小学奥数牛吃草问题试题

合集下载

小学数学奥数测试题牛吃草问题_人教版

小学数学奥数测试题牛吃草问题_人教版

小学数学奥数测试题牛吃草问题_人教版1.青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;假定养二十一,可作几周粮?〔注:〝廿〞的读音与〝念〞相反。

〝廿〞即二十之意。

〕标题翻译过去是:一牧场长满青草,27头牛6个星期可以吃完,或许23头牛9个星期可以吃完。

假定是21头牛,要几个星期才可以吃完?〔注:牧场的草每天都在生长〕2.牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?3.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?4.有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?5.(2021年湖北省〝创新杯〞)牧场有一片青草,每天长势一样,70头牛24天把草吃完,30头牛60天把草吃完,那么多少头牛96天可以把草吃完?6.一牧场放牛58头,7天把草吃完;假定放牛50头,那么9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相反,那么放多少头牛6天可以把草吃完?7.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问假设要4周吃光野果,那么需有多少只猴子一同吃?〔假定野果生长的速度不变〕8.由于天气逐渐冷起来,牧场上的草不只不生长,反而以固定的速度在增加.某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?9.由于天气逐渐冷起来,牧场上的草不只不长,反而以固定的速度在增加。

假设某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?10.由于天气逐突变冷,牧场上的草每天以平均的速度增加.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?11.由于天气逐渐冷起来,牧场上的草不只不长,反而以固定的速度在增加。

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

经典奥数:牛吃草问题(专项试题)一.填空题(共6小题)1.某牧场上有一片青草,可供27头牛吃6周,或供23头牛吃9周.如果草每周生长速度相同,那么这片青草可供21头牛吃周.2.有一个蓄水池装有9根水管,其中一根为进水管,其余8根是相同的出水管.已知储水池内有一定体积的水,并且进水管正以均匀的速度向这个蓄水池注水,如果8根出水管全部打开,需要3小时把池内的水全部排光;如果打开5根出水管,需要6小时把池内的水全部排光.如果在9小时内把水池中的水全部排光,需要同时打开根出水管.3.一艘轮船发生漏水事故。

当漏进水600桶时,两部抽水机开始排水,甲机每分钟能排水20桶,乙机每分钟能排水16桶,经50分钟刚好将水全部排完。

每分钟漏进的水有桶。

4.有一个酒桶坏了,所以每天匀速往外面流失酒,已知酒桶里面的酒可供7人喝6天,可供5人喝8天.若1人独饮,可以喝天.5.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完、请问:(1)要使得草永远吃不完,最多可以放养头牛;(2)如果放养36头牛,天可以把草吃完.6.李奶奶家有12只鸡蛋和一只每天能下一只鸡蛋的母鸡,如果她家每天要吃3只鸡蛋,那么这些鸡蛋可连续吃天.二.解答题(共15小题)7.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120个工人砌10天后,又增加5个工人一起砌还需要再砌几天可以把砖用完?8.一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进水600桶.一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完.每分钟漏进的水有多少桶?9.陕北某村有一块草场,假设每天草都均匀生长.这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?10.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?11.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管,开始进水管以均匀的速度不停地向这个蓄水池注水,池内注入一些水后,有人想把出水管也打开,使池内的水再全部排光,如果把8根出水管全部打开,需要3个小时可将池内的水排光;若仅打开3根出水管,则需要18小时才能将池内的水排光.问:如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?12.某地遭遇干旱,政府为解决居民饮水问题,在一眼山泉旁边修了一个蓄水池,每小时有40立方米的水注入水池.当开动5台抽水机时,2.5小时把池水抽完,当开动8台抽水机时,1.5小时把池水抽完,这个蓄水池能容多少立方米水?13.一只船被发现漏水时,已经进了一些水,水均匀进入船内.如果10人淘水,3小时淘完;如果5人淘水,8小时淘完.如果要求2小时淘完,需要安排多少人淘水?14.牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?15.现在有牛、羊、马吃一块地的草,草均匀生长,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?16.有一口水井.在无渗水的情况下,甲抽水机用20小时可将水抽完,乙抽水机用12小时可将水抽完.现在甲、乙两台抽水机同时抽,由于有渗水,结果用9小时才将水抽完.在有渗水的情况下,用甲抽水机单独抽需多少小时抽完?17.有100名游客在世界文化历史遗产秦始皇兵马俑博物馆门前排队,开门后每分钟来的游人是相等的,一个入口处平均每分钟可以放进10名游客;如果两个入口处20分钟就可以全部检完票,外面没有人排队了,为了减少游客排队时间,现在开放4个入口处,那么开门后多少分钟就没有人排队了?18.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?19.科技馆9点营业,每分钟来的人数相同.如果开5个窗口,则9点5分可无人排队;如果开3个窗口,则9点9分可没有人,求8点几分第一个游客到?20.某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用9辆车发货,12小时可运完.若用8辆车发货,16小时可运完.快递公司开始只用了6辆车发货,三小时后增加若干辆车.再经过5小时就运完了,那么后来增加的车辆数应该是多少辆?21.有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?参考答案与试题解析一.填空题(共6小题)1.【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(23×9﹣27×6)÷(9﹣6),=45÷3,=15(份);原有的草的份数:27×6﹣6×15,=162﹣90,=72(份);可供21头牛吃:72÷(21﹣15),=72÷6,=12(周);答:这个草场的草可供21头牛吃12周.故答案为:12周.2.【解答】解:设每根出水管每小时出水1份,进水管的速度为:(5×6﹣8×3)÷(6﹣3),=6÷3,=2(份);蓄水池内原有的水为:5×6﹣2×6,=30﹣12,=18(份);9小时内把水池中的水全部排光,需要打开出水管的根数是:(18+2×9)÷9,=36÷9,=4(根);答:如果在9小时内把水池中的水全部排光,需要同时打开4根出水管.故答案为:4.3.【解答】解:[(20+16)×50﹣600]÷50=[36×50﹣600]÷50=[1800﹣600]÷50=1200÷50=24(桶)答:每分钟漏进的水有24桶。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

小学六年级奥数题:牛吃草问题

小学六年级奥数题:牛吃草问题
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草量60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。
两种解法:
六年级奥数题:牛吃草问题
【试题】有三块草地,面积分别是5,15,24亩。草地上的草一样厚,而且长得一样快。第一块草地可供80天?
【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。
把每头牛每天吃的草看作1份。
因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头。
解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。

六年级奥数题牛吃草问题

六年级奥数题牛吃草问题

六年级奥数题牛吃草问题Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-【试题】有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?【解析】这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。

两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3 072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)。

解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24* 45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头。

小学六年级奥数牛吃草问题专项强化训练题(高难度)

小学六年级奥数牛吃草问题专项强化训练题(高难度)

小学六年级奥数牛吃草问题专项强化训练题(高难度)例题1:有一块长为60米、宽为40米的牛圈,牛吃草的速度是每分钟2平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?解析:首先计算一周需要的草地面积,即周长乘以宽度:周长 = 2 × (长 + 宽) = 2 × (60 + 40) = 200米草地面积 = 周长×宽度 = 200 × 40 = 8000平方米牛吃草的速度是每分钟2平方米,假设吃够一周需要x分钟,则有等式:2x = 8000x = 4000所以,牛吃够一周需要4000分钟。

专项练习题:1:有一块长为80米、宽为50米的牛圈,牛吃草的速度是每分钟3平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?2:有一块长为100米、宽为60米的牛圈,牛吃草的速度是每分钟4平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?3:有一块长为120米、宽为70米的牛圈,牛吃草的速度是每分钟5平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?4:有一块长为140米、宽为80米的牛圈,牛吃草的速度是每分钟6平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?始吃,它可以吃够一周需要多少时间?6:有一块长为180米、宽为100米的牛圈,牛吃草的速度是每分钟8平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?7:有一块长为200米、宽为110米的牛圈,牛吃草的速度是每分钟9平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?8:有一块长为220米、宽为120米的牛圈,牛吃草的速度是每分钟10平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?9:有一块长为240米、宽为130米的牛圈,牛吃草的速度是每分钟11平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?10:有一块长为260米、宽为140米的牛圈,牛吃草的速度是每分钟12平方米。

小学奥数专题练习~牛吃草问题.

小学奥数专题练习~牛吃草问题.

冲刺重点——思维数学牛吃草问题知识归纳:例题1:一片草地,每天都匀速地长出青草,这片草地可供24头牛吃6周或18头牛吃10周。

问:供给19头牛吃,可以吃几周?练习1:一片草地,每天都匀速的长出青草。

这片草地可供27头牛吃6天或23头牛吃9天。

问:供给24头牛吃,可以吃几天?例题2:有一口水井,井底不断涌出泉水,每分钟涌出的水量相等。

如果使用3架抽水机来抽水,36分钟可以抽完;如果使用5架抽水机来抽水,20分钟可以抽完。

现在12分钟内要抽完井水,需要抽水机多少架?练习2:一个水池有一根进水管,有若干根相同的抽水管。

进水管不间断地进水,若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可将池中的水抽干,那么用16根抽水管,多少小时可将水池中的水抽干?例题3:内蒙古奶牛场由于天气逐渐冷起来,牧场上的草不仅不长多,反而以固定的速度在减少。

照这样计算:某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

那么,可供多少头牛吃10天?练习3:内蒙古奶牛场由于天气渐冷,牧场上的草以固定的速度减少。

已知牧场上的草可供12头牛吃9天,或可供10头牛吃10天。

照这样计算,这个牧场可供多少头牛吃12天?例题4:万达商城大厦自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩子每分钟走20级,用了5分钟到达楼上;女孩每分钟走15级,用了6分钟到达楼上。

问该自动扶梯有多少级可见扶梯?练习4:自动扶梯以均匀速度由下往上行驶着,向东和刘胜要从扶梯下楼。

已知向东每分钟走33级,刘胜每分钟走24级,结果向东用5分钟,刘胜用6分钟分别到达楼上。

该扶梯共有多少级台阶?例题5:火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能让25人检票进站。

如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票后多少分钟就没有人排队?练习5:火车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。

小学奥数-牛吃草习题集

小学奥数-牛吃草习题集
【例 11】一片牧草,每天生长的速度相同。现在这片牧草可供 20 头牛吃 12 天,或可供 60 只 羊吃 24 天。如果 1 头牛的吃草量等于 4 只羊的吃草量,那么 12 头牛与 88 只羊一起吃可以吃 几天? 【答案】设 1 头牛 1 天的吃草量为“1”, 60 只羊的吃草量等于15 头牛的吃草量, 88 只羊的吃草 量 等 于 22 头 牛 的 吃 草 量 , 所 以 草 的 生 长 速 度 为 (15 24 20 12) (24 12) 10 , 原 有 草 量 为 (20 10) 12 120 ,12 头牛与 88 只羊一起吃可以吃120 (12 22 10) 5 (天)
【例 7】由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供 20 头牛吃 5 天,或可供 16 头牛吃 6 天.那么,可供 11 头牛吃几天? 【答案】设 1 头牛 1 天的吃草量为“1”
6 5 1天自然减少的草量为 20 5 16 6 4
原有草量为: 20 4 5 120 .
90 60
所以,牛、羊、马一起吃,需 36 天. 【例 15】林子里有猴子喜欢吃的野果,23 只猴子可在 9 周内吃光,21 只猴子可在 12 周内吃 光,问如果要 4 周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变) 【答案】设一只猴子一周吃的野果为“1”,则野果的生长速度是 (2112 23 9) (12 9) 15 ,原 有的野果为 (23 15) 9 72 ,如果要 4 周吃光野果,则需有 72 4 15 33 只猴子一起吃
【例 6】由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少。如果某块草地 上的草可供 25 头牛吃 4 天,或可供 16 头牛吃 6 天,那么可供多少头牛吃 12 天? 【答案】设 1 头牛 1 天吃的草为“1”

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题1【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。

【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D奥数专题之牛吃草问题21有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问2.如果放牧16头牛几天可吃完牧草?3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期?7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完。

小学五年级奥数课件 牛吃草问题

小学五年级奥数课件 牛吃草问题

例题【三】(★ ★ ★ ★)
一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃 25天, 如果1头牛每天的吃草量相当于3只羊每天的吃草量。请问:这片草地让17头 牛与多少只羊一起吃,刚好16天吃完?
18头牛,40天吃完; 24头牛,25天吃完; 头牛,16天吃完;
例题【三】(★ ★ ★ ★)
400÷40=10(分钟)
知识链接
1. 牛吃草—四步法: (1) 设1牛1天吃1份; (3) 求原有草; (4) 分牛. 2. 牛吃草的演绎:两种动物,天气变冷,排队问题. 3. 关键点:对比两个条件,找到草长速度.
18头牛,40天吃完; 24头牛,25天吃完;
头牛,16天吃完;
设1头牛1天吃1份
草长速:(720-600)÷(40-25)=8份
原有草:600-8×25=400(份)
25头+8头=33头
分牛 角落:8头
33-17=16头牛
原草场:?头
16×3=48(只)
400÷16=25(份) 25头
例题【四】(★ ★ ★ )
某游乐场开门前有400人在排队,开门后每分钟来的人数是固定的, 一个入口每分钟进入10个人, 如果开放了4个入口,20分钟后就没有 人排队了,现在开放6个入口,那么开门 10 分钟后没有人排队 了.

10×4×20=800(人) 人未速(800-400)÷20=20(人)
分入口 角落:2入口 原来入:4入口
例题五(★ ★ ★ ★ ★ )
一个蓄水池装有9根管, 其中1根为进水管, 其余8根为出水管. 开始进水 管以均匀的速度不停地向这个蓄水池蓄水. 池内注入了一些水后, 有人 想把出水管也打开, 使池内的水全部排光. 如果把8根出水管全部打开, 需要3小时可将池内的水排光; 而若仅打开3根出水管, 则需要18小时排 光. 如果要在8小时内全部排光,最少需要打开几根出水管?

牛吃草问题的例题

牛吃草问题的例题

牛吃草问题的例题一、基本牛吃草问题(1 - 5题)例题1:一片草地,可供10头牛吃20天,15头牛吃10天。

问可供25头牛吃几天?解析:设每头牛每天的吃草量为1份。

1. 首先求每天新生长的草量:- 10头牛20天的吃草量为10×20 = 200份。

- 15头牛10天的吃草量为15×10=150份。

- 20天的总草量比10天的总草量多的部分就是(20 - 10)天新长出来的草,所以每天新长的草量为(200 - 150)÷(20 - 10)=5份。

2. 然后求草地原有的草量:- 因为10头牛20天吃草量为200份,其中20天新长的草量为5×20 = 100份,所以原有草量为200-100 = 100份。

3. 最后求25头牛可以吃的天数:- 25头牛每天的吃草量为25份,每天新长草5份,那么可以吃的天数是100÷(25 - 5)=5天。

例题2:有一块匀速生长的草场,可供27头牛吃6周,或供23头牛吃9周。

那么它可供21头牛吃几周?解析:设每头牛每周的吃草量为1份。

1. 求每周新生长的草量:- 27头牛6周的吃草量为27×6 = 162份。

- 23头牛9周的吃草量为23×9 = 207份。

- 每周新长的草量为(207 - 162)÷(9 - 6)=15份。

2. 求草地原有的草量:- 27头牛6周吃草量为162份,6周新长草量为15×6 = 90份,所以原有草量为162-90 = 72份。

3. 求21头牛可吃的周数:- 21头牛每周吃草21份,每周新长草15份,可吃的周数为72÷(21 - 15)=12周。

例题3:牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

问:可供多少头牛吃5天?解析:设每头牛每天吃草量为1份。

1. 求每天新长的草量:- 10头牛20天吃草量为10×20 = 200份。

小学奥数之牛吃草问题(含答案)

小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

小学奥数之牛吃草问题(附含答案解析)

小学奥数之牛吃草问题(附含答案解析)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。

奥数牛吃草10题

奥数牛吃草10题

牛吃草问题10题:1、一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛吃20天?可供29头牛吃几天?2、牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

那么这片牧场可供几头牛吃25天?3、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?4、有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊1天的吃草量相当于1头牛1天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?5、.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?6、有三块草地,面积分别为5公顷、15公顷和24公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问:第三块草地可供多少头牛吃80天?7、有三块草地,面积分别为5,6和8公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

问:第三块草地可供19头牛吃多少天?8、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?9、一个水池有一根进水管不间断地进水,还有若干根相同的抽水管若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可把池中的水抽干。

若用16根抽水管,需要 ____小时可把水池中的水抽干。

10、画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题31、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问供25头牛可以吃多少天?2、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问可以供多少头牛吃上5天?3、一只船发现漏水时,已经进了一些水了,水是匀速进入船内,如果10人淘水的话,3小时可以淘完;如果是5人淘水的话,8小时可以完成。

如果要求2小时淘完,要安排多少人淘水?4、有一片青草,每天的生长速度都是相同的,已知这片青草可供15头牛吃20天,或者是供76头牛吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃上多少天?5、经测算,地球上的资源可供100亿人生活100年或者是可供80亿人生活300年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?6、某车站在检票前若干分钟就开始排队,每分钟来的旅客是一样多(人数),若同时打开4个检票口,从开始检票到等候检票的队伍消失,需要30分钟,同时开5个检票口的话,需要20分钟。

如果同时打开7个检票口的话,那么需要多少分钟?7、甲乙丙三辆车同时从同一地点出发,沿同一公路追赶前面的一骑自行车的人,这三辆车分别用3小时、5小时、6小时追上骑自行车的人,现在知道甲车每小时行了24千米,乙车每小时行20千米,你能知道丙车每小时多少千米?8、有一牧场长满牧草,每天牧场匀速生长。

这个牧场可供17头牛吃30天,可供19头牛吃24天。

现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数。

9、由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天,照此计算可供多少头牛吃10天?10、武钢的煤场,可储存全厂45天的用煤量。

当煤场无煤时,如果用2辆卡车去运,则除了供应全厂用煤外,5天可将煤场储满;如果用4辆小卡车去运,那么9天可将煤场储满。

小学奥数复杂型牛吃草问题

小学奥数复杂型牛吃草问题

1、一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?2、一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃天.3、一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃天?4、东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?5、有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?6、现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?7、有一片牧场,草每天都匀速生长.如果在牧场上放养20头牛和8只羊,那么6天就可以把草吃完;如果放养18头牛和6只羊,8天可以把草吃完.已知1头牛吃草的速度和2只羊一起吃草的速度一样,如果放养40只羊,多少天可以吃完?8、有一片均匀生长的草地,可以供18头牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草量相当于3只羊每天的吃草量.请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?9、有一片匀速生长的草地,20头牛可以10天吃完;10头牛和30只羊一起吃10天可以吃完;12头牛和18只羊一起吃15天可以吃完,那么48只羊需要吃几天才能吃完?10、一片牧草,每天生长的速度相同.现在这片牧草可供38只羊吃20天,或可供14头牛吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么8头牛与18只羊一起吃可以吃几天?11、社会实践活动开始了,牛牛来到了养牛场.一块匀速生长的草地,牧场上的草可供16头牛吃20天或可供100只羊吃12天.如果1头牛1天的吃草量等于5只羊1天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?12、一片牧草,每天生长的速度相同.现在这片牧草可供80只羊吃12天,或可供15头牛吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与80只羊一起吃可以吃几天?13、有一片草场,草每天的生长速度相同,若10匹马和31只羊10天可将草吃完,6匹马和27只羊18天也可将草吃完(3只羊1天的吃草量相当于1匹马一天的吃草量).那么,8匹马和多少只羊20天可将草吃完?14、有一片草场,草每天的生长速度相同,若6头牛和30只羊30天可将草吃完;或10头牛23只羊20天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么,18头牛和多少只羊9天可将草吃完?15、一片匀速生长的草场,可20头牛吃12天,也可供60只羊吃24天,1头牛1天的吃草量等于4只羊的吃草量,那么12头牛和60只羊一起吃可以吃几天?16、现有一片匀速生长的草地,30头牛16天可以吃光草地的草,80只羊需要26天吃光,12头牛20只羊一起需要32天吃完所有草,那么牛的日食量是羊的多少倍?24头牛与48只羊一起吃,需多少时间吃光所有草?17、一块草地,每天生长的速度相同现在这片牧草可供16头牛吃20天,或者供80只羊吃12天,如果一头牛一天的吃草量等,4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃天.18、一片草地上的青草可供15头牛吃14天,或者可供30只羊吃24天,而3只羊的吃草量相当于1头牛的吃草量,那么6头牛与15只羊一起吃,可以吃多少天?19、一片牧场,每天草的生长速度相同,这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4只羊的吃草相当于1头牛的吃草量,那么17头牛和20只羊一起吃这片牧场上的草,可以吃天.20、开心牧场有一大片草地,每天都生长得一样多的草,已知16头牛用20天便可以把所有青草吃光,而80只羊则只需要12天才可以把青草吃光,已知1头牛的食量等于4只羊,那么5头牛和40只羊一起吃草,要多少天才可以吃光所有青草?。

小学奥数牛吃草习题-(有答案)

小学奥数牛吃草习题-(有答案)

小学奥数牛吃草习题-(有答案)5、牧场上一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛?6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入一些水,如果用12个人舀水,3小时可以舀完,如果只有5个人舀水,要10小时才能舀完,现在要2小时舀完,需要多少人?7、一水井原有水量一定,河水每天均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若要求6天抽干,需要多少台同样的抽水机?8一个水池安装有排水量相等的排水管若干根,一根进水管不断往池里放水,平均每分钟进水量相等,如果开放三根排水管,45分钟可把池中水放完。

如果开放5根排水管,25分钟可把池中水放完。

如果开放8根排水管,几分钟排完水池中的水?9、有一酒槽,每天泄漏等量的酒,如让6人饮,则4天喝完;如让4人饮,则5天喝完,若每人的饮酒量相同,问每天的漏酒量为多少?10、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票。

一个检票口每分钟能让25人检票进站。

如果只有一个检票口,检票开始8分钟后就没有人排队。

如果两个检票口,那么检票开始后多少分钟就没有人排队?11、某游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进10个游客。

如果开放4个入口,20分钟就没有人排队。

现在开放6个入口,那么开门后多少分钟就没有人排队?12、一个大水坑,每分钟从四周流掉【四壁渗透】一定数量的水。

如果用5台水泵,5小时就能抽干水坑的水;如果用10台水泵,3小时就能抽干水坑的水。

现在要1小时抽干水坑的水,问要用多少台水泵?13、画展9点开门,但早有人排队等候入场。

从第一个观众来到时起,每分钟来的观众人数一样多,如果开了3个入场口,9点9分就不再有人排队。

如果开5个入场口,9点5分就没人排队,问第一个观众到达的时间是几点几分?14、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数牛吃草问题试题Prepared on 21 November 2021
1、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?
2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?
3、牧场上的牧草每天均匀生长,这片草地可供17头牛吃6天,可供13头牛吃12天.问多少头牛4天把草地的草吃完?
4、某火车站检票口,在检票开始前已有-些人排队,检票开始后每分钟有10人前来排队检票,-个检票口每分钟能让25人检票进站.如果只有-个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后多少分钟就没有人排队?
5、-只船发现漏水时,已进了-些水,现在水匀速进入船内.如果lO人舀水,3小时可舀完:5人舀水8小时可舀完.如果要求2小时舀完,要安排多少人舀水?
6、-水库水量-定,河水均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?
7、某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.-个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队?
8、由于天气渐凉,草场上的草每天都以相同的数量减少。

为此某草场上的草可供33头牛吃5天;或可供24头牛吃6天。

问为此某草场上的草可供多少头牛吃10天?
9、一块草地可供58头羊吃7天,或供50头羊吃9天,如果这片草地的生长量每天相等,这片草地最多能养活多少头羊?。

相关文档
最新文档