气象雷达新技术及其应用02121010朱潇杰

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新技术讲座大作业

班级:021211

学号:02121010

姓名:朱潇杰

气象雷达新技术及其应用

摘要:气象雷达近几十年来呈高速发展的态势, 受到世界上大多数国家和包括世界气,象组织在内的气象、水文和相关学科的国,际气象组织的高度重视。特别是多普勒天,气雷达技术的应用,使获取更多的大气运,动状态信息成为可能, 极大地提高了各国,气象和水文部门对极端灾害性天气的监测,和预报能力, 已成为世界各国构建业务雷达网之首选。本文首先阐述了国外发达国家气象雷,达的发展现状,然后分别简要介绍双(多)基,地天气雷达、双线偏振雷达、相控阵天气雷,达、激光天气雷达、风廓线雷达等新型雷达,探测大气的原理及其在气象中的应用。

关键词:气象雷达;民航安全;应用

一、气象雷达发展现状

气象雷达属于雷达领域中的一个重要分支,其发展至今大致经历了从模拟、数字到以美国NEXRAD为代表的新一代气象雷达三个发展阶段,目前已广泛应用于天气预报以及农业、水文、林业、交通、能源、海洋、航空、航天、国防、建筑、旅游、医疗等领域的专业气象服务。随着气象雷达探测技术的改进和应用范围的扩大,气象雷达在民航安全中的应用引起了民航界和相关学术界的广泛重视.现代气象雷达系统除了能监测雷雨等灾害天气外, 还可以对严重影响民航安全的风切变、湍流和鸟类危险目标进行有效探测和预警,为降低进近机场区域

低空风变、飞机尾流和鸟击事件风险做出巨大贡献,对保障飞机飞行的安全性、经济性和舒适性具有重要意义。

二、气象雷达新技术

(一)双线偏振雷达

为了识别降水目标、区分不同的降水类型,人们采用多参数雷达进行天气研究,其中双偏振雷达是人们常采用的技术之一,它是根据不同的降水粒子对入射电磁波极化散射特性不同对降水类型进行识别和分类的。双线偏振天气雷达能交替发射和接收水平和垂直的线偏振波,与常规天气雷达相比,除能测量水平反射率因子ZH外,还可以测量差分反射率ZDR、比差分传播相移KDP、相关系数ρHV(0)、退偏振比LDR等,从而了解降水粒子的形状、相态、粒子谱分布、以及粒子的空间取向等,在提高定量测量降水精度、识别冰雹并确定冰雹的大小、区分冬季降水类型、识别风暴中的闪电活动、确定飞机结冰条件等方面具有广泛的应用。双线偏振天气雷达对云雨时空变化的连续观测,可明显提高对水成物形成的微物理过程的理解,提高降水强度的估测精度,改善雷达测量单点和流域的降水强度和降水总量的效果。(二)双(多)基地雷达

双(多)基地雷达主要针对常见的单基地雷达而言的。单基地雷达一般是收发同址,即接收站和发射站位于同一个地方,而双(多)基地雷达则是收发异址,具有一(多)个发射站和一(多)个接收站,以离散的形式配置。从布置的位置方面来看, 可分为地发/地收,空发/地收,地发/空收等几种形式,多基地雷达还具有一发多收,多发多收等形式。而双(多)基

地天气雷达系统一般采用地发/地收,由一部常规的多普勒天气雷达与一个或多个没有发射系统和天线伺服系统、布置在远处的双基地接收站组成。

由于双(多)基地雷达使用两个或两个以上的分离基地( 其中包括有源和无源基地),因此多个接收站可以从不同的角度对同一个天气目标进行观测,在发射机所发射的电磁波照射下,雨滴散射的电磁波能量及所产生的多普勒频移同时被发射站(主站)及接收站(子站)接收到,利用多普勒技术可获得完整的三维矢量风场。双(多)基地天气雷达系统还可直接测量得到反射率、垂直风、涡流等,利用这些参数应用大气热力学原理可进一步反演出相关的气压与温度。

(三)相控阵天气雷达

相控阵多普勒天气雷达,主要优势是可以提高获取资料的时间分辨率、进一步提高探测能力。一般雷达均基于机械扫描体制,这种扫描方法一般在6min内完成14层的扫描,对于快速变化的中小尺度天气过程如冰雹、龙卷、微下击暴流、风切变等过程, 用这种传统的方法很难同时满足高时空分辨探测天气过程三维结构和发展演变的需求。相控阵天气雷达快速而精确地转换波束的能力使该雷达能够在1min 内完成全空域的扫描,同时获取大量的气象信息。所采用的阵列天线是由大量相同的辐射单元组成的孔径,每个单元在相位和幅度上是独立控制的,能得到精确可预测的辐射方向图和波束指向。若干个固态发射机通过功分网络将能量分配到每个天线单元, 移相网络又控制每个天线单元的初相位,通过大量独立的天线单元将能量辐射出去并在

空间进行功率合成。接收时,各天线单元将接收到的目标回波信号进行相位相加进入接收机。回波信号经接收机放大、滤波后进入信号处理机进行多种模式的信号处理。对信号处理机提取的气象数据进行二次处理得到气象预报需要的气象要素资料。

(四)激光天气雷达

激光雷达对大气的探测,主要是通过分析由激光器发射的激光与大气中的折射率不均匀层以及遇到气溶胶等大气粒子后,产生的后向散射(回波信号)而得到的大气一些物理参数,如风速、大气温度、大气密度等。根据激光与大气作用方式和探测目的的不同, 演变出多种不同类型的激光雷达。米(Mie)散射激光雷达可连续地探测大气边界层中气溶胶粒子的光学特性以及气溶胶粒子和大气边界层高度的时空分布。差分吸收(DIAL)激光雷达可探测大气边界层中污染气体,如NO2、SO2、O3等含量的时空分布。拉曼(Raman)激光雷达根据同时接收到的水汽和氮气分子对激光后向散射信号的比值,就可以计算出水汽混合比,探测边界层中水汽含量的时空分布。

(五)风廓线雷达

大气中存在着各种不同尺度随时间变化的湍流,它们能引起折射指数的不规则变化,对无线电波产生散射作用。风廓线雷达向天空发射无线电波,接收到的回波是由于大气湍流对电磁波的散射而产生的。通过对回波的处理和分析就可以获得湍流大气的多普勒系数和强度系数,从而反演出湍流强度、运动方向和运动速度随高度的分布。大气湍流是随风传播的,因此,如果获得了大气湍流的多普勒速度和方向,

同时也就获得了风的速度和方向。

风廓线雷达上加装无线电探声系统(RASS)后,可以测量大气层的有效温度。RASS雷达系统通常由4个声源组成,分布在风廓线雷达天线阵的每一边并垂直向上发射声波。由于声速与大气温度有很好的对应关系,所以可以通过风廓线雷达测得的声速来得到有效温度廓线,进而连续地估算出湿度廓线,风廓线雷达主要用于探测风、温、湿的垂直廓线,相当于无线电探空仪的探测效果,但时间分辨率要高得多,可以小到大约3min;高度分辨率也高得多,可以达到每层50m左右,且几乎是垂直探测的,探测高度从近地面到18km范围内。

六)星载测雨雷达TRMM/PR

星载天气雷达可能性研究可以追溯到1960年代,但直到1997年TRMM(TropicalRainfall Measuring Mission)卫星发射,第一部测雨雷达雷达才被安装在卫星上。目前TRMM卫星上的测雨雷达(PR)由日本NASDA(National Space and DevelopmentAgency)公司制造。发射频率13.796GHz,采用相控阵天线,波长约2cm,观测范围从地表到15km。TRMM/PR雷达可以提供三维降水结构,定量测量陆地与洋面降水量,通过所提供的降水分布的测量资料,提高TRMM中微波图象的精度等。TRMM卫星上还载有闪电成像传感器何被动微波图像仪等,应用这些仪器得到的资料,可对各种天气现象,尤其是对发生在资料稀少的热带海洋等热带地区的天气进行更为深入的研究。

(七)机载雷达

从1980年代开始,陆续有多种载有不同波长何探测能力的机载多普勒

相关文档
最新文档