七年级数学竞赛讲座:第四讲 一元一次方程

合集下载

2022年初一奥数数学竞赛第四讲一元一次方程

2022年初一奥数数学竞赛第四讲一元一次方程

初一奥数数学竞赛第四讲一元一次方程方程是中学数学中最重要旳内容.最简朴旳方程是一元一次方程,它是深入学习代数方程旳基础,诸多方程都可以通过变形化为一元一次方程来处理.本讲重要简介某些解一元一次方程旳基本措施和技巧.用等号连结两个代数式旳式子叫等式.假如给等式中旳文字代以任何数值,等式都成立,这种等式叫恒等式.一种等式与否是恒等式是要通过证明来确定旳.假如给等式中旳文字(未知数)代以某些值,等式成立,而代以其他旳值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立旳未知数旳值叫作方程旳解.方程旳解旳集合,叫作方程旳解集.解方程就是求出方程旳解集.只具有一种未知数(又称为一元),且另一方面数是1旳方程叫作一元一次方程.任何一种一元一次方程总可以化为ax=b(a≠0)旳形式,这是一元一次方程旳原则形式(最简形式).解一元一次方程旳一般环节:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数旳系数,得出方程旳解.一元一次方程ax=b旳解由a,b旳取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多种解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐层去括号.去小括号得去中括号得去大括号得解法2按照分派律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相似旳解,试求a旳值.分析本题解题思绪是从方程①中求出x旳值,代入方程②,求出a旳值.解由方程①可求得3x-5x=-6,因此x=3.由已知,x=3也是方程②旳解,根据方程解旳定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)旳解为a+2,求方程2[2(x+3)-3(x-a)]=3a旳解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,因此a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解有关x旳方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不一样实数值旳常数,因此需要讨论m,n取不一样值时,方程解旳状况.解把原方程化为m2x+mnx-mn-n2=0,整顿得m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程旳解为一切实数.阐明具有字母系数旳方程,一定要注意字母旳取值范围.解此类方程时,需要从方程有唯一解、无解、无数多种解三种状况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中旳括号去掉后产生x2项,但整顿化简后,可以消去x2,也就是说,原方程实际上仍是一种一元一次方程.解将原方程整顿化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即(a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多种解.例6已知(m2-1)x2-(m+1)x+8=0是有关x旳一元一次方程,求代数式199(m+x)(x-2m)+m旳值.解由于(m2-1)x2-(m+1)x+8=0是有关x旳一元一次方程,因此m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式旳值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.因此所求代数式旳值为1991.例7 已知有关x旳方程a(2x-1)=3x-2无解,试求a旳值.解将原方程变形为2ax-a=3x-2,即(2a-3)x=a-2.由已知该方程无解,因此例8 k为何正数时,方程k2x-k2=2kx-5k旳解是正数?来确定:(1)若b=0时,方程旳解是零;反之,若方程ax=b旳解是零,则b=0成立.(2)若ab>0时,则方程旳解是正数;反之,若方程ax=b旳解是正数,则ab>0成立.(3)若ab<0时,则方程旳解是负数;反之,若方程ax=b旳解是负数,则ab<0成立.解按未知数x整顿方程得(k2-2k)x=k2-5k.要使方程旳解为正数,需要(k2-2k)(k2-5k)>0.看不等式旳左端(k2-2k)(k2-5k)=k2(k-2)(k-5).由于k2≥0,因此只要k>5或k<2时上式不小于零,因此当k <2或k>5时,原方程旳解是正数,因此k>5或0<k<2即为所求.例9若abc=1,解方程解由于abc=1,因此原方程可变形为化简整顿为化简整顿为阐明像这种带有附加条件旳方程,求解时恰当地运用附加条件可使方程旳求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.由于a>0,b>0,c>0,因此ab+bc+ac≠0,因此x-(a+b+c)=0,即x=a+b+c为原方程旳解.解法2将原方程右边旳3移到左边变为-3,再拆为三个“-1”,并注意到其他两项做类似处理.设m=a+b+c,则原方程变形为因此即x-(a+b+c)=0.因此x=a+b+c为原方程旳解.阐明注意观测,巧妙变形,是产生简朴优美解法所不可缺乏旳基本功之一.例11设n为自然数,[x]表达不超过x旳最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,因此n与(n+1)…,n[x]都是整数,因此x必是整数.解根据分析,x必为整数,即x=[x],因此原方程化为合并同类项得故有因此x=n(n+1)为原方程旳解.例12已知有关x旳方程且a为某些自然数时,方程旳解为自然数,试求自然数a 旳最小值.解由原方程可解得a最小,因此x应取x=160.因此因此满足题设旳自然数a旳最小值为2.练习四1.解下列方程:*2.解下列有关x旳方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,有关x旳方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不不小于1旳解.。

初一上册数学解一元一次方程

初一上册数学解一元一次方程

初一上册数学解一元一次方程解一元一次方程是初中数学的基础内容。

下面是解一元一次方程的步骤:
1. 将方程整理成标准形式:ax + b = 0,其中a和b是已知常数。

2. 移项:将b移到方程的另一侧,得到ax = -b。

3. 消去系数a:如果a不等于0,则将方程两边都除以a,得到x = -b/a。

这是方程的唯一解。

4. 如果a等于0,那么方程就变成了bx = 0。

这种情况下,方程有无穷多解,即任何实数都可以作为方程的解。

总结起来,解一元一次方程的关键是将方程整理成标准形式,然后通过移项和消去系数的操作得到解。

如果a不等于0,则方程有唯一解;如果a等于0,则方程有无穷多解。

1。

七年级数学上册第5章一元一次方程4应用一元一次方程—打折销售全国公开课一等奖百校联赛微课赛课特等奖P

七年级数学上册第5章一元一次方程4应用一元一次方程—打折销售全国公开课一等奖百校联赛微课赛课特等奖P
11/13
20.某百货商场 10 月 1 日搞促销活动,购物不超过 200 元,不给优惠;超 过 200 元而不超过 500 元的优惠 10%;超过 500 元的,其中 500 元按 9 折 优惠,超过部分按 8 折优惠,某人两次购物分别用了 134 元和 466 元.问: (1)此人两次购买的物品不打折时分别值多少钱? (2)在此次活动中他节省了多少钱? (3)若此人将这两次购买的物品合起来一次性购买是不是更合算?说明你的 理由.
60 ,利润率 20% .
2/13
1.一件衣服的标价是 132 元,若以 9 折出售,仍可获利 10%,则这件衣服
的进价是( D )
A.106 元
B.105 元
C.118 元
D.108 元
2.某人以 8 折的价格买下了一套服装,节省了 25 元,那么此人买这套服装
实际用了( D )
A.31.25 元
B.盈利 14 元
C.不亏不盈
D.盈利 20 元
7/13
12.如图是某超市中“飘柔”洗发水的价格标签,一售货员不小心将墨水滴 在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是( D )
A.15.36 元 C.23.04 元
B.16 元 D.24 元
8/13
13.某商场将彩电先按原价提高 40%,然后在广告中写上“大酬宾,八折
12/13
解:(1)设售价为 x 元,500×0.9+(x-500)×0.8=466,x=520,∴不打折 时分别值 134 元或 520 元; (2)节省(134+520)-(134+466)=54 元; (3)是更合算.理由:654 元的商品优惠价为 500×0.9+(654-500)×0.8= 573.2<600,∴一次性购买更合算.

初一数学第四讲 一元一次方程

初一数学第四讲   一元一次方程

第四讲 一元一次方程教学目标1.理解方程的概念,能够根据要求列出恰当的方程,能够对方程模型进行准确的判断;2.熟练掌握移项、去括号、合并同类项等化简方程的方法,掌握解一元一次方程的步骤;3.能够分析实际问题中的已知量和未知量,以及它们之间的关系,能够熟练找出题目中的等量关系,并列出方程进行求解,并根据问题判断“解”的合理性。

教学重点 移项、去括号、合并同类项等化简方程的方法 教学难点 能列方程解应用题 教学方法建议讲授法,讲练结合 选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类(4)道(10)道(4)道B 类 (9)道 (8)道 (7)道C 类(6)道(6)道(5)道第1——2课时 一元一次方程相关概念及解法一、知识梳理1.等式及其性质⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2.方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3.解一元一次方程的步骤①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.4.易错知识辨析(1)判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等不是一元一次方程.(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.二、课堂精讲例题(一)一元一次方程的定义 例题1若3223=+-k kxk是关于x 的一元一次方程,则k =_______.【难度分级】:A 类【选题意图】(对应知识点):本题主要考查学生对一元一次方程的定义的理解。

七年级数学上第4章一元一次方程4.3用一元一次方程解决问题6打折销售问题授课苏科

七年级数学上第4章一元一次方程4.3用一元一次方程解决问题6打折销售问题授课苏科

【中考·牡丹江】某种商品每件的进价为120元,标价 6
为180元.为了拓展销路,商店准备打折销售.若使 利润率为20%,则商店应打____8____折.
【点拨】设商店打 x 折,则 180×1x0-120=120×20%, 解得 x=8.
7 【中考·山西】2020年5月份,省城太原开展了“活 力太原·乐购晋阳”消费暖心活动,本次活动中的家 电消费券单笔交易满600元立减128元(每次只能使 用一张).某品牌电饭煲按进价提高50%后标价, 若按标价的八折销售,某顾客购买该电饭煲时,使 用一张家电消费券后,又付现金568元.求该电饭 煲的进价.
(3)王老师元旦打算消费3 000元购买自己想要的商品, 她有三种打算:①到百盛和武商各消费1 500元;②全 到百盛去消费;③全到武商去消费.假设王老师需要 的商品百盛和武商都有,如果你是王老师,你会如何 选择?
解:①1 000+(1 500-1 000×0.9)÷0.6=2 000(元), 1 500÷0.8=1875(元), 2 000+1 875=3875(元); ②1 000+(3 000-1 000×0.9)÷0.6=4 500(元); ③3 000÷0.8=3 750(元). 因为4 500>3 875>3 750, 所以选择第②种打算.
(1)王老师想到百盛买一件标价为1 800元的衣服,她应该付 多少钱?
解:1 000×0.9+(1 800-1 000)×0.6=1 380(元). 答:她应该付1 380元.
(2)当我们购买多少钱的商品时,在两个商场所花的钱相同?
解:一次购物不超过500元,在两个商场都不享受优惠; 一次购物超过1 000元,设当我们购买x元的商品时,在两个 商场所花的钱相同,根据题意,得 1 000×0.9+0.6(x-1 000)=0.8x. 解得x=1 500. 综上所述,当我们购买不超过500元或购买1 500元的商品时, 在两个商场所花的钱相同.

七年级奥数讲座 第四讲

七年级奥数讲座    第四讲

第四讲一元一次方程知识点: 一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程例2已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.例3 : a取什么值时,方程a(a-2)x=4(a-2)①有唯一的解?②无解?③有无数多解?④是正数解?例4解关于x的方程(mx-n)(m+n)=0.例5 k为何正数时,方程k2x-k2=2kx-5k的解是正数?例6 若abc=1,解方程例7 若a ,b ,c 是正数,解方程例8 设n 为自然数,[x]表示不超过x 的最大整数,解方程例9 已知关于x 的方程且a 为某些自然数时,方程的解为自然数,试求自然数a 的最小值.例10:无论K 为何值时,X=-1恒为方程1322=--+bk x a kx 的解,求a,b.例11 k 取什么整数值时,方程①k(x+1)=k -2(x -2)的解是整数?②(1-x )k=6的解是负整数?作业1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.5.a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?6、m取什么值时,方程3(m+x)=2m-1的解①是零?②是正数?7、已知方程221463+=+-a x 的根是正数,那么a 、b 应满足什么关系?8、m 取什么整数值时,方程m m x 321)13(-=-的解是整数?9、已知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版
根据题中的新定义,得4-4(1+2x)=x+9. 去括号,得4-4-8x=x+9. 解得x=-1.
14 某超市为了回馈客户,决定实行优惠活动. 方案一:非会员购买所有商品可获九折优惠; 方案二:交纳200元会费成为该超市的会员,购买所 有商品可获八折优惠. (1)若用x(元)表示商品价格,请你用含x的式子分别表 示两种购物方案所花的钱数; 解:由题意,可得方案一:付费为0.9x元, 方案二:付费为(200+0.8x)元.
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月12日星期六3时47分18秒15:47:1812 March 2022
谢谢观赏
You made my day!
错解:去括号,得 12-y=-6y-1.移项,得 6y-y =-1-12.合并同类项,得 5y=-13.系数化为 1, 得 y=-153.
诊断:用去括号法解一元一次方程,去括号时
易漏乘某些项而出错.
10 解下列方程: (1)3(7x-5)-13(5-7x)+17(7x-5)=7(5-7x); 解:把 7x-5 看成一个整体,将原方程变形为 3(7x -5)+13(7x-5)+17(7x-5)=-7(7x-5), 整体移项、合并同类项,得10+1201(7x-5)=0, 即 7x-5=0.移项,得 7x=5.系数化为 1,得 x=57.
(6)x-2[x-3(x-1)]=8.
解:去中括号,得 x-2x+6(x-1)=8. 去小括号,得 x-2x+6x-6=8. 移项、合并同类项,得 5x=14. 系数化为 1,得 x=154.
9 解方程:2(6-0.5y)=-3(2y-1).
正解:去括号,得 12-y=-6y+3.移项,得-y+ 6y=3-12.合并同类项,得 5y=-9.系数化为 1,得 y=-95.

苏科版(2024新版)七年级数学上册第四章专题课件:特殊一元一次方程的解法技巧

苏科版(2024新版)七年级数学上册第四章专题课件:特殊一元一次方程的解法技巧




合并同类项,得- x =- ,
系数化为1,得 x =1.

(3)









= x;





解:去括号,得 x - -6= x ,
去分母,得2 x -1-24=6 x ,
移项、合并同类项,得-4 x =25,

系数化为1, x 得=- .


(4)
(

+ ) + + =1.


解:去括号,得 ( x +1)+3=4,


继续去括号,得 x + +3=4,


去分母,得 x +1+6=8,
移项、合并同类项,得 x =1.
类型3
3.
拆分型





解方程: + + + +…+
=1.





解:原方程化为

×
(1)








=5 x ;

解:去括号,得3 x - +1=5 x ,



移项、合并同类项,得-2 x = ,

系数化为1,得 x =- .

(2)4





(

− )

= (5+ x );



解:去括号,得2 x -3 x +3= + x ,






移项,得2 x -3 x - x = -3,

苏科版(2024新版)七年级数学上册第四章专题课件:利用一元一次方程解决分段问题

苏科版(2024新版)七年级数学上册第四章专题课件:利用一元一次方程解决分段问题

②若第一次购买此种蔬菜在15千克以上且不超过35千
克,第二次购买此种蔬菜超过35千克,
则7.2 m +6.4(60- m )=400.
解得 m =20.则60- m =40.
③若第一次购买此种蔬菜在35千克以上,则第二次购
买的数量少于第一次,不合题意.
答:第一次购买此种蔬菜20千克,第二次购买此种蔬
甲用户该月的天然气费用.
若 x ≤75,则费用为
2.5 x
元;
若 x >75,则费用为
(2.7 x -15)
元.
(2)若甲用户11月份的天然气费用为201元,求甲用户11月
份天然气的用量.
解:因为2.5×75=187.5(元)<201元,所以2.7 x -15
=201,解得 x =80.
答:甲用户11月份天然气的用量为80立方米.
4元/立方米
超出10立方米的部分
8元/立方米
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水8立方米,则应收水费 20 元.
(2)若某户居民3月份用水 a 立方米(其中6< a ≤10),请用
含 a 的代数式表示应收水费 (4 a -12) 元.
(3)若某户居民4月份交水费52元,求该户居民4月份的用
水量为多少立方米?
解:设该户居民4月份的用水量为 x 立方米.因为2×6+
4×(10-6)=28(元),28<52,所以 x >10.根据题意,
得2×6+4×(10-6)+8( x -10)=52,解得 x =13.
答:该户居民4月份的用水量为13立方米.
0.6元/千瓦时
4 800千瓦时的部分
第3档
超过4 800千瓦时的部分
( a +0.3)元/千瓦时

初中数学竞赛辅导第四讲一元一次方程含.doc

初中数学竞赛辅导第四讲一元一次方程含.doc

初中数学竞赛辅导第四讲一元一次方程1、解方程:1x1x1x23x32343242、方程3x 2 5x和4x 3a x 6x 7a x有相同的解,求a的值。

3、方程2x 1 3x 1的解为a+2,求方程22x 3 2x a3a的解。

4、解关于x的方程mx nm n0。

5、解方程:a x ba b xa2xb2xa2b2。

6、m21x2m 1x 8 0是关于x的一元一次方程,求代数式199m xx 2mm的值。

7、关于x的方程a2x1 3x 2无解,试求a的值。

8、k为何正数时,方程k2x k22kx5k的解是正数?9、假设abc2ax2bx2cx 1,解方程bcb11aba1caa1xab xb c xca310、假设a、b、c是正数,解方程a bc11、设n为自然数,[x]表示不超过x的最大整数,解方程x2x3x4xnxn2n12。

212、关于x的方程,且a为某些自然数时,方程5xa8x142的解为自然数,试25求自然数a的最小值。

答案:1、x 22。

92、a41。

23、x 1 10。

24、〔1〕当mn0,且m0时,方程有唯一解xn0时,且m时,;〔2〕当mnm方程无解;〔3〕当mn0时,方程的解为一切实数。

、〔〕当a2b20时,方程有唯一解ab;〔〕当a2b20时,那么方程无解或有1x2a b 无数多个解。

6、1991。

37、a28、k5或k2。

9、x1210、x ac 。

11n1。

、x n 12、2。

训练题:1、解以下方程:111xx 12〔1〕31〔2〕24〔3〕1111x16412452、解以下关于x的方程:〔1〕a223x 1〔〕ax3x2ab1〔〕xbxa2323a2b3、a为何值时,方程x a x1x 12有无数多个解?无解?3264、当k取何值时,关于x的方程3x1 5kx,分别有〔1〕正数解;〔2〕负数解;〔3〕不大于1的解。

七年级数学《解一元一次方程-第4课时》教案

七年级数学《解一元一次方程-第4课时》教案




知识与技能
会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法.
过程与方法
2、培养学生数学建模能力,分析问题、解决问题的能力.
情感态度与价值观
3、培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。
教学重点
寻找实际问题中的等量关系,建立数学模型。培养学生自己发现问题、解决问题的能力。
A.54 B.27 C.72 D.45
2、三个连续偶数的和为18,设最大的偶数为x,则可列方程______.
3、为了迎接“316”工程验收学校要打印一些文件,向老师单独做要20小时完成,张老师单独做要12小时完成。现在先由向老师单独做4小时,剩下的部分由甲向老师、张老师合作。剩下的部分需要多少小时才能完成?
(3)从我们身边的问题入手,加强了学生学习的主动性和探究性,激发学生积极的思维,效果会更好。体现“人人受到良好的数学教育”的课程理念。
(4)通过具体的例子反复的感受方程在解决实际问题中的作用,理解方程是刻画现实的一种模型,渗透模型化的思想。
活动三变式训练,巩固新知
1、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()
回顾本题列方程的过程,可以发现:
工作总量=人均效率×人数×时间
这是计算工作量的常用数量关系式.
【教师活动】
(1)根据学生活动进程依次出示问题1、2、3和例3
(2)检查学生独立尝试解决问题1、2、3的情况,根据学生表现,适时的出示每一个问题后思考分析过程,重点关注全体学生是否能理解分析过程中的数量关系,并能正确地用式子表示列出方程,必要时进行适当地提醒。
(4)在学生解完方程后,提出问题2,结合学生归纳,板书解一元一次方程的步骤,相机导入新课。

初一数学竞赛讲义(一元一次方程)

初一数学竞赛讲义(一元一次方程)

第1讲 一元一次方程一、一元一次方程的解法一元一次方程的解法一般有去分母,去括号,移项,合并同类项等步骤,但在解题过程中不要生搬硬套,往往需要我们活用所学方法,灵活解决问题。

例1、解方程200620072005275253212=⨯++⨯+⨯+⨯xxxx x二、一元一次方程根的存在性一元一次方程最终都可化成ax=b 的形式,显然当a ≠0时,方程有唯一的根a b;当a=0且b=0时,方程有无数根;当a=0且b ≠0时,方程无根;例2、当b=1时,关于x 的方程a (3x-2)+b (2x-3)=8x-7有无数多个解,求a 的值。

例3、如果a 、b 为定值,关于x 的方程6232bk x a kx -+=+,无论k 为何值,它的根总是1,求a 、b 的值。

例4、 解关于x 的方程a b a b x b a x =---,其中a ≠0,b ≠0。

例5、已知3=--+--+--b ac x a cb xc ba x ,且0111≠++c b a ,求x-a-b-c 的值。

三、一元一次方程的整数解例6、若k 为整数,则使得方程(k-1999)x=2001-2000x 的解也是整数的k 值有几个?例7、已知p 、q 都是质数,则以x 为未知数的一元一次方程px+5q=97的解是1,求代数式p 2-q 的值。

四、含绝对值的一元一次方程例8、解方程312=+-x x例9、解方程532=+++x x练习1、已知ax 2+5x+14=2x 2-2x+3a 是关于x 的一元一次方程,则其解是多少?2、已知方程5x-2m=mx-4-x 的解在2与10之间(不包括2和10),求m 。

3、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数是什么?4、求自然数n a a a 21,使得122121122121n n a a a a a a ⨯=⨯。

5、关于x 的方程mx+4=3x-n ,分别求m 、n 为何值时,原方程(1)有惟一解(2)有无数解(3)无解6、方程1-x+x的解有哪些?2=-37、已知关于x的方程2a(x-1)=(5-a)x+3b有无数多解,试求a、b的值。

初中数学人教版七年级上册《一元一次方程》优质课公开课比赛获奖课件面试试讲课件

初中数学人教版七年级上册《一元一次方程》优质课公开课比赛获奖课件面试试讲课件

是一元一次方程.
(2)设甲种铅笔买了x支,乙种铅笔买了(20-x)支
0.3 x 0.6 20 x 9 是一元一次方程
我来试试
练习:根据下列问题,设未知数,列出方程,并指出是 不是一元一次方程: (3)一个梯形的下底比上底多2 cm,高是5 cm,面积 是40 cm2,求上底. (4)用买10个大水杯的钱,可以买15个小水杯,大水 杯比小水杯的单价多5元,两种水杯的单价各是多少元?
2、爸爸今年37岁,是儿子年龄的3倍还多1岁,设儿
三.填空:
(1)如果关于x的方程 3x5-2k -3=0是一元一次方
2 ; 程,则 k= (2)已知方程 (m-1)y|m|+3=0是一元一次方
程,则 m= -1 。源自理解与运用1 .填空: (1)在式子:2x -1 ,1+7=2+6 , 1-3x = x +1 ,
边的这些式子, 看看它们有什么 2、象这样含有未知数的等 共同的特征? 式叫做 。 方程
判断方程的两个关键要素: ①有未知数 ②是等式
我回顾,我思考
3、判断下列各式哪些是方程?
①5x+3y-6x=37(√ )
③5x ≥ 3
②4x-7( ×)
5
( ×) ④ 6x²+x-2=0 ( √)
⑤1+2=3 ( ×) ⑥ x m 11 ( √ )
解:(3)设上底为x cm, 1 x x .2 5 40 是一元一次方程 2 (4)设小水杯的单价是x 元,大水杯的单价是(x+5) 元,
15 x=10 x 5 .
是一元一次方程
总结反思:
列出一元一次方程的一般步骤: 1.设:恰当的设出未知数,用字母X表示问 题中的未知量 2.找:寻找实际问题中的相等关系

第4章 一元一次方程——一元一次方程的定义和解法 讲义苏科版版数学七年级上册

第4章 一元一次方程——一元一次方程的定义和解法 讲义苏科版版数学七年级上册
3.方程 可变形为( ).
A.3-x-1=0 B.6-x-1=0 C.6-x+1=0 D.6-x+1=2
题型二:解方程
例1、解下列方程
(1)-2x=-3x+8(2)56=3x+32-2x
(3) (4)4y﹣3(20﹣y)=6y﹣7(9﹣y)
(5) (6) x- =1
(7) (8)
(9) . (10) - = 1
注:①方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.
②方程的解的检验方法:把未知数的值分别代入方程的左、右两边计算它们的值,比较两边的值是否相等.
【例题精讲】
第一部分:从问题到方程
题型一:方程及一元一次方程的概念辨析
例1、已知 是关于x的一元一次方程,试求代数式 的值。
3. 移项法则
把等式一边的某项__________后移到另一边,叫做移项.
4. 去括号法则
(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号_______.
(2)括号外的因数是负数,去括号后各项的符号与原ቤተ መጻሕፍቲ ባይዱ号内相应各项的符号_______.
5. 解方程的一般步骤
(1)去分母(方程两边同乘各分母的最小公倍数)
(2)方程3y= ,两边都除以3,得y=1( )
改正:________________________________________________。
2.下列解方程的过程中,移项错误的是( ).
A.方程2x+6=-3变形为2x=-3+6 B.方程2x-6=-3变形为2x=-3+6
C.方程3x=4-x变形为3x+x=4 D.方程4-x=3x变形为x+3x=4

苏科版七年级数学上册 4.1 等式与方程(第4章 一元一次方程 学习、上课课件)

苏科版七年级数学上册  4.1 等式与方程(第4章 一元一次方程  学习、上课课件)
知2-练
思路点拨 解答此类问题时,先要观察等式变形后的左边与右边,
与等式变形前的左边与右边的差异,是同时增加(或减少) 还是同时扩大(或缩小),然后确定变形的依据,最后得出 结论.
感悟新知
知识点 3 方程
知3-讲
1. 未知数 在2x+1=x+5 ,a+b=12,2a+b=20,0.618x2=
1.6这些等式中,都是用字母表示要求的未知的量,这样的 字母叫作未知数.
感悟新知
知1-练
解题秘方:紧扣等量关系“剩余空白区域的面积=(1- 14)×长方形空地的面积”列出等式. 解:可列等式为(30-2x)(20-x)=(1-14)×20×30.
感悟新知
知1-练
思路总结 列等式的一般思路:
(1)要注意理清情境中的数量关系,列出相应的代数式; 如题(1)是行程问题,可以根据“速度×时间=路程”, 用代数式表示出甲、乙两人跑的路程;
个不为0的数.
感悟新知
知2-练
例 2 利用等式的基本性质,将下面的等式变形为x=c (c 为常数) 的形式, 正确的是( )
A. 由-13x=23y得x=2y B. 由3x-2=2x+2得x=4 C. 由2x-3=3x得x=3 D. 由ax=5a得x=5 解题秘方:紧扣等式的基本性质求解,涉及加减的用性质 1,涉及乘除的用性质2(注意:等式的两边都除以同一个 数的时候,这个数必须不为0).
第4章 一元一次方程
4.1 等式与方程
学习目标
1 课时讲解 等式
等式的性质 方程 方程的解与解方程
2 课时流程
逐点 导讲练Leabharlann 课堂 小结作业 提升
感悟新知
知识点 1 等式
知1-讲
概念 像2x=3y,S=xy,12a+3b=58这样,表示相等关系

苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习

苏科版七年级数学上册第四章 一元一次方程章节知识点归纳复习
一元一次方程章节知识点归纳复习
1.定义:方程与一元一次方程
含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
题判断一元一次方程,确定一元一次方程中字母的值。
2.方程的解与解方程
使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
(6)按比例分配问题
甲:乙:丙=a:b:c,则设一份为x,甲为ax,乙为bx,丙为cx
全部的数量=各个份数之和
(7)若干应用问题等量关系的规律
(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。增长量=原有量×增长率现在量=原有量+增长量
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去 分母----------同乘(不漏乘)最简公分母
去 括号----------注意符号变化
移 项----------变号
合并同类项--------合并后注意符号
等量关系_________________________
(4)行程问题

初一年级奥数知识点:解一元一次方程重点讲解

初一年级奥数知识点:解一元一次方程重点讲解

【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。

奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。

下⾯是为⼤家带来的初⼀年级奥数知识点:解⼀元⼀次⽅程重点讲解,欢迎⼤家阅读。

1.⼀元⼀次⽅程:只含有⼀个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式⽅程是⼀元⼀次⽅程。

2.⼀元⼀次⽅程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

3.条件:⼀元⼀次⽅程必须同时满⾜4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质⼀:等式两边同时加⼀个数或减去同⼀个数或同⼀个整式,等式仍然成⽴。

等式的性质⼆:等式两边同时扩⼤或缩⼩相同的倍数(0除外),等式仍然成⽴。

等式的性质三:等式两边同时乘⽅(或开⽅),等式仍然成⽴。

解⽅程都是依据等式的这三个性质等式的性质⼀:等式两边同时加⼀个数或减同⼀个数,等式仍然成⽴。

5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成⼀项;常数计算后合并成⼀项(3)合并时次数不变,只是系数相加减。

6.移项(1)含有未知数的项变号后都移到⽅程左边,把不含未知数的项移到右边。

(2)依据:等式的性质(3)把⽅程⼀边某项移到另⼀边时,⼀定要变号。

7.⼀元⼀次⽅程解法的⼀般步骤:使⽅程左右两边相等的未知数的值叫做⽅程的解。

⼀般解法:(1)去分母:在⽅程两边都乘以各分母的最⼩公倍数;(2)去括号:先去⼩括号,再去中括号,最后去⼤括号;(记住如括号外有减号的话⼀定要变号)(3)移项:把含有未知数的项都移到⽅程的⼀边,其他项都移到⽅程的另⼀边;移项要变号(4)合并同类项:把⽅程化成ax=b(a≠0)的形式;(5)系数化成1:在⽅程两边都除以未知数的系数a,得到⽅程的解x=b/a.8.同解⽅程如果两个⽅程的解相同,那么这两个⽅程叫做同解⽅程。

七年级数学解一元一次方程优质课市公开课一等奖省优质课获奖课件

七年级数学解一元一次方程优质课市公开课一等奖省优质课获奖课件
简缩格式: 6x – 2 = 10 6x = 10 + 2
有什么规律可循?
‫ ڿ‬解题后思索
6x – 2 + 2 = 10 + 2
能否写成: 6x
= 10 + 2
为何?
第3页
移项
6x – 2 = 10

6x = 10+ 2 ②
由方程 ①到方程 ② , 这个变形相当于 把 ①中 “– 2”这一项 从左边移到了右边.
等号两边同加减目标是: 使项个数降低; 等号两边同乘除目标是: 使未知项系数化为1.
第2页
看谁解得快
解方程: 6x – 2 = 10 .
解:方程 两边同时加上 2 , 得
6x – 2 = 10 6x – 2 + 2 = 10+ 2
即 6x
= 12
两边同除以6得: x = 2.
把原求解书写格式改成:
第7页
议一议
解题后反思
(1) 移项实际上是对方程两边进行 同加减
,
使用是等式性质
(2) 系数 化为 1 实际上是对方程两边进行同乘除 , 使用是等式性质
第8页
随堂练习
解以下方程: (1) 10x+1=9;
(3) x 3 x 16 ; 2
(2) 2—3x =4-2x;
(4) 1 3 x 3x 5 .
2
2
第9页
本节课你收获是什么?
这节课我们学习了解一元一次方程 移项。
移项实际上是我们早已熟悉利用等式性质 “对方程两边进行同加同减”,只不过在格式上更为简 捷。
移项是把项从方程一边移到另一边。 项移动时一定要变号。
第10页
作业
P157习题5.2 预习156~158
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲一元一次方程
方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.
用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.
如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.
只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.
一元一次方程ax=b的解由a,b的取值来确定:
(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;
(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.
例1解方程
解法1从里到外逐级去括号.去小括号得
去中括号得
去大括号得
解法2按照分配律由外及里去括号.去大括号得
化简为
去中括号得
去小括号得
例2已知下面两个方程
3(x+2)=5x,①
4x-3(a-x)=6x-7(a-x) ②
有相同的解,试求a的值.
分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.
解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有
4×3-3(a-3)=6×3-7(a-3),
7(a-3)-3(a-3)=18-12,
例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有
2[2(x+3)-3(x-3)]=3×3,-2x=-21,
例4解关于x的方程(mx-n)(m+n)=0.
分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n 取不同值时,方程解的情况.
解把原方程化为
m2x+mnx-mn-n2=0,
整理得m(m+n)x=n(m+n).
当m+n≠0,且m=0时,方程无解;
当m+n=0时,方程的解为一切实数.
说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.
例5解方程
(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.
分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.
解将原方程整理化简得
(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,
即 (a2-b2)x=(a-b)2.
(1)当a2-b2≠0时,即a≠±b时,方程有唯一解
(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.
例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-
2m)+m的值.
解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以
m2-1=0,即m=±1.
(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为
199(1+4)(4-2×1)+1=1991;
(2)当m=-1时,原方程无解.
所以所求代数式的值为1991.
例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.
解将原方程变形为
2ax-a=3x-2,
即 (2a-3)x=a-2.
由已知该方程无解,所以
例8k为何正数时,方程k2x-k2=2kx-5k的解是正数?
来确定:
(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.
(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.
(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.
解按未知数x整理方程得
(k2-2k)x=k2-5k.
要使方程的解为正数,需要
(k2-2k)(k2-5k)>0.
看不等式的左端
(k2-2k)(k2-5k)=k2(k-2)(k-5).
因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.
例9若abc=1,解方程
解因为abc=1,所以原方程可变形为
化简整理为
化简整理为
说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.
例10若a,b,c是正数,解方程
解法1原方程两边乘以abc,得到方程
ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得
ab[x-(a+b+c)]+bc[x-(a+b+c)]
+ac[x-(a+b+c)]=0,
因此有
[x-(a+b+c)](ab+bc+ac)=0.
因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以
x-(a+b+c)=0,
即x=a+b+c为原方程的解.
解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到
其余两项做类似处理.
设m=a+b+c,则原方程变形为
所以

x-(a+b+c)=0.
所以x=a+b+c为原方程的解.
说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:
分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)
…,n[x]都是整数,所以x必是整数.
解根据分析,x必为整数,即x=[x],所以原方程化为
合并同类项得
故有
所以x=n(n+1)为原方程的解.
例12已知关于x的方程
且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得
a最小,所以x应取x=160.所以
所以满足题设的自然数a的最小值为2.
练习四
1.解下列方程:*
2.解下列关于x的方程:
(1)a2(x-2)-3a=x+1;
4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.。

相关文档
最新文档