七年级数学期中试卷及答案

合集下载

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷(附答案)

2023—2024学年人教版七年级上学期数学期中试卷及参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、2022的相反数是()A.B.﹣C.2022D.﹣20222、4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.439×1033、一条东西走向的道路上,小明先向西走3米,记作“﹣3米”,他又向西走了4米,此时小明的位置可记作()A.﹣2米B.+7米C.﹣3米D.﹣7米4、下列去括号,正确的是()A.a﹣(b+c)=a﹣b﹣c B.a+(b﹣c)=a+b+cC.a﹣(b+c)=a﹣b+c D.a﹣(b+c)=a+b﹣c5、已知3x m y2与﹣2x4y n为同类项,则m+n=()A.2B.4C.6D.86、若|x﹣1|+x=1,则x一定满足()A.x<1B.x>1C.x≤1D.x≥17、多项式x|n|﹣(n+2)x+7是关于x的二次三项式,则n的值是()A.2B.﹣2C.2或﹣2D.38、小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5,已知A=4x2﹣3x﹣6,请你帮助小明同学求出A﹣B应为()A.﹣x2+x+11B.3x2﹣4x﹣17C.5x2﹣4x﹣17D.5x2﹣2x+59、若x=﹣1时,ax5+bx3+cx+1=6,则x=1时,ax5+bx3+cx+1=()A.﹣3B.12C.﹣6D.﹣410、某种产品原价为100元,现因原料提价,因而厂家决定对产品进行提价,有以下两种方案;方案一,第一次提价10%,第二次提价30%;方案二,第一、二次提价均为20%.请问:哪种方案提价多()A.方案一B.方案二C.两种方案一样D.不能确定二、填空题(每小题3分,满分18分)11、比较大小:﹣﹣.12、若a与b互为倒数,m与n互为相反数,则(ab)2013+(m+n)2014的值为.13、已知|a+1|+(b﹣3)2=0,则a b=.14、在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.15、若代数式x﹣2y=﹣2,则代数式9+2x﹣4y=.16、用同样大小的黑色棋子按图所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚.(用含n的代数式表示)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2)×(﹣36).18、先化简,再求值:3(x2﹣xy+y2)﹣2(y2﹣3xy+x2),其中x=﹣2,y=3.19、有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,a﹣c0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.20、某检修小组在东西向的马路上检修线路,从A地出发,需到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):﹣11,﹣9,+18,﹣2,+13,+4,+12,﹣7.(1)通过计算说明:B地在A地的什么方向,与A地相距多远?(2)在行驶过程中,最远处离出发点A地有多远?(3)若每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?21、已知|x|=5,|y|=3.(1)若x﹣y>0,求x+y的值;(2)若xy<0,求|x﹣y|的值;(3)求x﹣y的值.22、已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简:2A﹣3B;(2)若,xy=1,求2A﹣3B的值;(3)若2A﹣3B的值与y的取值无关,求此时2A﹣3B的值.23、(1)如图1所示,阴影部分由两个直角三角形组成,用代数式表示图中阴影部分的面积S.(2)请你求出当a=2,b=6,h=4时,S的值.(3)在第(2)问的条件下,增加一个半圆的阴影,如图2所示,求整个阴影部分的面积S1的值.(π取3.14,结果精确到0.1)24、已知(2x﹣1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5表示的是x5的系数,a4表示的是x4,以此类推.当x=2时,35=25•a5+24•a4+23•a3+22•a2+2•a1+a0.(1)取x=0,则可知a0=.(2)利用特殊值法求﹣a5+a4﹣a3+a2﹣a1+a0的值.(3)探求a4+a2的值.25、如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;点P表示的数是(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请用计算说明,并求出线段MN的长.2023—2024学年人教版七年级上学期数学期中试卷参考答案一、择题(每题只有一个正确选项,每小题3分,满分30分)1—10:DCDAC CBCDB二、填空题(每小题3分,满分18分)11、>12、1 13、-1 14、﹣9或3 15、5 16、(3n+1)三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解:(1)0 (2)﹣1118、解:﹣519、解:(1)答案为:>,<,<;(2)﹣2b20、解:(1)B地在A地的东边18千米;(2)最远处离出发点25千米;(3)需补充的油量为9升.21、解:(1)x+y的值为:8或2;(2)|x﹣y|的值为:8;(3)x﹣y=±2或±8.22、解:(1)=7x+7y﹣11xy;当x+y=﹣,xy=1时,2A﹣3B=﹣17;(3).23、解:(1)S=(b﹣a)h=bh﹣;(2)当a=2,b=6,h=4时,S=×6×4﹣×2×4=12﹣4=8;(3)S1=S+×=8+×3.14×1=8+1.57=9.57≈9.6.∴整个阴影部分的面积S1的值为9.6.24、解:故答案为:﹣1;(2)﹣243;(3)﹣120.25、解:(1)答案为:﹣5;7;12;(2)点P所对应的数为﹣1016;(3)﹣17和﹣1别是点P运动了第23次和第8次到达的位置.。

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。

人教版七年级数学期中考试试卷以及答案

人教版七年级数学期中考试试卷以及答案

期中综合检测试卷(第一章~第二章 满分:120分)一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18C .-8D .-182.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y2m ,其中单项式有( B )A .2个B .3个C .4个D .5个4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )A .37×104B .3.7×105C .0.37×106D .3.7×1066.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b |7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A ) A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4 B .m 2-3m +2 C .m 2-7m +2D .m 2-7m +410.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )A .甲B .乙C .丙D .乙或丙二、填空题(每小题3分,共18分)11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +3的和仍是单项式,则m +n =__1__.13.单项式-35x 2yz 3的系数是__-35__,次数是__6__.14.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.三、解答题(共72分) 17.(12分)计算下列各题: (1)-14-(-6)+2-3×⎝⎛⎭⎫-13; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫-136;解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+118×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.18.(6分)下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.计算:-18+23+56-14.解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-23(第①步) =18+16(第②步) =724.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98. 19.(6分)先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 20.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).21.(6分)现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18.(2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.22.(6分)已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:(1)m ,n 的值; (2)m 2+n 2-2mn 的值.解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.23.(8分)有3个有理数x ,y ,z ,若x =2(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy -y n -(y -z )2020的值.解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.24.(10分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).(1)长方形窗框的面积是__ab __平分厘米;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)3厘米,所以所需铝合金材料的总长度为3a +b -183×2+2(b -18)3×3=⎝⎛⎭⎫3a +83b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +83b -48=(ab -18a -16b +288)平方厘米. 25.(12分)一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则60张桌子可拼成15张大桌子,共可坐多少人?(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n -1)=(2n +2)人. (2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人). (3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人). (4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。

七年级数学期中试卷附答案

七年级数学期中试卷附答案

一、选择题(每题3分,共30分)1. 下列数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -32. 如果a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. a ≥ bD. a ≤ b3. 下列各数中,是负数的是()A. -1/3B. 0C. √4D. -√94. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. -35. 下列各数中,是无理数的是()A. √4B. πC. 0.1010010001...D. -36. 如果a = -2,b = 3,那么a + b的值是()A. 1B. -1C. 0D. 57. 下列各数中,是偶数的是()A. 1B. 2C. 3D. 48. 下列各数中,是奇数的是()A. 1B. 2C. 3D. 49. 下列各数中,是质数的是()A. 2B. 3C. 4D. 510. 下列各数中,是合数的是()A. 2B. 3C. 4D. 5二、填空题(每题3分,共30分)11. 1/2 + 2/3 = __________12. (-3) × (-2) × (-1) = __________13. 2 × 3 × 5 × 7 = __________14. 3^2 × 3^3 = __________15. 4^2 ÷ 2^2 = __________16. 0.5 + 0.25 = __________17. 2 - 3/4 = __________18. 5 × 3/4 = __________19. 8 ÷ 2 + 2 = __________20. 3^2 × 2^3 = __________三、解答题(每题10分,共40分)21. 简化下列各式:(1) 3a - 2b + 4a - b(2) 2x + 3y - 5x - 2y22. 解下列方程:(1) 2x - 3 = 7(2) 3y + 5 = 2y + 1023. 判断下列各数是有理数还是无理数:(1) √9(2) 0.1010010001...24. 已知a = 2,b = -3,求a + b的值。

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】

七年级数学期中试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10cm,腰长为13cm,那么这个三角形的周长是?A. 32cmB. 36cmC. 42cmD. 46cm3. 一个数加上6后,再除以3,结果是5,这个数是?A. 11B. 13C. 15D. 174. 一个长方体的长、宽、高分别是10cm、6cm、4cm,那么这个长方体的体积是?A. 240cm³B. 480cm³C. 720cm³D. 960cm³5. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆二、判断题1. 任何两个奇数相加的和都是偶数。

()2. 一个数的平方和它的立方一定相等。

()3. 一个等边三角形的三个角都是60度。

()4. 两个负数相乘的结果是正数。

()5. 一个数的倒数乘以它自己等于1。

()三、填空题1. 2的平方根是______。

2. 一个等腰三角形的两个底角相等,如果一个底角是50度,那么另一个底角是______度。

3. 1千克等于______克。

4. 一个圆的半径是5cm,那么这个圆的面积是______cm²。

5. 一个数的因数是它自己,那么这个数是______。

四、简答题1. 请简述勾股定理的内容。

2. 请解释等差数列的定义。

3. 请解释比例的基本性质。

4. 请简述分数的基本性质。

5. 请解释正方形的性质。

五、应用题1. 一个长方体的长、宽、高分别是12cm、8cm、6cm,求它的体积。

2. 一个等腰三角形的底边长是10cm,腰长是13cm,求这个三角形的面积。

3. 一个数加上7后,再乘以3,结果是60,求这个数。

4. 一个数的2倍加上4等于18,求这个数。

5. 一个数的3/4等于15,求这个数。

六、分析题1. 小明有10个苹果,他吃了一半,然后又吃了一个,请问小明还剩下几个苹果?2. 一个长方体的长、宽、高分别是10cm、6cm、4cm,如果长、宽、高都增加2cm,那么新长方体的体积是多少?七、实践操作题1. 请画出一个正方形,并标出它的对角线。

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)

20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

2023-2024学年河南省郑州七年级(上)期中数学试卷(含解析)

2023-2024学年河南省郑州七年级(上)期中数学试卷(含解析)

2023-2024学年河南省郑州七年级(上)期中数学试卷一.选择题。

(每小题3分,共30分)1.(3分)下列两个数互为相反数的是( )A.3和B.﹣(﹣3)和|﹣3|C.(﹣3)2和﹣32D.(﹣3)3和﹣332.(3分)图中属于柱体的个数是( )A.3B.4C.5D.63.(3分)今年暑假,全国文旅市场持续火爆,接待人次和旅游收入全面超越2022年同期水平,黄山以奇松、怪石、云海、温泉四绝著称,游客人数达到186.7万人.排“名山景区热度指数排行榜”第二位.将数据186.7万用科学记数法表示为( )A.18.67×105B.1.867×105C.1.867×106D.0.1867×1064.(3分)用一个平面去截一个如图的圆柱体,截面不可能是( )A.B.C.D.5.(3分)在数﹣2,﹣3.14156,,﹣5%,2023,﹣0.1,0,﹣0.01001中,负分数有( )A.4个B.5个C.6个D.7个6.(3分)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线7.(3分)开学第一节课赵老师给每人发了一个正方体,它的六个面分别标注有“一切皆有可能”,表面展开后如图.那么在原正方体中( )A.能B.可C.皆D.切8.(3分)点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④>0;⑤ab<0.其中正确的是( )A.①②③④B.①②③⑤C.①③⑤D.②③④9.(3分)如图,圆的周长为4个单位长度,在圆的4等分点处分别标上0,1,2,3,再让圆沿着数轴按顺时针方向无滑动地滚动,那么数轴上的数﹣2023所对应的点与圆周重合的点所对应的数是( )A.0B.1C.2D.310.(3分)小明在计算有规律的算式1﹣2+3﹣4+5⋯+19﹣20时,不小心把一个运算符号写错了(“+”错写成“﹣”或“﹣”错写成“+”),结果算成了﹣36,写错的运算符号是( )A.第5个B.第8个C.第10个D.第12个二.填空题。

七年级期中考试数学试卷及答案

七年级期中考试数学试卷及答案

ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。

2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案

2023-2024学年度第一学期七年级数学(冀教版)期中试卷附详细答案

2023-2024学年度第一学期期中质量检测七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−152.一种食品包装袋上标着:净含量200g(±3g),表示这种食品的标准质量是200g,这种食品净含量最少( )g为合格A.200B.198C.197D.1963.下列各数中,绝对值最小的是( )A.−2B.3C.0D.−34.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A.−3B.−1C.1D.25.计算−3−1的结果是( )A.−4B.−2C.4D.26.若∠α与∠β互余,∠α=72°30´,则∠β的大小是( )A.17°30´B.18°30´C.107°30´D.108°30´7.如图,AB=CD,那么AC与BD的大小关系是( )A.AC=BDB.AC <BDC.AC >BDD.不能确定8.如图,下列几何语句不正确的是( )A.直线AB 与直线BA 是同一条直线B.射线OA 与射线OB 是同一条射线C.射线OA 与射线AB 是同一条射线D.线段AB 与线段BA 是同一条线段9.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3的关系满足( )A.∠1−∠3=90°B.∠1+∠3=90°C.∠1+∠3=180°D.∠1=∠310.如图,将△AOB 绕着点O 顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=15°,则旋转角度是( )A.15°B.25°C.40°D.55°11.下列各对数中,互为相反数的是( )A.−(−2)和2B.+(−3)和−(+3)C.12和−2D.−(−5)和−|+5| 12.如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A.50°B.75°C.100°D.120°A B CD O AD C OBA B O A C B D13.若1÷2×(−6)□9=6,请推算□内的符号应是( )A.+B.−C.×D.÷14.已知a ,b 都是实数,若(a+2)2+|b −1|=0,则(a+b)2023的值是( )A.−2023B.−1C.1D.202315.已知本学期某学校下午上课的时间为14时20分,则此时刻钟表上的时针与分针的夹角为( )度.A.40°B.50°C.60°D.70°16.如图,将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若FH 平分∠BFE,则∠GFH 的度数α是( )A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF 位置的变化而变化二、细心填一填(请把结果直接填在题中的横线上,相信自己一定会填对的!共12分)17. −5的倒数是__________.18.比较大小:−35_______−34(填“<”或“>”). 19.对于有理数a 、b ,定义一种新运算,规定a ☆b=a 2−|b|,则3☆(−2)=________.20.如图,已知∠COD=∠AOB=75°,当∠COD 绕着点O 旋转且OC 在∠AOB 内部时,∠AOD+∠BOC=_________. A B DC F H EG三、耐心解一解21.试试你的基本功(每题7分,共14分)(1)(−16+712−38)×24; (2) −22−[(−3)×(−43) −(−2)3] 四、用心答一答(只要你认真探索,善于思考,一定会获得成功!本题共46分)22.(本题共8分)如图,点B 是线段AC 上一点,且AB=20,BC=8.(1)图中共有_____条线段.(2)试求出线段AC 的长.(3)如果点O 是线段AC 的中点.请求线段OB 的长.23.(本题共8分)质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“−”记录,记录如下:−6,−3,−2,0,+1,+4,+5,−1.(1)通过计算,求出8袋洗衣粉总计超过或不足多少克?这8袋洗衣粉的总重量是多少克?(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元?24.(本题共8分)C B AO A CBO D如图,已知∠AOB=120°,OC 是∠AOB 内的一条射线,且∠AOC︰∠BOC=1︰2.(1)求∠AOC 的度数.(2)过点0作射线OD ,若∠AOD=12∠A0B ,求∠COD 的度数.(画出草图即可)25.(本题10分)【问题情境】利用旋转开展数学活动,探究体会角在旋转过程中的变化.【操作发现】如图①,∠AOB=∠COD=90°且两个角重合.(1)将∠COD 绕着顶点O 顺时针旋转45°如图②,此时OB 平分∠____;∠BOC 的余角有________个(本身除外),分别是________________.【实践探究】(2)将∠COD 绕着顶点O 顺时针继续旋转如图③位置,若∠BOC=45°,射线OE 在∠BOC 内部,且∠BOC=3∠BOE,请探究.①求∠DOE 的度数.②∠BOC 的补角分别是:____________________.26.(本题共12分)如图,在一条直线上,从左到右依次有点A 、B 、C ,其中AB=4cm ,BC=2cm.以这条直A B (D )O 图① (C ) 图② AC B DO AC BD OE 图③ A CO B线为基础建立数轴,设点A、B、C所表示数的和是p.(1)如果规定向右为正方向,以1cm为单位长度建立数轴.①若以B为原点O,则点C表示的数是_______,点A表示的数为_______;此时p=_______;若以C为原点O,则点B表示的数是_______,点A表示的数为_______;此时p=_______.②若改变原点O的位置,使原点O在点C的右边,且CO=30cm,求p的值.发现观察p值的变化规律发现原点每向右移动1cm,p值______(增大或减小)______cm.(2)若点A表示的数是−1,则点C表示的数是________,若折叠数轴,使点A与点C 重合,则折点表示的数是________.2023-2024学年度第一学期期中质量检测参考答案七年级数学试卷(冀教版)温馨提示:1.本试题满分120分.考试时间90分钟.2.答卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.一、细心选一选(在每题所给出的四个选项中,只有一项是符合题意的.每小题3分,共48分)1.( )的相反数是−5A.−5B.5C.15 D.−151.解:正数的相反数是负数,绝对值相等,两者之和为0,故选B。

七年级期中数学试卷及答案

七年级期中数学试卷及答案

七年级期中数学试卷及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.下列哪个数是质数?A.21B.37C.39D.49答案:B2.一个等腰三角形的底边长是10cm,腰长是13cm,那么这个三角形的周长是多少?A.32cmB.36cmC.46cmD.52cm答案:B3.下列哪个数是偶数?A.101B.102C.103D.104答案:D4.一个长方形的长是8cm,宽是4cm,那么这个长方形的面积是多少?A.12cm²B.24cm²C.32cm²D.48cm²答案:D5.下列哪个数是奇数?A.111B.112C.113D.114答案:C二、判断题(每题1分,共20分)1.2是质数。

()答案:对2.一个等边三角形的三个角都是60度。

()答案:对3.15是偶数。

()答案:错4.一个正方形的四条边都相等。

()答案:对5.0是奇数。

()答案:错三、填空题(每空1分,共10分)1.1+2+3++100的和是______。

答案:50502.一个正方形的边长是6cm,那么它的面积是______cm²。

答案:363.两个质数相乘,它们的积是______。

答案:合数4.一个长方形的长是10cm,宽是5cm,那么它的周长是______cm。

答案:305.下列哪个数既是偶数又是质数?______。

答案:2四、简答题(每题10分,共10分)1.请问什么是质数?答案:一个大于1的自然数,除了1和它本身外,不能被其他自然数整除的数。

2.请问什么是等腰三角形?答案:有两条边相等的三角形。

五、综合题(1和2两题7分,3和4两题8分,共30分)1.有一个长方形的长是10cm,宽是5cm,求这个长方形的面积和周长。

答案:面积是50cm²,周长是30cm。

2.有一个等腰三角形,底边长是12cm,腰长是13cm,求这个三角形的周长。

答案:周长是38cm。

福州屏东中学2023-2024学年第一学期七年级期中数学试卷附详细答案

福州屏东中学2023-2024学年第一学期七年级期中数学试卷附详细答案

福州屏东中学2023-2024学年第一学期七年级期中数学试卷班级________姓名________座号________(完卷时间120分钟满分150分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与2023的和为0的是( )A.2023B. −2023C.12023 D.−120232.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.4.26×104B.42.6×104C.4.26×105D.0.426×1053.算式5a+4a=9a是应用了( )A.加法结合律B.乘法结合律C.分配律D.乘法分配律4.下列式子变形正确的是( )A. −(x−1)= −x−1B.12(2m+1)=m+lC.2(a+b)=2a+bD.2x−12(4x−2)=15.下列说法中正确的是( )A.x+y2是单项式 B、−πx的系数为−1C.−5不是单项式D.−5a2b的次数是36.《庄子》中记载:“一尺之捶,日取其半,万世不竭.”这句话的意思是一尺长的木棍,每天截取它的一半,永远也截不完,若按此方式截一根长为1的木棍,第5天截取后木棍剩余的长度是( )A.1−125 B.1−124C.125D.1247.某种品牌的彩电降价30%以后,每台售价为a元,则该品牌彩电每台原价为( )A.0.7a元B.a0.7元 C.a0.3元 D.0.3a元8.若a >1,则|a|,−a ,1a的大小关系正确的是( )A.|a|>−a >1aB.1a>−a >|a| C.|a|>1a>−a D.−a >|a|>1a9.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(−4)的过程,按照这种方法,图2表示的过程应是在计算( )A.5+2B.5+(−2)C.(−5)+2D.( −5)+(−2) 10.有理数a ,b ,c 满足abc ≠0,a <b 且a+b <0,|a|a +|b|b+|c|c=−1,那么|ab|ab+|bc|bc+|ac|ac+|abc|abc的值为( )A.0B.2C.0或2D.0或−2 二、填空题(本题共8小题,每小题4分,共32分)11.某仓库记账员为方便记账,将进货10件记作+10,那么出货5件应记作______. 12.多项式3ab 2−2ab −1的次数为______. 13.比较大小:−65______−76(填“<”或“>”).14.若有理数a ,b 互为倒数,c ,d 互为相反数,则(c+d)2023+(1ab)2=______.15.若5a 3b n 与−8a m b 2的和为单项式,则m+n=______.16.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30千米/时,设水流速度是x 千米/时,则3小时后甲船比乙船多航行的路程为______千米.17.观察下面的数:2x ,−4x 2,8x 3,−16x 4,32x 5,…则第n 个数为______(n 是正整数).18.已知a ,b ,c 满足2a 2−b=4,a 2+c=5,则4a 2−3b −2c 的值为______.图1图2三、解答题(本题共9小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题12分)计算(1)−23−(−134) −(−23)+(−1.75) (2)−3×116÷(−23)(3)−14−16×[2−(−3)2] (4)(−992425)×520.(本小题8分) (1)化简:5a+3b −6a+7b.(2)先化简,再求值:5(a 2b −3ab 2)−2(a 2b −7ab 2),其中a=−1,b=2.21.(本小题6分)为践行劳动教育,学校特意划出一块长方形土地供学生劳作.如图,长方形EFGH 土地一面靠墙,现将不靠墙的三面向内推进x m 修建小路,在小路内侧用篱笆围出一块长方形菜地ABCD. (1)当x =1时,求篱笆的长度. (2)用x 的代数式表示篱笆的长度.22.(本小题8分)已知M=2a 2+3ab −2a −1,N=a 2+2ab −1. (1)求M −2N.(2)若M −2N 的值与a 的取值无关,试求b 的值. 23.(本小题8分)已知有理数a 、b 、c 在数轴上的位置.(1)a+b_____0;a+c_____0;b −c_____0 (用“>,<,=”填空). (2)试化简|a+b|−|a|.24.(本小题8分)某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户bacF20mG家庭的水费:月用水量不超过20m 3时,按2元/m 3计算;月用水量超过20m 3时,其中的20m 3仍按2元/m 3计算,超过部分按2.6元/m 3计算(1)小花家第二季度用水情况如下表,小花家这个季度共缴纳水费多少元? (2)若小花家7月用水量为am 3,请你用含a 的代数式表示当月的水费支出.25.(本小题8分)观察下列两个等式:1−34=3×1×34−2,2−47=3×2×47−2,给出定义如下:我们称使等式a −b=3ab −2成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b),如:数对(1,34),(2,47),都是“同心有理数对”.(1)判断数对(3,1),(−1,−12)是“同心有理数对”吗?如果是,请说明理由.(2)若(m ,n)是“同心有理数对”.①则(−n , −m)_____“同心有理数对”(填“是”或“不是”). ②求3m(n −1)+[2m −n+2(n −3)]的值. 26.(本小题10分)2023年春节将至,某灯具厂为抓住商业契机原计划每人每天生产某种景观灯10盏,以便投入市场进行销售.但由于各种原因,实际每人每天生产景观灯数与计划每人每天生产景观灯数相比有出入,下表是该灯具厂某月(30天)的工人小吴每天生产情况(增产记为正,减产记为负):(1)求这个月该灯具厂工人小吴每天实际平均生产景观灯多少盏.(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得20元,若超额完成任务,则超过部分每盏另外奖励6元,少生产一盏扣10元,那么这个月该灯具厂工人小吴的工资总额是多少元?27.(本小题10分)已知:a是最大的负整数,且a、b、c满足(c−6)2+|a+b|=0.(1)直接写出a=________,b=________,c=________.(2)a,b,c所对应的点分别为A,B,C,若点A以每秒m(0<m<3)个单位长度的速度运动,点B和点C分别以每秒3个单位长度和6个单位长度的速度向右运动,假设1秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.①当点A向右运动,且m=34时,请问:3BC−4AB的值是否随着时间t的变化而变化.②当3BC−2AB的值不随着时间的变化而变化,求m的值.福州屏东中学2023-2024学年第一学期七年级期中数学试卷参考答案班级________姓名________座号________(完卷时间120分钟满分150分)一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与2023的和为0的是( )A.2023B. −2023C.12023 D.−120231.解:互为相反数的两个数之和为0,故选B。

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试题及答案

人教版七年级下册期中考试数学试卷一、单选题1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD 的度数等于()A.40°B.35°C.30°D.20°2.实数-2,0.3,-5,2,-π中,无理数的个数有()A.1个B.2个C.3个D.4个3.如图,由下列条件不能得到AB∥CD的是()A.∠B+∠BCD=180°B.∠1=∠2C.∠3=∠4D.∠B=∠5 4.已知点P位于第二象限,距y轴3个单位长度,距x轴4个单位长度,则点P的坐标是()A.(-3,4)B.(3,-4)C.(4,-3)D.(-4,3) 5.如图,数轴上表示1,3的点分别为A和B,若A为BC的中点,则点C表示的数是()A.3-1B.1-3C.3-2D.2-3 6.将一副三角板如图放置,使点A在DE上,BC∥DE,∠E=30°,则∠ACF的度数为()A.10°B.15°C.20°D.25°7.下列说法不正确的是()A .0.3±是0.09的平方根,即0.3=±B 的平方根是8±C .正数的两个平方根的积为负数D .存在立方根和平方根相等的数8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(﹣3,4),若以A 点为原点建立直角坐标系,则B 点坐标是()A .(﹣3,﹣4)B .(﹣3,4)C .(3,﹣4)D .(3,4)9.已知a 、b +2b +1=0,则a +b 的值是()A .12B .1C .−1D .010.如图,AF ∥CD ,BC 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:①BC 平分∠ABE ;②AC ∥BE ;③∠BCD+∠D=90°;④∠DBF=2∠ABC .其中正确的个数为()A .1个B .2个C .3个D .4个二、填空题11,2__________.12.已知点P 的坐标为(﹣2,3),则点P 到y 轴的距离为______13.平面直角坐标系中,若A 、B 两点的坐标分别为(-2,3),(3,3),点C 也在直线AB 上,且距B 点有5个单位长度,则点C 的坐标为__________.14.已知直线a 、b 、c 相交于点O ,∠1=30°,∠2=70°,则∠3=________.15的整数部分是a ,小数部分是b ,则2+a b =______.16.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D=65°,则∠AEC=.17.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.18.实数在数轴上的位置如图,那么化简a −b −b 2的结果是_______三、解答题19.计算:(1)|2−3|+3−8+(−2)2(2)(3)(−3)2+(−6)2−(3−0.125)3+|1−2|20.如图,已知EF ∥AD ,∠1=∠2,∠BAC =70°,求∠AGD (请填空)解:∵EF ∥AD ∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB ∥()∴∠BAC+=180°()∵∠BAC =70°()∴∠AGD =()21.如图,三角形ABC 沿x 轴正方向平移2个单位长度,再沿y 轴负方向平移1个单位长度得到三角形EFG.(1)写出三角形EFG 的三个顶点坐标;(2)求三角形EFG 的面积.22.如图,已知AB ∥DE ,∠ABC +∠DEF =180°,求证:BC ∥EF.23.若23(2)0x z -+-=,求x y z ++的平方根和算术平方根。

2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析

2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析

2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中正确的是()A. B. C. D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.在实数,,,,,0,,中,无理数有个()A.1B.2C.3D.45.若是二元一次方程的一个解,则m的值为()A. B. C.1 D.6.下列命题中,真命题是()A.互补的角是邻补角B.同旁内角互补C.过直线外一点,有且只有一条直线与已知直线平行D.如果两条直线都与第三条直线垂直,那么这两条直线也相互垂直7.已知,则下列不等式中不成立的是()A. B. C. D.8.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.9.如图,直线AB,CD交于点O,已知于点平分,若,则的度数是()A. B. C. D.10.如图,是由8个大小相同的小长方形无缝拼接而成的一个大长方形,已知大长方形的周长为2a,则小长方形的周长为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。

11.x的2倍与4的差不大于3,用不等式表示为__________.12.如图,点E在DC的延长线上,请添加一个恰当的条件__________,使13.如图,,则AC__________填>,<,,理由是__________.14.已知二元一次方程组,则的值为__________.15.若是关于x、的二元一次方程,则__________.16.已知:实数a,b满足,则的平方根是__________.17.如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是__________平方米.18.如图,第一象限内有两点,,将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是__________.三、解答题:本题共10小题,共80分。

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)

人教版七年级数学期中试卷(含答案)人教版七年级数学期中试卷(含答案)第一部分:选择题1. 下列数字中,最小的是()A. 0.8B. -1C. 0D. -0.52. 已知正方形的边长为3cm,那么该正方形的周长是()A. 3cmB. 6cmC. 9cmD. 12cm3. 三个数依次是a、b、c,其中a与b的平均数是b,b与c的平均数是b,那么a、b、c的值依次是()A. 1、1、2B. 2、3、4C. 3、2、1D. 1、2、34. 若A:B=4:5,B:C=2:3,那么A:B:C的比值是()A. 4:5:3B. 8:10:15C. 10:8:15D. 4:5:65. 若图中的正方形边长为x,则阴影部分的面积是()(图略)A. x^2B. 2x^2C. 4x^2D. 5x^2第二部分:填空题1. 已知AB=BC,且角A和角C的度数和为100°,则角B的度数为__________°。

2. 设A、B、C三个数的和为25,已知A:B=2:5,C:B=3:1,则A的值为__________。

3. 某商品原价为80元,现在打8折出售,则现价为__________元。

第三部分:解答题1. 一个正数的十分之一是20,这个数是多少?2. 某书店有英语书、数学书、文学书三种,其中英语书比数学书多10本,文学书比英语书少15本,数学书比文学书多5本,问三种书加起来一共有多少本?3. 甲、乙两地相距85公里,两车同时出发,甲车速度是每小时60公里,乙车速度是每小时65公里。

求两车相遇需要多长时间?答案解析:选择题答案:1. B 2. C 3. A 4. A 5. C填空题答案:1. 40 2. 10 3. 64解答题答案:1. 设这个数为x,则有x/10 = 20,解得x=200。

2. 设数学书的数量为x,则英语书的数量为x+10,文学书的数量为x-15。

根据题意得到x+(x+10)+(x-15)=3x-5=25,解得x=10。

河南省安阳市2023-2024学年七年级上学期期中教学质量检测数学试卷(含答案)

河南省安阳市2023-2024学年七年级上学期期中教学质量检测数学试卷(含答案)

2023-2024学年第一学期期中教学质量检测七年级数学(A)(人教版)1~2章注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.答卷前请将装订线内的项目填写清楚。

一二三总分等级题号1~1011~151617181920212223分数一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.的绝对值是()A.B.C.D.20242.2023年10月,河南安阳红旗渠机场实现通航,设计满足年旅客吞吐量550000人次,对促进安阳及周边地区经济和社会发展具有重要意义.将数据“550000”用科学记数法表示为()A.B.C.D.3.向南走,记为走,那么走,表示()A.向南走B.向南走C.向北走D.向北走4.数轴上表示数的点和数的点的距离是()A.B.2C.D.45.用四舍五入法对2.604取近似值,精确到0.01的结果是()A.2.6B.2.61C.2.600D.2.606.整式的系数和次数分别是()A.B.C.D.2,67.下列运算正确的是()A.B.C.D.8.下面计算正确的是()A.B.C.D.9.有理数在数轴上的对应点的位置如图所示,下列各式结果最大的是()A.B.C.D.10.如图,小李在某运动中,设定了每天的步数目标为8000步,该用目标线上方或下方的柱状图表示每天超过或少于目标数的步数,如3日,小李少于目标数500步,则从2日到5日这四天小李平均每天走()A.8260步B.8694步C.8010步D.8000步二、填空题(每小题3分,共15分)11.每个班级需要套桌椅,则3个班级共需______套桌椅.12.点在数轴上表示数,点向右移动4个单位长度得到点,则点表示的数为______.13.若的倒数是,则的相反数是______.14.整式的值是2,则的值是______.15.第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是,表示ICME-14的举办年份,则八进制数2024换算成十进制数是)______(注:).三、解答题(本大题共8个小题,共75分)16.(10分)下列式子中:(1)哪些是单项式?哪些是多项式?分别填入所属的圈中.单项式多项式(2)多项式中哪个次数最高?并写出该多项式的项.17.(9分)计算:(1);(2);(3).18.(9分)右面是某平台2023国庆期间河南热门景点前两名,在某个时间段内,共售出张龙门石窟门票和张少林寺门票.90元/张80元/张(1)在该时间段内,该平台这两种门票共售出多少元?(2)当时,该平台这两种门票共售出多少元?19.(9分)下面有四张卡片,其上分别写有相应的有理数.(1)求最大数与最小数的差.(2)若再添上一个有理数,使得五个有理数的和为0,求.20.(9分)已知式子.(1)当时,化简.(2)若的值与无关,求.21.(9分)延时课上,数学兴趣小组研究一道思考题,计算:.得出两种思路:思路1.思路2.所以.(1)思路1______(填“正确”或“错误”).(2)请你类比正确的思路计算:.22.(10分)灵宝苹果,河南省三门峡市灵宝市特产,全国农产品地理标志.现有16箱灵宝苹果,以每箱10千克为标准,超过标准的质量记作正数,不足标准的质量记作负数,称量记录如下:与标准质量的差(单位:千克)01 2.5箱数142324(1)这16箱苹果中,最重的一箱比最轻的一箱重______千克.(2)与标准质量相比,这16箱苹果总计超过或不足多少千克?(3)若以每千克20元的价格售出,求这16箱苹果一共可以卖多少元?23.(10分)如图两点之间相距3个单位长度,两点之间相距7个单位长度,点、在数轴上表示的数分别为.(1)若以为原点,求.(2)若以为原点,求.(3)现有一动点从点开始沿数轴的正方向运动到达点停止:(1)设点到两点的距离之和为,求的最小值;(2)设点到三点的距离之和为,直接写出的最大值与最小值.2023-2024学年第一学期期中教学质量检测七年级数学(A)(人教版)参考答案1-5 ABDBD6-10 BDDBA11.12.213.202314.15.104416.解:(1)单项式:2023多项式:(2)项:和17.解:(1)原式(2)原式(3)原式18.解:(1)(2)当时,代入可知:(元)19.解:(1);(2)这四个数的和是:,则根据相反数的意义,20.解:(1)当时,(2)若的值与无关,则令,即21.解:(1)错误;(2),所以.22.解:(1)5.5(2)(千克),答:不足1千克.(3)(元)解:(1)(2)(3)①当点在两点之间时,为定值,此时;当点在两点之间时,两点之间的距离大于,即大于3,故的最小值是3;②最大值17,最小值10.。

沪科版七年级上册数学期中考试试卷附答案

沪科版七年级上册数学期中考试试卷附答案

沪科版七年级上册数学期中考试试题一、单选题1.如果+15%表示增长15%那么﹣80%表示()A .增长20%B .下降20%C .增长80%D .下降80%2.在数轴上表示下列各数的点,其中离原点最近的是()A .﹣0.4B .0.6C .1D .﹣23.近似数0.7070的精确度是()A .精确到百分位B .精确到十万分位C .精确到万分位D .精确到千分位4.下列各式中与多项式a b c --不相等的是()A .()a b c -+B .()a b c --C .()()a b c -+-D .()b c a ---5.关于多项式3x 3y ﹣4xy 4+2x 2y ﹣1,下面说法正确的是()A .各项分别是3x 3y ,4xy 4,2x 2yB .多项式的次数是4次C .按x 的升幂排列是1﹣4xy 4+2x 2y+3x 3yD .这是个五次四项式6.有若干本书摆放在书架上.如果每层摆8本,可摆x 层,余下6本无处可摆;如果每层摆12本,可摆(x ﹣1)层,且最后一层少于12本,则最后一层摆放的本数是()A .(18﹣4x )本B .(6﹣4x )本C .(30﹣4x )本D .(18﹣8x )本7.方程1223x x x -+-=去分母,正确的是()A .6x ﹣3(x ﹣1)=x+2B .6x ﹣3(x ﹣1)=2(x+2)C .x ﹣3(x ﹣1)=2(x+2)D .x ﹣(x ﹣1)=2(x+2)8.对于有理数a ,b ,c ,有(a+100)b =(a+100)c ,下列说法正确的是()A .若a≠﹣100,则b ﹣c =0B .若a≠﹣100,则bc =1C .若b≠c ,则a+b≠cD .若a =﹣100,则ab =c9.已知|a -2|+(b +3)2=0,则a b 的值是()A .-6B .6C .-9D .910.如图1是竖式和横式两种无盖的长方体纸盒,各个面都是用如图2中的长方形或正方形纸板做成的;现有2021张正方形纸板和a 张长方形纸板,若做两种纸盒若干个,纸板恰好全部用完,则a 的值可以是()A .4044B .4045C .4046D .4047二、填空题11.根据第七次全国人口普查结果,全国人口约1412000000人.用科学记数法表示数据1412000000得1.412×10n ,则n =___.12.一个多项式减去x 2﹣2y 2等于x 2+y 2,则这个多项式是___.13.若216n -=,则424n ⨯-=_________.14.观察下列方程:第1个:1142x x -+=的解是x =2;第2个:2162x x -+=的解是x =3第3个:3182x x -+=的解是x =4第4个:41102x x -+=的解是x =5.(1)第5个方程的解是x =___;(2)解是x =2022的方程是___.15.若()2320x y -++=,则2x y +的值为____.三、解答题16.计算:﹣136÷(﹣16)2+(﹣0.4)×212.17.若代数式4x ﹣5与3x ﹣6的值互为相反数,求x 的值.18.一个三角形一边长为a b +,另一边长比这条边大2a b +,第三边长比这条边小3a b -,求这个三角形周长.19.某仓库在一周的货品运输中,进出情况如表所示(进库为正,出库为负,单位:吨).星期一星期二星期三星期四星期五星期六星期天合计+26﹣26+42﹣30﹣25﹣9+6表中星期五的进出数被墨水涂污了.(1)请算出星期五货品的进出数;(2)如果进出货品的装卸费都是每吨10元,那么这一周要付多少元装卸费?20.(1)下面是解方程20.30.410.50.3x x---=的主要过程:解:原方程化为203104153x x---=去分母,得3(20x﹣3)﹣5(10x﹣4)=15;去括号,得60x﹣9﹣50x+20=15;移项,得60x﹣50x=15+9﹣20;合并同类项,得10x=4(合并同类项法则),把未知数x的系数化为1,得x=0.4.请从长方形框中选择与方程变形对应的依据,并将依据的序号填在相应的横线上;(2)仿照上例解方程:当x取何值时,代数式0.10.2130.020.5x x-+-=.(不需要指出每步的依据)21.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简4A﹣6B;(2)当x+y=67,xy=﹣1,求4A﹣6B的值.22.观察下列图形与等式:根据图形与等式之间的规律,解答下列问题:(1)写出第⑦个等式:;写出第n个等式:;(用含有n的式子表示)(2)求出10+11+…+80的值.23.【阅读理解】根据合并同类项法则,得4x﹣2x+x=(4﹣2+1)x=3x;类似地,如果把(a+b)看成一个整体,那么4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b);这种解决问题的思想方法被称为“整体思想”,在多项式的化简与求值中,整体思想的应用极为广泛.【尝试应用】(1)把(a﹣b)2看成一个整体,合并4(a﹣b)2﹣6(a﹣b)2+8(a﹣b)2的结果是;(2)已知x2﹣2y=1,求2021x2﹣4042y+1的值;【拓展探索】(3)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.24.已知A=mx﹣x,B=﹣mx﹣3x+5m.(1)用含m,x的式子表示3A﹣2B;(2)若3A﹣2B的值与字母m的取值无关,求x的值;(3)利用(2)中的数学方法解决问题:经销公司计划购进甲、乙两种型号的口罩共30箱,甲型口罩每箱进价为700元,销售利润率为40%;乙型口罩每箱进价为500元,售价为每箱800元购进口罩后,该公司决定:每售出一箱乙型口罩,返还顾客现金a元,甲型口罩售价不变如果购进甲型口罩x箱,那么购进乙型口罩箱,当购进的30箱口罩全部售出后,所获利润为元(用含a,x的式子表示);若无论购进甲型口罩是多少箱,最终获利都相同,则a的值是.参考答案1.D【解析】【分析】根据正负数的意义,求解即可.【详解】解:由题意可得正数代表增长,则负数代表下降那么﹣80%表示下降80%故选:D【点睛】此题考查了正负数的意义,解题的关键是理解正负数的意义.2.A【解析】【分析】分别求出各数的绝对值,找出绝对值最小的即可得.【详解】解:因为0.40.4-=,0.60.6=,11=,22-=,所以在数轴上,离原点最近的是表示0.4-的点,故选:A .【点睛】本题考查了绝对值的意义、数轴,熟练掌握绝对值的意义是解题关键.3.C 【解析】【详解】解:因为近似数0.7070的最后一个数字0是在万分位上,所以近似数0.7070的精确度是精确到万分位,故选:C .【点睛】本题考查了近似数的精确度,熟记近似数的精确度的定义(精确度表示一个近似数与准确数的接近程度.一般的来说,一个近似数四舍五入到哪一位,就说这个数的精确度在哪一位)是解题关键.4.B 【解析】【分析】根据去括号的法则逐一对每个选项进行去括号,从而可得答案.【详解】解:(),a b c a b c -+=--故A 不符合题意,(),a b c a b c --=-+故B 符合题意,()(),a b c a b c -+-=--故C 不符合题意,(),b c a b c a a b c ---=--+=--故D 不符合题意,故选:.B 【点睛】本题考查的是去括号,掌握去括号的法则是解题的关键.5.D【解析】【分析】根据多项式的性质,对各个选项逐个分析,即可得到答案.【详解】解:根据题意,各项分别是3x3y,-4xy4,2x2y,-1,故选项A错误;多项式的次数是5次,故选项B错误;按x的升幂排列是-1-4xy4+2x2y+3x3y,故选项C错误;多项式3x3y﹣4xy4+2x2y﹣1,是个五次四项式,故选项D正确;故选:D.【点睛】本题考查了多项式的知识;解题的关键是熟练掌握多项式的性质,从而完成求解.6.A【解析】【分析】结合题意,根据代数式的性质,得书的总数;再根据题意,通过去括号、合并同类项运算,即可得到答案.【详解】∵每层摆8本,可摆x层,余下6本无处可摆x+本∴书的总数为:86∴如果每层摆12本,可摆(x﹣1)层,且最后一层少于12本,则最后一层摆放的本数是:()x x x x x+--=+-+=-+86121861212418⎡⎤⎣⎦本,即(18﹣4x)本故选:A.【点睛】本题考查了代数式、整式加减运算的知识;解题的关键是熟练掌握代数式、整式加减运算的性质,从而完成求解.7.B【解析】【分析】把方程1223x x x -+-=的左右两边同时乘6,进而即可得到答案.【详解】解:方程1223x x x -+-=去分母,正确的是:6x ﹣3(x ﹣1)=2(x+2).故选:B .【点睛】本题考查了解分式方程,掌握去分母是解题的关键.8.A 【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:()()100100a b a c +=+,()()1001000a b a c +-+=,()()1000a b c +-=,∴1000a +=或0b c -=,即:100a =-或b c =,A 选项中,若100a ≠-,则0b c -=正确;其他三个选项均不能得出,故选:A .【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.9.D 【解析】【分析】根据非负性求出a,b ,故可求解.【详解】∵|a -2|+(b +3)2=0,∴a-2=0,b+3=0解得a=2,b=-3∴a b =(-3)2=9故选D .【点睛】此题主要考查非负性的应用,解题的关键是熟知绝对值与乘方的性质及运算法则.10.A 【解析】【分析】设作横式无盖纸盒x 个,则竖式无盖纸盒为(20212)x -个,根据题意列出式子,根据x 为整数,求解即可.【详解】解:设作横式无盖纸盒x 个,则竖式无盖纸盒为(20212)x -个,依题意可得:34(20212)80845a x x x =+-=-,因为x 为正整数,所以5x 的个位数为0或5,a 的个位数为4或9,故选A ,【点睛】此题考查了列代数式,整式的加减运算,解题的关键是理解题意,正确列出代数式.11.9【解析】【分析】根据科学记数法一般表达形式的性质计算,即可得到答案.【详解】∵用科学记数法表示数据1412000000得1.412×10n ,∴9n =故答案为:9.【点睛】本题考查了科学记数法的知识,解题的关键是熟练掌握科学记数法的性质,从而完成求解.12.222x y -##222y x -+【解析】【分析】根据整式的加减运算法则即可得.【详解】解:22222222x y x y x y +-=-+,即这个多项式是222x y -,故答案为:222x y -.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题关键.13.24【解析】【分析】先移项后可得27n =,再整体代入后计算即可.【详解】解:因为216n-=,所以27n =,所以42447424n ⨯-=⨯-=.故答案为:24.【点睛】本题考查等式的性质,代数式求值.能正确运用等式的性质变形后整体代入是解题关键.14.62021140442x x -+=【解析】【分析】(1)根据第1、2、3、4个方程的解找出规律,由此即可得;(2)根据第1、2、3、4个方程,归纳类推出一般规律,由此即可得.【详解】解:(1)第1个方程的解是2x =,第2个方程的解是3x =,第3个方程的解是4x =,第4个方程的解是5x =,则第5个方程的解是6x =;(2)第1个:解是2x =的方程是1142x x -+=,即(21)1222x x --+=⨯,第2个:解是3x =的方程是2162x x -+=,即(31)1232x x --+=⨯,第3个:解是4x =的方程是3182x x -+=,即(41)1242x x --+=⨯,第4个:解是5x =的方程是41102x x -+=,即(51)1252x x --+=⨯,归纳类推得:解是2022x =的方程是(20221)1220222x x --+=⨯,即2021140442x x -+=;故答案为:6,2021140442x x -+=.【点睛】本题考查了一元一次方程的拓展,正确归纳类推出规律是解题关键.15.-1【解析】【分析】根据绝对值和偶次方根的非负性,得出x 、y 的值,代入2x y +中即可【详解】解:根据题意得:x-3=0,y+2=0所以x=3,y=-2则x+2y=3-4=-1故答案为:-1【点睛】本题考查了非负数的性质,掌握几个非负数的和等于0,每个非负数都为0这个性质是解题的关键16.2-【解析】【分析】根据有理数的乘方以及四则运算,求解即可.【详解】解:2111((0.4)23662-÷-+-⨯12536()3652=-⨯+-⨯1(1)=-+-2=-【点睛】此题考查了有理数的乘方以及四则运算,掌握有理数的有关运算法则是解题的关键.17.117x =【解析】【分析】利用相反数的性质列出方程,求出方程的解,即可得到x 的值.【详解】解:根据题意得:4x ﹣5+3x ﹣6=0,移项合并得:7x =11,解得:117x =.【点睛】本题主要考查了相反数的性质,解一元一次方程,根据若两个数互为相反数,则这两个数的何为零列出方程,熟练掌握运算法则是解题的关键.18.2a+5b【解析】【分析】根据周长公式,可得答案.【详解】解:由题意,得另一边的长a+b+2a+b=3a+2b ,第三边的长是a+b-(3a-b )=2b-2a .∴三角形的周长是a+b+3a+2b+2b-2a=2a+5b .【点睛】本题考查了整式的加减,掌握合并同类项是解题关键.19.(1)28+;(2)1860元.【解析】【分析】(1)利用6+减去其他六天的进出情况即可得;(2)利用这一周七天的进出情况的绝对值的和乘以10即可得.【详解】解:(1)[]6(26)(26)(42)(30)(25)(9)+-++-+++-+-+-,6(26264230259)=--+---,6(22)=--,28=(吨),答:星期五货品的进出数是28+;(2)(2626423028259)10++-+++-+++-+-⨯,(2626423028259)10=++++++⨯,18610=⨯,1860=(元),答:这一周要付1860元装卸费.【点睛】本题考查了有理数乘法与加减法的应用、绝对值,正确列出各运算式子是解题关键.20.(1)③、④、①、②;(2)5【解析】【分析】(1)根据求解过程以及长方形框中的内容,求解即可;(2)按照题中的求解过程,求解一元一次方程即可.【详解】解:(1)原方程化为203104153x x ---=去分母,得3(20x ﹣3)﹣5(10x ﹣4)=15,利用分数的基本性质,去括号,得60x ﹣9﹣50x+20=15,利用乘法对加法的分配律,移项,得60x ﹣50x =15+9﹣20,利用等式的基本性质,合并同类项,得10x =4(合并同类项法则),把未知数x 的系数化为1,得x =0.4,利用等式的基本性质,故答案为:③、④、①、②;(2)0.10.2130.020.5x x -+-=方程可化为:10201010325x x -+-=,去分母,得:510(22)3x x --+=,去括号,得:510223x x ---=,移项合并同类项得:315x =,系数化为1得,5x =,当x 取5时,代数式0.10.2130.020.5x x -+-=,【点睛】此题考查了一元一次方程的求解,解题的关键是掌握一元一次方程的求解过程.21.(1)241142x y xy +-;(2)34【解析】【分析】(1)结合题意,根据整式加减运算的性质,先去括号,再合并同类项,即可得到答案;(2)结合(1)的结论,根据代数式的性质计算,即可得到答案.【详解】解:(1)∵A =3x 2﹣x+2y ﹣4xy ,B =2x 2﹣3x ﹣y+xy∴46A B-()()224324623x x y xy x x y xy ---=+--+()22128161241866x x y xy x x y xy =+---+--22128161241866x x y xy x x y xy=+--+--+114224x y xy =+-;(2)46A B-114224x y xy=+-()1242x y xy=+-∵x+y =67,xy =﹣1∴46A B-()1242x y xy=+-()6142217=⨯-⨯-1222=+34=.【点睛】本题考查了整式加减运算、代数式的知识;解题的关键是熟练掌握整式减减运算、代数式的性质,从而完成求解.22.(1)2(123456)277+++++⨯+=,2(1231)2n n n ++++-⨯+= ;(2)3195.【解析】【分析】(1)根据前5个等式,归纳类推出一般规律,由此即可得;(2)求出第10个等式和第81个等式,分别可得123945++++= 和123803240++++= ,由此即可得.【详解】解:(1)第①个等式为21011⨯+=,第②个等式为21222⨯+=,第③个等式为2(12)233+⨯+=,第④个等式为2(123)244++⨯+=,第⑤个等式为2(1234)255+++⨯+=,归纳类推得:第n 个等式为2(1231)2n n n ++++-⨯+= ,则第⑦个等式为2(123456)277+++++⨯+=,故答案为:2(123456)277+++++⨯+=,2(1231)2n n n ++++-⨯+= ;(2)由(1)可知,第10个等式为2(1239)21010++++⨯+= ,则123945++++= ,第81个等式为2(12380)28181++++⨯+= ,则123803240++++= ,所以101180(12380)(1239)+++=++++-++++ ,324045=-,3195=.【点睛】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键.23.(1)26()a b -;(2)2022;(3)6.【解析】【分析】(1)根据合并同类项法则即可得;(2)将已知等式作为一个整体,代入求值即可得;(3)先去括号,再利用交换律和结合律,变成已知等式的形式,然后作为整体代入求值即可得.【详解】解:(1)原式22(468)()6()a b a b =-+-=-,故答案为:26()a b -;(2)221x y -= ,222021404212021(2)1x y x y =--++∴,202111=⨯+,2022=;(3)22a b -= ,25b c -=-,9c d -=,()(2)(2)22a c b d b c a c b d b c ∴-+---=-+--+,(2)(2)()a b b c c d =-+-+-,2(5)9=+-+,6=.【点睛】本题考查了合并同类项、整式加减中的化简求值,熟练掌握整体思想和整式的加减运算法则是解题关键.24.(1)5310mx x m +-;(2)2;(3)()30x -,20309000ax x a --+,20【解析】【分析】(1)将A =mx ﹣x ,B =﹣mx ﹣3x+5m 代入,再合并,即可求解;(2)根据3A ﹣2B 的值与字母m 的取值无关,可得到5100x -=,即可求解;(3)根据题意可得购进乙型口罩()30x -箱,然后由所获利润等于两种型号口罩利润之和,可求出所获利润,最后根据无论购进甲型口罩是多少箱,最终获利都相同,可得利润与x 的取值无关,即可求解.【详解】解:(1)()()323235A B mx x mx x m -=----+332610mx x mx x m=-++-5310mx x m =+-;(2)由(1)得:()-=+-=-+3253105103A B mx x m x m x ,∵3A ﹣2B 的值与字母m 的取值无关,∴5100x -=,解得:2x =;(3)∵购进甲型口罩x 箱,购进甲、乙两种型号的口罩共30箱,∴购进乙型口罩()30x -箱,∴购进的30箱口罩全部售出后,所获利润为()()()⨯+---=--+70040%8005003020309000x a x ax x a 元,∵无论购进甲型口罩是多少箱,最终获利都相同,∴利润与x 的取值无关,∵()2030900020309000ax x a a x a --+=--+∴200a -=,解得:20a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年七年级(上)期中考试试题
班级 姓名 学号
一、选择题(每题3分,共30分)
1. 以下关于有理数的分类正确的是 ( )
(A )正数和负数 (B )整数和分数 (C )正数和分数 (D )整数和负数
2. 下列各题中的数是准确数的是 ( )
(A )七年级有440名学生 (B )月球离地球的距离约为38万千米
(C )小明同学身高大约143cm (D )今天气温估计26℃
3. 两个有理数的商是正数,那么这两个有理数 ( )
(A )和为正 (B )差为正 (C )积为正 (D )不能确定
4. 计算:12)13
121(⨯-+-结果是 ( ) (A )-12 (B )-2 (C )-14 (D )-6
5. 一个数的绝对值等于4
3,那么这个数是 ( ) A. 43 B.43- C. 43或4
3- D.不能确定 6. 把-1-(-2)+(-3)写成去掉括号的形式,正确的是 ( )
+2-3 +2+3 C.-1-2-3 D. 1+2-3
7. 一个有理数的平方等于它自身,那么这个有理数是 ( )
A. 0
B.1
C. ±1
D. 1或0
8. 式子①x 23x =+; ② 2332<;③ 1y 34-;④3x 2
1=,其中属于方程 的是 ( )
(A )①和② (B )②和③ (C )③和④ (D )①和④
9. 方程x x -=-22的解是 ( )
(A )1=x (B )1-=x (C ) 0=x (D )2x =
10. 若关于x 的方程04n nx 1n =-+-是一元一次方程,则n 数值为 ( )
B. 1
C.3
二、填空题(每题3分,共30分)
11. 如果收入200元记作+200元,那么支出500元记作 ;
12. -2的相反数是 ,绝对值是 ,倒数是 ;
13. 在3)2(-中底数是 ,指数是 ;32-中底数是 ,指数是 。

14. 计算:(-12)×(-48)×27×0 = ;
15. 含有 的等式,叫做方程。

16. 判断积的符号(填“>”、“<”、或“=”):)40()6
11()76(-⨯-⨯- 0;
17. 近似数万精确到 位,有效数字是 ;
18. 用科学记数法表示下列各数:563000= ,-35000= ;
19. 数轴上点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是 ;
20. 列式:比x 的2倍小3的数是 。

三、解答题
21. (6分)在数轴上表示下列各数,并将这些数用“<”号连接起来。

5.2,2.3,5,43
,0),4(,2-----
22. 计算:(每题3分,共18分)
(1)(-21)+(-39);

2)()+()+ + ;
(3)()⎪⎭⎫
⎝⎛-⨯+⨯--⨯4125212543
25;
(4)2125.0)2(222÷⨯---;
(5)());34(52y y ++--
(6)74x 51x 2-++;
23. 利用等式性质解下列方程,并检验:(每题5分,共10分)
(1)51x 2=- (2)1x 2
52x 3+=-
24. (10分)某公路养护小组乘车沿南北方向公路巡视维护。

某天早晨从A 地出发,晚上
最后到达B 地,如果规定向北为正,向南为负,当天里程记录如下(单位:千米): .8,6,13,6,14,7,9,18--+--+-+
(1) 最后B 地在A 地何方,相距多少千米(相对这天的出发地A )
(2) 若汽车行驶每千米耗油a 升,这该天共耗油多少升
25. (10分)王老师带领学生乘汽车到农村某地去搞社会实践活动,每张汽车票50元,甲
车主说:乘我的车,八折优惠;乙车主说:乘我的车,学生九折,老师不买票.
(1)若设王老师带x 名学生去实践活动,请你分别写出两种乘坐方式的收费金额,并列出方程
(2)如果王老师带了10名学生去,你认为乘哪辆车更合算
29.(6分)某人计划骑车以每小时12千米的速度由A 地去B 地,这样便可在规定的时间到达B 地。

但他因事将计划的出发时间推迟了20分钟,便只好以每小时15千米的速度前进。

结果比规定的时间早4分钟到达B 地,求A 、 B 两地的距离(要求:列方程并求解)
2006年七年级(上)期中考试试题答案
一、选择题
1、B
2、A
3、C
4、C
5、C
6、A
7、D
8、D
9、D 10、A
二、填空题
11、-500米 12、2, 2, 2
1-
13、-2, 3, 2, 3; 14、0 15、未知数 16、 17、百, 4,0,8 18、51063.5⨯, 4
105.3⨯- 19、-1和5 20、32-χ
三、解答题
21、数轴(略) 5)4(5.24
3022.3<--<-<<<-<- 22、(1)-60 (2)
(3)25 (4)-6
(5)9y + (6)35
11-χ 23、(1)3=χ (2)6=χ
24(1)-5km ,即B 地在A 地正南方向5千处。

(2)(38+43)a=81a (升)
25、(1)x %9050)1x %(8050⨯=+⨯
(2)甲车更合算
26、解:设从A 地到B 地按照原来的速度需要x 分钟,根据题意得
()
80
x 16x 6015x 6012=-⨯=⨯解得。

相关文档
最新文档