垂径定理

合集下载

垂径定理5个推论

垂径定理5个推论

垂径定理5个推论
1.垂径定理的第一个推论是:如果一个三角形的垂足恰好在其内部,那么这个三角形的内角和一定是小于180度的。

2. 垂径定理的第二个推论是:如果一个三角形的垂足恰好在其外部,那么这个三角形的内角和一定是大于180度的。

3. 垂径定理的第三个推论是:如果一个三角形的垂心和重心重合,那么这个三角形一定是等腰三角形。

4. 垂径定理的第四个推论是:如果一个三角形的垂心和外心重合,那么这个三角形一定是直角三角形。

5. 垂径定理的第五个推论是:如果一个三角形的垂心和内心重合,那么这个三角形一定是等边三角形。

- 1 -。

(2)垂径定理

(2)垂径定理

垂 径 定 理圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。

垂径定理⎩⎨⎧平分弦所对的两条弧。

)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径垂径定理包含两个条件和三个结论,即条件⇒⎩⎨⎧)直线和弦垂直,()直线过圆心,(21结论⎪⎩⎪⎨⎧弧。

)直线平分弦所对的优(弧,)直线平分弦所对的劣()直线平分弦,(543 符号语言:⎩⎨⎧⊥ AB CD O ,O ,的弦,为圆的直径是圆AB CD ⎪⎩⎪⎨⎧===⇒BDAD BC AC BEAE 推论1:在(1)、(2)、(3)、(4)、(5)中,任意两个成立,都可以推出另外三个都成立。

推论2:平行的两弦之间所夹的两弧相等。

相关概念:弦心距:圆心到弦的距离(垂线段OE )。

应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造R t △OAE )。

概念辨析题:1.下面四个命题中正确的一个是()A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是( ).A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧1.过⊙O 内一点M 的最长弦长为6cm ,最短弦长为4cm ,则OM 的长为( )A 、cmB 、cmC 、2cmD 、3cm2.已知:如图1,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8cm,OC=5cm, 则DC 的长为:A 、3cmB 、2.5cmC 、2cmD 、1cm3.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米.3、在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.4.不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l ,垂足为E ,BF ⊥l ,垂足为F .(a) (b) (c) 图3(1)在上面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论. 第一问答案(AB 与CD 交于 (AB 与CD 交于 (AB 与CD 平行)⊙O 外一点) ⊙O 内一点) 图2-11. 如图2-1,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A. 5OM 3≤≤B. 5OM 4≤≤C. 5OM 3<<D. 5OM 4<< 4、在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm. 5、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径.6、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F .(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.7、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.BACBDC OA B E FD 3. 如图3-3,在ABC Rt ∆中,∠C =900,AC =5cm ,BC =12cm ,以C 为圆心、AC 为半径的圆交斜边于D ,求AD 的长.4. 如图3-4,已知:AB 是⊙O 的直径,弦CD 交AB 于E 点,BE =1,AE =5,∠AEC =300,求CD 的长.2.如图4-2,F 是以O 为圆心,BC 为直径的半圆上任一点,A 是的中点,AD ⊥BC 于D.求证:.21BF AD =图4-21. 如图6-1,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥ 于F .(1)求证:OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.图6-14. 如图6-4,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F .求证: CE =DF ;OE =OF.变式1. 如图6-5,⊙O 的直径AB 和弦CD 相交于点M ,CD AE ⊥,CD BF ⊥,垂足分别是E ,F .(1)求证:DF CE =.(2)若26=AB ,24=CD ,求BF AE -的值.8、在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.9、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.10、如图,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为b a ,.求证:22b a BD AD -=⋅.11、已知:如图,AB 是⊙O 的直径,CD 是弦,于CD AE ⊥E ,CD BF ⊥于F .求证:FD EC =.12、已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3.求BAC ∠的度数。

初中数学 什么是垂径定理

初中数学  什么是垂径定理

初中数学什么是垂径定理
垂径定理是指在一个圆中,如果一条直径与另一条线相交,且相交点在圆上,那么这两条线段所夹的角一定是直角。

垂径定理也被称为圆的垂直性质。

下面我将详细介绍垂径定理的性质和证明过程:
性质:
1. 如果一条直径AB与另一条线段CD相交,且相交点E在圆上,那么角CED是一个直角。

证明过程:
我们将证明CED是一个直角。

首先,连接AE和BE,我们可以得到三角形AEC和BEC。

由于AE是半径,所以AE = BE,所以三角形AEC和BEC是等腰三角形。

由于等腰三角形的底角相等,所以∠CAE = ∠CBE。

另一方面,由于AB是直径,所以∠CAE和∠CBE是半圆对应的角,它们之和等于180°,即∠CAE + ∠CBE = 180°。

将上述两个等式结合起来,我们有∠CAE = ∠CBE = 90°/2 = 90°。

因此,我们得出结论,角CED是一个直角。

这就证明了垂径定理。

垂径定理的应用:
垂径定理在几何问题中有着广泛的应用。

以下是一些常见的应用情况:
1. 判断一个线段是否与圆相切垂直:如果一条线段与圆相交于圆上的点,且与圆的直径垂直相交,那么可以利用垂径定理判断这条线段与圆的关系。

2. 求解圆的切线问题:当我们需要求解一个圆上某点的切线时,可以利用垂径定理来确定切线与半径的关系,从而求解切线的斜率和方程。

3. 判断三角形的特性:当三角形的一个顶点位于圆上,且三角形的另外两个顶点与圆的直径相连,根据垂径定理,我们可以判断这个三角形是否为直角三角形。

希望以上内容能够满足你对垂径定理的了解。

垂径定理说课课件

垂径定理说课课件

几何作图
垂径定理是几何作图中的 重要工具,可以用来确定 圆的中心和半径,从而画 出精确的圆。
圆的性质
垂径定理是研究圆的性质 的重要工具,可以用来推 导和证明许多圆的性质和 定理。
解析几何ቤተ መጻሕፍቲ ባይዱ
在解析几何中,垂径定理 可以用来解决一些涉及到 圆的问题,例如求圆的方 程和圆心坐标等。
定理在其他学科中的应用
天文学
CHAPTER 02
定理内容
定理的文字表述
定理名称:垂径定理
总结词:该定理描述了直线与圆的位置关系以及相关的性质。
详细描述:垂径定理是平面几何中一个重要的定理,它指出如果一条直线垂直于圆 的一条直径,那么这条直线将平分这个圆,并且通过圆心。
定理的图形表述
总结词
通过图形直观地展示垂径定理。
详细描述
THANKS
[ 感谢观看 ]
垂径定理说课课件
• 定理内容 • 应用举例 • 练习与巩固 • 总结与回顾
CHAPTER 01
引入
什么是垂径定理
01
垂径定理是圆的基本定理之一, 它描述了通过圆心并与圆相交的 任何直径将平分该圆。
02
该定理可以表述为:如果一条直 径同时垂直于圆上的一条弦和一 条直径,则它也将平分该弦。
垂径定理的重要性
垂径定理是几何学中非常重要的基本 定理之一,它在证明其他定理和解决 几何问题时经常被使用。
它对于理解圆的性质和解决与圆相关 的问题至关重要,是进一步学习几何 学的基础。
为什么学习垂径定理
学习垂径定理有助于培养学生的逻辑思维和推理能力,提高 他们解决问题的能力。
通过学习垂径定理,学生可以更好地理解圆的性质和特点, 为进一步学习更复杂的几何知识打下基础。此外,垂径定理 在日常生活和实际应用中也具有重要意义,例如在建筑设计、 机械制造和自然科学等领域中都有广泛的应用。

垂径定理

垂径定理

垂径定理知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。

这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。

2、掌握垂径定理在圆的有关计算和证明中的广泛应用。

精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长;(2)C 点到AB 的距离与D 点到AB 的距离之比。

分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。

【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。

求: (1)BC 的长; (2)AB 边上高的长。

跟踪训练:一、选择题:1、下列命题中正确的是( )A 、平分弦的直径必垂直于弦,并且平分弦所对的两条弧;B 、弦所对的两条弧的中点连线垂直平分弦;C 、若两段弧的度数相等,则它们是等弧;D 、弦的垂线平分弦所对的弧。

∙例 1 图HE F GODCBA ∙例 2 图E O DCBA∙例 3 图OD CBA∙第1题图EDCBA 2、如图,⊙O 中,直径CD =15cm ,弦AB ⊥CD 于点M ,OM ∶MD =3∶2,则AB 的长是( )3、已知⊙O 的半径为10cm ,弦AB ∥CD ,AB =12 cm ,CD =16 cm , 则AB 和CD 的距离是( ) A 、2cm B 、14cm C 、2cm 或14cm D 、2cm 或12cm4、若圆中一弦与弦高之和等于直径,弦高长为1,则圆的半径长为( ) A 、1 B 、23 C 、2 D 、25二、填空题:1、在半径为5cm 的⊙O 中,有一点P 满足OP =3 cm ,则过P 的整数弦有 条。

垂径定理及其10个推论

垂径定理及其10个推论

垂径定理是指,在一个曲线上,任意一点到曲线的切线的距离都是一样的。

它的10个推论是:1)曲线的切线方程是垂径定理的特例;2)曲线的切线方程可以由垂径定理推导出来;3)曲线的切线方程的斜率是曲线的切线的斜率;4)曲线的切线方程的斜率是曲线的曲率的平方根;5)曲线的切线方程的斜率是曲线的曲率的平方根;6)曲线的切线方程的斜率是曲线的曲率的平方根;7)曲线的切线方程的斜率是曲线的曲率的平方根;8)曲线的切线方程的斜率是曲线的曲率的平方根;9)曲线的切线方程的斜率是曲线的曲率的平方根;10)曲线的切线方程的斜率是曲线的曲率的平方根。

垂径定理

垂径定理

(1) 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.(2) 垂径定理的推论:平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧. (3) 圆中最长弦和最短弦问题(4)弧、弦、弦心距、圆心角关系定理:在等圆或同圆中,相等圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.(5) 弧、弦、弦心角、圆心角关系定理推论: 在等圆或同圆中 ,如果两个圆心角,两条弧,两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(6) 圆周角定理: 在等圆或同圆中 ,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.(7) 切线的判定定理:经过半径的外端点且垂直于这条半径的直线是圆的切线. (8) 切线的性质定理:圆的切线垂直于过切点的半径. (9) 在等圆或同圆中 ,同弦所对的圆周角相等或者互补.(10) 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.∙习题练习∙1. 过o 内一点M 的最长的弦为10cm,最短的弦长为8cm,求OM 的长?2. 若两圆的半径分别为3cm 和 4 cm ,则这两个圆相切时圆心距为3. 如图,已知A 、B 、C 是⊙O 上的三点,若∠ACB=44°,则∠AOB 的度数为4.如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为 cm 。

5. 如图,矩形ABCD 中,BC= 2 , DC = 4.以AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为 (结果保留л)6. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC =60°,AB=0.5米,则这棵大树的直径为 _________米.7.在o 中,90的圆心角所对的弧长是2πcm,则o 的半径是________cm.确定圆的条件不共线的三点确定一个圆三角形的外接圆 圆与圆有关的位置关系圆的定义,弧、弦等概念点和圆的位置关系点在圆上d r ⇔=点在圆外d r ⇔>点在圆内d r ⇔<判定性质 切线长定理三角形的内切圆相交d r ⇔<相切d r ⇔= 相离d r ⇔>直线与圆的位置关系基本性质垂径定理及其推论圆的对称性弧、弦、弦心距、圆心角关系定理及其推论 圆周角定理及其推论相交R r d R r ⇔-<<+ 相切的两圆的连心线过切点 相交的两圆的连心线垂直平分相交弦外离d R r ⇔>+ 内含d R r ⇔<+ 外切d R r ⇔=+ 内切d R r ⇔=-相交 相切相离圆与圆的位置关系圆内接正多边形正多边形与圆正多边形的有关计算圆内接正多边形作法----等份圆扇形的弧长、面积正多边形的半径、边心距、正多边形的内角、中心角、外角、正多边形的正三、六、十二边形 正四、八边形180n Rl π=213602n R S lR π==扇形 正多边形和圆。

第07讲 垂径定理

第07讲 垂径定理

第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。

垂径定理及其20个推论

垂径定理及其20个推论

垂径定理及其20个推论垂径定理及其20个推论是几何学中的基本定理,它描述了圆与其内接三角形的关系。

下面是垂径定理及其20个推论的详细解释:垂径定理:在一个圆中,任意一条直径与其上的任意一条弦垂直。

推论1:在一个圆中,以圆心为端点的直径为直角边的两个直角三角形互为相似三角形。

推论2:在一个圆中,以圆心为端点的直径为直角边的直角三角形的斜边等于圆的半径。

推论3:在一个圆中,以圆心为端点的直径为直角边的直角三角形的斜边的平方等于两直角边的乘积。

推论4:在一个圆中,任意两条垂直的弦所对的弧互补。

推论5:在一个圆中,两条交叉的弦所对的四个弧互补。

推论6:在一个圆中,一条弦和其所对的弧上的两个角互补。

推论7:在一个圆中,两条相交弦所对的角互补。

推论8:在一个圆中,两条相交弦所对的角相等。

推论9:在一个圆中,一个角的对角互补角等于其所对的弧所对的角。

推论10:在一个圆中,一个角的对角互补角等于其所对的弦所对的弧所对的角。

推论11:在一个圆中,两条相交弦所对的角等于其所对的弧所对的角。

推论12:在一个圆中,两条相交弦所对的角互补。

推论13:在一个圆中,两个相对的角所对的弦相等。

推论14:在一个圆中,两个相对的角所对的弦互等。

推论15:在一个圆中,两个相对的角所对的弦相等于圆的半径。

推论16:在一个圆中,两个相对的角所对的弦互等于圆的半径。

推论17:在一个圆中,两个相对的角所对的弦的平方等于两个相对角的余弦的差的平方。

推论18:在一个圆中,一条弦所对的角等于其所对的弧所对的角。

推论19:在一个圆中,一条弦所对的角互补。

推论20:在一个圆中,一条弦所对的角是其所对的弧的一半。

垂径定理的5个结论

垂径定理的5个结论

垂径定理的5个结论垂径定理是解决圆与直线之间关系的一项重要定理,它有着广泛的应用。

下面将从五个不同的角度,详细介绍垂径定理的五个结论。

一、定理1:切线垂直于半径根据垂径定理的第一个结论,圆的切线垂直于过切点的半径。

这一结论可以通过简单的几何推理得出。

设圆的半径为r,切点为A,切线为l,连接圆心O与切点A,假设在切点A处引出一条过切点A 的直径AB,连接OB。

由于OA=OB=r,所以AB是圆的直径。

根据定理,AB垂直于切线l。

因此,切线l垂直于过切点A的半径OA。

二、定理2:半径平分弦垂径定理的第二个结论表明,过圆心的半径可以平分弦。

这一结论也可以通过几何推理来证明。

设圆的半径为r,弦的两个端点为A、B,连接圆心O与弦的中点M。

根据定理,OM垂直于弦AB。

又因为OM=r,所以OM是圆的半径,即OM=OA=OB=r。

因此,OM平分弦AB。

三、定理3:半径垂直于弦垂径定理的第三个结论是,过圆心的半径垂直于弦。

这一结论可以通过定理2的推论得出。

根据定理2,过圆心的半径OM平分弦AB。

因为OM平分弦AB,所以OM垂直于弦AB。

因此,过圆心的半径垂直于弦。

四、定理4:垂直弦的两条半径相等定理4指出,如果两条半径分别垂直于同一条弦,那么这两条半径的长度相等。

设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB。

根据定理,OA垂直于弦AB,OB垂直于弦AB。

因为OA=OB=r,所以垂直弦的两条半径相等。

五、定理5:垂直弦的两条半径互为中线垂径定理的第五个结论是,如果两条半径分别垂直于同一条弦,那么这两条半径互为弦的中线。

设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB,垂直弦的两条半径分别为OC和OD。

根据定理,OA垂直于弦AB,OB垂直于弦AB,所以OC=OD=r。

因此,垂直弦的两条半径互为弦的中线。

垂径定理有着五个重要的结论:切线垂直于半径、半径平分弦、半径垂直于弦、垂直弦的两条半径相等、垂直弦的两条半径互为中线。

垂径定理的结论

垂径定理的结论

垂径定理的那些事儿嘿,小伙伴们,今天咱们来聊聊数学中一个特别实用、也特别有趣的定理——垂径定理。

如果你正在学习平面几何,特别是和圆有关的部分,那么这个定理肯定是你的好朋友。

它不仅能帮你解决很多头疼的问题,还能让你的解题思路更加清晰明了。

一、什么是垂径定理?首先,咱们得知道垂径定理长啥样。

简单来说,垂径定理就是:垂直于弦的直径会平分这条弦,并且还会平分这条弦所对的两条弧。

听起来有点绕,不过别急,咱们慢慢分解。

想象一下,你手里有一个圆规画出来的圆,然后你在圆上随便找一条弦(就是圆上两点之间的线段),再画一条经过圆心、并且垂直于这条弦的直径。

根据垂径定理,这条直径会把弦分成两段相等的部分,同时还会把弦所对的两条弧(不管是优弧还是劣弧)也分成相等的两部分。

数学表达就是:如果直径DC垂直于弦AB于点E,那么AE等于EB,弧AD等于弧BD(包括优弧和劣弧),半圆CAD等于半圆CBD。

二、垂径定理的推论垂径定理可不是个“独行侠”,它还有几个特别实用的推论,咱们一一来看。

推论一:如果一条直径平分了一条非直径的弦,那么这条直径必定垂直于这条弦,并且平分弦所对的两段弧。

这个推论就像是垂径定理的“小跟班”,它告诉我们,如果直径和弦有了“平分”的关系,那么它们之间就一定有“垂直”的关系。

推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。

这个推论就像是弦的“守护者”,它告诉我们,弦的垂直平分线一定会经过圆心,就像守护圆心一样,同时还会平分弦所对的弧。

推论三:如果一条直径平分了一条弦所对的一条弧,那么这条直径必定垂直平分这条弦,并且也平分弦所对的另一条弧。

这个推论就像是垂径定理的“双胞胎兄弟”,它们之间有很多相似之处,只是条件和结论稍微变了个位置。

推论四:在同一个圆或者等圆中,两条平行弦所夹的弧相等。

这个推论就像是平行线的“好伙伴”,它告诉我们,在同一个圆或者等圆中,如果两条弦平行,那么它们所夹的弧(无论是优弧还是劣弧)都是相等的。

讲义-垂径定理

讲义-垂径定理

1、圆是轴对称图形,经过圆心的每一条都是它的对称轴。

(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。

)2、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。

(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。

)推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。

(2)弦的垂直平分线经过,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧归纳:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到第三个①过圆心②垂直于弦③平分弦(非直径)拓展:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到另外三个①过圆心②垂直于弦③平分弦(非直径)④平分弦所对的劣弧⑤平分弦所对的优弧——简记为“知二推三”垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()41A.9cm B.6cm C.3cm D.cm★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位⊙的直径AB垂直弦CD于P,且P是半径OB的中点,★★5.如图,OCD ,则直径AB的长是()6cmA.23cm B.32cm C.42cm D.43cm★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( )A .2B .8C .2或8D .3 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米★★6.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★7.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________★★8.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是★★9.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m★★10.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B两点,已知P(4,2)和A(2,0),则点B 的坐标是★★11.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm★★12.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=BA POyxO图4E DCB A★★13.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm★★★14.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm★★★15.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米 ★★★16.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米★★★17.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米★★★18.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==,所以在Rt △AOD 中,5AO ==(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

【答案】1cm .2.如图所示,直线与两个同心圆分别交于图示的各点,则正确的是( )A .MP 与RN 的大小关系不定B .MP =RNC .MP <RND .MP >RN【答案】B ;【解析】比较线段MP 与RN 的大小关系,首先可通过测量猜测MP 与RN 相等,而证明两条线段相等通常利用全等三角形,即证△OMP ≌△ONR ,如果联想到垂径定理,可过O 作OE ⊥MN 于E ,则ME =NE ,PE =RE ,∴ ME -PE =NE -RE ,即MP =RN .【点评】在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径”.举一反三:【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且30DAC ︒∠=,AD=13. 求弦BC 的长.【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m,拱的半径为13m,则拱高为()A.5m B.8m C.7m D.【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B;【解析】如图2,AB表示桥拱,弦AB的长表示桥的跨度,C为AB的中点,CD⊥AB于D,CD表示拱高,O为AB的圆心,根据垂径定理的推论可知,C、D、O三点共线,且OC平分AB.在Rt△AOD中,OA=13,AD=12,则OD2=OA2-AD2=132-122=25.∴ OD=5,∴ CD=OC-OD=13-5=8,即拱高为8m.【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.【答案与解析】如图,连接OC,设弯路的半径为R,则OF=(R-90)m,∵OE⊥CD,∴CF=12CD=12×600=300(m),根据勾股定理,得:OC2=CF2+OF2即R2=3002+(R-90)2,解得R=545,∴这段弯路的半径为545m.【点评】构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题的数学方法一定要掌握.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.。

《垂径定理》课件1

《垂径定理》课件1
通过计算或观察图像,确定函数的最值。
判断函数单调性
利用垂径定理确定函数图 像的对称轴,进而判断函 数在不同区间的单调性。
结合函数的导数,分析函 数在不同区间的增减性。
通过比较函数值或观察图 像,确定函数的单调区间。
分析函数图像特征
利用垂径定理确定函数图像的对称轴,分 析图像的对称性。
结合函数的奇偶性,分析图像关于原点的 对称性。
其他领域应用举例
航海和航空导航
在航海和航空导航中,垂径定理可以用于计算航向和距离。通过观察天体(如太阳、星星)的位置和角度,可以 利用垂径定理确定航行方向和距离,实现准确的导航。
地理测量
垂径定理在地理测量中也有应用。例如,在测量地球表面上两点之间的距离时,可以利用垂径定理计算出大圆距 离,这是一种更精确的距离测量方法。
建立平面直角坐标系
以圆心为原点,以过圆心的直线为x轴 建立平面直角坐标系。
设圆的方程和弦的方程
联立方程求解
将两个方程联立,消去y得到关于x的 二次方程,由根与系数的关系可得垂 线平分弦的结论。
设圆的方程为x^2 + y^2 = r^2,设 弦所在直线的方程为y = kx + b。
向量法证明
1 2
定义向量 设圆心为O,弦的两个端点分别为A和B,垂足为 C,则向量OC垂直于向量AB。
利用向量数量积的性质 由向量数量积的性质可知,OC·AB = 0,即 |OC|·|AB|·cos90° = 0,由此可推出垂线平分弦。
3
利用向量加法的性质 由向量加法的性质可知,向量OA + 向量OB = 2 向量OC,由此可推出垂线平分弦。
03
垂径定理在几何问题中应用
求解三角形问题
利用垂径定理求解直角三角形中的边长和角度

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)责编:康红梅【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例4-例5】【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)

垂径定理—知识讲解(基础)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm,则DC的长为()A.5 cm B.2.5 cm C.2 cm D.1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知13cm 2AD AB ==, 所以在Rt △AOD 中,2222435AO OD AD =+=+=(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

举一反三:【变式】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。

【答案】1cm .2.如图所示,直线与两个同心圆分别交于图示的各点,则正确的是( )A .MP 与RN 的大小关系不定B .MP =RNC .MP <RND .MP >RN【答案】B ;【解析】比较线段MP 与RN 的大小关系,首先可通过测量猜测MP 与RN 相等,而证明两条线段相等通常利用全等三角形,即证△OMP ≌△ONR ,如果联想到垂径定理,可过O 作OE ⊥MN 于E ,则ME =NE ,PE =RE ,∴ ME -PE =NE -RE ,即MP =RN .【点评】在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径”.举一反三:【高清ID 号:356965 关联的位置名称(播放点名称):例2-例3】【变式】已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且30DAC ︒∠=,AD=13. 求弦BC 的长.【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m,拱的半径为13m,则拱高为()A.5m B.8m C.7m D.53m【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B;【解析】如图2,AB表示桥拱,弦AB的长表示桥的跨度,C为AB的中点,CD⊥AB于D,CD表示拱高,O为AB的圆心,根据垂径定理的推论可知,C、D、O三点共线,且OC平分AB.在Rt△AOD中,OA=13,AD=12,则OD2=OA2-AD2=132-122=25.∴ OD=5,∴ CD=OC-OD=13-5=8,即拱高为8m.【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O是的圆心,•其中CD=600m,E为上一点,且OE⊥CD,垂足为F,EF=90m,求这段弯路的半径.【答案与解析】如图,连接OC,设弯路的半径为R,则OF=(R-90)m,∵OE⊥CD,∴CF=12CD=12×600=300(m),根据勾股定理,得:OC2=CF2+OF2即R2=3002+(R-90)2,解得R=545,∴这段弯路的半径为545m.【点评】构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题的数学方法一定要掌握.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面距拱顶不超过3m时拱桥就有危险,现在水面宽MN=32m时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施设OA=R,在Rt△AOC中,AC=30,OC=OD-CD=R-18,R2=302+(R-18)2, R2=900+R2-36R+324,解得R=34(m).连接OM,设DE=x,在Rt△MOE中,ME=16,342=162+(34-x)2,x2-68x+256=0,解得x1=4,x2=64(不合题意,舍),∴DE=4m>3m,∴不需采取紧急措施.。

垂径定理及其推论

垂径定理及其推论

垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.注意:(1)垂径定理及其推论是证明线段相等、弧相等、角相等的重要依据.在圆中解有关弦的问题时,经常做垂直于弦的直径作为辅助线.(2)垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.这样理解与记忆垂径定理,理解深刻,记忆准确,有利于应用.定义:如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。

推论一:平分弦(不是直径),的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)编辑本段证明如图,在⊙O中,DC为直径,AB是弦,AB⊥DC,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图连OA、OB∵OA、OB是半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形三线合一)∴弧AD=弧BD,∠AOC=∠BOC∴弧AC=弧BC编辑本段讲解垂径定理又称“5-2-3”定理其意为:①CD是⊙O直径AB是弦;②CD⊥AB;③AE=BE;④弧AD=弧BD;⑤弧AC=弧BC在以上5个条件中满足任意2个则另外三个条件也成立.以下是推论编辑本段推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心6.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

初中数学 什么是垂径定理

初中数学  什么是垂径定理

初中数学什么是垂径定理
垂径定理是初中数学中的一个重要定理,它涉及到圆的直径和垂直关系。

下面我将详细介绍垂径定理的定义、性质和相关的概念。

1. 垂径定理的定义:
-垂径定理:如果一条线段垂直于一条直径,并且与直径的两个端点相交,那么这条线段与圆的边界上的两个交点连线所得的弦一定也是垂直于这条直径。

2. 垂径定理的性质:
-垂直关系:垂径定理表明,如果一条线段垂直于圆的直径,并且与直径的两个端点相交,那么这条线段与圆的边界上的两个交点连线所得的弦一定也是垂直于这条直径。

-直径与垂直弦的关系:垂径定理还表明,直径与垂直于它的弦是垂直的。

3. 垂径定理的应用:
-判断垂直关系:根据垂径定理,可以通过判断一条线段是否垂直于圆的直径来判断这条线段与圆的边界上的两个交点连线所得的弦是否垂直于这条直径。

-求解问题:根据垂径定理,可以在已知一条线段垂直于圆的直径,并且与直径的两个端点相交的情况下,得到与这条线段所得的弦垂直的弦。

垂径定理是圆的直径和垂直关系之间的重要定理,它可以帮助我们判断垂直关系和求解相关问题。

在应用垂径定理时,需要注意理解垂径定理的定义和性质,并运用几何知识进行推理和分析。

希望以上内容能够满足你对垂径定理的了解。

垂径定理课件

垂径定理课件
其对称轴是 什么? (2)你能发现图中有哪些等量关
系?说一说你的理由.
新课讲授
定理:
垂直于弦的直径平分这条弦,并且平分弦所对的弧.
用几何语言表述为:
如图,在⊙O中,
AE BE
CD是直径
CD
AB于点E
AD
BD
AC BC
新课讲授
下列哪些图形可以用垂径定理?你能说明理由吗?
A
图1
O E
拓展与延伸
如图,AB是⊙O的直径,CD是⊙O的一条弦,CD⊥AB于点E,
则下列结论:①∠COE=∠DOE;②CE=DE;③BC=BD;④
OE=BE.其中,一定正确的有( C)
A.1个
B.2个
C.3个
D.4个
命题.
当堂小练
1.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P, 则OP的长为( C ) A.3 B.2.5 C.4 D.3.5
当堂小练
2.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩 ,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平 地面是相切的,AB=CD=0.25 m,BD=1.5 m,且AB,CD与 水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇 圆弧形门的最高点离地面的距离是( B ) A.2 m B.2.5 m C.2.4 m D.2.1 m
新课讲授
解:如图,∵OD⊥AB,
∴AD=
1 2
AB=
1 2
×37.4=18.7(m).
在Rt△ODA中,
OD=(R-7.2) m,OA=R m,
∴R2=(R-7.2)2+18.72,
解得R≈27.9.
∴桥拱所在圆的半径约为27.9 m.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
1
O
C
垂径定理
一、 圆的对称性
圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点
(1)思考∵OC=OD,
∴ΔOCE ≌ΔODE, ∠OEC= ∠OED=
∴AB 与CD 的位置关系是
(2)又∵点C 和点D 是一组对称点
∴CE= 即点E 是CD 的中点
(3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论
1、垂直于弦的直径 弦,并且 弦所对的两段弧
2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备:
(1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个
条件中的任何两个条件都可以退出其他三个结论
四、 垂径定理基本图形的四变量、两关系
四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。

五、垂径定理及其推论的应用
(一)、选择题:
1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25
2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3
B 、3
C 、3
D 、2
3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A .3
B .5
C .23
D .25
4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2
5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )
A .5
B .7
C .
375 D .377
6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )
A .6.5米
B .9米
C .13米
D .15米
7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°
8、如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米
二、填空题:
9、若⊙O 的半径为5,弦AB 的长为8,则圆心O 到AB 的距离是_____。

10、如图,圆O 的直径AB=8,AC=3CB ,过C 作AB 的垂线交圆O 于M ,N 两
点,连结MB ,则∠MBA 的余弦值为______.
11、若AB 是⊙O 的直径,弦CD ⊥AB 于E,AE=9cm,BE=16cm,则CD=______cm.
12、如图,⊙O 是△ABC 的外接圆,∠AOB=60°,AB=AC=2,则弦BC 的长为( )
13、某蔬菜基地的圆弧形蔬菜大棚的剖面如图(2)所示,已知AB =16m ,半径OA =10m ,则中间柱
CD 的高度为 m .
14、如图,⊙O 的半径OA =10cm ,M 为AB 上一动点,则点M 到圆心O 的最短距离为___________cm 。

15、如图:⊙O 的直径AB ⊥CD 于P,AP=CD=4cm,则OP =______cm.
16、如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD
的长为___.
17、已知⊙O 中,AB 是弦,CD 是直径,且CD ⊥AB 于M.⊙O 的半径是
15cm,OM:OC =3:5,则AB=______.
18、已知O 到直线l 的距离OD 是72cm,l 上一点P,PD=26cm.⊙O 的直径是20,则P 在⊙O ______. 19、在⊙O 中,弦AB,CD 互相垂直于E,AE=2,EB=6,ED=3,EC=4,则⊙O 的直径是______.
20、在⊙O 中弦AB,CD 互相平行,AB=24cm,CD=10cm,且AB 与CD 之间的距离是17cm,则⊙O 的半径是______cm.
21如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G ,B ,F ,E ,
GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =____cm.
22、如图,⊙O 的半径为5,P 为圆内一点,P 点到圆心O 的距离为4,则过
P 点的弦长的最小值是_____________。

三、解答题:
23、已知:如图,CD 是⊙O 的直径,∠EOD=78 °,AE 交⊙O 于B ,且
AB=OC .求∠A 的度数.
C P O B A D
24、如图,⊙O 的直径AB 和弦CD 相交于点E ,且AE =1 cm ,EB =5 cm ,∠DEB
=60°,求CD 的长.
25、如图,AB 是⊙O 的直径,弦CD 与AB 相交,过A ,B 向CD 引垂线,垂足分别为E ,F ,求证:CE=DF 。

26、如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD =BE .点C 为弧AB
上一点,连接CD 、CE 、CO ,∠AOC=∠BOC. 求证:CD =CE .
27、如图,点A 、B 、C 是⊙O 上的三点,//AB OC .
(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC 于点P .
若2AB =,30AOE ∠=︒,求PE 的长.
28、在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .
(1)如图1,当PQ ∥AB 时,求PQ 的长度;
(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.
六、垂径定理的分类讨论
1、若⊙O的半径是13cm,弦AB=24cm,弦CD=10cm,AB∥CD,则弦AB与CD之间的距离是______cm.
2、⊙O的半径为5,AB、CD为⊙O的两条弦,且AB∥CD,AB=6,CD=8,则AB与CD之间的距离为_____。

3、已知△ABC内接于⊙O,且AB=AC,⊙O的半径等于6cm,O点到BC的距离为2cm,求AB 的长。

七、实际问题
1、如图,工人师傅要铸造一个与残轮同样大小的圆轮,需要知道它的半径,你能用所学的知识帮助工人师傅解决这一问题吗?请在右边的图中作出圆的半径.(保留作圆痕迹,不写作法)
2、有一座圆弧形的拱桥,桥下水面宽度7.2m,拱顶高出水平面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过拱桥,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.
3、我区为了更好地开展全民健身运动,在区政府东新建一个广场,在广场的正门安装了八个大理石球.小明想知道其中一个球的半径,于是找了两块各厚10cm的砖塞在球的两侧(如图),并量得两砖之间的距离是60cm.请你在图中利用所学的几何知识,求出大理石球的半径(要写出计算过程).
4、H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米?。

相关文档
最新文档