如下: 测试方法:使输出电压为1伏,保持输入信号幅值不变,调高输入信号频率,使输出电压为给定的各值,并记录对应的频率值。 ②对一阶低通滤波器与二阶低通滤波器幅频特性的测试。 通带增益 Aup=1

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验报告:有源滤波器引言:有源滤波器是一种常用的电子电路,用于对信号进行滤波和增强。

通过引入放大器元件,有源滤波器能够实现更高的增益和更好的频率选择性。

本实验旨在通过搭建有源滤波器电路,研究其滤波特性和频率响应。

实验目的:1. 了解有源滤波器的工作原理和基本结构。

2. 掌握有源滤波器的电路搭建方法和调试技巧。

3. 分析和验证有源滤波器的滤波特性和频率响应。

实验器材:1. 函数发生器2. 电压放大器3. 直流电源4. 频谱仪5. 示波器6. 电阻、电容等元件7. 连接线等实验辅助器材实验步骤:1. 搭建有源低通滤波器电路。

2. 调整电路参数,如电阻和电容值,以实现所需的滤波特性。

3. 连接函数发生器和频谱仪,分别输入信号和输出信号。

4. 使用函数发生器产生不同频率的正弦波信号,记录频谱仪的输出结果。

5. 分析频谱仪输出结果,验证有源滤波器的滤波特性和频率响应。

实验结果:通过实验,我们得到了有源滤波器的频率响应曲线。

该曲线显示了滤波器在不同频率下的增益和幅频特性。

我们可以观察到滤波器对不同频率的信号有不同的响应,从而实现了信号的滤波和增强。

讨论与分析:在实验过程中,我们发现有源滤波器的电路参数对滤波特性有重要影响。

例如,改变电阻和电容的数值可以改变滤波器的截止频率和增益。

通过调整这些参数,我们可以根据实际需求设计不同类型的有源滤波器。

此外,我们还观察到有源滤波器对输入信号的相位有一定的影响。

在某些频率下,滤波器会引入相位延迟或相位差。

这是由于滤波器的频率选择性导致的,需要在实际应用中进行相应的补偿。

结论:有源滤波器是一种常用的电子电路,能够对信号进行滤波和增强。

通过实验,我们了解了有源滤波器的工作原理和基本结构,掌握了电路搭建和调试技巧。

通过分析实验结果,我们验证了有源滤波器的滤波特性和频率响应。

这些知识和技能对于电子工程师和通信工程师具有重要意义,可应用于各种电子设备和通信系统中。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告实验报告:有源滤波器设计与实验一、实验目的:1.了解有源滤波器的基本原理和结构;2.学习并掌握有源滤波器的设计方法;3.通过实验验证有源滤波器的滤波性能。

二、实验器材与设备:1.信号发生器;2.电压表;3.示波器;4.集成运算放大器;5.电阻、电容等被试器件;6.连接线等。

三、实验原理:四、实验内容:1.选择合适的电阻和电容值;2.根据所需的滤波类型(高通、低通、带通等),设计电路图;3.对电路进行搭建和连接,注意连接线的正确连接;4.使用示波器对输入输出的波形进行观察,并记录数据;5.分别改变输入信号的频率,观察输出波形和幅频特性;6.根据实验数据进行分析和总结。

五、实验结果与分析:根据实际操作和数据记录,可以得到有源滤波器的输入输出波形,并根据示波器上的数据进行幅频特性分析。

六、实验总结:通过本次实验,我们深入了解了有源滤波器的工作原理和滤波效果。

实验中我们根据所需的滤波类型选择合适的电阻和电容值,并设计了电路图。

在实验过程中,我们观察了输入输出波形,并记录了数据。

根据数据分析,我们发现有源滤波器在不同信号频率下的滤波效果明显,并符合理论预期。

在实验中,我们还需要注意电路连接的正确性和实验数据的准确性。

通过本次实验,我们进一步巩固了有源滤波器的原理和设计方法,学会了如何通过实验验证滤波器的性能。

1.《电子技术基础》,第三版,李明,高等教育出版社。

2.《模拟电子技术基础实验指导书》,李华,华南理工大学出版社。

八、附录:实验中使用的电路图、示波器数据和数据分析表格等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、掌握有源滤波器的分析和设计方法。

2、学习有源滤波器的调试、幅频特性的测量方法。

3、了解滤波器的结构和参数对滤波器性能的影响。

4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。

二、实验内容和原理
1、滤波器的5个主要指标:
(1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。

(2) 通带增益A v p:为一个实数。

(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。

(3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。

(4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。

(5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。

例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。

2、有源滤波器的设计流程:
设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。

最后再通过实验进行调试,确定实际的器件参数。

三、实验器材
运放LM358、
四、操作方法和实验步骤
1、实验内容
(1) 在实验板上安装所设计的电路。

(2) 有源滤波器的静态调零。

(3) 测量滤波器的通带增益A v p、通带截止频率f p。

(4) 测量滤波器的频率特性(有条件时可使用扫频仪)。

(5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。

2、设计一个二阶有源低通滤波器。

具体要求如下:
(1) 通带截止频率:f p=1kHz;
(2) 通带增益:A v p=1~2 ;
(3) 品质因数:Q = 0.707 ;
(4) 集成运放选用LM358 ,电容选用0.1~0.01μF,电阻控制在kΩ~MΩ数量级。

3、有源低通滤波器的调试方法
(1) 定性检查电路是否具备低通特性
在输入端加上幅度固定的正弦波信号,改变输入信号的频率范围,用示波器或交流毫伏表观测输出电压的幅度变化(要求峰峰值≤10V pp),检查电路是否具备低通特性。

如不具备,则应找出原因,排除电路故障;如已具备低通特性则可进一步调试低通滤波器的特性。

(2) 低通滤波器的特性调试
低通滤波器的特性调试应按有关计算式进行。

在一般情况下,应尽量选用相互间没有影响或影响较小的元件进行调整。

如果有必要,这些调整须反复进行。

(3) 测绘滤波电路的幅频特性曲线。

有条件时,可用扫频仪直接观测滤波电路的幅频特性。

4、设计一个二阶有源低通滤波器。

分别选用如下3 种电路形式来实现。

二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):
简单的二阶、有源、低通滤波器(LPF,同相型):
二阶、有源、多路负反馈型、低通滤波器(LPF,反相型):
五、实验数据记录和处理
简单的二阶、有源、低通滤波器(LPF ,同相型):
Rf
39k
V215Vd c
V1
15Vd c
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V
输入信号幅度控制为500mV 。

有:
幅频特性曲线如下图:
简单的有源、低通滤波器(LPF ,同相型):
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V Rf
{Rf}
V
V215Vdc
V1
15Vdc
(1) 输入信号幅度控制为10V。

有:
幅频特性曲线如下图:
当输出电压波形开始成三角波时的示波器波形:
(2) 输入信号幅度控制为10mV。

有:
改变输入信号的频率范围,用示波器或交流毫伏表观察输出电压的幅度变化。

当测出的输出电压值达到Uo×0.707值时,停止信号源频率的改变,此时信号源所对应的输出频率即为上限频率f H或下限频率f L。

Uo=16.0mV。

f H≈600kHz。

二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):
V215Vdc
V1
15Vdc
V
FREQ = 3kHz
VAMPL = 5V VOFF = 0V AC = 1V Rf {Rf}
(1) Rf=39k :
输入信号幅度控制为500mV 。

有:
幅频特性曲线如下图:
(2) Rf=100k :
出现自激振荡。

二阶、有源、多路负反馈型、低通滤波器(LPF ,反相型):
V1
15Vdc
VAMPL V215Vdc
Rf 10k
输入信号幅度控制为500mV 。

(1) C1=0.01u:
幅频特性曲线如下图:
(2) C2=0.1u:
幅频特性曲线如下图:
六、仿真分析
简单的二阶、有源、低通滤波器(LPF,同相型):
简单的有源、低通滤波器(LPF,同相型):
(1) 输入信号幅度控制为10V。

有:
(2) 输入信号幅度控制为10mV。

有:
f H≈537kHz。

二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):(1) Rf=39k:
二阶、有源、多路负反馈型、低通滤波器(LPF,反相型):
(1) C1=0.01u:
(2) C2=0.1u:
七、心得体会
通过本次实验我掌握了有源滤波器的分析和设计方法,学习了有源滤波器的调试、幅频特性的测量方法,了解了滤波器的结构和参数对滤波器性能的影响。

实验完成后我还用EDA仿真的方法来研究滤波电路,加深了对PSpice的熟练程度,了解了元件参数对滤波效果的影响。

2015.05.28。

相关文档
最新文档