栈和队列(必备)

合集下载

数据结构-栈与队列

数据结构-栈与队列

栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=

1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。

栈和队列数据结构的特点

栈和队列数据结构的特点

栈和队列数据结构的特点栈和队列是常用的数据结构,它们在程序设计和算法实现中有着重要的作用。

下面将分别介绍栈和队列的特点。

一、栈(Stack)的特点:1.先进后出(FILO):栈是一种只允许在栈顶进行插入和删除操作的线性数据结构。

元素的插入和删除都只能在栈顶进行,最后插入的元素是第一个被删除的元素。

2.后进先出(LIFO):栈中最后一个进栈的元素是第一个出栈的元素。

3.只能在栈顶进行操作:栈的操作局限于栈顶,在栈顶可以执行的操作有入栈和出栈操作,其他位置的元素无法直接访问和操作。

4.压入和弹出操作:在栈中,我们只能在栈的一端(通常是栈顶)进行数据的插入和删除操作,分别称为“压入”和“弹出”。

5.递归的应用:栈的结构特点使得它在递归算法的实现中非常有用。

递归函数调用时,每次进入一层递归都需要保存当前的状态,包括参数、局部变量等信息,在递归返回时再恢复状态。

6.存储空间的限制:栈的存储空间是有限的,当栈的元素数量超过了栈的容量时,就会发生栈溢出错误。

7.实现方式:栈可以使用数组或链表来实现。

栈的典型应用场景包括函数调用、表达式求值、括号匹配、迷宫求解等。

二、队列(Queue)的特点:1.先进先出(FIFO):队列是一种只允许在队尾插入操作,在队头删除操作的线性数据结构。

最先插入的元素是第一个被删除的元素,最后插入的元素是最后被删除的元素。

2.队头和队尾操作:队列的操作局限于队头和队尾,在队头可以执行的操作有删除,称为“出队”操作;在队尾可以执行的操作有插入,称为“入队”操作。

3.可用空间有限:队列的存储空间是有限的,当队列的元素数量超过了队列的容量时,就会无法再插入新的元素,即发生队列溢出错误。

4.实现方式:队列可以使用数组或链表来实现。

若使用链表实现的队列,可实现动态调整队列的大小。

队列的典型应用场景包括多线程任务调度、缓冲队列、消息队列等。

栈和队列都是特殊的线性数据结构,它们各自的特点使它们在不同的应用场景下得到广泛的应用。

数据结构--栈和队列基础知识

数据结构--栈和队列基础知识

数据结构--栈和队列基础知识⼀概述栈和队列,严格意义上来说,也属于线性表,因为它们也都⽤于存储逻辑关系为 "⼀对⼀" 的数据,但由于它们⽐较特殊,因此将其单独作为⼀篇⽂章,做重点讲解。

既然栈和队列都属于线性表,根据线性表分为顺序表和链表的特点,栈也可分为顺序栈和链表,队列也分为顺序队列和链队列,这些内容都会在本章做详细讲解。

使⽤栈结构存储数据,讲究“先进后出”,即最先进栈的数据,最后出栈;使⽤队列存储数据,讲究 "先进先出",即最先进队列的数据,也最先出队列。

⼆栈2.1 栈的基本概念同顺序表和链表⼀样,栈也是⽤来存储逻辑关系为 "⼀对⼀" 数据的线性存储结构,如下图所⽰。

从上图我们看到,栈存储结构与之前所了解的线性存储结构有所差异,这缘于栈对数据 "存" 和 "取" 的过程有特殊的要求:1. 栈只能从表的⼀端存取数据,另⼀端是封闭的;2. 在栈中,⽆论是存数据还是取数据,都必须遵循"先进后出"的原则,即最先进栈的元素最后出栈。

拿图 1 的栈来说,从图中数据的存储状态可判断出,元素 1 是最先进的栈。

因此,当需要从栈中取出元素 1 时,根据"先进后出"的原则,需提前将元素 3 和元素 2 从栈中取出,然后才能成功取出元素 1。

因此,我们可以给栈下⼀个定义,即栈是⼀种只能从表的⼀端存取数据且遵循 "先进后出" 原则的线性存储结构。

通常,栈的开⼝端被称为栈顶;相应地,封⼝端被称为栈底。

因此,栈顶元素指的就是距离栈顶最近的元素,拿下图中的栈顶元素为元素 4;同理,栈底元素指的是位于栈最底部的元素,下中的栈底元素为元素 1。

2.2 进栈和出栈基于栈结构的特点,在实际应⽤中,通常只会对栈执⾏以下两种操作:向栈中添加元素,此过程被称为"进栈"(⼊栈或压栈);从栈中提取出指定元素,此过程被称为"出栈"(或弹栈);2.3 栈的具体实现栈是⼀种 "特殊" 的线性存储结构,因此栈的具体实现有以下两种⽅式:1. 顺序栈:采⽤顺序存储结构可以模拟栈存储数据的特点,从⽽实现栈存储结构。

大学数据结构课件--第3章 栈和队列

大学数据结构课件--第3章 栈和队列
top top 栈空 F E D C B A
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0

数据结构实验三栈和队列的应用

数据结构实验三栈和队列的应用

数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。

本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。

一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。

这意味着最后进入栈的元素将首先被取出。

1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。

例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。

当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。

最终,操作数栈中的唯一值就是表达式的结果。

2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。

可以使用栈来实现。

遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。

3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。

当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。

当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。

递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。

二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。

1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。

新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。

通过这种方式,保证了先来的顾客先得到服务,体现了公平性。

2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。

从起始节点开始,将其放入队列。

数据结构中的栈与队列的应用场景

数据结构中的栈与队列的应用场景

数据结构中的栈与队列的应用场景栈与队列是数据结构中常见的两种基本数据类型,它们在不同的应用场景中发挥着重要作用。

下面将分别介绍栈和队列的应用场景。

栈的应用场景:1. 编辑器的撤销操作:在编辑器中,撤销(undo)操作是一个常见需求。

撤销操作通常是按照用户操作的反序执行,因此可以使用栈来存储每一次的操作,当用户执行撤销操作时,从栈中弹出最近的操作并执行对应的反操作。

2. 后退按钮的实现:在浏览器中,后退按钮用于返回上一个访问的网页。

通过使用栈来存储用户的访问记录,每当用户访问一个新的页面时,将该页面的地址压入栈中。

当用户点击后退按钮时,从栈中弹出最近访问的页面地址并跳转到该页面。

3. 函数调用与返回:在程序中,函数的调用和返回通常遵循“后进先出”的原则,即后调用的函数先返回。

因此,可以使用栈来实现函数调用与返回的过程。

每当一个函数被调用时,将该函数的执行环境(包括参数、局部变量等)压入栈中;当函数执行完毕后,从栈中弹出该函数的执行环境,恢复上一个函数的执行。

队列的应用场景:1. 消息队列:在分布式系统和异步通信中,消息队列用于解耦发送方和接收方之间的耦合性。

发送方将消息发送到队列的末尾,接收方从队列的头部获取消息进行处理。

消息队列可以实现异步处理、削峰填谷等功能,常见的消息队列系统有RabbitMQ和Kafka等。

2. 操作系统中的进程调度:在操作系统中,进程调度用于控制多个进程的执行顺序。

常见的调度算法中,有使用队列来实现的先来先服务(FCFS)调度算法和轮转调度算法。

进程按照到达时间的顺序加入队列,在CPU空闲时,从队列的头部取出一个进程执行。

3. 打印队列:在打印机等资源共享环境中,通常会使用打印队列来管理多个打印请求。

每当用户提交一个打印请求时,将该请求加入打印队列的末尾,打印机从队列的头部取出请求进行打印。

这样可以保证每个用户的打印请求按照提交的顺序进行处理。

综上所述,栈和队列在不同的应用场景中发挥着重要作用。

信息学奥赛知识点(十二)—栈和队列

信息学奥赛知识点(十二)—栈和队列

栈和队列是信息学竞赛中经常涉及的数据结构,它们在算法和程序设计中有着广泛的应用。

掌握栈和队列的基本原理和操作方法,对于参加信息学竞赛的同学来说是非常重要的。

本文将深入探讨栈和队列的相关知识点,帮助大家更好地理解和掌握这两种数据结构。

一、栈的定义与特点栈是一种先进后出(LIFO)的数据结构,它的特点是只允许在栈顶进行插入和删除操作。

栈可以用数组或链表来实现,常见的操作包括压栈(push)、出栈(pop)、获取栈顶元素(top)等。

栈的应用非常广泛,比如在计算机程序中,函数的调用和返回值的存储就是通过栈来实现的。

二、栈的基本操作1. 压栈(push):将元素压入栈顶2. 出栈(pop):将栈顶元素弹出3. 获取栈顶元素(top):返回栈顶元素的值,但不把它从栈中移除4. 判空:判断栈是否为空5. 获取栈的大小:返回栈中元素的个数三、栈的应用1. 括号匹配:利用栈来检查表达式中的括号是否匹配2. 表达式求值:利用栈来实现中缀表达式转换为后缀表达式,并进行求值3. 迷宫求解:利用栈来实现迷宫的路径搜索4. 回溯算法:在深度优先搜索和递归算法中,通常会用到栈来保存状态信息四、队列的定义与特点队列是一种先进先出(FIFO)的数据结构,它的特点是只允许在队尾进行插入操作,在队首进行删除操作。

队列同样可以用数组或链表来实现,常见的操作包括入队(enqueue)、出队(dequeue)、获取队首元素(front)、获取队尾元素(rear)等。

队列在计算机领域也有着广泛的应用,比如线程池、消息队列等都可以用队列来实现。

五、队列的基本操作1. 入队(enqueue):将元素插入到队列的末尾2. 出队(dequeue):从队列的头部删除一个元素3. 获取队首元素(front):返回队列的头部元素的值4. 获取队尾元素(rear):返回队列的尾部元素的值5. 判空:判断队列是否为空6. 获取队列的大小:返回队列中元素的个数六、队列的应用1. 广度优先搜索算法(BFS):在图的搜索中,通常会用队列来实现BFS算法2. 线程池:利用队列来实现任务的调度3. 消息队列:在分布式系统中,常常会用队列来进行消息的传递4. 最近最少使用(LRU)缓存算法:利用队列实现LRU缓存淘汰在信息学竞赛中,栈和队列的相关题目经常出现,并且有一定的难度。

栈和队列的应用

栈和队列的应用

栈和队列的应用栈和队列是计算机科学中非常重要的数据结构,它们在各种应用中被广泛使用。

本文将探讨栈和队列的应用,并讨论它们在不同场景下的具体用途。

一、栈的应用1. 浏览器的前进后退功能在使用浏览器时,我们可以通过点击前进按钮或后退按钮来切换网页。

这种功能实际上是由一个栈来实现的。

当我们访问新的网页时,当前页面被推入栈中,当我们点击后退按钮时,栈顶的页面被弹出并显示在浏览器中。

2. 函数调用栈在编写程序时,函数的调用和返回也是通过栈来管理的。

每当一个函数被调用时,相关的信息(例如参数、返回地址等)会被推入栈中,当函数执行完毕后,这些信息会从栈中弹出,程序会回到函数调用的地方继续执行。

3. 括号匹配在编写编译器或表达式计算器时,需要检查括号是否正确匹配。

这个问题可以使用栈来解决。

遍历表达式时,遇到左括号将其推入栈中,遇到右括号时,若栈顶元素是对应的左括号,则将栈顶元素弹出,继续处理下一个字符;若栈为空或栈顶元素不是对应的左括号,则括号不匹配。

二、队列的应用1. 消息队列消息队列是一种在分布式系统中实现异步通信的机制。

它常用于解耦系统中的组件,例如,一个组件将消息发送到队列中,而另一个组件则从队列中接收消息并处理。

这种方式可以提高系统的可伸缩性和可靠性。

2. 打印队列在打印机系统中,多个任务需要按照先后顺序进行打印。

这时可以使用队列来管理打印任务的顺序。

每当一个任务到达时,将其加入到队列的末尾,打印机从队列的头部取出任务进行打印,直到队列为空。

3. 广度优先搜索广度优先搜索(BFS)是一种常用的图搜索算法,它使用队列来辅助实现。

在BFS中,首先将起始节点加入队列中,然后依次将与当前节点相邻且未访问过的节点入队,直到遍历完所有节点。

结论栈和队列作为常用的数据结构,在计算机科学中有着广泛的应用。

本文只介绍了它们部分的应用场景,实际上它们还可以用于解决其他许多问题,如迷宫路径搜索、计算器计算等。

因此,了解和熟练运用栈和队列是程序员和计算机科学家的基本素养之一。

栈和队列的基本操作方法

栈和队列的基本操作方法

栈和队列的基本操作方法栈和队列是常见的数据结构,它们在计算机科学中有着广泛的应用。

栈和队列都是一种线性数据结构,但它们在插入和删除元素的方式上有所不同。

接下来,将介绍栈和队列的基本操作方法,包括定义、插入、删除和查询等。

一、栈(Stack)的基本操作方法:1. 定义:栈是一种先进后出(Last-In-First-Out,LIFO)的数据结构。

类似于现实生活中的一叠盘子,只能在栈顶进行操作。

2.创建栈:可以使用数组或链表作为栈的底层数据结构。

通过创建一个空数组或链表,称之为栈顶指针或栈顶节点,初始时指向空,表示栈为空。

3. 入栈(Push):将一个元素添加到栈顶。

需要将新增元素放在栈顶指针或栈顶节点之后,更新栈顶指针或栈顶节点的指向。

4. 出栈(Pop):删除栈顶元素,并返回删除的元素值。

需要将栈顶指针或栈顶节点向下移动一个位置,指向下一个元素。

5. 获取栈顶元素(Top):返回栈顶元素的值,但不删除该元素。

只需访问栈顶指针或栈顶节点所指向的元素即可。

6. 判断栈是否为空(isEmpty):通过检查栈顶指针或栈顶节点是否为空来判断栈是否为空。

二、队列(Queue)的基本操作方法:1. 定义:队列是一种先进先出(First-In-First-Out,FIFO)的数据结构。

类似于现实生活中的排队,按照先后顺序依次进入队列,先进入队列的元素首先被删除。

2.创建队列:可以使用数组或链表作为队列的底层数据结构。

通过创建一个空数组或链表,分别设置一个队首指针和一个队尾指针,初始时指向空,表示队列为空。

3. 入队(Enqueue):将一个元素添加到队尾。

需要将新增元素放在队尾指针或队尾节点之后,更新队尾指针或队尾节点的指向。

4. 出队(Dequeue):删除队首元素,并返回删除的元素值。

需要将队首指针或队首节点向下移动一个位置,指向下一个元素。

5. 获取队首元素(Front):返回队首元素的值,但不删除该元素。

栈与队列实现先进先出和后进先出的数据结构

栈与队列实现先进先出和后进先出的数据结构

栈与队列实现先进先出和后进先出的数据结构数据结构是计算机科学中一门重要的基础课程,其中栈(Stack)和队列(Queue)是常用的数据结构。

栈和队列都具有不同的特点和应用场景,能够满足先进先出(FIFO)和后进先出(LIFO)的要求。

一、栈的实现先进先出栈是一种线性数据结构,具有后进先出(LIFO)的特点。

在栈中,只能在栈的一端进行操作,称为栈顶。

栈的基本操作包括入栈(Push)和出栈(Pop)。

1. 入栈(Push)操作:当要向栈中添加元素时,将新元素放置在栈顶,并将栈顶指针向上移动一位。

该操作保证了后添加的元素会处于栈顶的位置。

2. 出栈(Pop)操作:当要从栈中移除元素时,将栈顶的元素弹出,并将栈顶指针向下移动一位。

该操作保证了最后添加的元素会最先被移除。

栈的实现可以使用数组或链表来存储元素。

使用数组实现时,需要指定栈的最大容量。

使用链表实现时,栈的容量可以动态扩展。

二、队列的实现先进先出队列是一种线性数据结构,具有先进先出(FIFO)的特点。

在队列中,元素从队尾入队,从队头出队。

队列的基本操作包括入队(Enqueue)和出队(Dequeue)。

1. 入队(Enqueue)操作:当要向队列中添加元素时,将新元素放置在队尾,并将队尾指针向后移动一位。

该操作保证了后添加的元素会处于队列的尾部。

2. 出队(Dequeue)操作:当要从队列中移除元素时,将队头的元素弹出,并将队头指针向后移动一位。

该操作保证了最早添加的元素会最先被移除。

队列的实现也可以使用数组或链表。

与栈不同的是,队列的实现更适合使用链表,因为链表可以实现在队头和队尾高效地执行插入和删除操作。

三、使用栈和队列实现先进先出和后进先出为了实现先进先出和后进先出的数据结构,可以使用一种特殊的数据结构:双端队列(Double-ended Queue),也称为双端栈(Deque)。

双端队列具有栈和队列的特点,既可以在队尾插入和删除元素,也可以在队头插入和删除元素。

大学《数据结构》第三章:栈和队列-第一节-栈

大学《数据结构》第三章:栈和队列-第一节-栈

第一节栈
一、栈的定义及其运算
1、栈的定义
栈(Stack):是限定在表的一端进行插入和删除运算的线性表,通常将插入、删除的一端称为栈项(top),另一端称为栈底(bottom)。

不含元素的空表称为空栈。

栈的修改是按后进先出的原则进行的,因此,栈又称为后进先出(Last In First Out)的线性表,简称为LIFO表。

真题选解
(例题·填空题)1、如图所示,设输入元素的顺序是(A,B,C,D),通过栈的变换,在输出端可得到各种排列。

若输出序列的第一个元素为D,则输出序列为。

隐藏答案
【答案】DCBA
【解析】根据堆栈"先进后出"的原则,若输出序列的第一个元素为D,则ABCD入栈,输出序列为DCBA
2、栈的基本运算
(1)置空栈InitStack(&S):构造一个空栈S。

栈和队列的进出规则

栈和队列的进出规则

栈和队列的进出规则栈和队列是计算机科学中常见的数据结构,它们是程序设计中必不可少的基础知识。

它们的进出规则是很重要的,这是因为这些规则决定了如何访问数据。

本文将介绍栈和队列的进出规则,以及它们在实际应用中的作用。

一、栈的进出规则栈是一种后进先出(LIFO)的数据结构。

栈中的数据项只能通过栈顶进行访问和操作。

当一个数据项被添加到栈中时,它被放置在栈顶。

当一个数据项被从栈中移除时,它是从栈顶移除的。

这意味着最后添加到栈中的数据项将是第一个被移除的数据项。

栈的进出规则可以用两个操作来描述:push和pop。

push操作将一个数据项添加到栈中,而pop操作将一个数据项从栈中移除。

这两个操作必须按照正确的顺序进行,否则会导致栈中的数据项出现错误的顺序。

栈的进出规则在实际应用中非常有用。

例如,在计算机程序中,栈可以用来存储函数调用的参数和局部变量。

当一个函数被调用时,它的参数和局部变量被添加到栈中。

当函数返回时,这些数据项被从栈中移除。

二、队列的进出规则队列是一种先进先出(FIFO)的数据结构。

队列中的数据项只能通过队列的前端进行访问和操作。

当一个数据项被添加到队列中时,它被放置在队列的尾端。

当一个数据项被从队列中移除时,它是从队列的前端移除的。

这意味着最先添加到队列中的数据项将是第一个被移除的数据项。

队列的进出规则可以用两个操作来描述:enqueue和dequeue。

enqueue操作将一个数据项添加到队列中,而dequeue操作将一个数据项从队列中移除。

这两个操作必须按照正确的顺序进行,否则会导致队列中的数据项出现错误的顺序。

队列的进出规则在实际应用中也非常有用。

例如,在操作系统中,队列可以用来存储进程等待执行的任务。

当一个任务完成时,它被从队列中移除,并且下一个任务被添加到队列中。

三、栈和队列在实际应用中的作用栈和队列在计算机科学中有着广泛的应用。

它们被用于许多不同的领域,包括编译器、操作系统、数据库和图形界面设计。

第3章 限定性线性表——栈和队列

第3章  限定性线性表——栈和队列

两栈共享技术(双端栈):
主要利用了栈“栈底位置不变,而栈顶位置动态变
化”的特性。首先为两个栈申请一个共享的一维数 组空间S[M],将两个栈的栈底分别放在一维数组的 两端,分别是0,M-1。
共享栈的空间示意为:top[0]和top[1]分别为两个 栈顶指示器 。
Stack:0
M-1
top[0]
top[1]
(1)第i号栈的进栈操作 int pushi(LinkStack top[M], int i, StackElementType x) { /*将元素x进入第i号链栈*/
LinkStackNode *temp; temp=(LinkStackNode * )malloc(sizeof(LinkStackNode)); if(temp==NULL) return(FALSE); /* 申请空间失败 */ temp->data=x; temp->next=top[i]->next; top[i]->next=temp; /* 修改当前栈顶指针 */ return(TRUE); }
case 1:if(S->top[1]==M) return(FALSE);
*x=S->Stack[S->top[1]];S->top[1]++;break;
default: return(FALSE);
}
return(TRUE);
返回主目录
}
【思考题】
说明读栈顶与退栈顶的处理异同,并标明将已知 的退栈顶算法改为读栈顶算法时应做哪些改动。
返回主目录
链栈的进栈操作
int Push(LinkStack top, StackElementType x)

第3章栈和队列

第3章栈和队列
第3章栈和队列

3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)

栈和队列思政小课堂理解

栈和队列思政小课堂理解

栈和队列思政小课堂理解栈和队列的定义、区别,存在的意义1、栈的定义(1)栈:栈实际上是一种线性表,它只允许在固定的一段进行插入或者删除元素,在进行数据插入或者删除的一段称之为栈顶,剩下的一端称之为栈顶。

其遵循的原则是后进先出。

(2)栈的核心操作:三大核心操作,入栈,出栈,取栈顶元素(3)对于栈的形象理解:子弹的弹夹我们一定见过,子弹在被压入的时候就相当于是一个个元素,而弹夹就相当于是栈。

先被压入的子弹是最后被打出的,先压入的元素是最后出来的,也就是后进先出。

2、队列的定义(1)队列:首先队列也是一种特殊的线性表,它允许在一端进行插入数据,在另一端进行删除数据的。

队列里边有队首,队尾,队首元素。

其遵循的原则是先进先出。

(2)队列的核心操作:三大核心操作分别是入队列,出队列,取队首元素。

(3)对于队列的形象理解:火车穿越隧道,火车的头相当于是队列的首,火车的尾相当于是队列的尾部。

火车在穿越隧道的时候,头部先进入隧道头部也先出隧道,尾部后进入尾部后出隧道。

队列也就是先入的元素先出队列,后进入的元素后出队列。

3、栈和队列的区别(1)栈和队列的出入方式不同:栈是后进先出、队列是先进先出。

(2)栈和队列在具体实现的时候操作的位置不同:因为栈是后进先出,它在一段进行操作;而队列是先进先出,实现的时候在两端进行。

在Java标准库中实现队列时是按照链表实现的。

4、栈和队列存在的意义上边我们提到过:栈和队列都是一种典型的线性表,都是基于线性表(顺序表和链表)来实现的,那么我们研究栈和队列的目的何在?因为在栈和队列定义后,只有那三种操作,而那三种操作都是最常用的,它支持的操作越少,我们在使用的时候关心的点也就越少,用起来就越不容易出错。

在计算机中“少即是多”,少意味着功能比较少、比较呆板。

多意味着功能很多,用的时候要操的心就越多,就越容易出错。

综上:栈和队列存在的意义就是减少线性表的基本操作,提取常用操作,让人们使用起来更方便,更不容易出错。

第4章栈及队列

第4章栈及队列
}
4.1.5 栈的链式存储结构——链栈 1.链栈结构及数据类型
它是一种限制运算的链表,即规定链表中的扦入和删 除运算只能在链表开头进行。链栈结构见下图。
top 头
an
an-1
……
栈顶
图 3-5 链栈结构示意图
a1 ^
栈底
单链表的数据结构定义为: typedef struct node
{ elemtype data; //数据域 struct node *next; //指针域
3.出栈: POP(&S) 删除栈S中的栈顶元素,也称为”退栈”、 “删除”、 “弹出”。
4.取栈顶元素: GETTOP(S) 取栈S中栈顶元素。 5.判栈空: EMPTY(S) 判断栈S是否为空,若为空,返回值为1,否则返回值为0。
4.1.3 栈的抽象数据类型描述
ADT Stack {
Data: 含有n个元素a1,a2,a4,…,an,按LIFO规则存放,每个元素的类型都为 elemtype。 Operation: Void inistack(&s) //将栈S置为一个空栈(不含任何元素) Void Push(&s,x) //将元素X插入到栈S中,也称为 “入栈”、 “插 入”、 “压入”
{s->top[0]=-1; s->top[1]=m; }
(2)两个栈共享存储单元的进栈算法 int push(duseqstack *s, elemtype x, int i) //将元素x进入到以S为栈空间的第i个栈中 { if (s->top[0] ==s->top[1]-1) { printf(“overflow”); return (0);} if (i!=0 || i!=1) {printf(“栈参数出错“);return (0);} if(i= =0) //对0号栈进行操作 { s->top[0]++;s->stack[s->top[0]]=x;} else {s->top[1]--; s->stack[s->top[1]]=x;} return (1); }}

栈和队列实验报告总结

栈和队列实验报告总结

栈和队列实验报告背景栈(Stack)和队列(Queue)是常用的数据结构,它们在计算机科学中具有广泛的应用。

栈和队列虽然在逻辑上都是线性结构,但其特点和操作有很大的差别。

栈是一种后进先出(Last In First Out,LIFO)的数据结构。

在栈中,最后插入的元素最先被访问。

类似于现实生活中的堆栈,最先放入的物品最后需要取出。

栈的主要操作有入栈(Push),将元素放入栈顶;出栈(Pop),将栈顶元素取出;以及获取栈顶元素(Top)等。

队列是一种先进先出(First In First Out,FIFO)的数据结构。

在队列中,最先插入的元素最先被访问。

类似于现实生活中的排队,最先排队的人最先被服务。

队列的主要操作有入队(Enqueue),将元素放入队尾;出队(Dequeue),将队首元素取出;以及获取队首元素(Front)等。

本次实验的目的是加深对栈和队列的理解,并实现相关的操作。

分析栈的实现栈的实现可以有多种方式,常见的有基于数组和基于链表。

基于数组的栈实现相对简单,可以使用固定大小的数组,通过一个变量来记录栈顶指针。

基于链表的栈实现更加灵活,可以动态地分配内存。

基于数组的栈实现主要需要考虑的问题是栈的大小限制和溢出处理。

当栈已满时,继续入栈会导致溢出;当栈为空时,进行出栈操作会导致栈错误。

因此,需要对入栈和出栈操作进行边界检查。

队列的实现队列的实现也可以有多种方式,常见的有基于数组和基于链表。

基于数组的队列实现可以使用固定大小的数组,通过两个变量来记录队首和队尾的位置。

基于链表的队列实现可以使用链表节点表示队列中的元素。

在实现队列的过程中,需要注意队列的大小限制和溢出处理。

当队列已满时,继续入队会导致溢出;当队列为空时,进行出队操作会导致队列错误。

因此,需要对入队和出队操作进行边界检查。

实验过程栈的实现本次实验选择使用基于数组的栈实现。

首先定义一个固定大小的数组,以及一个整数变量来记录栈顶元素的位置。

栈和队列区别及应用场景

栈和队列区别及应用场景

栈和队列区别及应用场景栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计算机科学领域有广泛的应用。

本文将从定义、特点和基本操作等方面详细介绍栈和队列的区别,并分析它们各自的应用场景。

一、栈的定义及特点:栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。

即在栈中最后一个进入的元素,也是第一个出栈的元素。

栈的基本操作包括入栈和出栈。

入栈(Push)是将一个元素追加到栈的顶部,出栈(Pop)是将栈顶元素移除。

栈的应用场景:1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。

2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。

3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。

4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。

5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。

6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。

二、队列的定义及特点:队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。

即在队列中最先进入的元素,也是第一个出队列的元素。

队列的基本操作包括入队和出队。

入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。

队列的应用场景:1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。

2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结

数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。

栈有两个基本操作:入栈(push)和出栈(pop)。

入栈指将元素压入栈中,出栈指将最近压入的元素弹出。

二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。

2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。

3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。

四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。

队列有两个基本操作:入队(enqueue)和出队(dequeue)。

入队指将元素加入到队列尾部,出队指从队列头部删除元素。

五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。

2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。

六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。

2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。

3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。

七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。

2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。

3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。

八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。

解决方法包括增加栈空间大小、减少递归深度等。

2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

栈和队列是操作受限的线性表,好像每本讲数据结构的数都是这么说的。

有些书按照这个思路给出了定义和实现;但是很遗憾,这本书没有这样做,所以,原书中的做法是重复建设,这或许可以用不是一个人写的这样的理由来开脱。

顺序表示的栈和队列,必须预先分配空间,并且空间大小受限,使用起来限制比较多。

而且,由于限定存取位置,顺序表示的随机存取的优点就没有了,所以,链式结构应该是首选。

栈的定义和实现
#ifndef Stack_H
#define Stack_H
#include "List.h"
template class Stack : List//栈类定义
{
public:
void Push(Type value)
{
Insert(value);
}
Type Pop()
{
Type p = *GetNext();
RemoveAfter();
return p;
}
Type GetTop()
{
return *GetNext();
}
List ::MakeEmpty;
List ::IsEmpty;
};
#endif
队列的定义和实现
#ifndef Queue_H
#define Queue_H
#include "List.h"
template class Queue : List//队列定义{
public:
void EnQueue(const Type &value) {
LastInsert(value);
}
Type DeQueue()
{
Type p = *GetNext();
RemoveAfter();
IsEmpty();
return p;
}
Type GetFront()
{
return *GetNext();
}
List ::MakeEmpty;
List ::IsEmpty;
};
#endif
测试程序
#ifndef StackTest_H
#define StackTest_H
#include "Stack.h"
void StackTest_int()
{
cout << endl << "整型栈测试" << endl;
cout << endl << "构造一个空栈" << endl; Stack a;
cout << "将1~20入栈,然后再出栈" << endl; for (int i = 1; i <= 20; i++) a.Push(i);
while (!a.IsEmpty()) cout << a.Pop() << ' ';
cout << endl;
}
#endif
#ifndef QueueTest_H
#define QueueTest_H
#include "Queue.h"
void QueueTest_int()
{
cout << endl << "整型队列测试" << endl;
cout << endl << "构造一个空队列" << endl; Queue a;
cout << "将1~20入队,然后再出队" << endl; for (int i = 1; i <= 20; i++) a.EnQueue(i);
while (!a.IsEmpty()) cout << a.DeQueue() << ' ';
cout << endl;
}
#endif
【后记】没什么好说的,你可以清楚的看到,在单链表的基础上,栈和队列的实现是如此的简单,这也是我对于原书重复建设不满的最大原因。

相关文档
最新文档