七年级数学下册9.4乘法公式知识点梳理+练习(新版)苏科版.doc

合集下载

苏科版七年级下 9.4 乘法公式课件

苏科版七年级下 9.4 乘法公式课件
ab c
a b
c
所以有:(面图a+积形b(+c1))2 = 图面形积(2) =a2+ab+ac+ab+b2+bc+ac+bc+c2
=a2+b2+c2+2ab+2ac+2bc 建湖县实验初中
试试看!
计算: 1、(m+n-t)2 2、(-2s+3t-h)2 练习:书P82 练一练 3、4
建湖县实验初中
建湖县实验初中
(3 ) xy4xy4
(3) 原式xy4xy4
xy2 42
平方差公式
x2 2xyy2 16 完全平方公式
建湖县实验初中
(1) (2x 3)(4x2 9)(2x 3) (2) (x y 1)(x y 1)
算一算
(3) (m-2n)2 (m 2n)2
(4) 化简求值 :
( y 2x)(2x y) (2 y x)(2 y x)
(3) (x y 4)(x y 4)
(1)解:原式(x29)(x29) 平方差公式
x4 81
平方差公式
做一做
建湖县实验初中
(2)(2x 3)2(2x 3)2 你认为选择什么方法比较简便?
(2)解:原式 2x 32x 32积的乘方的逆用
4x2 9 2
平方差公式
16x4 72x81 完全平方公式

4a220a25
式 算算看:(2a 5)2

算 结论:(2a5)2(2a5)2

建湖县实验初中
填空: 1.(2x-y)(_2_x_+_y_)=4x2-y2 2.(b-a)(_-_a_-_b_)=a2-b2 3.4x2-12xy+(_9_y_2_)=(_2_x_-_3_y_)2 4.(-3x-2)(_-2_+__3_x)=4-9x2

苏科版七年级数学下册第九章《9.4乘法公式》优课件(3)

苏科版七年级数学下册第九章《9.4乘法公式》优课件(3)

解:原式 (2x3 )2 (x3 )2 anbn (ab)n
(4x2 9)2
将 (2x3)与 (2x3)看成整体,运用
(4x2)224x2992平方差公式,
1x647x2281
将 4 x 2看成整体,运用完全平 方公式计算.
9.4 乘法公式(3)
(3)(2 a b )b (2 a ) (a 3 b )2
9.4 乘法公式(3)
(1)
(x3)x (3)x (29)
将第一个因式与第二个因式计 算,可运用平方差公式计算得
解:原式 (x29)(x29)
到 (x2 9) ,
(x2)2 92
再与 ( x 2 9 ) 相乘,将看成一
x4 81
个整体,运用平方差公式计 算.
(2) (2x3)2(2x3)2 逆用积的乘方的运算法则:
解:原式 (b 2 a )b ( 2 a ) (a 3 b )2 先构造出平方差的形式
b 2 4 a 2 (a 2 6 a b 9 b 2)进行平方差完全平方计 算
b 2 4 a 2 a 2 6 a 9 b b 2 去括号
5a26a b8b2
合并同类项
9.4 乘法公式(3)
例2 如图,4块完全相同的长方形围成一个正方形, 用不同的代数式表示图中阴影部分的面积,由此, 你能得到怎样的等式?试用乘法公式说明这个等式 成立.
(abc)2 = a(bc)2
9.4 乘法公式(3)
如何计算 ( x y ) z ( x y ) z ?
将 (x y) 看成一个整体a 运用平方差公式计算
9.4 乘法公式(3)
如何计算 (x y 4 )x ( y 4 ) ? 将 (x y) 看成一个整体a 计算:

数学:9.4乘法公式(2)同步练习(苏科版七年级下)

数学:9.4乘法公式(2)同步练习(苏科版七年级下)

数学:9.4乘法公式(2)同步练习(苏科版七年级下)【基础演练】一、填空题1. 计算:()()=+--b a b a 3232 ,______________)32)(32(=+-b a b a .2. 计算: 18201999⨯= . 3.计算:____________)9)(3)(3(2=++-x x x4.(b a 52--)( )=22254b a -.5. 若mx 2-ny 2=(x +3y)(x -3y),则m = ,n = .6. 如果,3,1-=--=+y x y x 那么=-22y x .二、选择题7. 下列多项式相乘时,可以应用平方差公式的是( )A.(m +2n)(m -n)B.(-m -n)(m +n)C.(-m -n)(m -n)D.(m -n)(-m +n)8. 下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④9. 若a≠b,下列各式中不能成立的是( )A.(a +b )2=(-a -b )2 B.(-a-b )(a -b )=(b +a )(b -a ) C.(a -b )2n =(b -a )2n D.(a -b )3=(b -a )310. 对于任意的整数n ,能整除代数式(n+3)(n-3)-(n+4)(n-4)的整数是( )A.4B.3C.5D.2三、解答题11.计算:(1)22)1ab ()1ab (--+; (2))y 2x )(y 2x (---;(3)⎪⎭⎫ ⎝⎛-+b 21a 21)b 2a 2(; (4)))((z y x z y x +-+-.12.先化简:(2m -1)2-(3m+1) (3m -1)+5m(m -1),然后选取一个你喜欢的数代替m,再求值.13. 解方程4(x-3)2-(2x+1)2=(3x+1)(1-3x )+9x 2. .【能力提升】14. 将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成abc d ,定义abc d a d b c =-,上述记号就叫做2阶行列式.若1111x x x x +--+ 6=,则 x = . 15.设m ,n 为自然数,且满足:2222229921m n ++++=,求m ,n 的值.16.根据以下10个乘积,回答问题:1129⨯ 1228⨯ 1327⨯1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯1921⨯ 2020⨯ (1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(3)若用11a b ,22a b ,,n n a b 表示n 个乘积,其中1a ,2a ,3n a a ,,,123n b b b b ,,,,为正数.请根据(1)中乘积的大小顺序猜测出一个一般结论.(不要求证明)参考答案1. 229124b ab a -+-,2294b a -;2. 8180399; 3. 814-x ; 4. b a 52+-; 5. 1,9; 6. 3.7.C ;8.C ;9.D ;10.C. 11.(1)ab 4;(2)224x y -;(3)22b a -; (4)2222z y xy x -+-.12.-9m+2,如取m=0,2. 13. 1417=x . 14.±2.15. 解:由条件可知2222229921m n +++=-,即167)m n )(m n (=-+.而167是质数,只能分解成167×1,又因为m ,n 为自然数,所以⎩⎨⎧=-=+1m n 167m n 解得84n 83m ==,16. (1)229202911-=⨯ ,228202812-=⨯,227202713-=⨯, 221426206⨯=-,221525205⨯=-221624204⨯=-222217232031822202⨯=-⨯=-;; 221921201⨯=-;222020200⨯=-.这10个乘积按照从小到大的顺序依次是:11×29<23×28<13×27<14×16<15×25<16×24<17×23<18×22<19×21<20×20(2)22a b ab +⎛⎫ ⎪⎝⎭≤ ①若40a b +=,则220400ab =≤ ②2222a b a b ab +-⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭(3)若 112233n n a b a b a b a b m +=+=+==+=且11223n n n a b a b a b a b ----≥≥≥≥ 则112233n n a b a b a b a b ≤≤≤≤,且11223n n n a b a b a b a b ----≥≥≥≥则112233n n a b a b a b a b ≤≤≤≤。

苏科版七年级数学下册 乘法公式同步强化训练(三)(Word版含答案)

苏科版七年级数学下册 乘法公式同步强化训练(三)(Word版含答案)

苏科版七年级数学下《9.4乘法公式》同步强化训练(三)(时间:90分钟满分:120分)一.选择题(共15题;共30分)1.运用完全平方公式(a+b)2=a2+2ab+b2计算(x+)2,则公式中的2ab是()A. x B.x C.2x D.4x2.不论a、b取何有理数,a2+b2-2a-4b+5的值总是 ( )A.负数 B.零 C.正数 D.非负数3.如图,能根据图形中的面积说明的乘法公式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)=a2﹣2ab+b2 D.(x+p)(x+q)=x2+(p+q)x+pq第3题图第4题图第5题图4.如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b25.如图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四个形状和大小都一样的小长方形,然后按图②所示的方式拼成一个正方形,则中间空白部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2 D.a2-b26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是() A.③B.①③ C.②③ D.①7.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣28.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.529.计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024 B.28+1 C.216+1 D.21610.下列计算正确的是( )A.(x+y)2=x2+y2 B.(x-y)2=x2-2xy-y2C.(x+2y)(x-2y)=x2-2y2 D.(-x+y)2=x2-2xy+y211.若(5a+3b)2=(5a-3b)2+M,则M=( )A.60ab B.30ab C.15ab D.12ab12.若x+y=3,x2-y2=12,则x-y的值为( )A.2 B.3 C.4 D.613.与7x-y2的乘积等于y4-49x2的代数式是( )A.7x+y2 B.7x-y2 C.-7x+y2 D.-7x-y214.下列计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-a2-b2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72-(a+b)215.若x+y+z=-2,xy+yz+xz=1,则x2+y2+z2的值是 ( )A.2 B.3 C.4 D.5二.填空题(共15题;共30分)16.若a -b =2,a -c =1,则(2a -b -c)2+(c -a)2=_______.17.若a 、b 满足a 2+2b 2+1-2ab -2b =0,则a +2b =_______.18.已知m(m -3)-(m 2-3n)=9,那么222m n +-mn 的值为______. 19.已知三角形的三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ac,试利用乘法公式判断这个三角形是_________三角形.20.已知a 2+b 2=2022,则(a +b)2-2ab 的值为________21.(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是_________22.若x 2-4x -1=(x +a)2-b,则|a -b|=________.23.如图,从边长为(a+4)(a >0)的正方形纸片中剪去一个边长为(a+1)的正方形,剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则长方形ABCD 的周长是 .24、计算的结果是_______ 25.若(7x-a)2=49x 2-bx+9,则|a+b|= .26、 .27.若把代数式x 2-2x-3化为(x-m )2+k 的形式,其中m,k 为常数,则m+k= -3 .28.已知x+y=7且xy=12,则当x <y 时,1x - 1y 的值等于 .29、已知,则的值是 . 30、已知,则_________.三.解答题(共8题 共60分)31.(6分)计算:(1)(2a -3b +c)2. (2)4(a -b)2-(2a +b)(-b +2a)32.(6分)利用乘法公式进行计算:(1)(2x +3y)2(2x -3y)2; (2)(2x -y -3)2.33.(8分)先化简,再求值:(1))1)(1()2(2a a a +-++,其中43-=a。

七年级数学下册 9.4 乘法公式课件(2) (新版)苏科版

七年级数学下册 9.4 乘法公式课件(2) (新版)苏科版
判断下列(xiàliè)各式可以利用平方差公式吗?为 什么?
① (5x+y)(5x-y); ② (a+2b)(2a-b);
③ (2n+m)(-m+2n);④ (c+d )(-c-d ); ⑤ (2a+b)(2a-c); ⑥ (3y-x)(-x-3y);
第五页,共11页。
9.4 乘法(chéngfǎ)公式(2)
例1 用平方差公式(gōngshì)计算:
(1)(5x+y)(5x-y); (2)(2n+m)(-m+2n);
(3)(3 y-x)(-x-3 y );
第六页,共11页。
9.4 乘法(chéngfǎ)公式(2)
例2 用简便方法(fāngfǎ)计算:
(1)101×99;
(2)
20 1 3
×19
2. 3
9.4
初中 七年级(下册) (chūzhōn
g)数学
乘法(chéngfǎ)公 式(2)
第一页,共11页。
9.4 乘法(chéngfǎ)公式(2)
a
a a-b
a-b
将图中纸片只剪一刀,
再拼成一个(yī ɡè)长方形.
b
b
这张纸片的面积可以(kěyǐ)表示为a2-b2
第二页,共11页。
9.4 乘法公式(2)
第九页,共11页。
9.4 乘法(chéngfǎ)公式(2) 1.将相互列举(lièjǔ)的算式课后加以计算; 2.课本P80第 3、4 题.
第十页,共11页。
第十一页,共11页。
第七页,共11页。
9.4 乘法(cBiblioteka éngfǎ)公式(2)补充练习 用简便(jiǎnbiàn)方法计算:
(1)22×18;
(2)10
1 4

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)

2021-2022学年苏科版七年级数学下册《9-4乘法公式-平方差公式》同步练习题(附答案)一.选择题1.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣162.若(x+3)(x﹣3)=55,则x的值为()A.8B.﹣8C.±8D.6或83.已知a+b=﹣3,a﹣b=1,则a2﹣b2的值是()A.8B.3C.﹣3D.104.若a2﹣b2=10,a﹣b=2,则a+b的值为()A.5B.2C.10D.无法计算5.下列算式中不能利用平方差公式计算的是()A.(x+y)(x﹣y)B.(x﹣y)(﹣x﹣y)C.(x﹣y)(﹣x+y)D.(x+y)(y﹣x)6.下列运算正确的是()A.(5﹣m)(5+m)=m2﹣25B.(1﹣3m)(1+3m)=1﹣3m2C.(﹣4﹣3n)(﹣4+3n)=﹣9n2+16D.(2ab﹣n)(2ab+n)=4ab2﹣n27.计算(x+1)(x﹣1)(x2+1)的结果是()A.x2﹣1B.x3﹣1C.x4+1D.x4﹣18.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.b(a﹣b)=ab﹣b2D.a2﹣b2=(a+b)(a﹣b)二.填空题9.计算:(2a﹣b)(2a+b)=.10.计算:(a+1)(1﹣a)=.11.计算(x+y)(x﹣y)+16=.12.若x2﹣y2=16,x+y=8,则x﹣y=.13.当a=﹣1时,代数式(2a+1)(2a﹣1)=.14.化简:(a+2)(a2+4)(a4+16)(a﹣2)=.三.解答题15.计算(2+y)(y﹣2)+(2y﹣4)(y+3).16.计算:(3x+2)(3x﹣2)+x(x﹣2).17.计算:(3x+2)(3x﹣2)(9x2+4).18.计算:(1)|﹣3|+()2017×(﹣3)2018﹣(π﹣4)0;(2)(2x+3y)(2x﹣3y)﹣(x﹣2y)(4x+y).19.已知a+b=2,求代数式a2﹣b2+4b的值.20.如果﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.若(x﹣2)(x2+ax﹣8b)的展开式中不含x的二次项和一次项.(1)求b a的值;(2)求(a+1)(a2+1)(a4+1)…(a32+1)+1的值.22.观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上结果,写出下列各式的结果.①(x﹣1)(x4+x3+x2+x+1)=;②(x﹣1)(x9+x8+x7+…+x+1)=;③(x﹣1)(x n﹣1+x n﹣2+…+x+1)=(n为正整数);(2)(x﹣1)•m=x11﹣1.则m=;(3)根据猜想的规律,计算:226+225+…+2+1.参考答案一.选择题1.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.2.解:(x+3)(x﹣3)=55,x2﹣9=55,x2=64,x=±8.故选:C.3.解:∵a+b=﹣3,a﹣b=1,∴a2﹣b2=(a+b)(a﹣b)=(﹣3)×1=﹣3.故选:C.4.解:∵a2﹣b2=10,∴(a+b)(a﹣b)=10,∵a﹣b=2,∴a+b=5.故选:A.5.解:A、原式=x2﹣y2,不符合题意;B、原式=y2﹣x2,不符合题意;C、原式=﹣(x﹣y)2=﹣x2+2xy﹣y2,符合题意;D、原式=y2﹣x2,不符合题意.故选:C.6.解:A、(5﹣m)(5+m)=25﹣m2,错误;B、(1﹣3m)(1+3m)=1﹣9m2,错误;C、(﹣4﹣3n)(﹣4+3n)=﹣9n2+16,正确;D、(2ab﹣n)(2ab+n)=4a2b2﹣n2,错误;7.解:原式=(x2﹣1)(x2+1)=x4﹣1.故选:D.8.解:根据图1和图2可得阴影部分的面积为:a2﹣b2和(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题9.解:(2a﹣b)(2a+b)=4a2﹣b2.故答案为:4a2﹣b2.10.解:(a+1)(1﹣a)=(1+a)(1﹣a)=12﹣a2=1﹣a2.故答案为:1﹣a2.11.解:(x+y)(x﹣y)+16=x2﹣y2+16.故答案为:x2﹣y2+16.12.解:∵x2﹣y2=(x+y)(x﹣y)=16,x+y=8,∴x﹣y=16÷8=2.故答案为:2.13.解:∵a=﹣1,∴(2a+1)(2a﹣1)=4a2﹣1=4×(﹣1)2﹣1=4﹣1=3.故答案为:3.14.解:(a+2)(a2+4)(a4+16)(a﹣2)=(a+2)(a﹣2)(a2+4)(a4+16)=(a2﹣4)(a2+4)(a4+16)=(a4﹣16)(a4+16)=a8﹣256.故答案为:a8﹣256.15.解:原式=y2﹣4+2y2+6y﹣4y﹣12=3y2+2y﹣16.16.解:原式=9x2﹣4+x2﹣2x=10x2﹣2x﹣4.17.解:(3x+2)(3x﹣2)(9x2+4)=(9x2﹣4)(9x2+4)=81x4﹣16.18.解:(1)|﹣3|+()2017×(﹣3)2018﹣(π﹣4)0=3+()2017×32017×3﹣1=3+×3﹣1=3+12017×3﹣1=3+3﹣1=5;(2)(2x+3y)(2x﹣3y)﹣(x﹣2y)(4x+y)=(2x)2﹣(3y)2﹣(4x2+xy﹣8xy﹣2y2)=4x2﹣9y2﹣4x2﹣xy+8xy+2y2=7xy﹣7y2.19.解:∵a+b=2,∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=4.20.解:﹣3x2+mx+nx2﹣x+3=(﹣3+n)x2+(m﹣1)x+3,∵﹣3x2+mx+nx2﹣x+3的值与x的取值无关,∴﹣3+n=0,m﹣1=0,解得:n=3,m=1,故(m+n)(m﹣n)=(1+3)×(1﹣3)=4×(﹣2)=﹣8.21.解:(1)(x﹣2)(x2+ax﹣8b)=x2+ax2﹣8bx﹣2x2﹣2ax+16b=x3+(a﹣2)x2﹣(2a+8b)x+16b,∵展开式中不含x的二次项和一次项,∴,解得:,所以:;(2)当a=2时,(a+1)(a2+1)(a4+1)⋅⋅⋅(a32+1)+1=(2+1)(22+1)(24+1)⋅⋅⋅(232+1)+1=(2﹣1)(2+1)(22+1)(24+1)⋅⋅⋅(232+1)+1=264﹣1+1=264.22.解:观察下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…得:①(x﹣1)(x4+x3+x2+x+1)=x5﹣1;②(x﹣1)(x9+x8+x7+…+x+1)=x10﹣1;③(x﹣1)(x n﹣1+x n﹣2+…+x+1)=x n﹣1(n为正整数);(2)∵(x﹣1)(x10+x9+x8+•+x+1)=x11﹣1.∴m=x10+x9+x8+•+x+1.故答案为:x10+x9+x8+•+x+1.(3)226+225+…+2+1=(2﹣1)(226+225+…+2+1)=227﹣1.。

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

初中数学苏科版七年级下册9.4 乘法公式——完全平方公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.等于()A. B. C. D.2.下列等式能够成立的是()A. (2x-y)2=4x2-2xy+y2B. (x+y)2=x2+y2C. (a-b)2= a2-ab+b2D. (+x)2= +x23.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是()A. 5B. -5C. 11D. -114.已知a+b=-5,ab=-4,则a2-ab+b2的值是()A. 37B. 33C. 29D. 215.已知x﹣y=3,xy=1,则x2+y2=()A. 5B. 7C. 9D. 116.若,,则的值为()A. 6B. 7C. 8D. 97.对于任何实数m、n,多项式m2+n2-6m-10n+36的值总是()A. 非负数B. 0C. 大于2D. 不小于28.已知(m 2018)2+(m 2020)234,则(m 2019)2的值为()A. 4B. 8C. 12D. 169.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为()A. 2019B. 2020C. 4039D. 110.已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共9题,每题2分,共18分)11.若a+b=17,ab=60,则(a- b)2=________12.若a2+b2=6,a+b=3,则ab的值为________.13.已知x﹣=6,求x2+ 的值为________.14.已知xy=-3,x+y=-4,则x2-xy+y2的值为________.15.计算:20202﹣4040×2019+20192=________.16.设(a+2b) 2=(a-2b) 2+A,则A=________.17.已知,则的值是________.18.已知关于的二次三项式是完全平方式,则a=________.19.我围古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)“的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为________.三、解答题(本大题共7题,共82分)20.计算:(a+b+c)221.先化简,再计算:(2a+b)(b﹣2a)﹣(a﹣3b)2,其中a=﹣2,b= .22.已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.23.已知,,求下列各式的值.(1);(2);(3).24. (1)当,时,分别求代数式和的值;(2)当,时,________ (填“ ”,“ ”,“ ”)(3)观察(1)(2)中代探索代数式和有何数量关系,并把探索的结果写出来:________ (填“ ”,“ ”,“ ”)(4)利用你发现的规律,求的值.25.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值;26.(阅读理解)“若满足,求的值”.解:设,,则,,(解决问题)(1)若满足,则的值为________;(2)若满足,则的值为________;(3)如图,正方形的边长为,,,长方形的面积是200,四边形和都是正方形,四边形是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).答案解析部分一、单选题1.【答案】B【考点】完全平方公式及运用解:(−a+b)2=a2−2ab+b2.故答案为:B.【分析】根据完全平方式的定义,将(−a+b)2展开即可求解.2.【答案】C【考点】完全平方公式及运用解:A、(2x-y)2=4x2-4xy+y2 ,故A错误;B、(x+y)2=x2+2xy+y2,故C错误;C、(a-b)2=a2-ab+b2,故C正确;D、( +x)2= +2+x2,故D错误;故答案为:C.【分析】根据(a b)2=a22ab+b2逐一判断即可.3.【答案】A【考点】完全平方公式及运用解:由x2-6x+b=x2-6x+9+(b-9)=(x-3)2+(b-9)=(x-a)2-1,所以a=3,b-9=-1,即a=3,b=8,故b-a=5.故选A.【分析】利用配方法可得x2-6x+b=(x-3)2+(b-9),从而可得(x-3)2+(b-9)=(x-a)2-1,继而得出a=3,b-9=-1,求出a、b的值并代入计算即可.4.【答案】A【考点】完全平方公式及运用解:∵a+b=-5,ab=-4,∴a2-ab+b2=(a+b)2-3ab=(-5)2-3×(-4)=37,故答案为:A.【分析】先根据完全平方公式进行变形,再代入求出即可.5.【答案】D【考点】代数式求值,完全平方公式及运用解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故答案为:D.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.6.【答案】A【考点】完全平方公式及运用解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故答案为:A.【分析】将a﹣b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.7.【答案】D【考点】完全平方公式及运用解:m2+n2-6m-10n+36=(m2-6m+9)+(n2-10n+25)+2=(m-3)2+(n-5)2+2≥2故对于任何实数m、n多项式m2+n2-6m-10n+36的值都不小于2.故答案为:D.【分析】将多项式进行变形,整理成含有两个完全平方式的形式,再改写成平方的形式,根据平方的非负性进行解答.8.【答案】D【考点】完全平方公式及运用解:∵(m-2018)2+(m-2020)2=34,∴(m-2019+1)2+(m-2019-1)2=34,∴(m-2019)2+2(m-2019)+1+(m-2019)2-2(m-2019)+1=34,2(m-2019)2+2=34,2(m-2019)2=32,(m-2019)2=16.故答案为:D.【分析】先把(m -2018)2+(m-2020)2=34变形为(m-2019+1)2+(m-2019-1)2=34,把(m-2019)看作一个整体,根据完全平方公式展开,得到关于(m-2019)2的方程,解方程即可求解.9.【答案】C【考点】完全平方公式及运用解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴c1=20202,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴c2=20192,∴c1﹣c2=20202﹣20192=(2020+2019)(2020﹣2019)=4039,故答案为:C.【分析】依据小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,即可得到c1﹣c2=20202﹣20192,进而得出结论.10.【答案】C【考点】代数式求值,完全平方公式及运用解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:C.【分析】把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.二、填空题11.【答案】49【考点】完全平方公式及运用解:∵,,∴.故答案为:49.【分析】利用完全平分公式的变形公式进行计算即可.12.【答案】【考点】完全平方公式及运用解:由a+b=3两边平方,得a2+2ab+b2=9 ①,a2+b2=6 ②,①﹣②,得2ab=3,两边都除以2,得ab= .故答案为:.【分析】根据完全平方公式,可得a2+2ab+b2=9,再根据等式的性质,可得答案.13.【答案】38【考点】完全平方公式及运用解:将x﹣=6两边平方,可得:,解得:,故答案为:38.【分析】把x﹣=6两边平方后化简整理解答即可.14.【答案】25【考点】完全平方公式及运用解:x2-xy+y2=(x+y)2-3xy=(-4)2-3×(-3)=25.【分析】利用配方将原式变形为(x+y)2-3xy,然后整体代入计算即可.15.【答案】1【考点】完全平方公式及运用解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.【分析】完全平方公式式的应用,a2-2ab+b2=(a-b)2。

乘法公式同步练习

乘法公式同步练习

初中数学苏科版七年级下册9.4 乘法公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.在计算( x+2y) ( −2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式2.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b)2= a2+2ab+4b23.若a+b=100,ab=48,那么a2+b2值等于()A.5200B.1484C.5804D.99044.如果x2+x=3,那么代数式(x+1)(x−1)+x(x+2)的值是()A.2B.3C.5D.65.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.66.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xyC.x2﹣y2﹣4xyD.x2﹣y2+4xy8.计算(x+1)(x2+1)(x﹣1)的结果正确的是()A.x4+1B.(x+1)4C.x4﹣1D.(x﹣1)49.已知a−b=b−c=25,且a2+b2+c2=1,则ab+bc+ac的值()A.1325B.−225C.1925D.182510.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4B.5C.6D.7二、填空题(本大题共8题,每题2分,共16分)11.计算:2021×2019−20202=________12.已知x=y+4,则代数式x2−2xy+y2−25的值为________.13.若x2+2(m-3)x+16是完全平方式,则m表示的数是________.14.若(2a﹣3b)2=(2a+3b)2+N,则表示N的代数式是________.15.若x2+4x+8y+y2+20=0,则x﹣y=________.16.若规定符号|a bc d|的意义是:|a bc d|=ad﹣bc,则当m2﹣2m﹣3=0时,|m2m−31−2m m−2|的值为________.17.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=________.18.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为________.三、解答题(本大题共10题,共84分)19.先化简,再求值:(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2,其中x=﹣12,y= 13.20.先化简,再求值:(x+y)2-2x(x+3y)+(x+2y)(x-2y),其中x=-1,y=2.21.若|x﹣y+1|与(x+2y+4)2互为相反数,化简求代数[(2x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x)的值.22.小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):(2x−3y)2−(x−2y)(x+2y)=4x2−6xy+3y2−x2−2y2第一步=3x2−6xy+y2第二步小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):小华看到小明的改错后说:“你还有错没有改出来.”(1)你认为小华说的对吗?________(填“对”或“不对”);(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.23.在边长为a的正方形的一角减去一个边长为b的小正方形(a>b),如图①(1)由图①得阴影部分的面积为________;(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________;(3)由(1)(2)的结果得出结论:________=________;(4)利用(3)中得出的结论计算:20202−2019224.(1)已知a−b=2,ab=5,求a2+b2−3ab的值;(2)已知a2−a−1=0,求a3−2a2+3的值.(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).完成下列各题:①填空(a+b)(a+2b)=________;②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由________.25.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为________;(2)请用两种方法表示图②中阴影部分的面积.方法一:________;方法二:________;(3)观察图②,写出代数式(m+n)2、(m−n)2、mn之间的等量关系式:________;(4)计算:(10.5+2)2−(10.5−2)2=________.26.乘法公式的探究及应用.(1)小题1:如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式).(3)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).27.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是(请选择正确的一个)A.a 2﹣2ab+b 2=(a﹣b)2B.a 2﹣b 2=(a+b)(a﹣b)C.a 2+ab=a(a+b)(2)若x 2﹣9y 2=12,x+3y=4,求x﹣3y 的值;(3)计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).28.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。

七年级数学下册 9.4 乘法公式(三)课件 (新版)苏科版

七年级数学下册 9.4 乘法公式(三)课件 (新版)苏科版
9.4乘法公式(三)
复习 乘法公式
完全平方公式 (a+b)2= a2+2ab+b2 (a-b)2= a2-2ab+b2
平方差公式 (a+b)(a-b)=a2-b2
(1) 列出完全平方公式、平方差公式 (2)说说各自的特点 (3)用自己的语言叙述完全平方公式、平方差公式
(4)你是如何认识公式中的“a”与“b”呢
复习乘法公式 计算 1、(5+3p)2 3、(7x-2y)2
2、(-3a-1)2 4、 (5+b)(5-b)
Байду номын сангаас
5、 (-a+b)(-a-b)
6、(-2y+3x)(-3x+2y)
问题情境
a
用4块完全相同的长方
形拼成正方形(如图)。 b 用不同的方法,计算图中
阴影部分的面积。
能不能用不同的方法计算图中阴影 的面积,你你能发现什么?
你能用所学的知识来解释
(b a)2 (b a)2 4ab 吗?
学一学
例1 计算: (1)(x-3)(x+3)(x2+9) (2)(2x+3)2(2x-3)2
学一学
例2 计算: (x+y+4)(x+y-4)
随堂练习 课本练习
学一学
例3 a+b=5, ab=3, 求:(1) (a-b)2 (2) a2+b2
小结与回顾
能够根据题目的要求灵活的运用乘法公式
课后作业: 课本习题

初一数学下第九章 9.4 乘法公式练习题(附答案)

初一数学下第九章 9.4 乘法公式练习题(附答案)

9.4 乘法公式一.选择题1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±202.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.03.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣64.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+xy2B.x﹣3y+xy2C.x2﹣3y+xy2D.x﹣3y+x5.如果(3x2y﹣2xy2)÷m=﹣3x+2y,则单项式m为()A.xy B.﹣xy C.x D.﹣y6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.257.若(a+b)2=(a﹣b)2+A,则A为()A.2ab B.﹣2ab C.4ab D.﹣4ab8.若|a﹣b|=1,则b2﹣2ab+a2的值为()A.1 B.﹣1 C.±1 D.无法确定9.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab10.若S=(1﹣)(1﹣)(1﹣)…(1﹣),则S的值为()A.B.C.D.二.填空题11.计算:10ab3÷(﹣5ab)=.12.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为.13.已知a+b=10,a﹣b=8,则a2﹣b2=.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=.15.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.16.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.17.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是.三.解答题18.先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.19.先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=,b=﹣1.20.探究与思考:在计算m+m2+m3+…+m n的和时,我们可以用以下思路:令A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1;(1)试利用以上思路求出m+m2+m3+…+m n的和;(2)请利用(1)求出m+2m2+3m3+…+nm n的和.参考答案与解析一.选择题1.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.0【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.【点评】此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.3.下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣6【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=10a5,故A错误;(B)原式=4a4b2,故B错误;(D)原式=a2+a﹣6,故D错误;故选:C.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.计算(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)等于()A.x+xy2B.x﹣3y+xy2C.x2﹣3y+xy2 D.x﹣3y+x【分析】直接利用多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加,进而求出即可.【解答】解:(﹣4x3+12x2y﹣7x3y2)÷(﹣4x2)=x﹣3y+xy2.故选:B.【点评】此题主要考查了整式的除法运算,熟练进行单项式除以单项式运算是解题关键.5.如果(3x2y﹣2xy2)÷m=﹣3x+2y,则单项式m为()A.xy B.﹣xy C.x D.﹣y【分析】根据除数等于被除数除以商即可得到结果.【解答】解:根据题意得:(3x2y﹣2xy2)÷(﹣3x+2y)=﹣xy,则m=﹣xy.故选:B.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.6.已知x+y=5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.25【分析】将x+y=5两边平方,利用完全平方公式化简,把xy的值代入计算,即可求出所求式子的值.【解答】解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.若(a+b)2=(a﹣b)2+A,则A为()A.2ab B.﹣2ab C.4ab D.﹣4ab【分析】把A看作未知数,只需将完全平方式展开,用(a+b)2﹣(a﹣b)2即可求得A.【解答】解:∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴A=(a+b)2﹣(a﹣b)2=4ab.故选:C.【点评】此题主要考查了完全平方式:(a+b)2=a2+2ab+b2与(a﹣b)2=a2﹣2ab+b2两公式的联系,它们的差是两数乘积的四倍.8.若|a﹣b|=1,则b2﹣2ab+a2的值为()A.1 B.﹣1 C.±1 D.无法确定【分析】先把b2﹣2ab+a2化成完全平方式,然后讨论a﹣b的正负性,最后求解.【解答】解:b2﹣2ab+a2=(a﹣b)2,又∵|a﹣b|=1∴a﹣b=1或﹣1,∴b2﹣2ab+a2=(a﹣b)2=1.故选:A.【点评】本题主要考查完全平方公式的逆用,熟练掌握公式并灵活运用是解题的关键.9.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是()(用含a,b的代数式表示).A.ab B.2ab C.a2﹣ab D.b2+ab【分析】设小正方形边长为x,表示出大正方形的边长,由大正方形面积减去四个小正方形面积表示出阴影部分面积即可.【解答】解:设小正方形的边长为x,则大正方形的边长为a﹣2x=2x+b,可得x=,大正方形边长为a﹣==,则阴影部分面积为()2﹣4()2=﹣==ab,故选:A.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10.若S=(1﹣)(1﹣)(1﹣)…(1﹣),则S的值为()A.B.C.D.【分析】原式各括号利用平方差公式分解后,约分即可得到结果.【解答】解:S=(1+)(1﹣)(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××××××…××=(×××…×)×(×××…×)=×=,故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题11.计算:10ab3÷(﹣5ab)=﹣2b2.【分析】根据整式的除法法则即可求出答案.【解答】解:原式=﹣a1﹣1b3﹣1=﹣2b2,故答案为:﹣2b2【点评】本题考查整式的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.已知2m﹣3n=﹣4,则代数式m(n﹣4)﹣n(m﹣6)的值为8.【分析】先将原式化简,然后将2m﹣3n=﹣4代入即可求出答案.【解答】解:当2m﹣3n=﹣4时,∴原式=mn﹣4m﹣mn+6n=﹣4m+6n=﹣2(2m﹣3n)=﹣2×(﹣4)=8故答案为:8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.13.已知a+b=10,a﹣b=8,则a2﹣b2=80.【分析】根据平方差公式即可求出答案.【解答】解:∵(a+b)(a﹣b)=a2﹣b2,∴a2﹣b2=10×8=80,故答案为:80【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.14.观察下列各式的规律:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…可得到(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1;一般地(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.【分析】直接利用已知中的基本形式进而得出变化规律求出答案即可.【解答】解:(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1则(x﹣1)(x7+x6+x5+x4+x3+x2+x+1)=x8﹣1.(x﹣1)(x n+x n﹣1+x5+…+x2+x+1)=x n+1﹣1.故答案是:x8﹣1;x n+1﹣1.【点评】此题主要考查了平方差公式,正确得出式子变化规律是解题关键.15.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,此题得解.【解答】解:观察图形,可知:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.16.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.17.如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.【点评】本题考查了平方差公式的几何背景,表示出剩余部分的面积是解题的关键.三.解答题18.先化简,再求值:(2+x)(2﹣x)+(x﹣1)(x+5),其中x=.【分析】原式利用平方差公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4﹣x2+x2+4x﹣5=4x﹣1,当x=时,原式=6﹣1=5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.先化简,再求值:a(a﹣2b)﹣(a+b)(a﹣b),其中a=,b=﹣1.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:a(a﹣2b)﹣(a+b)(a﹣b)=a2﹣2ab﹣a2+b2=﹣2ab+b2,当a=,b=﹣1时,原式=﹣2××(﹣1)+(﹣1)2=1+1=2.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.20.探究与思考:在计算m+m2+m3+…+m n的和时,我们可以用以下思路:令A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1;(1)试利用以上思路求出m+m2+m3+…+m n的和;(2)请利用(1)求出m+2m2+3m3+…+nm n的和.【分析】(1)根据已知条件,所求的式子乘以m,然后减去原式,即可求解;(2)求出所求的式子的二倍,相加时首项与尾项相加,然后利用(1)的结论即可求解.【解答】解:(1)设A=m+m2+m3+…+m n,则mA=m2+m3+…+m n+1.∴mA﹣A=m n+1﹣m,即(m﹣1)A=m n+1﹣m11∴A=(2)m+2m2+3m3+…+nm n+(m+2m2+3m3+…+nm n)=(n+1)(m+m2+m3+…+m n)=(n+1)∴m+2m2+3m3+…+nm n =【点评】本题考查了整式的混合运算,正确理解已知的式子i,求得(1)中式子的结果是关键.12。

9.4-乘法公式复习归纳:2020-2021学年苏科版七年级下册数学

9.4-乘法公式复习归纳:2020-2021学年苏科版七年级下册数学

9.4 乘法公式一、知识点归纳本节需要记忆的内容比较多,一定要记住。

(一)完全平方公式222()2a b a ab b +=++222()2a b a ab b -=-+第二个公式可以看成是第一个公式的变形,因为()a b a b -=+-,按照这个代入第一个公式得:222222()[()]2()()2a b a b a a b b a ab b -=+-=+-+-=-+更常用的公式:2222()2ax b a x abx b +=++此公式中22a x 和2b 不用管符号,反正结果都是正的,只需要注意一下中间项2abx 的符号即可,中间项的2千万不能漏掉。

例1:(1)2(32)x -+ (2)234()23x y -解:(1)2(32)x -+=292(3)24x x +⨯-⨯+ 熟练后此步骤可省略=29124x x -+(2)234()23x y -22916449x xy y =-+ 在这里再强调一下整体思维的观点,以下题为例:例2:2()a b c ++解析,可以将a b +看成一项,则原式=2++a b c[()]22a b a b c c=++++()2()=222222+++++a b c ab ac bc可以利用对特殊数字的变形来简化运算,见例3例3:(1)2982005(2)2解:(1)220052=+(20005)=++40000002000025=4020025(2)2982=-(1002)=-+100004004=9604(二)平方差公式22a b a b a b+-=-()()例4:(1)(2)(2)+-(2)(35)(35)m n n m-+--x y x y(3)(35)(35)+--+x y x y-+-(4)(3)(3)x y x y解:(1)(2)(2)+-m n n m=(2)(2)+-第一步最好调整顺序,这步很重要n m n m=224n m-(2)(35)(35)-+--x y x y=22x y--(3)(5)=22-925x y(3)(35)(35)-+-x y x y=(35)(35)---一定要注意此处应该用完全平方公式x y x y=22--+x xy y(93025)=22-+-93025x xy y(4)(3)(3)+--+x y x y=[(3)][(3)]+---整体思维x y x y=22--(3)x y=22(69)--+此步骤最好别省x y y=2269-+-x y y二、练习与提高1、化简:▲.2、先化简,再求值:2(a+2b)+(b+a)(b-a),其中a=-1,b=2.3、计算:2+---(1)(1)(2)x x x4、有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为【】A.a+b B.2a+b C.3a+b D.a+2b5、分解因式:4-x2=▲ .6、因式分解:221++= ▲ .a a7、当m+n=3时,式子m2+2mn+n2的值为▲ .8、分解因式:2a9-=▲ .9、计算:2+-+-(1)(2)(2)x x x参考答案:1、【答案】2x解:(1)(1)1x-+=2x+-+=211x x2、【答案】解:2(a+2b)+(b+a)(b-a)=2222a+4ab+4b+b-a=2+ab b45将a=-1,b=2代入,原式=2⨯-⨯+⨯=124(1)2523、解:2+---x x x(1)(1)(2)=22x x x---+1(44)=22--+-x x x144=45x-4、【答案】D解析:3张边长为a的正方形纸片的面积是23a,4张边长为a、b的矩形纸片的面积是4ab,5张边长为b的正方形纸片的面积是25b所有面积加起来为22++=222345a ab b+++a b a b(2)2∴拼成的正方形的边长最长可以为2+。

苏科版初中数学七年级下册第9章整式乘法与因式分解知识拓展与归纳

苏科版初中数学七年级下册第9章整式乘法与因式分解知识拓展与归纳

苏科版初中数学七年级下册第9章整式乘法与因式分解知识拓展与归纳01因式分解、公因式、提公因式法、公式法把一个多项式化为几个整式的乘积形式,这就是因式分解(factorization),也叫做把这个多项式分解因式.公因式:一个多项式中的每一项都含有的相同的因式,称之为公因式(common factor).提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解的方法叫做提公因式法,如ma+mb +mc=m(a+b+c).公式法:将乘法公式反过来应用,就可以把某些多项式分解因式,这种分解因式的方法,叫做公式法.例如1,乘法公式:(a+b)(a-b)=a2-b2,反过来就是平方差公式:a2-b2=(a+b)(a-b),用文字语言来表达就是:两个数的平方差,等于这两个数的和与这两个数的差的积.例如2,乘法公式:(a±b)2=a2±2ab+b2,反过来就是完全平方公式:a2±2ab+b2=(a±b)2,用文字语言来表达就是:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.02关于因式分解的结果,在表述上有什么要求?主要是两条:1.分解因式必须进行到每一个多项式因式都不能再分解为止;2.相同的、不能再分解的多项式因式的积,要写成幂的形式;3.至于数字系数,不要求进行因数分解.高等代数可以证明,在这样的规定下,在同样的数的范围内,因式分解的结果是唯一的.03有趣的“自守数”1776年,美国第一任总统华盛顿宣布建立美利坚合众国.1976年,美国举行了建国200周年纪念活动.在某中学的黑板报《一日一题》栏中有一道有趣的题目:1776200的最后两位数字是什么?学生马克看完题不假思索地说:“很简单,是76.”如果不用计算器,你知道马克是用什么办法很快“算”出来的吗?事实上,“76”是一个很特殊的数.任何两个自然数,只要它们的最后两位数是76的话,那么其乘积的最后两位数字也必然是76.例如276×476=131376;576×676=389376等等.人们称这样的数为“自守数”.这有什么道理吗? 设两个数分别为1OO a +76与100b +76.这里a 、b 是任意自然数,则 (100a +76)(100b +76)=10000ab +7600a +7600b +5776=10000ab +7600a +7600b +5700+76=100(100ab +76a +76b +57)+76.由于a 、b 是自然数,显然最后两位数字一定是76.自然数中这样的自守数还很多,比如5、6、376、625等等.04关于“因式分解”教学中的几个问题一、什么叫做因式如果多项式f (x )能够被非零多项式g (x )整除,即可以找出一个多项式q (x ),使得f (x )=q (x )·g (x ),那么g (x )就叫做f (x )的一个因式.当然,这时q (x )也是f (x )的一个因式,并且q (x )、g (x )的次数都不会大于f (x )的次数. 注意:g (x )≠0,但q (x )可以等于0(当f (x )=0时).例如,因为(x +1)(x -1)=x 2-1,把左边、右边交换,得到x 2-1=(x +1)(x -1),所以x +1,x -1都是x 2-1的因式.由于任何一个多项式f (x )都可以写成一个非零数a 及多项式1af (x )的积,即 f (x )=a ·1a f (x ),所以任何一个非零数a 及多项式1a f (x )也都可以看成f (x )的因式.我们把这种因式看作平凡因式,并规定在分解因式时都不予考虑.例如,因为x 2-1=1·(x 2-1)=2(x 22 -12 )=12 (2 x 2-2).可知1,x2-1,2,x22-12,12,2x2-2也都是x2-1的因式,这种因式都看作平凡因式,在分解因式时不予考虑.如果把x2-1因式分解,就只能得到唯一的结果x2-1=(x+1)(x-1)(因为有乘法交换律,所以x2-1=(x-1)(x+1)与x2-1=(x+1)(x-1)是同样的结果),其中x+1,x-1都不是平凡因式.在高等代数中可以证明,如果对平凡因式都不予以考虑,那么任何一个一元多项式在每个确定的数的范围内,其分解因式的结果是唯一的.二、什么叫做多项式中各项的公因式多项式的公因式是指这个多项式中各项都具有的公共因式.它可以是一个单项式,也可以是一个多项式,还可以是一个单项式与一个多项式的积(这里我们为了叙述上的方便,把单项式与多项式区别对待).如果公因式是单项式,那么公因式可能不止一个.当多项式中各项的系数是正整数时,在有理数范围内谈到它各项的公因式,是指寻找这样的公因式:它的系数必须是这个多项式中各项系数的最大公约数,它所具有的字母必须是这个多项式中各项都具有的公共字母,每个字母的指数必须是这个多项式中各项所含的同一字母的最低次幂的指数.一句话,就是各项系数的最大公约数与各项所含的相同字母的最低次幂的积.如果公因式是多项式,那么这个多项式一定是原多项式中各项的一个公因式.这个多项式的项数、各项所含的字母及其指数、各项的系数等,在原多项式的各项中一定都是相同的,所以能够寻找出来.三、在用提公因式法分解因式时,除了教科书上提到的以外,还要注意什么当多项式中各项的系数不都是整数时,在有理数范围内提取各项的公因式,其系数也可以不是整数(这时当然不能说取“各项系数的最大公约数”).例如1 2a 3+2a2b+2b2=a2(a2+4ab+4b2).我们知道,这里把12提出来,有一个好处,就是(a2+4ab+4b2)=(a+2b)2,所以原式=12a(a+2b)2.如果不提出这个12,那么因式12a2+2ab+2b2在有理数范围内就不能用完全平方公式进行分解,而用十字相乘法将其分解为(12 a +b )(a+2b )却不是那么容易想得到的.四、在运用乘法公式把多项式分解因式时,要注意些什么1.必须让学生熟记教科书上给出的公式.2.从所给多项式的项数入手,分辨运用哪一个乘法公式:如果原多项式是二项式,那么可考虑是否能运用平方差公式来分解;如果原多项式是三项式,那么可考虑是否能运用完全平方公式来分解.3.学生初学时,在运用公式前,可以让他们先将要分解的多项式去“套”公式的原形.例如要把14 a 2-23 ab +49 b 2分解因式,先将其写成:(12 a )2-2·12a ·23b +(23 b )2形式,这样就能比较清晰地看出,应该用完全平方公式把它分解成(12 a -23 b )2.4.运用公式前,还要先将原多项式中各项的公因式提出,使各项不含公因式.5.运用公式后,应注意将结果化简,并看看能否再分解下去,要一直分解到不能再分解为止.例如多项式(y 2-1)2-16(y 2-1)+64用完全平方公式分解为[(y 2-1)-8)2]后,必须继续将其分解下去,即原式=(y 2-1-8)2=(y 2-9)2=(y +3)2(y -3)2.6.如果学生学有余力,可以让他们再做一些补充题,学习怎样通过运用公式法进行因式分解,来简化某些计算,从而加深对公式的理解.7.为了解题迅速、正确,应要求学生熟记1~20这20个自然数的平方数,并能立即从这些平方数中说出它们是哪一个数的平方.五、分组分解法的指导思想是什么当一个多项式的各项没有公因式可提出,并且对它不能直接运用公式时,我们往往想到能否利用分组分解的办法.这里“分组”只是因式分解的一个步骤,它的目的在于分组后,或者在有的组的内部,或者在组与组之间,造成新的情况,例如,可以提公因式,可以运用公式等等,从而使原先不易解决的问题变成了比较容易解决的问题.可以利用分组分解法分解因式的情况大体分为三种:第一种是分组后能直接提公因式;第二种是分组后能直接运用公式.教科书上没有专门对这两种情况做介绍,至于第三种情况,可以叫做“拆项后能够分组分解”,如,要把x2-11x+24的一次项“-11x”拆成两项“-3x”和“-8x”,再用分组分解法;既要“添项”(这里是添“0”),又要“拆项”(即把“0”拆成两个系数互为相反数的二次项,目标是分组后运用公式),然后再用分组分解法.正如我们在运用“拆项”“添项”方法的题目中所指出的,“拆项”具有“一分为二”的思想,它正好与“合并同类项”相反,显示出“有分必有合,有合必有分”的互逆过程.至于“添项”,则具有“添加辅助元素”的思想,与学生学习几何时在图形上“添加辅助线”一样,都是架设一座桥,从而实现未知到已知的“化归”.“拆项”“添项”的方法,在代数中经常用到,要尽可能让学有余力的学生了解一些基本的应用.05因式分解中的数学思想一、整体思想所谓用整体思想来分解因式,就是将要分解的多项式中的某些项看成一个整体而加以分解.例1把多项式(x2-1)2+6(1-x2)+9分解因式.分析:把(x2-1)看成一个整体利用完全平方公式进行分解,最后再利用平方差公式达到分解彻底的目的.解:(x2-1)2+6(1-x2)+9=(x2-1)2-6(x2-1)+9=[(x2-1)-3]2=(x2-4)2=[(x+2)(x-2)]2=(x+2)2(x-2)2.例2把多项式(a+b)2-4(a+b-1)分解因式.分析原式两项既无公因式可提,又无公式可套用,但由此结构特点可采取视a+b为一个整体,局部展开后或许能运用完全平方公式.解:(a+b)2-4(a+b-1)=(a+b)2-4(a+b)+4=(a+b-2)2.二、类比思想类比思想在因式分解中的运用很广泛,具体地表现在:一是因式分解与整式乘法的对比;二是因式分解与乘法的分配律的对比;三是因式分解与乘法公式的对比.例3把多项式6x3y 2+12x2y3-6x2y2分解因式.分析:对比整式的乘法和乘法的分配律可知,6、12、6的最大公约数是6,字母x、y的最低指数均为2,所以多项式6x3y2+12x2y3-6x2y2的公因式是6x2y2.解6x3y2+12x2y3-6x2y2=6x2y2(x+y-1).例4分解因式:(1)x3y-xy3;(2)abx2-2abxy+aby 2.分析:(1)对比平方差公式可先提取xy.(2)对比完全平方公式可先提取ab.解:(1)x 3y-xy3=xy(x 2-y 2)=x y(x+y)(x-y);(2)abx 2-2abxy+aby2=ab(x2-2xy+y2)=ab(x-y)2.三、转化思想转化思想就是对于某些多项式从表面是无法利用因式分解的一般步骤进行的,必须通过适当的转化,如经过添项、拆项等变形,才能利用因式分解的有关方法进行.例5把多项式6x(x-y)2+3(y-x)3分解因式.分析考虑到(y-x)3=-(x-y)3,则多项式转化为6x(x-y)2-3(x -y)3,因此公因式是3(x-y)2.解:6x(x-y)2+3(y-x)3=6 x(x-y)2-3(x-y)3=3(x-y)2[2 x-(x-y)]=3(x-y)2(x+y).例6把多项式x4+x2y2+y4分解因式.分析:从表面上看此题不能直接分解因式,但仔细观察发现若x2y2转化成2x2y2,即可先运用完全平方公式,再利用平方差公式.解:x4+x2y2+y4=x4+2x2y2+y4-x2y2=(x2+y2)2-x2y2=(x2+y2+xy)(x2+y2-xy)=(x2+xy+y2)(x2-xy+y2).四、换元思想所谓的换元就是将多项式的某些项用另一个新的字母去代换,通过换元可以将复杂的多项式转变成简单的,将陌生的转换成熟悉的,使之得以顺利地分解因式.例7把多项式(x+y)(x+y+2xy)+(xy+1)(xy-1)分解因式.分析:这个多项式形式上比较复杂,但考虑x+y与xy重复出现,利用这一特点,可以将这两个因式通过换元后再分解因式.解:设x+y=a,xy=b,则(x+y)(x+y+2xy)+(xy+1)(xy-1)=a(a+2b)+(b+1)(b-1)=(a2+2ab+b2)-1=(a+b)2-1=(a+b+1)(a+b-1)=(x+y+xy+1)(x+y+xy-1)=(x+1)(y+1)(x+y+xy-1).06关于(a+b)2的推广对于公式(a+b)2=a2+2ab+b2,可以从两方面推广:一是从指数推广;一是从项数推广.我们知道,(a+b)2=a2+2ab+b2.①由多项式的乘法,可以得到(a+b)3=(a+b)2(a+b)=(a2+2ab+b2)(a+b)=a3+2a2b+ab2+a2b+2ab2+b3=a3+3a2b+3ab2+b3.②从展开式①,②中,可以看出如下规律:项数与次数:项数比次数多1;展开式中的字母a按降幂排列,第一项的字母a的指数就是二项式的次数;而字母b则按升幂排列,末项b的指数也是二项式的次数;各项中a、b指数的和都等于二项式的次数.系数:首末两项的系数都是1;②式中第二项的系数是①式中第一、二项系数的和;②式中第三项的系数是①式中第二、三项系数的和.上述规律,从下面的表中可以很清楚地展示出来.1(a+b) 1 1 a+b(a+b)2 121a2+2ab+b2(a+b)3 1331a3+3a2b+3ab2+b3按上述规律,(a+b)4展开式各项的系数为1、4、6、4、1.再结合项数与次数的规律,可得(a+b4)=a4+4a3b+6a2b2+4ab3+b4.③由多项式的乘法验证,③的结果是对的.事实上,由③可以推出(a+b)5展开式各项的系数,等等.当二项式的次数不大时,我们利用项数与次数以及系数的规律可以将展开式写出来.例如(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.如果你有兴趣,不妨按照上述规律写出(a+b)6的展开式.上述二项式展开式的系数表在我国宋朝数学家杨辉著《详解九章算法》(1261年)一书时用过.杨辉在注释中提到,贾宪也用过上述办法.因此,我们称上述系数表为杨辉三角或贾宪三角.下面看一看(a+b)2项数推广的情形.我们用语言表述公式(a+b)2=a2+2ab+b2①为:两数和的平方,等于这两个数的平方和,加上这两个数积的2倍.我们曾用多项式的乘法计算,得(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.②上式同样可用语言表述为:三数和的平方,等于这三个数的平方和,加上这三个数中每两个数的积的2倍.下面,我们用多项式的乘法计算4个数和的平方. (a+b+c+d)2=[(a+b)+(c+d)]2=(a+b)2+2(a+b)(c+d)+(c+d)2=a2+2ab+b2+2ac+2ad+2bc+2bd+c2+2cd+d2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd.③同样,上式用语言表述为:4个数和的平方,等于这4个数的平方和,加上这4个数中每两个数的积的2倍.同学们如有兴趣,可利用公式②、③计算下列各题:1.(a+2b-c)2;2.(2x-y+3z)2;3.(a+b-c-d)2;4.(x-2y-z+2w)2.。

苏科版七年级数学下册 9.4 乘法公式 3课时课件 (共3份打包)1

苏科版七年级数学下册 9.4  乘法公式 3课时课件 (共3份打包)1

=(2x)2-y2-(4x2+4xy+y2) 原式=-2× (-2)2-4×(-1) ×(-2)
=4x2-y2-4x2-4xy-y2
=-8-8=-16
=-2y2-4xy
填空:
(1) (m+__6n__)(m-_6_n__)= m2-36n2 (2) (a+b)(__b_-a___)= b2-a2 (3) (_-_x_2_-1__)(1-x2)= x4-1
2020
9.4 乘法公式(2)
苏科版七年级下册 数学
知识回顾
完全平方公式: (a+b)2=a2+2ab+b2 (a-b)2 = a2-2ab+b2
用乘法公式计算:
(1) (2a-3)2 =4a2-12a+9 (2) (-x+4y)2 =(4y-x)2 =16y2-8xy+x2 (3) (-3a-1) 2 =(3a+1)2 =9a2+6a+1
择决定命运,环境造就人生!
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)(4x-3y)2+(4x+3y)(4x-3y)+(4x+3y)
2+(4x+3y)(4x-3y)+(4x+3y)
2
【解析】(1)原式=[(a+2b)-c]
2

=(a+2b)
2-2(a+2b)·c+c2=a2+4ab+4b2-2ac-4bc+c2;
(2)原式=[(a-2c)+3b][(a-2c)-3b]
112=1-1
1
22
(3)(-m+1)(m+1)=1m)m
-(;
2224
2+y2+y
22
)(4)(x+y)(x-y)(x)=[(x+y)(x-y)](x
222+y2=x
222244
=(x-y)(x)=(x-(y-y
)).
例4计算:
(1)(2x+3y)(2x-3y)-(3x+y)(3x-y);
(2)998×1002.
【解析】(1)原式=4x2-9y2-9x
2-9y2-9x
2+y2=-5x2-8y2;
2
(2)998×1002=(1000-2)(1000+2)=1000-4=999996.
【在线检测一】
下列1~6题计算是否正确:
1.(x+y)2=x2+y2.()
2=x2+y2.()
2.(x-y)-y2=x
22
.()
2D.4x2-12xy+9y
2
8.(5a+b)(-5a-b)=()
22B.25a2C.25a2+10ab+b2D.-25a
222
A.5a-b-b-10ab-b
22
9.(a+3b)=______________________.10.(2x-y)=____________________.
11.(x+2)x-2y)
mmn+4n2=12+4

2
93
2=121x2________+196y
2

17.若4a
2+kab+9b2是一个完全平方式,则k=________.
计算:
2
18.(x+5y).19.(3x-4y)
2

20.(
4
3
a+
3
4
2
b).21.(-
3
4
m+1)
2

2
22.(2a.23.(2b-3c)2
2b-3c)2
2=____________________.12.(1
2=________________.
1
32
22=___________________.14.(3x_______)
22=9x2213.(x-4y-12Байду номын сангаасy+4y
).
15.(________-2n)
16.(11x_________)
2=12+4
222
3.(x+3y)=x+3xy+9y
.()
4.(2x-5y)-10xy+5y2=2x2
2
.()
222
5.(4x-3y)=16x-24xy+9y
.()
6.(2a+3b)(-2a-3b)=4a
2-9b2.()
2
7.(-2x+3y)=()
A.4x
2+6xy+9y2B.4x2+12xy+9y2C.2x2-12xy+3y
3
5
xy2+4z)
2+4z)
2

22
24.201.25.198

26.9.8
2
.27.[a+(2b-c)]
2

22
28.[a-(2b-c)].29.[2x+(3y+z)]

30.[(a+b)-(3c-2)]
2

【在线检测二】
下列1~5题计算是否正确:
22
1.(x+3y)(x-3y)=x-3y
.()
2.(2a+1)(2a+1)=4a
10.(3a-2)(3a+2)=___________.11.(-x+1)(-x-1)=__________.
12.计算(3a+4b)(3a-4b)所得的正确结果是()
222
2B.9a2C.9a2D.9a-16b
A.3a-4b-4b-16b
13.下列计算正确的是()
222
2B.(-2a+b)(2a-b)=4a

【解析】(1)(3a-2b)-2·(3a)·(2b)+(2b)2=(3a)
2=(3a)
2
22
=9a-12ab+4b

(2)102
2=(100+2)2=1002+2×100×2+2
2
=10 000+400+4
=10 404.
例2计算:
2
(1)(a+2b-c)
2
;(2)(a+3b-2c)(a-3b-2c);
22
=(a-2c)-(3b)
222
=a-4ac+4c-9b

222+16x
2+16x2+24xy+9y
(3)原式=16x-24xy+9y-9y
2=48x
2+9y2.

说明:
(1)三项式的平方,可以写成两项和与第三项的和的完全平方;
(2)在综合运用公式时,要分清不同公式的结构特征和不同的计算结果.
例3计算:
(2)右边是完全相同项的平方减去互为相反数项的平方.
3.完全平方公式与平方差公式的区别与联系
完全平方公式平方差公式
二项式中的两项两项完全相同一项相同,另一项互为相反数
区积的项数三项两项
平方和与两数积平方差
别的2倍之和(差)
联系两个二项式相乘
【考点浏览】
22
例1计算:(1)(3a-2b);(2)102
(1)(x+2y)(x-2y);(2)(3a-2b)(3a+2b);
2+y
2
).(3)(-m+1)(m+1);(4)(x+y)(x-y)(x
【解析】(1)(x+2y)(x-2y)=x
2-(2y)2=x2-4y2;
(2)(3a-2b)(3a+2b)=(3a)
2
-(2b)
2=9a22
-4b2=9a22


【思维点击】
1.完全平方公式的特征:
(1)左边是两个相同的二项式相乘;
(2)右边是一个三项式,其中有两项是左边两项的平方和,?另一项是两数之积的2
倍,两数积的2倍的符号与左边二项式中间的符号相同.
2.平方差公式的特征:
(1)左边是两个特殊的二项式的积,?其特殊处在于这两个二项中有一项完全相同,
另一项则为相反数;
2+1.()
2
3.(-3k+2)(3k-2)=9k-4.()
22
4.(3a-4b)(3a+4b)=9a-16b
.()
5.(-
2
3
m-1)(
2
3
m-1)=
4
9
2
m-1.()
6.(x+y)(x-y)=___________________.7.(1-t)(1+t)=_______.
3
8.(a+2)(a-2)=_____________.9.(x+3y)(x-3y)=________.
§9.4乘法公式
【知识平台】
完全平方公式
语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的
2售.
公式表示:(a+b);(a-b)-2ab+b
2=a2+2ab+b22=a22

平方差公式
语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.
22
公式表示:(a+b)(a-b)=a-b
相关文档
最新文档