年中考数学专题练习整式及其运算
2023年中考数学考点讲练专题4 整式及其运算

专题4 整式及其运算考点一:整式的相关概念1.(2022·四川攀枝花·中考真题)下列各式不是单项式的为( ) A .3B .aC .baD .212x y2.(2022·重庆大渡口·二模)下列各式中,不是..整式的是( ) A .1xB .x -yC .6xy D .4x3.(2022·江苏南京·模拟预测)下列说法正确的是( ) A . 3xy π的系数是3 B .3xy π的次数是3 C . 223xy -的系数是23-D .223xy -的次数是24.(2022·广西中考模拟预测)单项式﹣2x 2yz 3的系数、次数分别是( ) A .2,5B .﹣2,5C .2,6D .﹣2,65.(2022·湖南湘潭·中考真题)下列整式与2ab 为同类项的是( ) A .2a bB .22ab -C .abD .2ab c6.(2022·广东·中考真题)单项式3xy 的系数为___________.7.(2022·湖南·长沙市北雅中学模拟预测)若单项式+2-m n a b 与2523a b -合并后的结果仍为单项式,则n m 的值为_____.考点二:规律探索8.(2022·西藏·中考真题)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21829.(2022·内蒙古内蒙古·中考真题)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…根据其中的规律可得012022777+++的结果的个位数字是( )A .0B .1C .7D .810.(2022·山东济宁·中考真题)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是( )A .297B .301C .303D .40011.(2022·内蒙古鄂尔多斯·中考真题)按一定规律排列的数据依次为12,45,710,1017……按此规律排列,则第30个数是 _____.12.(2022·湖北恩施·中考真题)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. 13.(2022·江苏宿迁·中考真题)按规律排列的单项式:x ,3x -,5x ,7x -,9x ,…,则第20个单项式是_____.14.(2022·黑龙江大庆·中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.考点三:整式的运算15.(2022·山东淄博·中考真题)计算3262(2)3a b a b --的结果是( ) A .﹣7a 6b 2B .﹣5a 6b 2C .a 6b 2D .7a 6b 216.(2022·江苏镇江·中考真题)下列运算中,结果正确的是( ) A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =17.(2022·四川资阳·中考真题)下列计算正确的是( ) A .235a b ab +=B .222()a b a b +=+C .23a a a ⨯=D .()325a a =18.(2022·江苏泰州·中考真题)下列计算正确的是( ) A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=-19.(2022·青海·中考真题)下列运算正确的是( ) A .235347x x x +=B .()222x y x y +=+C .()()2232394x x x +-=-D .()224212xy xy xy y +=+20.(2022·江苏常州·中考真题)计算:42÷=m m _______.21.(2022·青海西宁·中考真题)()2332x xy ⋅-=_________22.(2022·内蒙古包头·中考真题)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.23.(2022·广西·中考真题)先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==.24.(2022·四川南充·中考真题)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.答案与解析考点一:整式的相关概念1.(2022·四川攀枝花·中考真题)下列各式不是单项式的为( ) A .3 B .aC .b aD .212x y2.(2022·重庆大渡口·二模)下列各式中,不是..整式的是() A .1xB .x -yC .6xy D .4x3.(2022·江苏南京·模拟预测)下列说法正确的是( ) A . 3xy π的系数是3B .3xy π的次数是3C . 223xy -的系数是23-D .223xy -的次数是24.(2022·广西·富川瑶族自治县教学研究室模拟预测)单项式﹣2x 2yz 3的系数、次数分别是( ) A .2,5 B .﹣2,5C .2,6D .﹣2,65.(2022·湖南湘潭·中考真题)下列整式与2ab 为同类项的是( ) A .2a b B .22ab -C .abD .2ab c【答案】B【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a 的指数是1,b 的指数是2. A 、a 的指数是2,b 的指数是1,与2ab 不是同类项,故选项不符合题意; B 、a 的指数是1,b 的指数是2,与2ab 是同类项,故选项符合题意; C 、a 的指数是1,b 的指数是1,与2ab 不是同类项,故选项不符合题意;D 、a 的指数是1,b 的指数是2,c 的指数是1,与2ab 不是同类项,故选项不符合题意. 故选:B .【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.6.(2022·广东·中考真题)单项式3xy 的系数为___________. 【答案】3【分析】单项式中数字因数叫做单项式的系数,从而可得出答案. 【详解】3xy 的系数是3, 故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义.7.(2022·湖南·长沙市北雅中学模拟预测)若单项式+2-m n a b 与2523a b -合并后的结果仍为单项式,则n m 的值为_____.8.(2022·西藏·中考真题)按一定规律排列的一组数据:12,35,12,717-,926,1137-,….则按此规律排列的第10个数是( ) A .19101-B .21101C .1982-D .21829.(2022·内蒙古内蒙古·中考真题)观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…根据其中的规律可得012022777+++的结果的个位数字是( )A .0B .1C .7D .8【答案】C【分析】观察等式,发现尾数分别为:1,7,9,3,1,7,9,3⋯每4个数一组进行循环,所以202345053÷=⋯,进而可得012022777++⋯+的结果的个位数字.【详解】解:观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,⋯,发现尾数分别为: 1,7,9,3,1,7,⋯,所以和的个位数字依次以1,8,7,0循环出现,(20221)45053+÷=⋯⋯,每4个数一组进行循环, 所以202345053÷=⋯⋯, 而179320+++=,5052017910117⨯+++=,所以012022777++⋯+的结果的个位数字是7. 故选:C .【点睛】本题考查了尾数特征、有理数的乘方,解题的关键是根据题意寻找规律.10.(2022·山东济宁·中考真题)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.40011.(2022·内蒙古鄂尔多斯·中考真题)按一定规律排列的数据依次为12,45,710,1017……按此规律排列,则第30个数是_____.12.(2022·湖北恩施·中考真题)观察下列一组数:2,12,27,…,它们按一定规律排列,第n 个数记为n a ,且满足21112n n n a a a +++=.则4a =________,2022a =________. ,13.(2022·江苏宿迁·中考真题)按规律排列的单项式:x ,3x -,5x ,7x -,9x ,…,则第20个单项式是_____. 【答案】39x【分析】观察一列单项式发现偶数个单项式的系数为:1,-奇数个单项式的系数为:1,而单项式的指数是奇数,从而可得答案.【详解】解:x ,3x -,5x ,7x -,9x ,…,由偶数个单项式的系数为:1,- 所以第20个单项式的系数为1,- 第1个指数为:211, 第2个指数为:221, 第3个指数为:231,······指数为220139,所以第20个单项式是:39.x故答案为:39x【点睛】本题考查的是单项式的系数与次数的含义,数字的规律探究,掌握“从具体到一般的探究方法”是解本题的关键.14.(2022·黑龙江大庆·中考真题)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.15.(2022·山东淄博·中考真题)计算3262--的结果是()a b a b(2)3A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b2【答案】C【分析】先根据积的乘方法则计算,再合并同类项.【详解】解:原式626262=-=,43a b a b a b故选:C .【点睛】本题主要考查了积的乘方,合并同类项,解题的关键是掌握相应的运算法则.16.(2022·江苏镇江·中考真题)下列运算中,结果正确的是( )A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a = 【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.【详解】222325a a a +=,故A 计算错误,不符合题意; 3332a a a -=-,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点睛】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.17.(2022·四川资阳·中考真题)下列计算正确的是( )A .235a b ab +=B .222()a b a b +=+C .23a a a ⨯=D .()325a a =18.(2022·江苏泰州·中考真题)下列计算正确的是( )A .325ab ab ab +=B .22523y y -=C .277a a a +=D .2222m n mn mn -=- 【答案】A【分析】运用合并同类项的法则∶1.合并同类项后,所得项的系数是合并前各同类项的系数之和,且字母连同它的指数不变.字母不变,系数相加减.2.同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.即可得出答案.【详解】解:A 、325ab ab ab +=,故选项正确,符合题意;B 、222523y y y -=,故选项错误,不符合题意;C 、78a a a +=,故选项错误,不符合题意;D 、222m n mn 和不是同类项,不能合并,故选项错误,不符合题意;故选:A .【点睛】本题考查了合并同类项,解题的关键是知道如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,还要掌握合并同类项的运算法则.19.(2022·青海·中考真题)下列运算正确的是( )A .235347x x x +=B .()222x y x y +=+ C .()()2232394x x x +-=- D .()224212xy xy xy y +=+20.(2022·江苏常州·中考真题)计算:42÷=m m _______.【答案】2m【分析】根据同底数幂的除法运算法则即可求出.【详解】解:422m m m ÷=.故答案为:2m .【点睛】本题主要考查同底数幂的除法,掌握同底数幂的除法法则是解题的关键.21.(2022·青海西宁·中考真题)()2332x xy ⋅-=_________ 【答案】336x y -【分析】根据积的乘方法则计算即可.【详解】解:()2332x xy ⋅-=336x y -, 故答案为:336x y -.【点睛】本题考查了积的乘方,解题的关键是掌握运算法则.22.(2022·内蒙古包头·中考真题)若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________.23.(2022·广西·中考真题)先化简,再求值22x y x y xy xy x +-+-÷,其中1,2x y ==.24.(2022·四川南充·中考真题)先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.。
专题02整式及其运算(原卷版)

专题02 整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( )A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a ÷= 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=( )A .5B .1C .1-D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 625.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a = 29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( ) A .6 B .5- C .3- D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______. 49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题。
中考数学专项训练-代数式及整式运算 (2)

中考数学专项训练-代数式及整式运算整式运算1.(中考)下列运算正确的是( B ) A .2a 6-3a 6=a 6 B .a 7÷a 5=a 2C .a 2·a 3=a 6D .(a 2)3=a 52.(中考)下列运算正确的是( D )A .a 6÷a 2=a 3B .(a 2)3=a 5C .a 2·a 3=a 6D .3a 2-2a 2=a 2 3.(中考)下列运算正确的是( D )A .4a -a =3B .2(2a -b)=4a -bC .(a +b)2=a 2+b 2D .(a +2)(a -2)=a 2-4 4.(中考)计算3x 3·2x 2的结果是( B )A .5x 5B .6x 5C .6x 6D .6x 95.(中考)若a +b =22,ab =2,则a 2+b 2的值为( B )A .6B .4C .3 2D .2 36.(中考)计算⎝ ⎛⎭⎪⎫-12ab 23的结果是( D )A .-32a 3b 6B .-12a 3b 5C .-18a 3b 5D .-18a 3b 67.(中考)如果单项式-xy b +1与x a -2y 3是同类项,那么(a -b)2 015=__1__.用整式概括变化规律8.(中考)按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是__299201__. 9.(中考)字母a ,b ,c ,d 各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,下表是三种组合与连接的对应表.由此可推断图形“—,△)“的连接方式为__a⊕c __.组合连接a⊕bb⊕dd⊕c10.(中考)按一定规律排列的一列数依次为:45,12,411,27,…,按此规律,这列数中的第10个数与第16个数的积是__1100__.11.(中考)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2 014次后,骰子朝下一面的点数是__3__.12.(十一中二模)用同样大小的小圆按如图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需要3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆__12n(n+1)__个.(用含n的代数式表示),中考考点清单)代数式和整式的有关概念1.代数式:用运算符号(加、减、乘、除、乘方、开方)把__数__或表示__数的字母__连接而成的式子叫做代数式.2.代数式的值:用__数值__代替代数式里的字母,按照代数式里的运算关系,计算后所得的__结果__叫做代数式的值.3.代数式的分类代数式⎩⎪⎨⎪⎧有理式⎩⎪⎨⎪⎧整式⎩⎨⎧ 单项式 多项式分式无理式【温馨提示】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)注意书写规则:a×b通常写作a·b或ab;1÷a通常写作1a;数字通常写在字母前面,如a×3通常写作3a;带分数一般写成假分数,如115a通常写作65a.整式的相关概念4.单项式概念,由数与字母的__积__组成的代数式叫做单项式(单独的一个数或一个__字母__也是单项式).系数,单项式中的__数字__因数叫做这个单项式的系数.次数,单项式中的所有字母__指数的和__叫做这个单项式的次数.续表多项式概念,几个单项式的__和__叫做多项式.项,多项式中的每个单项式叫做多项式的项.次数,一个多项式中,__最高次__的项的次数叫做这个多项式的次数.整式,单项式与__多项式__统称为整式.同类项,所含字母__相同__并且相同字母的指数也__分别相同__的项叫做同类项.所有的常数项都是__同类__项.整式的运算5.类别,法则整式加减,(1)去括号;(2)合并__同类项__幂的运算,同底数幂相乘,a m·a n=__a m+n__(m,n都是整数)幂的乘方,(a m)n=__a mn__(m,n都是整数)积的乘方,(ab)n=__a n b n__(n是整数)同底数幂相除,a m÷a n=__a m-n__(a≠0,m,n都是整数)整式的乘法,单项式乘以多项式,m(a+b)=__am+bm__多项式乘以多项式,(a+b)(m+n)=__am+an+bm+bn__乘法公式,平方差公式,(a+b)(a-b)=__a2-b2__完全平方公式,(a±b)2=__a2±2ab+b2__【方法点拨】(1)在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为0;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式).合并同类项的关键:正确判断同类项.(2)同底数幂的除法与同底数幂的乘法互为逆运算,可用同底数幂的乘法检验同底数幂的除法是否正确.(3)遇到幂的乘方时,需要注意:当括号内有“-”号时,(-a m )n =⎩⎨⎧-a mn(n 为奇数), a mn (n 为偶数).求代数式值的方法主要有两种:一种是直接代入法;另一种是整体代入法.对于整体代入求值的,要注意从整体上分析已知代数式与欲求代数式之间结构的异同,从整体上把握解题思路,寻求解题的方法.,中考重难点突破)列代数式【例1】(咸宁中考)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg.设3月份鸡的价格为m元/kg,则( )A.m=24(1-a%-b%) B.m=24(1-a%)b%C.m=24-a%-b% D.m=24(1-a%)(1-b%)【解析】本题主要考查代数式的列法,主要是有关下降的百分率问题.【答案】D【例2】(邵阳中考)如图所示,边长为a的正方形中阴影部分的面积为( )A .a 2-π⎝ ⎛⎭⎪⎫a 22B .a 2-πa 2C .a 2-πaD .a 2-2πa【解析】阴影部分面积为正方形面积减去圆的面积. 【答案】A1.(岳麓校级一模)x 的2倍与y 的和的平方用代数式表示为( A )A .(2x +y)2B .2x +y 2C .2x 2+y 2D .2(x +y)2代数式求值【例3】(甘肃中考)若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( )A.-6 B.6 C.18 D.30【解析】本题应先化简,再利用整体思想进行代换.【答案】B2.(重庆中考)若x=-3,y=1,则代数式2x-3y+1的值为( B)A.-10 B.-8 C.4 D.103.已知-a+2b+5=0,则2a-4b-3的值是( A)A.7 B.8 C.9 D.104.如图所示的运算程序中,若开始输入的x值为15,则第1次输出的结果为18,第2次输出的结果为9,……,第2 017次输出的结果为( A)A.3 B.4 C.6 D.95.(岱岳中考模拟)若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则代表式a2 015+2 016b+c2 017的值为( D)A.2 015 B.2 016 C.2 017 D.0整式的概念及运算【例4】(常德中考)若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.5【解析】根据同类项的定义可知a=1,b=3,故a+b=4.【答案】C6.(雁塔中考)在代数式x 2+5,-1,x 2-3x +2,π,x 2+1x ,x +13中,整式有( C ) A .3个 B .4个 C .5个 D .6个7.(裕安中考)已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( A ) A .-5x -1 B .0C .2x +3D .8x -78.(海曙中考)已知m -n =100,x +y =-1,则代数式(n +x)-(m -y)的值是( D ) A .99 B .101 C .-99 D .-1019.(长春中考)先化简,再求值:2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1. 解:原式=2x 2-[-x 2+2xy -2y 2]-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2,当x =12,y =-1时,原式=-74. 10.(东营中考)已知多项式A =3a 2-6ab +b 2,B =-2a 2+3ab -5b 2,当a =1,b =-1时,试求A +2B 的值.解:A +2B =3a 2-6ab +b 2+2(-2a 2+3ab -5b 2)=3a 2-6ab +b 2-4a 2+6ab -10b 2=-a 2-9b 2,当a =1,b =-1 时原式=-12-9×(-1)2=-10.11.(鸡西中考)已知,当a =1,b =3时,求多项式4a 2b 2-a 2b -3-2(2a 2b 2-a 2b -b 2)-(a 2b -3b 2)的值.张强做题时把条件a =1错抄成了a =-1,而刘明没抄错题,但他们计算出来的结果都是一样的,你知道这是怎么回事吗?说明理由,同时计算出正确答案.解:原式=4a 2b 2-a 2b -3-4a 2b 2+2a 2b +2b 2-a 2b +3b 2=5b 2-3,所以多项式与a 的值无关,当b =3时,∴原式=5×32-3=42.。
中考数学模拟题《整式及其运算》专项测试卷(附答案)

中考数学模拟题《整式及其运算》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a = D .623a a a ÷= 9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( )A .52αB .56aC .58aD .68a10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定12.(2023·江苏徐州·统考中考真题)下列运算正确的是( )A .236a a a ⋅=B .422a a a ÷=C .()235a a =D .224235a a a +=13.(2023·辽宁·统考中考真题)下列运算正确的是( )A .2323a a a +=B .743a a a ÷=C .()2224a a -=-D .()2236b b = 14.(2023·湖北鄂州·统考中考真题)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .235a a a ÷=D .()325a a = 15.(2023·山东·统考中考真题)下列运算正确的是( )A .2242a a a +=B .()32639a a -=-C .23544a a a ⋅=D .623a a a ÷=16.(2023·湖北十堰·统考中考真题)下列计算正确的是( )A =B .33(2)8a a -=-C .842a a a ÷=D .22(1)1a a -=-17.(2023·山东日照·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()32628m m -=-C .222()x y x y +=+D .232235ab a b a b +=18.(2023·江苏无锡·统考中考真题)下列运算正确的是( )A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是( )A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是( )A .3332a a a ⋅=B .222853a a aC .824a a a ÷=D .()32639a a -=- 21.(2023·山东东营·统考中考真题)下列运算结果正确的是( )A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x +-=- 22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》 书中记载的图表给出了()n a b +展开式的系数规律.1 0()1a b +=1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b当代数式432125410881x x x x -+-+的值为1时,则x 的值为( )A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为( )A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位 一光年是指光在一年内走过的路程 约等于129.4610km ⨯.下列正确的是( )A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数25.(2023·湖北宜昌·统考中考真题)在日历上 某些数满足一定的规律.如图是某年8月份的日历 任意选择其中所示的含4个数字的方框部分 设右上角的数字为a ,则下列叙述中正确的是( ).A .左上角的数字为1a +B .左下角的数字为7a +C .右下角的数字为8a +D .方框中4个位置的数相加 结果是4的倍数26.(2023·湖北恩施·统考中考真题)下列运算正确的是( )A .()2211m m -=-B .()3326m m =C .734m m m ÷=D .257m m m += 27.(2023·黑龙江牡丹江·统考中考真题)下列计算正确的是( )A .248a a a ⋅=B .3332a a a -=C .()3236ab a b =D .()222a b a b +=+ 28.(2023·黑龙江牡丹江·统考中考真题)观察下面两行数:15111929⋯,,,,,1361015⋯,,,,,取每行数的第7个数 计算这两个数的和是( )A .92B .87C .83D .78二 填空题29.(2023·四川雅安·统考中考真题)若2a b += 1a b -=,则22a b -的值为 .30.(2023·四川德阳·统考中考真题)在初中数学文化节游园活动中 被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛 活动规则是:在九宫格中 除了已经填写的三个数之外的每一个方格中 填入一个数 使每一横行 每一竖列以及两条对角线上的3个数之和分别相等 且均为m .王小明抽取到的题目如图所示 他运用初中所学的数学知识 很快就完成了这个游戏,则m = .167 4 31.(2023·四川广安·统考中考真题)定义一种新运算:对于两个非零实数a b 、 x y a b a b=+※.若()221-=※,则()33-※的值是 . 32.(2023·四川凉山·统考中考真题)已知2210x x --=,则3231052027x x x -++的值等于 .三 解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲 乙 丙三种矩形卡片各若干张 卡片的边长如图1所示(1)a .某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙) 如图2和图3 其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S 当2a =时 求12S S +的值(2)比较1S 与2S 的大小 并说明理由.35.(2023·浙江金华·统考中考真题)已知13x = 求()()()212134x x x x +-+-的值.36.(2023·湖南·统考中考真题)先化简 再求值:()()()222233a a a a a -+-++ 其中13a =-.37.(2023·浙江嘉兴·统考中考真题)观察下面的等式:222222223181,5382,7583,9784,-=⨯-=⨯-=⨯-=⨯(1)写出221917-的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示 n 为正整数)(3)请运用有关知识 推理说明这个结论是正确的.参考答案一 单选题1.(2023·宁夏·统考中考真题)下列计算正确的是( )A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b = 【答案】D【分析】根据合并同类项 同底数幂的除法 完全平方公式 积的乘方 逐一计算判断即可.【详解】解:A 532a a a -= 故选项A 错误B 633a a a ÷= 故选项B 错误C ()2222a b a ab b -=-+ 故选项C 错误D ()3263a b a b = 故选项D 正确故选D .【点睛】本题考查整式的运算.熟练掌握合并同类项 同底数幂的除法 完全平方公式 积的乘方法则 是解题的关键.2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=( )A .yB .1y +C .3y +D .3y 【答案】D【分析】利用同底数幂的乘法的逆运算可得1333x x +=⨯ 再代入计算即可.【详解】解:∵3x y =∵13333x x y +=⨯=故选D【点睛】本题考查的是同底数幂的乘法运算的逆运算 熟记“m n m n a a a +=”是解本题的关键.3.(2023·四川德阳·统考中考真题)在“点燃我的梦想 数学皆有可衡”数学创新设计活动中 “智多星”小强设计了一个数学探究活动:对依次排列的两个整式m n 按如下规律进行操作:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后…其操作规则为:每次操作增加的项 都是用上一次操作得到的最末项减去其前一项的差 小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m n +B .mC .n m -D .2n 【答案】C【分析】先逐步分析前面5次操作 可得整式串每四次一循环 再求解第四次操作后所有的整式之和为:0m n n m m n n m ++----+= 结合202345053÷=⋅⋅⋅ 从而可得答案.【详解】解:第1次操作后得到整式串m n n m -第2次操作后得到整式串m n n m - m -第3次操作后得到整式串m n n m - m - n -第4次操作后得到整式串m n n m - m - n -n m -+ 第5次操作后得到整式串m n n m - m - n - n m -+ m⋅⋅⋅⋅⋅⋅归纳可得:以上整式串每四次一循环第四次操作后所有的整式之和为:0m n n m m n n m ++----+=∵202345053÷=⋅⋅⋅∵第2023次操作后得到的整式中各项之和与第3次操作后得到整式串之和相等∵这个和为m n n m m n n m ++---=-故选C【点睛】本题考查的是整式的加减运算 代数式的规律探究 掌握探究的方法 并总结概括规律并灵活运用是解本题的关键.4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是( )A .1-B .5-C .5D .3-【答案】A【分析】把所求代数式2243m m +-变形为22(2)3m m +- 然后把条件整体代入求值即可.【详解】解:∵2210m m +-=∵221m m +=∵2243m m +-22(2)3m m =+- 213=⨯-1=-.故选:A .【点睛】此题主要考查了代数式求值以及“整体代入”思想 解题的关键是把代数式2243m m +-变形为22(2)3m m +-.5.(2023·四川雅安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .()325a a =C .248a a a ⋅=D .32a a a ÷=【答案】D【分析】根据整式的加减 幂的乘方 同底数幂的乘除法逐项判断即可.【详解】A 2a 与3b 不是同类项 不可合并 此项运算错误B ()23236a a a ⨯== 此项运算错误 C 24246a a a a +⋅== 此项运算错误D 31312a a a a -÷== 此项运算正确故选:D .【点睛】本题考查了整式的加减 幂的乘方 同底数幂的乘除法 熟记各运算法则是解题关键. 6.(2023·湖南·统考中考真题)下列计算正确的是( )A .235x x xB .()336x x =C .()211x x x +=+D .()222141a a -=- 【答案】A【分析】根据同底数幂的乘法与幂的乘方 完全平方公式 整式的乘法对每个式子一一判断即可.【详解】解:A 235x x x 本选项符合题意B ()339x x = 本选项不符合题意 C ()21x x x x +=+ 本选项不符合题意D ()2221441a a a -=-+ 本选项不符合题意故选:A .【点睛】此题主要考查了整式的混合运算 正确掌握相关运算法则是解题关键.7.(2023·山东泰安·统考中考真题)下列运算正确的是( )A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a ⋅-=-【答案】D【分析】A 不能合并 本选项错误 B 利用完全平方公式展开得到结果 即可作出判断 C 和D 利用积的乘方及幂的乘方运算法则计算得到结果 即可作出判断.【详解】解:2a 和3b 不是同类项 不能合并 故A 选项错误 不符合题意222()2a b a ab b -=-+ 故B 选项错误 不符合题意()3236ab a b = 故C 选项错误 不符合题意 ()3253412a a a ⋅-=- 故D 选项正确 符合题意故选:D .【点睛】此题考查了完全平方公式 合并同类项 同底数幂的除法 积的乘方与幂的乘方 熟练掌握完全平方公式是解本题的关键.8.(2023·吉林长春·统考中考真题)下列运算正确的是( )A .32a a a -=B .23a a a ⋅=C .()325a a =D .623a a a ÷=【答案】B【分析】根据同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 逐项分析判断即可求解.【详解】A. 3a 与2a 不能合并 故该选项不正确 不符合题意B. 23a a a ⋅= 故该选项正确 符合题意C. ()326a a = 故该选项不正确 不符合题意D. 624a a a ÷= 故该选项不正确 不符合题意故选:B .【点睛】本题考查了同底数幂的乘法 同底数幂的除法 幂的乘方 合并同类项 熟练掌握以上运算法则是解题的关键.9.(2023·湖北武汉·统考中考真题)计算()322a 的结果是( ) A .52αB .56aC .58aD .68a【答案】D 【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:()()332326228a a a == 故选:D .【点睛】本题考查积的乘方与幂的乘方 熟练掌握积的乘方与幂的乘方运算法则是解题的关键. 10.(2023·黑龙江绥化·统考中考真题)下列计算中 结果正确的是( )A .333()pq p q -=B .3228x x x x x ⋅+⋅=C 5=±D .()326a a = 【答案】D【分析】根据积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 进行计算即可求解.【详解】解:A. 333()pq p q =-- 故该选项不正确 不符合题意B. 43222x x x x x ⋅+⋅= 故该选项不正确 不符合题意C. 5= 故该选项不正确 不符合题意D. ()326a a = 故该选项正确 符合题意故选:D .【点睛】本题考查了积的乘方与幂的乘方运算 同底数幂的乘法 合并同类项 算术平方根 熟练掌握以上运算法则是解题的关键.11.(2023·山东日照·统考中考真题)已知直角三角形的三边,,a b c 满足c a b >> 分别以,,a b c 为边作三个正方形 把两个较小的正方形放置在最大正方形内 如图 设三个正方形无重叠部分的面积为1S 均重叠部分的面积为2S ,则( )A .12S S >B .12S S <C .12S SD .12,S S 大小无法确定 【答案】C【分析】根据题意 由勾股定理可得222+=a b c 易得222c a b -= 然后用,,a b c 分别表示1S 和2S 即可获得答案.【详解】解:如下图∵,,a b c 为直角三角形的三边 且c a b >>。
初三中考数学复习 整式及其运算 专项复习训练 含答案

初三中考数学复习整式及其运算专项复习训练含答案2019 初三中考数学复习 整式及其运算专项复习训练1.已知x +y =3,xy =2,则x 2+y 2的值为( C )A .3B .4C .5D .62. 下列计算正确的是( B ) A .x 2+x 2=x 4 B .2x 3-x 3=x 3 C .x 2·x 3=x 6 D .(x 2)3=x 53.若x =-13,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2 D .64.下列各式的变形中,正确的是( A )A .(-x -y)(-x +y)=x 2-y 2B.1x -x =1-x x C .x 2-4x +3=(x -2)2+1 D .x ÷(x 2+x)=1x +1 5.由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m 元/千克,则( D )A .m =24(1-a%-b%)B .m =24(1-a%)b%C .m =24-a%-b%D .m =24(1-a%)(1-b%)6. 若单项式6x 2y a +b 与-12x a -b y 4是同类项,则a ,b 的值分别为( A ) A .a =3,b =1 B .a =-3,b =1C .a =3,b =-1D .a =3,b =-17.正整数x ,y 满足(2x -5)(2y -5)=25,则x +y 等于( A )A .18或10B .18C .10D .268. 定义运算:a ⊗b =a(1-b).下面给出了关于这种运算的几种结论:①2⊗(-(4)3a(a2+2a+1)-2(a+1)2.解:原式=3a3+6a2+3a-2a2-4a-2=3a3+4a2-a-2.17.先化简,再求值:4x·x+(2x-1)(1-2x),其中x=1 40;解:4x·x+(2x-1)(1-2x)=4x2+(2x-4x2-1+2x)=4x2+4x-4x2-1=4x-1,当x=140时,原式=4×140-1=-910.18. 先化简,再求值:(a+b)(a-b)+(a+b)2,其中a=-1,b=12 .解:原式=2a2+2ab,当a=-1,b=12时,原式=1.19.已知非零实数a,b满足a+b=3,1a+1b=32,求代数式a2b+ab2的值.解:∵1a+1b=a+bab=32,a+b=3,∴ab=2.∴a2b+ab2=ab(a+b)=2×3=6.20.发现任意五个连续整数的平方和是5的倍数.验证(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:验证(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个为n,则其余4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10.∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数.∴五个连续整数的平方和是5的倍数.延伸设三个连续整数的中间一个为n,则其余的两个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2.∵n 是整数,∴n2是整数.∴任意三个连续整数的平方和被3除的余数是2.。
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)

2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)知识回顾1. 单项式乘单项式:系数相乘得新的系数,再把同底数幂相乘。
对应只在其中一个因式存在的字母,连同它的指数一起作为积的一个因式。
2. 单项式乘多项式:利用单项式去乘多项式的每一项,得到单项式乘单项式,再按照单项式乘单项式进行计算,把得到的结果相加。
()ac ab c b a +=+注意:多项式的每一项都包含前面的符号。
3. 多项式乘多项式:利用前一个多项式的每一项乘后一个多项式的每一项,得到单项式乘单项式,再按照单项式还曾单项式进行计算,把得到的结果相加。
()()bd bc ad ac d c b a +++=++ 4. 单项式除以单项式:系数相除得到新的系数,再把同底数幂相除。
对于只在被除式里面存在的字母,连同它的指数一起作为商的一个因式。
5. 多项式除以单项式:利用多项式的每一项除以单项式,得到单项式除以单项式,再按照单项式除以单项式进行计算,再把多得到的结果相加。
6. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
1、(2022•黔西南州)计算(﹣3x )2•2x 正确的是( ) A .6x 3B .12x 3C .18x 3D .﹣12x 3【分析】先算积的乘方,再算单项式乘单项式即可. 【解答】解:(﹣3x )2•2x =9x 2•2x =18x 3.故选:C.2、(2022•常德)计算x4•4x3的结果是()A.x B.4x C.4x7D.x11【分析】根据同底数幂的乘法运算法则进行计算便可.【解答】解:原式=4•x4+3=4x7,故选:C.3、(2022•陕西)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y3【分析】直接利用单项式乘单项式计算,进而得出答案.【解答】解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.4、(2022•温州)化简(﹣a)3•(﹣b)的结果是()A.﹣3ab B.3ab C.﹣a3b D.a3b【分析】先化简乘方,再根据单项式乘单项式的法则计算即可.【解答】解:原式=﹣a3•(﹣b)=a3b.故选:D.5、(2022•聊城)下列运算正确的是()A.(﹣3xy)2=3x2y2B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1D.(﹣a3)4÷(﹣a4)3=﹣1【分析】A、根据积的乘方与幂的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;D、根据积的乘方与幂的乘方、同底数幂的除法法则计算即可.【解答】解:A、原式=9x2y2,不合题意;B、原式=7x2,不合题意;C、原式=3t3﹣t2+t,不合题意;D、原式=﹣1,符合题意;故选:D.6、(2022•台湾)计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x【分析】利用多项式除以单项式的法则进行计算,即可得出答案.【解答】解:(6x2+4x)÷2x2=3...4x,∴余式为4x,故选:D.7、(2022•上海)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.8、(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【分析】先根据平方差公式进行计算,求出x2﹣2x=5,再变形,最后代入求出答案即可.【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.9、(2022•广元)下列运算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.3y•2x2y=6x2y2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据合并同类项判断A选项;根据幂的乘方与积的乘方判断B选项;根据单项式乘单项式判断C选项;根据平方差公式判断D选项.【解答】解:A选项,x2与x不是同类项,不能合并,故该选项不符合题意;B选项,原式=9x2,故该选项不符合题意;C选项,原式=6x2y2,故该选项符合题意;D选项,原式=x2﹣(2y)2=x2﹣4y2,故该选项不符合题意;故选:C.10、(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.【分析】观察已知和所求可知,4m2﹣n2=(2m+n)(2m﹣n),将代数式的值代入即可得出结论.【解答】解:∵2m+n=3,2m﹣n=1,∴4m2﹣n2=(2m+n)(2m﹣n)=3×1=3.故答案为:3.11、(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.【分析】根据平方差公式将a2﹣b2转化为(a+b)(a﹣b),再代入计算即可.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.12、(2022•资阳)下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a5【分析】根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则即可求出答案.【解答】解:A.2a与3b不是同类项,所以不能合并,故A不符合题意B.(a+b)2=a2+2ab+b2,故B不符合题意C.a2×a=a3,故C符合题意D.(a2)3=a6,故D不符合题意.故选:C.13、(2022•枣庄)下列运算正确的是()A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b2【分析】根据合并同类项法则,积的乘方、幂的乘方法则及单项式除法法则、完全平方公式逐项判断.【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;B、a3÷a2=a,故B正确,符合题意;C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;故选:B.14、(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【分析】利用完全平方公式计算即可.【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.15、(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.【分析】根据完全平方公式得出m和n的值即可得出结论.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.16、(2022•滨州)若m+n=10,m n=5,则m2+n2的值为.【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.17、(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.【分析】已知两式左边利用完全平方公式展开,相减即可求出xy的值.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:418、(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【分析】左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,根据面积相等即可得出答案.【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.19、(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【分析】去括号后合并同类项即可得出结论.【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.本课结束。
中考数学专题复习题:整式及其加减

中考数学专题复习题:整式及其加减一、单项选择题(共10小题)1.单项式32xy -的系数是()A .3B .4C .2-D .22.下列代数式的书写符合规范的是()A .112a B .a 2÷5C .ab 6D .3b 3.多项式222a b ab a --的项数及次数分别是()A .3,3B .3,2C .2,3D .2,24.关于字母x y ,的多项式22338x kxy y xy --+-化简后不含xy 项,则k 为()A .0B .13-C .13D .35.若25a 4b n 与-27a m b 3是同类项,则m 、n 的取值为()A .m =2,n =3B .m =4,n =2C .m =3,n =3D .m =4,n =36.下面的说法中,正确的是()A .x +3是多项式B .(-2)3中底数是2C .335ab 的系数是3D .单项式-ab 2的次数是2次7.下列代数式中,符合书写规则的是()A .112xB .x ÷yC .m ×2D .3mn 8.小明在计算一个二项式的平方时,得到的正确结果是4x 2+12xy +■,但最后一项不慎被污染了,这一项应是()A .3y 2B .6y 2C .9y 2D .±9y 29.已知一个多项式与322853x x x -+-的和等于3221452x x x -+-,则这个多项式一定是()A .32461x x ++B .261x +C .261x -+D .265x --10.在多项式()a b c d --+-(其中a b c d >>>)中,对每个字母及其左边的符号(不包括括号外的符号)称为一个数,即:a -为“数1”,b 为“数2”,c +为“数3”,d-为“数4”,若将任意两个数交换位置,后得到一个新多项式,再写出新多项式的绝对值,这样的操作称为对多项式()a b c d --+-的“绝对换位变换”,例如:对上述多项式的“数3”和“数4”进行“绝对换位变换”,得到−−−+,将其化简后结果为a b c d +--,…下列说法:①对多项式的“数1”和“数2”进行“绝对换位变换”后的运算结果一定等于对“数3”和“数4”进行“绝对换位变换”后的运算结果;②不存在“绝对换位变换”,使其运算结果与原多项式相等;③所有的“绝对换位变换”共有5种不同运算结果.其中正确的个数是()A .0B .1C .2D .3二、填空题(共5小题)11.多项式322283a ab ac -+-是________次________项式,它的常数项是________.12.23m x y -与35n x y 是同类项,则m n +=________。
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2. 整式的加减的实质:合并同类项。
3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。
31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a −=( )A .aB .a −C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a −=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a −=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意; ()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m【答案】A 【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a −=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误; ()236a a =,故D 选项错误;故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意; ()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a ÷=,原运算错误,故D 不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键. 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a 【答案】D【分析】根据积的乘方法则计算即可. 【详解】解:()2239a a =.故选:D. 【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键. 7.(2023·湖南常德·统考中考真题)若2340a a +−=,则2263a a +−=( )A .5B .1C .1−D .0【答案】A【分析】把2340a a +−=变形后整体代入求值即可. 【详解】∵2340a a +−=,∴234+=a a∴()222632332435a a a a +−=+−=⨯−=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a −=,不符合题意;故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键. 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、23x x x +≠,错误,故不符合要求; B 、6332x x x x ÷=≠,错误,故不符合要求;C 、()43127x x x =≠,错误,故不符合要求;D 、347x x x ⋅=,正确,故符合要求;故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算. 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a −=【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==A 错误; 2222(3)39a a a ==,故B 错误;63633a a a a −÷==,故C 错误;()22223312a a a a −=−=,故D 正确.故选:D . 【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键. 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =,故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键. 12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a −=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ⋅=,故选项正确,符合题意; B .624a a a ÷=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a −=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +−=+−=,故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键. 14.(2023·浙江温州·统考中考真题)化简43()a a ⋅−的结果是( )A .12aB .12a −C .7aD .7a − 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅−()437a a a =⨯−=−,故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键. 15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意; B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、 23a a a ⋅=,故该选项正确,符合题意; B 、 624a a a ÷=,故该选项不正确,不符合题意;C 、 32a a a −=,故该选项不正确,不符合题意;D 、222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=, ∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.【答案】A【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意; B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.19.(2023·浙江绍兴·统考中考真题)下列计算正确的是( )A .623a a a ÷=B .()52a a −=−C .()()2111a a a +−=−D .22(1)1a a +=+【答案】C【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意; B . ()5210a a a −=−≠−,原计算错误,不符合题意;C . ()()2111a a a +−=−,原计算正确,符合题意;D .222(1)211a a a a +=++≠+,原计算错误,不符合题意; 故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键. 20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a −=−B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .()2122a a −=−,计算正确,符合题意;B .()222222a b a ab b a b +=++≠+,计算错误,不符合题意; C .23255a a a a +=≠,,计算错误,不符合题意;D . ()2222ab a b ab =≠,计算错误,不符合题意;故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.【答案】B 【分析】运用积的乘方法则、幂的乘方法则即可得出结果.【详解】解:()236322112124x xx ⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故选:B .【点睛】本题考查了积的乘方法则、幂的乘方法则,熟练运用积的乘方法则、幂的乘方法则是解题的关键. 22.(2023·山东临沂·统考中考真题)下列运算正确的是( )A .321a a −=B .222()a b a b −=−C .()257a a =D .325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a −=,故选项错误,不符合题意;B 、222()2a b a ab b −=−+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选:D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x −=−C .633x x x ÷=D .236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意; B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确;B 、x12÷x6=x6,所以此选项正确;C 、(a+2)2=a2+4a+4,所以此选项不正确;D 、(ab3)3=a3b9,所以此选项不正确;故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键. 25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b −=−C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意, B .()2362a b a b −=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A. 4322x x x ÷=,计算正确,故选项A 符合题意; B. ()4312x x =,原选项计算错误,故选项B 不符合题意;C. 4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D. 347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握. 27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a −=D .()222a b a b −=− 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、437a a a ⋅=,选项计算正确,符合题意; B 、()326a a =,选项计算错误,不符合题意;C 、22232a a a −=选项计算错误,不符合题意;D 、()2222a b a ab b −=−+,选项计算错误,不符合题意;故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意; B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b −=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +−=−【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A. 22ab a b −≠ ,故该选项不正确,不符合题意;B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 233a b a ab ÷=,故该选项不正确,不符合题意;D. 222()()4a a a +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键. 30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b −=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 23232332a b a b a b −=,故该选项正确,符合题意; B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 624a a a ÷=,故该选项不正确,不符合题意;D. ()326a a =,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键. 32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误; B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误; 故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键. 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、22(2)44x x x +=++,选项计算错误,不符合题意; B 、246a a a ⋅=,选项计算错误,不符合题意;C 、()23624x x =,计算正确,符合题意;D 、222235x x x +=,选项计算错误,不符合题意;故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键. 34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a −=−B .222()a b a b −=−C .()()2224m m m −+−−=−D .()257a a = 【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a −=,原式计算错误;B.()2222a b a ab b −=−+,原式计算错误; C.()()2224m m m −+−−=−,计算正确; D. ()2510a a =,原式计算错误.故选:C .式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x −=D .326a a a ⋅=【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A. 22234b b b +=,故该选项不正确,不符合题意; B. ()248a a =,故该选项不正确,不符合题意;C. ()224x x −=,故该选项正确,符合题意; D. 2326a a a ⋅=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键. 36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 826a a a ÷=,故该选项不正确,不符合题意; B. 23a a a +≠,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 235a a a ⋅=,故该选项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断. 【详解】解:A 、()236a a =,不符合题意;B 、1028a a a ÷=,不符合题意;C 、45a a a ⋅=,符合题意;D 、515(1)a a −−=−,不符合题意;故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键. 38.(2023·内蒙古赤峰·统考中考真题)已知2230a a −−=,则2(23)(23)(21)a a a +−+−的值是( ) A .6B .5−C .3−D .4【答案】D【分析】2230a a −−=变形为223a a −=,将2(23)(23)(21)a a a +−+−变形为()2428a a −−,然后整体代入求值即可.【详解】解:由2230a a −−=得:223a a −=,∴2(23)(23)(21)a a a +−+−2249441a a a =−+−+2848a a =−−()2428a a =−−438=⨯−4=, 故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +−+−变形为()2428a a −−. 39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab −=C .34()a a a −⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A. ()22346a b a b =,正确,符合题意;B. 32ab ab ab −=,原计算错误,本选项不合题意;C. 34()a a a −⋅=−,原计算错误,本选项不合题意;D.222()2a b a b ab +=++ 【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键. 40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a −=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a −÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a −不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘. 41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab −=C .()2211a a +=+D .()236a a −= 【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意; ∵4=3ab ab ab −,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a −=,故D 符合题意; 故选:D .【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224xy x y =故答案为:24x y .【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式. 45.(2023·全国·统考中考真题)计算:(3)a b +=_________.【答案】3ab a +【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键. 46.(2022秋·上海·七年级专题练习)计算:2232a a −=________.【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a −=−= 故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+, ∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键. 48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab+()ab a b =+76=⨯42=. 故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得 (a2b )3= a6b 3.故答案为:a6b3.三、解答题【答案】226a ab −,24 【分析】先展开,合并同类项,后代入计算即可.【详解】()()233(3)a b a b a b −++−2222969a b a ab b =−+−+226a ab =−当13,3a b =−=时,原式()()2123633=⨯−−⨯−⨯24=.【点睛】本题考查了平方差公式,完全平方公式的计算,熟练掌握两个公式是解题的关键.。
初三整式计算试题及答案

初三整式计算试题及答案一、选择题(每题3分,共15分)1. 下列整式中,同类项是()。
A. 3x^2y 和 5xy^2B. 6xy 和 6x^2yC. 3x^2 和 5x^2D. 4a^2b 和 4ab^2答案:C2. 合并同类项 2x^2 - 3x^2 + 4x^2 的结果是()。
A. 3x^2B. -x^2C. 0D. -5x^2答案:A3. 计算 (3x^2 - 2x + 1) - (x^2 - 4x + 3) 的结果是()。
A. 2x^2 + 2x - 2B. 2x^2 - 2x + 2C. 2x^2 + 2x + 2D. 2x^2 - 2x - 2答案:B4. 整式 4x^2 - 3x + 2 与 5x^2 + 6x - 7 的和是()。
A. 9x^2 + 3x - 5B. 9x^2 + 3x + 5C. 9x^2 + 9x - 5D. 9x^2 - 3x - 5答案:A5. 整式 2x^3 - 3x^2 + 5x - 7 与 -x^3 + 2x^2 - 4x + 8 的差是()。
A. x^3 - 5x^2 + 9x - 15B. x^3 - 5x^2 - 9x + 1C. x^3 - 5x^2 + 9x + 1D. x^3 - 5x^2 - 9x - 15答案:A二、填空题(每题4分,共20分)6. 合并同类项 5a^2b - 2ab^2 + 3ab^2 - 4a^2b 的结果是 _______。
答案:ab^2 - a^2b7. 计算 (2x - 3)^2 的结果是 _______。
答案:4x^2 - 12x + 98. 计算 (x + 2)(x - 2) 的结果是 _______。
答案:x^2 - 49. 计算 (3x + 4)(2x - 1) 的结果是 _______。
答案:6x^2 + 2x - 4x - 4 = 6x^2 - 2x - 410. 计算 (x^2 - 3x + 2)(x^2 + 3x - 2) 的结果是 _______。
北师大版中考数学练习题第三章-整式及其加减含答案

2019备战中考数学基础必练(北师大版)-第三章-整式及其加减(含解析)一、单选题1.已知和-是同类项,则的值是( )A. -1B. -2C. -3D. -42.下列说法正确的是()。
A. 0是单项式B. 单项式的系数是C. 单项式的次数为D. 多项式是五次三项式3.若关于x,y的多项式x2y-7mxy+y3+6xy化简后不含二次项,则m=()A. B. C. - D. 04.﹣(a﹣b+c)变形后的结果是()A. ﹣a+b+cB. ﹣a+b﹣cC. ﹣a﹣b+cD. ﹣a﹣b﹣c5.对于代数式,下列说法不正确的是()A. 它按x降幂排列B. 它是单项式C. 它的常数项是D. 它是二次三项式6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A. 4m+7nB. 28mnC. 7m+4nD. 11mn7.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1、2、3、4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2012次交换位置后,小鼠所在的座号是().A. 1B. 2C. 3D. 48.已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b的值为()A. 179B. 140C. 109D. 210二、填空题9.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是________.10.若与是同类项,则m+n=________.11.- πx2y的系数是________;12.鸡兔同笼,鸡m只,兔n只,则共有________个头,________只脚.13.d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d﹣e+2f的值是________14.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是________平方米.15.观察下列等式12=1= ×1×2×(2+1)12+22= ×2×3×(4+1)12+22+32= ×3×4×(6+1)12+22+32+42= ×4×5×(8+1)…可以推测12+22+32+…+n2=________.16.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺板地面:依上推测,第n个图形中白色瓷砖的块数为________.17.若x2-2x=3.则代数式2x2-4x+3的值为________.三、计算题18.如果a、b互为相反数,c、d互为倒数,x的绝对值是2,求:的值。
九年级数学中考复习《整式的运算及化简求值》解答专项达标测评

九年级数学中考复习《整式的运算及化简求值》解答专项达标测评(附答案)(共20小题,每小题6分,满分120分)1.化简:(1)(﹣ab)3÷(﹣);(2)(a+4)(a﹣4)﹣(a﹣1)2.2.计算:(1)﹣2y3﹣xy2﹣2(xy2﹣y3);(2)5x2﹣[3x2﹣2(﹣x2+4x)].3.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).4.先化简,再求值:,其中x=3,y=﹣2.5.已知代数式A=2x2+3xy+2y,B=x2﹣xy+y.(1)求A﹣2B;(2)当x=﹣1,y=3时,求A﹣2B的值.6.先化简,再求值(2x+3y)2﹣(2x+y)(2x﹣y),其中x=2,y=1.7.先化简,再求值:[(x+2y)(x﹣2y)﹣(2x﹣y)2﹣(x2﹣5y2)]÷(﹣2x),其中x、y 满足23x÷23y=8.8.先化简,再求值:(x+2y)2﹣(2y﹣x)2,其中x=1,y=﹣1.9.已知:A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,(1)若(a+2)2+|b﹣3|=0,求4A﹣(3A﹣2B)的值.(2)当a取任何数值,A﹣2B的值是一个定值时,求b的值.10.计算:(1)a3•a+(﹣3a3)2÷a2;(2)(9x2y3﹣27x3y2)÷(3xy)2.11.已知a,b满足a2+b2﹣4a﹣6b+13=0,求(2a+b)(2a﹣b)﹣(b﹣2a)2的值.12.化简:(1)(2x﹣y)2﹣x(3x﹣4y)﹣(2y﹣x)(2y+x);(2)(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x).13.先化简再求值:(1)(x﹣2y)2﹣x(x+2y)﹣4y2,其中x=﹣4,y=.(2)已知m,n满足(m+n)2=169,(m﹣n)2=9,求m2+n2﹣mn的值.14.已知m是方程3x2﹣2x﹣5=0的一个根,求代数式(2m+1)(2m﹣1)﹣(m+1)2的值.15.计算:(1)a5•a7+a6•(﹣a3)2+2(﹣a3)4;(2)9(a﹣1)2﹣(3a+2)(3a﹣2);(3)已知a﹣b=1,a2+b2=25,求ab的值;(4)简算:20222﹣4044×2021+20212.16.计算:(1)(12m3﹣6m2+3m)÷3m;(2)(2x+y+z)(2x﹣y﹣z).17.如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形纸板,拿掉边长为n的大正方形纸板后,将剩下的三个纸板拼成一个新的长方形纸板.(1)求拼成的新的长方形纸板的周长;(用含m或n的代数式表示)(2)当m=3,n=2时,直接写出拼成的新的长方形纸板的面积为.18.如图,某物业公司将一块长为13.5米,宽为x米的大长方形地块分割为8小块,其中阴影A、B用为绿地,进行种花种草,其余6块是形状、大小完全相同的小长方形用为小型车辆的停车位,每个停车位较短的边为a米.(1)若a=2.5米,①每个停车位的面积为平方米;②请用含x的代数式表示两块绿地A、B的面积和.(2)若两块绿地A、B的周长和为40米,求x的值.19.某市为鼓励市民节约用水,特制定如下收费标准:若每月每户用水不超过12m3,则按a元/m3的水价收费,若超过12m3,则超过部分按2a元/m3的水价收费.(1)当a=2时,小李家5月份的用水量为8m3,则他家5月份的水费为元;(2)当a=2时,若小华家6月份的用水量为18m3,那么小华家6月份的水费为元;(3)若小华家某月的用水量为m(m>12)立方米,求小华家这个月的水费.(用含a,m的式子表示)20.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价50元.厂家在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T恤x(x>30)件.(1)该客户按方案①购买需付款()元(用含x的式子表示);若该客户按方案②购买,应付款()元(用含x的式子表示);(2)当x=50时,通过计算说明按哪个方案购买较为合算?(3)当x=50时,如何购买更合算?写出你的购买方案.参考答案1.解:(1)原式=(﹣a3b3)•(﹣)=.(2)原式=a2﹣16﹣(a2﹣2a+1)=a2﹣16﹣a2+2a﹣1=2a﹣17.2.解:(1)原式=﹣2y3+2y3﹣xy2﹣2xy2=﹣3xy2.(2)原式=5x2﹣(3x2+2x2﹣8x)=5x2﹣(5x2﹣8x)=5x2﹣5x2+8x=8x.3.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.4.解:=3x2y﹣(2x2y﹣2xy+3x2y+xy)﹣xy=3x2y﹣(5x2y﹣xy)﹣xy=3x2y﹣5x2y+xy﹣xy=﹣2x2y,∵x=3,y=﹣2,∴原式=﹣2×32×(﹣2)=36.5.解:(1)∵A=2x2+3xy+2y,B=x2﹣xy+y,∴A﹣2B=2x2+3xy+2y﹣2(x2﹣xy+y)=2x2+3xy+2y﹣2x2+2xy﹣2y=5xy;(2)当x=﹣1,y=3时,A﹣2B=5×(﹣1)×3=﹣15.6.解:原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当x=2,y=1时,原式=12×2×1+10×12=24+10=34.7.解:[(x+2y)(x﹣2y)﹣(2x﹣y)2﹣(x2﹣5y2)]÷(﹣2x)=(x2﹣4y2﹣4x2+4xy﹣y2﹣x2+5y2)÷(﹣2x)=(﹣4x2+4xy)÷(﹣2x)=2x﹣2y,∵23x÷23y=8,∴23x﹣3y=23,∴3x﹣3y=3,∴x﹣y=1,∴当x﹣y=1时,原式=2(x﹣y)=2×1=2.8.解:原式=[(x+2y)﹣(2y﹣x)][(x+2y)+(2y﹣x)]=(x+2y﹣2y+x)(x+2y+2y﹣x)=2x•2y=4xy,当x=1,y=﹣1时,原式=4×1×(﹣1)=﹣4.9.解:(1)∵A=2a2+3ab﹣2a﹣1,B=a2+ab﹣1,∴4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B=(2a2+3ab﹣2a﹣1)+2(a2+ab﹣1)=2a2+3ab﹣2a﹣1+2a2+2ab﹣2=4a2+5ab﹣2a﹣3,∵(a+2)2+|b﹣3|=0,(a+2)2≥0,|b﹣3|≥0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3.∴原式=4×(﹣2)2+5×(﹣2)×3﹣2×(﹣2)﹣3=4×4﹣30+4﹣3=16+4﹣(30+3)=20﹣33=﹣13;(2)A﹣2B=2a2+3ab﹣2a﹣1﹣2(a2+ab﹣1)=2a2+3ab﹣2a﹣1﹣2a2﹣2ab+2=ab﹣2a+1=(b﹣2)a+1,∵当a取任何数值,A﹣2B的值是一个定值,∴b﹣2=0,∴b=2.∴b=2时,a取任何数值,A﹣2B的值是一个定值.10.解:(1)原式=a4+9a6÷a2=a4+9a4=10a4.(2)原式=(9x2y3﹣27x3y2)÷9x2y2=9x2y3÷9x2y2﹣27x3y2÷9x2y2=y﹣3x.11.解:(2a+b)(2a﹣b)﹣(b﹣2a)2=4a2﹣b2﹣(b2﹣4ab+4a2)=4a2﹣b2﹣b2+4ab﹣4a2=4ab﹣2b2,∵a2+b2﹣4a﹣6b+13=0,∴a2﹣4a+4+b2﹣6b+9=0,∴(a﹣2)2+(b﹣3)2=0,∴a=2,b=3,原式=4×2×3﹣2×32=24﹣18=6.12.解:(1)(2x﹣y)2﹣x(3x﹣4y)﹣(2y﹣x)(2y+x)=4x2﹣4xy+y2﹣3x2+4xy﹣4y2+x2=2x2﹣3y2.(2)(x+2)(2x﹣3)+(10x3﹣12x)÷(﹣2x)=2x2﹣3x+4x﹣6﹣5x2+6=﹣3x2+x.13.解:(1)(x﹣2y)2﹣x(x+2y)﹣4y2=x2﹣4xy+4y2﹣x2﹣2xy﹣4y2=﹣6xy,当x=﹣4,y=时,原式=﹣6×(﹣4)×=12;(2)∵(m+n)2=169,(m﹣n)2=9,∴m2+2mn+n2=169①,m2﹣2mn+n2=9②,①+②得:2m2+2n2=178,∴m2+n2=89,①﹣②得:4mn=160,∴mn=40,∴m2+n2﹣mn=89﹣40=49,∴m2+n2﹣mn的值为49.14.解:由题意可知:3m2﹣2m﹣5=0,即3m2﹣2m=5,原式=4m2﹣1﹣(m2+2m+1)=4m2﹣1﹣m2﹣2m﹣1=3m2﹣2m﹣2,=5﹣2=3.15.解:(1)a5•a7+a6•(﹣a3)2+2(﹣a3)4=a12+a6•a6+2a12=a12+a12+2a12=4a12;(2)9(a﹣1)2﹣(3a+2)(3a﹣2)=9(a2﹣2a+1)﹣(9a2﹣4)=9a2﹣18a+9﹣9a2+4=﹣18a+13;(3)∵a﹣b=1,∴a2﹣2ab+b2=1,∵a2+b2=25,∴﹣2ab+25=1,∴﹣2ab=﹣24,∴ab=12;(4)20222﹣4044×2021+20212.=(2022﹣2021)2=1.16.解:(1)原式=12m3÷3m﹣6m2÷3m+3m÷3m =4m2﹣2m+1;(2)原式=[2x+(y+z)][2x﹣(y+z)]=(2x)2﹣(y+z)2=4x2﹣(y2+2yz+z2)=4x2﹣y2﹣2yz﹣z2.17.解:(1)拼成的新的长方形纸板的长、宽分别为:m+n,m﹣n,拼成的新长方形纸板的周长:(m+n+m﹣n)×2=4m;(2)由(1)得,拼成的新的长方形纸板的长、宽分别为:m+n,m﹣n,∵m=3,n=2,∴拼成的新的长方形纸板的长、宽分别为:m+n=3+2=5,m﹣n=3﹣2=1,∴拼成的新的长方形纸板的面积为5×1=5,故答案为:5.18.解:(1)①停车位的面积为:2.5×(13.5﹣3×2.5)=15(平方米);故答案为:15;②两块绿地A、B的面积和:13.5x﹣6×15=(13.5﹣90)平方米;(2)绿地A的周长:2(13.5﹣3a+x﹣3a)=2×(13.5﹣6a+x);绿地B的周长:2[3a+x﹣(13.5﹣3a)]=2(6a+x﹣13.5),两块绿地A、B的周长和:2×(13.5﹣6a+x)+2(6a+x﹣13.5)=4x米;∴4x=40,x=10,∴x的值为10.19.解:(1)∵8<12,∴当a=2时,8a=8×2=16(元),故答案为:16;(2)∵18>12,∴当a=2时,12a+(18﹣12)×2a=12×2+6×2×2=24+24=48(元),故答案为:48;(3)由题意得,12a+2a(m﹣12)=12a+2am﹣24a=(2am﹣12a)元,即小华家这个月的水费为(2am﹣12a)元.20.解:(1)由题意得,100×30+50(x﹣30)=3000+50x﹣1500=50x+1500,(100×30+50x)×80%=(3000+50x)×80%=3000×80%+50x×80%=40x+2400,故答案为:50x+1500,40x+2400;(2)当x=50时,50x+1500=50×50+1500=2500+1500=4000(元),当x=50时,40x+2400=4×50+2400=2000+2400=4400(元),∵4000<4400,∴当x=50时,按按方案①购买较为合算;(3)∵100×30+50×80%×(50﹣30)=3000+40×20=3000+800=3800(元),且3800<4000<4400,∴当x=50时,先按方案①购买夹克30件,再按方案②购买T恤20件合算.。
2021年中考数学真题(全国通用)专题02 整式及运算(共50题)-(原卷版)

姓名:__________________ 班级:______________ 得分:_________________
一、单选题
a2 a4
1.(2021·浙江丽水市·中考真题)计算:
的结果是( )
A. a8
B. a6
C. - a8
D. a6
2.(2021·四川资阳市·中考真题)下列计算正确的是( )
三、解答题
x 2y2 x 2yx 2y xx 4y
41.(2021·湖南衡阳市·中考真题)计算:
.
42.(2021·浙江金华市·中考真题)已知
x
1 6
,求
3x
12
1
3x 1
3x
的值.
43 8 9
0
7
43.(2021·浙江温州市·中考真题)(1)计算:
.
a 52 1 a 2a 8
(2)
x2
x2
9 2x 1
x
3 x2 x 1
.
47.(2021·浙江中考真题)计算: x x 2 1 x1 x .
A B 2x 6 48.(2021·四川乐山市·中考真题)已知 x 1 2 x (x 1)(x 2) ,求 A 、 B 的值.
49.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图
36.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为: 1,3,6,10,……,将其中所有能被 3 整除的数按从小到大的顺序重新排列成一组新数据,则新数据中 的第 33 个数为___________.
37.(2021·陕西中考真题)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及 各条对角线上的三个数字之和均相等,则图中 a 的值为______. -1 -6 1
整式及其运算考点专题检测—2024年中考数学一轮复习(全国通用)(解析版)

整式及其运算考点专题检测一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023上·河北唐山·七年级统考期末)下列说法中正确的是( ).A .2不是单项式B .2abc −的系数是12−C .23πr 的次数是3D .多项式25612a ab −+的次数是4【答案】B【分析】根据单项式和多项式的概念逐一求解可得.【详解】解:A .2是单项式,故此选项不符合题意;B .2abc −的系数是12−,故此选项符合题意;C .23πr 的次数是2,故此选项不符合题意;D .多项式25612a ab −+的次数是2,故此选项不符合题意.故选:B .【点睛】本题考查单项式与多项式的概念.解题的关键是正确理解单项式与多项式.2.核桃的单价为m 元/千克,栗子的单价为n 元/千克,买2千克核桃和3千克栗子共需( )A .()m n +元B .()32m n +C .()23m n +元D .()5m n +元 【答案】C【分析】本题考查了列代数式,根据“总价=单价×数量”得出答案,需注意代数式的书写规范.【详解】解:根据题意得:买2千克核桃和3千克栗子共需()23m n +元.故选:C .3.(2023·广东云浮·统考三模)下列运算中,正确的是( )A .()326b b -=B .334a a a +=C .()()22224x y x y x y +−=−D .62322a a a ÷= 【答案】C【分析】本题考查了幂的乘方,合并同类项,平方差公式,同底数幂的除法,用各运算法则逐项分析即可.【详解】解:A 、()326b b -=-,不符合题意; B 、3332a a a +=,不符合题意;C 、()()22224x y x y x y +−=−,符合题意;D 、62422÷=a a a ,不符合题意.故选:C .4.(2023·广东东莞·统考一模)如果2n x =,5n y =,那么()3n xy 的值是( )A .100B .1000C .150D .40【答案】B【分析】本题考查有理数的乘方,解题的关键是熟练掌握幂的乘方的运算方法,将要求的代数式换成与已知条件相关的代数式,然后再代入求值,即可得到答案.【详解】解:原式()()333333••2581251000n n n n x y x y =⨯==⨯==, 故选:B .5.(2023·湖北黄石·统考中考真题)如图,已知点()()1,0,4,A B m ,若将线段AB 平移至CD ,其中点()()2,1,,C D a n −,则m n −的值为( )A .3−B .1−C .1D .3【答案】B 【分析】根据A ,C 两点的坐标可得出平移的方向和距离进而解决问题. 【详解】解:线段CD 由线段AB 平移得到,且(1,0)A ,(2,1)C −,(4,)B m ,(,)D a n ,011m n ∴−=−=−.故选:B .【点睛】本题考查坐标与图象的变化,解题的关键是熟知平移过程中图象上的每一个点的平移方向和距离均相同.6.(2023·河北保定·校考一模)如图所示的运算程序中,甲输入的x 为32a b +,乙输入的x 为32a b −−,丙输入的x 为23b a −.若0a b >>,则输出结果相同的是( )A .甲和乙B .甲和丙C .乙和丙D .三人均不相同【答案】B 【分析】先判断320a b +>,320a b −−<,230b a −<,分别计算输出的结果得到答案.【详解】解:∵0a b >>∴320a b +>,320a b −−<,230b a −<∴甲输出的结果为:()2232262y a a b ab a ab =+−=+;乙输出的结果为:()22326610y a a b ab a ab =−−−+=+;丙输出的结果为:()2223662y a b a ab a ab =−−+=+;输出结果相同的是甲和丙,故选B .【点睛】本题考查整式的乘法运算,掌握运算法则是解题的关键.7.(2023·四川攀枝花·统考中考真题)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:①()2222a b a ab b +=++ ②()2222a b a ab b −=−+③22()()a b a b a b +−=− ④22()()4a b a b ab −=+− 其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【详解】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .【点睛】本题考查用图形面积解释代数恒等式,解题的关键是用两种不同的方法表示同一个图形的面积.8.若x 2+(m ﹣1)x +1可以用完全平方公式进行因式分解,则m 的值为( )A .﹣3B .1C .﹣3,1D .﹣1,3【答案】D【分析】利用完全平方公式的运算判断即可.【详解】∵ x 2+(m ﹣1)x +1可以用完全平方公式进行因式分解,∴ m ﹣1=±2,解得:m =﹣1或m =3.故选:D .【点睛】此题考查使用完全平方公式的条件,属于基础题.9.(2022·江苏泰州·统考二模)如果a 是二次函数2y x x 2=−−与x 轴交点的横坐标,那么代数式2(1)(2)(2)a a a −++−的值为( ) A .1−B .1C .7D .9【答案】B 【分析】先求出二次函数与x a 的值,再化简整式,最后将a 代入代数式求值即可.【详解】解:在二次函数2y x x 2=−−中,令y =0,得220x x −−=,解得:122,1x x ==−,∴此二次函数与x 轴的交点横坐标为2或-1,∴a =2或-1,2222(1)(2)(2)214223a a a a a a a a −++−=−++−=−−,当a =2时,原式=2222231⨯−⨯−=,当a =-1时,原式=()()2212131⨯−−⨯−−=,故选:B .【点睛】本题主要考查了二次函数与x 轴的交点及求整式的值,解决本题的关键是熟练掌握一元二次方程的解法.10.(2022·重庆·重庆市育才中学校联考二模)已知多项式22A x y m =++和22B y x n =−+(m ,n 为常数),以下结论中正确的是( )①当2x =且1m n +=时,无论y 取何值,都有0A B +≥;②当0m n ==时,A B ⨯所得的结果中不含一次项;③当x y =时,一定有A B ≥;④若2m n +=且0A B +=,则x y =;⑤若m n =,1−=−A B 且x ,y 为整数,则1x y +=.A .①②④B .①②⑤C .①④⑤D .③④⑤ 【答案】B【分析】主要是运用整式的运算法则及因式分解等知识对各项进行一一判断即可.【详解】①当2x =且1m n +=时,A +B =()222424211y m y n y y y +++−+=++=+,∵无论y 取何值,总有()201y +≥,∴无论y 取何值,都有0A B +≥,故①正确;②当0m n ==时,()()22223322224A B x y y x x y x y xy ⨯=+−=−+−, ∴A B ⨯所得的结果中不含一次项;故②正确;③当x y =时,()222222224A B x y m y x n x x m x x n x m n −=++−−+=++−+−=+−,其结果与0无法比较大小,故③错误;④若2m n +=且0A B +=,则2222222220A B x y m y x n x y y x +=+++−+=++−+=,变形得:()()22110x y −++=,∴x =1,y =-1,∴x =-y ,故④错误;⑤若m n =,1−=−A B 且x ,y 为整数,则()222222221A B x y m y x n x y y x −=++−−+=+−+=− 222210x y x y −+++=变形得:()()22111x y +−−=−,因式分解得:()()21x y x y +−+=−,∵x ,y 为整数,则必有1x y +=.故⑤正确;故选:B【点睛】本题主要考查的是整式运算及因式分解的应用,解决本题的关键是熟练掌握运用乘法公式进行计算及因式分解.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2023·辽宁丹东·统考中考真题)因式分解:316y y −= .【答案】()()44y y y +−【分析】先提取公因式,再根据平方差公式进行因式分解即可.【详解】解:()()()32161644y y y y y y y −=−=+−, 故答案为:()()44y y y +−.【点睛】本题主要考查了综合提公因式和公式法因式分解,解题的关键是正确找出公因式,熟练掌握平方差公式()()22a b a b a b −=+−.12.(2023·广东韶关·统考模拟预测)若122m x y +与3213x y 是同类项,则m = . 【答案】2【分析】根据同类项的定义进行求解即可:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.【详解】解:∵122m x y +与3213x y 是同类项, ∴13m +=,∴2m =,故答案为:2.【点睛】本题主要考查了同类项的定义和代数式求值,解题的关键在于能够熟练掌握同类项的定义.13.(2023·宁夏银川·校考二模)已知a ,b 满足等式2690a a ++=,则20232022a b = . 【答案】3−【分析】先根据非负数的性质求出a 、b ,然后根据积的乘方逆运算法则解答.【详解】解:∵2690a a ++=,∴()230a +=.∵2(3)0a +≥0,∴2(3)0+=a 0=. ∴13,3a b =−=. ∴()202320222022()133a b ab a ==−⋅⨯=−.故答案为:3−.【点睛】本题考查了非负数的性质和积的乘方,属于常考题型,熟练掌握非负数的性质、能逆用积的乘方法则求解是关键.14.(2023下·浙江杭州·七年级校考期中)定义:若a b ab +=,则称a 、b 是“西溪数”,例如:3 1.5315+=⨯.,因此3和1.5是一组“西溪数”,若m 、n 是一组“西溪数”,则2(36)mn mn m n −−−−的值为 .【答案】6【分析】根据“西溪数”的概念得到m n mn +=,代入所求的代数式,根据整式的加减混合运算法则计算,得到答案.【详解】解:m 、n 是一组“西溪数”,m n mn ∴+=,则原式2()[3()6]m n m n m n =+−+−−−22(336)m n m n m n =+−+−−−22336m n m n m n =+−−+++6=,故答案为:6.【点睛】本题考查新定义,整式的化简求值,掌握整式的加减混合运算法则、正确理解“西溪数”的概念是解题的关键.15.(2022·广西百色·统考一模)观察:()()2111x x x −+=−,()()23111x x x x −++=−,()()324111x x x x x −+++=−,据此规律,当()()5432110x x x x x x −+++++=时,代数式20232x −的值为 .【答案】-1或-3/-3或-1【分析】先根据已知等式为0确定出x 的值,再代入原式计算,即可得到结果.【详解】解:()()5432110x x x x x x −+++++=,根据规律得:610x −=,61x ∴=,32()1x ∴=,31x ∴=±,1x ∴=±,当1x =时,原式2023121=−=−,当=1x −时,原式()2023123=−−=−.故答案为:-1或-3.【点睛】本题主要考查了通过规律解决数学问题,发现规律,求出x 的值是求解本题的关键.16.(2023·河北衡水·校考模拟预测)琪琪同学做一道计算题:已知两个多项式A 和B ,求2A B −,他误将2A B −看成了2A B +,求得结果为232x x −,已知232A x x =+−.(1)则多项式B = ;(2)求2A B −的正确结果为 .【答案】 284x x −+ 2148x x +−【分析】(1)根据题意得出2322B x x A =−−,代入求解即可;(2)将A 、B 代入计算即可.【详解】解:(1)∵将2A B −看成了2A B +,求得结果为232x x −,232A x x =+−.∴2322B x x A =−−22322(32)x x x x =−−+−2232264x x x x =−−−+ 284x x =−+;故答案为:284x x −+;(2)2A B −222()()3284x x x x +−−−+=2264842x x x x −+−+−=2148x x =+−;故答案为:2148x x +−.【点睛】题目主要考查整式的加减运算,熟练掌握运算法则是解题关键.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤)17.(2023上·天津和平·八年级天津市第二南开中学校考开学考试)(1)先化简,再求值:()33(2)()4a b a b a b ab ab +−++÷,其中,212a b ==−. (2)计算()()()232346a a a −⋅−÷ 【答案】(1)2212272a ab b ++,;(2)6a − 【分析】本题主要考查了整式混合运算,代数式求值,幂的混合运算,解题的关键是熟练掌握相关的运算法则,准确计算.【详解】解:(1)()33(2)()4a b a b a b ab ab +−++÷222224a ab b a b =+−++2222a ab b =++, 把,212a b ==−代入得: 原式()()2211222222⎛⎫=⨯+⨯−+⨯− ⎪⎝⎭ 12184=⨯−+ 172=; (2)()()()232346a a a −⋅−÷ ()61212a a a =⋅−÷6a =−.18.(2022·安徽·校联考模拟预测)观察下面的点阵图形和与之相对应的等式探究其中的规律. ①40413→⨯=⨯−;②411423→⨯+=⨯−;③421433→⨯+=⨯−;④→ ;⑤→ .(1)请在④和⑤后面的横线上分别写出相应的等式;(2)猜想第n (n 是正整数)个图形相对应的等式,并证明.【答案】(1)431443⨯+=⨯−,441453⨯+=⨯−;(2)()41143n n −+=−,证明见解析.【分析】(1)结合图形,根据所给的等式即可继续写出等式;(2)在计算(1)的过程中,发现:第n 个图中,等式的左边是()1n −个4,再加上1,右边是n 个4减去3.【详解】(1)∵401413→⨯+=⨯−①;411423→⨯+=⨯−②;421433→⨯+=⨯−③;∴431443⨯+=⨯−④,441453⨯+=⨯−⑤,故答案为:431443⨯+=⨯−,441453⨯+=⨯−;(2)由401413→⨯+=⨯−①;411423→⨯+=⨯−②;421433→⨯+=⨯−③;431443→⨯+=⨯−④;441453→⨯+=⨯−⑤;L ;∴第n 个图形:()41143n n −+=−,右边()41144143n n n =−+=−+=−,∴左边=右边,即()41143n n −+=−.【点睛】此题考查了图形变化规律,仔细观察图形,从每一条线上的点的个数考虑求解是解题的关键.19.(2023·河北保定·统考二模)已知整式2232a a −+的值为P ,23a a −−的值为Q .(1)【发现】当0a =时,2P =,Q =__________,P __________Q (填“>”“=”或“<”);当3a =时,P =__________,3Q =,P __________Q .(2)【猜想与验证】无论a 为何值,P __________Q 始终成立,并证明该猜想的结论.【答案】(1)3−;>;11;>(2)>,见解析【分析】(1)将字母值代入代数式求值,判断;(2)用作差法,根据整式加减运算法则,配方法处理;【详解】(1)0a =时,233Q a a =−−=−∴P Q >;3a =时,223211P a a =−+=∴P Q >;(2)证明:()222323P Q a a a a −=−+−−− 222323a a a a =−+−++225a a =−+2(1)4a =−+.2(1)0a −≥,2(1)40a ∴−+>,P Q ∴>.【点睛】本题考查整式的求值,整式的加减运算,配方法,能够根据完全平方公式,运用配方法确定代数值取值范围是解题的关键.20.(2023·河北唐山·统考二模)将4块相同的小长方形绿化带按如图所示的方式不重叠的放在长方形花坛ABCD 内()AD AB >,未被覆盖的部分恰好被分割为两个长方形面积分别为1S ,2S ,已知小长方形绿化带的长为a 米,宽为b 米,且a b >.(1)当20AD =米时,请用含a ,b 的式子分别表示1S = 米2,2S = 米2,12S S −= 米2;(2)由于空间有限,花坛的短边AB 长度为定值,而花坛的长边AD 可以延伸,将这4块小长方形绿化带按同样的方式放在新的长方形花坛ABCD 内,要使未被覆盖的部分分割的两个长方形面积12S S =,求a ,b 满足的数量关系.【答案】(1)402b ab −,202a ab −,4020b a −(2)2a b =【分析】(1)由题意可得,根据长方形面积公式表示1S 和2S ,即可得12S S −;(2)设AD y =,由题意可得,根据长方形面积公式表示1S 和2S ,使12S S =,即得到a ,b 满足的数量关系.【详解】(1)解:由题意可得:1S 的长边为AD a −,1S 的短边为2b ,2S 的长边为2AD b −,2S 的短边为a , 根据长方形面积公式得()12402S AD a b b ab =−⨯=−,()22202S AD b a a ab =−⨯=−,那么()124022024020S S b ab a ab b a −=−−−=−;故答案为:()402b ab −;()202a ab −;()4020b a −.(2)解:设AD y =,由题意可得,1S 的长边为AD a −,1S 的短边为2b ,2S 的长边为2AD b −,2S 的短边为a ,根据长方形面积公式得:()1222S AD a b yb ab =−⨯=−,()222b S AD b a ya a =−⨯=−,因为12S S =,所以222yb ab ya ab −=−,即2a b =,要使未被覆盖的部分分割的两个长方形面积12S S =,a ,b 满足的数量关系为2a b =.【点睛】此题考查了整式的乘法法则以及列代数式等问题,熟练掌握运算法则是解本题的关键.21.已知甲、乙两个长方形纸片,其边长如图中所示()0n >,面积分别为S 甲和S 乙.(1)①用含n 的代数式表示S =甲______,S =乙______②用“<”、“=”或“>”号填空:S 甲______S 乙;(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S 正.①该正方形的边长是______;(用含n 的代数式表示)②小聪同学发现,“S 正与S 乙的差是定值”,请判断小聪同学的发现是否正确,并通过计算说明你的理由.【答案】(1)①21227n n ++,21024n n ++;②>;(2)①5n +;②S 正与S 乙的差是定值,值为1.【分析】(1)①结果长方形的面积的计算方法可表示出为S 甲和S 乙;②作差法,可比较大小;(2)①根据乙的周长,求出正方形纸片的边长;②作差法,求出差后作差判断即可.【详解】(1)解:①由长方形的面积的计算方法得,()()2931227S n n n n =++=++甲,()()2641024S n n n n =++=++乙,故答案为:21227n n ++,21024n n ++;②()()2212271024S S n n n n −=++−++甲乙2212271024n n n n =++−−−23n =+,0n >,230n ∴+>,S S ∴>乙甲,故答案为:>;(2)①乙的周长为:2(6)2(4)420n n n +++=+,正方形的周长与乙的周长相等,∴正方形的边长为42054n n +=+, 故答案为:5n +;②()22(5)1024S S n n n −=+−++乙正2210251024n n n n =++−−−1=,因此“S 正与S 乙的差是定值”,故小方同学的发现是正确的.【点睛】本题考查列代数式,多项式乘以多项式,完全平方公式等知识,掌握多项式乘以多项式的计算法则是正确计算的前提,理解各个图形的周长和面积之间的关系是正确解答的关键.22.(2023下·陕西西安·七年级校考开学考试)泉州市鲤城区某超市在双十一期间对顾客实行优惠,规定如下:(1)若张老师一次性购物600元,则她实际付款___________元.(2)若某顾客在该超市一次性购物x 元,当x 小于500元但不小于200时,他实际付款_______ 元,当x 大于或等于500元时,他实际付款 元(用含x 的代数式表示并化简);(3)若张老师有两天去超市购物原价合计900元,第一天购物的原价为a 元(200300a <<),请用含a 的代数式表示这两天购物张老师的实际付款总额;并求出当250a =元时,张老师两天一共节省了多少元?【答案】(1)470(2)0.8x ,()0.750x +(3)0.1680a +,195【分析】本题考查了代数式的求值、列代数式,整式加减的实际应用,掌握要正确列代数式,分清数量之间的关系,表示超出的部分是解题关键.(1)根据表格中的计算方法求解即可;(2)当x 小于500元但不小于200时,他实际付款按8折计算,大于或等于500元时.他实际付款,500这部分按8折计算,超出的()500x −这部分7折计算;(3)根据(2)的思路表示第一天购物实际付款和第二天购物实际付款.【详解】(1)5000.8(600500)0.74001000.740070470⨯+−⨯=+⨯=+=(元),(2)当x 小于500元但不小于200时,实际付款0.80.8x x ⨯=(元),当x 大于或等于500元时,实际付款:5000.8(500)0.70.750x x ⨯+−⨯=+(元)(3)因为第一天购物原价为a 元(200300)a <<则第二天购物原价为()900a −元,则900500a −>第一天购物优惠后实际付款 0.80.8a a ⨯=(元)第二天购物优惠后实际付款[]5000.8(900)5000.76800.7a a ⨯+−−⨯=−(元)则一共付款0.86800.70.1680a a a +−=+(元)当250a =元时,实际一共付款6800.125068025705+⨯=+=(元)一共节省900705195−=(元)答:一共节省了195元.23.(2023·山西晋中·统考一模)阅读与思考下面是小明同学的数学日记,请仔细阅读并完成相应的任务.任务:(1)请补充完整小明的日记:①______,②______,③______,④______,⑤______;(2)解决问题:若多项式()()()282413n x n x n −+−++是一个完全平方式,利用以上结论求出n 的值.(3)除因式分解外,初中数学还有许多知识的学习中也用到了完全平方公式,例如:用配方法解一元二次方程.请你再举出一例.【答案】(1)①()23x −,②()232x +,③24b ac =,④有两个相等的实数根,⑤一个(2)12n =(3)计算平方,()2229910011002100111000020019801=−=−⨯⨯+=−+=(答案不唯一)【分析】(1)借助题中所给举例填空,根据举例得出24b ac =的结论.(2)借助(1)中所得结论,找出()()()282413n x n x n −+−++中的a 、b 、c 值,代入24b ac =,求解即可.(3)所学知识中涉及完全平方公式的知识点举例即可.【详解】(1)解:()22693x x x −+=−; ()22912432x x x ++=+; ()26419−=⨯⨯中,6b =−,1a =,9c =,则有24b ac =;212494=⨯⨯中,12b =,9a =,4c =,则有24b ac =;故系数a ,b ,c 之间存在的关系式为24b ac =.(2)解:由(1)知,系数a ,b ,c 之间存在的关系式为24b ac =,()()()282413n x n x n −+−++中,8a n =−,24b n =−,13c n =+,根据24b ac =,得()()()2244813n n n −=−+ 2241616420416n n n n −+=+−解得12n =.(3)解:利用完全平方公式计算较大数的平方,()2229910011002100111000020019801=−=−⨯⨯+=−+=(答案不唯一).【点睛】此题考查了完全平方公式的综合应用,解题的关键是正确理解题意并应用公式.。
整式及其运算专项训练题

整式及其运算专项训练题一.选择题1.(2022•大渡口区模拟)下列各式中,不是整式的是( ) A .1xB .x y -C .6xy D .4x2.(2022秋•九龙坡区校级期中)下列式子中:13-,a ,23abc -,x y -,3x,32872x x -+,整式有( ) A .3个B .4个C .5个D .6个3.(2022春•南岗区校级期中)下列式子中:a -,23abc -,x y -,3x,32872x x -+,整式有( ) A .2个B .3个C .4个D .5个4.(2022秋•奉贤区期中)下列代数式中,属于单项式的是( ) A .a b +B .a b -C .abD .ab5.(2022秋•南京期中)单项式235x y -的系数、次数分别为( ) A .5和3B .5和5C .5-和3D .5-和56.(2022秋•溧水区期中)单项式2a b -的系数和次数分别是( ) A .1和2B .1和3C .1-和2D .1-和37.(2022秋•云梦县期中)下列说法正确的是( ) A .2a b+是单项式 B .225x x +-的常数项为5C .23mn的系数是2 D .xy 的次数是2次8.(2021秋•巩义市期末)下列说法正确的是( ) A .单项式3ab-的系数是3-,次数是2B .单项式23abc -的次数是3C .222431a b a b -+是四次三项式D .32ab -是二次单项式9.(2021秋•息县期末)下列说法:①2xπ的系数是2;②多项式2223x xy ++是二次三项式;③22x x --的常数项为2;④在1x,2x y +,213a b ,54yx,0中,整式有3个.其中正确的有( ) A .1个B .2个C .3个D .4个10.(2021秋•藁城区期末)下列计算正确的是( ) A .15(1)15x x -=- B .3()3a b a b --=-+ C .220x y yx -=D .325a b ab +=11.(2022秋•老河口市期中)若3a b -=,2b c +=-,则a c +的值是( ) A .5B .1C .5-D .1-12.(2022•石家庄二模)要比较21x A x =+与12x B +=中的大小(x 是正数),知道A B -的正负就可以判断,则下列说法正确的是( ) A .A BB .A B >C .A BD .A B <13.(2022•北碚区校级模拟)若33a b -=,则(2)(2)a b a b +--的值为( ) A .13-B .13C .3D .3-14.(2022秋•西岗区校级月考)若0m <,则|()|m m --等于( ) A .2mB .2m -C .2m 或2m -D .以上都不对15.(2022•龙湾区模拟)若代数式2(1)3(2)x x +++的值为8,则代数式2(2)3(1)x x -+-的值为( )A .0B .11C .7-D .15-16.(2022春•北碚区校级月考)下列计算正确的是( ) A .222()a b a b -=- B .236a a a ⋅= C .2232a a -=D .2363(3)27a b a b ---=-17.(2022春•靖江市校级月考)下列计算正确的是( )A .236a a a ⋅=B .22(1)1a a +=+C .2242a a a +=D .236()a a =18.(2022•上蔡县模拟)下列运算正确的是( ) A .32mn m n -= B .22(3)6m m -= C .222()m n m n +=+D .23236m m m ⋅=19.(2022春•鄞州区校级期中)有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙,若图甲和图乙中阴影部分的面积分别为4和52,则正方形A ,B 的面积之和为( )A .48B .56C .64D .7220.(2022春•吉安月考)如图所示的是正方形的房屋结构平面图,其中主卧与客卧都是正方形,其面积之和比其余面积(阴影部分)多26.25m ,则主卧与客卧的周长差是( )A .5mB .6mC .10mD .12m21.(2022春•南山区校级期中)如图,两个正方形边长分别为a 、b ,如果7a b +=,10ab =,则阴影部分的面积为( )A .25B .12.5C .13D .9.522.(2022春•于洪区期末)将297变形正确的是( ) A .22297907=+B .297(1003)(1003)=+-C .22297100210033=-⨯⨯+D .22297909077=+⨯+23.(2022•广元)下列运算正确的是( ) A .23x x x += B .22(3)6x x -=C .222326y x y x y ⋅=D .22(2)(2)2x y x y x y -+=-24.(2022•长安区模拟)下列计算正确的是( ) A .22()()a b a b a b +--=- B .2(1)(1)12y y y y ---=-+C .222()a b a b +=+D .2(1)(1)1y y y -+=-25.(2022春•六盘水期末)利用图形中面积的等量关系可以得到某些数学公式,例如根据图①我们可以得到两数和的平方公式:222()2a b a ab b +=++,根据图②你能得到的数学公式是( )A .22()()a b a b a b +-=-B .22()()a b a b a b -=+-C .222()2a b a ab b +=++D .222()2a b a ab b -=-+26.(2022春•双峰县期中)如图,将大正方形通过剪、割、拼后分解成新的图形,利用等面积法可证明某些乘法公式,在给出的4幅拼法中,其中能够验证平方差公式的有( )A .①②③④B .①②③C .①③D .③④27.(2022春•仪征市期中)将正方形的南北方向增加3m ,东西方向缩短3m ,则改造后的长方形面积与原来相比( ) A .减少29mB .增加29mC .保持不变D .无法确定28.(2022•息县二模)下列运算正确的是( ) A .44()a a -=- B .22232a a a -= C .236()a a a ⋅=D .22(21)21x x -=-29.(2022•十堰模拟)下列计算正确的是( ) A .ab a b -= B .2222a b b a ÷= C .2242(3)6a b a b -=D .222()a b a b +=+30.(2022•成都模拟)下列计算正确的是( ) A .2323x x x += B .3226411()24x y x y -= C .63233x y x x y ÷= D .22(2)4x x -=-二.填空题31.(2021秋•密山市校级期末)在式子:2a 、3a 、1x y +、12-、25x xy --、x 、61xy +、22a b -中,其中整式有 个.32.(2021秋•桦甸市期末)单项式33xy -的系数与次数的和是 . 33.(2021秋•柯桥区期末)单项式2xy -的系数为 .34.(2021秋•丰台区期末)单项式25x y 的系数是 ,次数是 .35.(2022春•莱西市期中)在等式()a b --⋅ 22a b =-中,括号里应填的多项式是 .36.(2021秋•莱州市期末)已知关于x ,y 的多项式212325m x y xy x ++--是六次四项式,单项式253n m x y -的次数与这个多项式的次数相同,则m n -= . 37.(2021秋•晋州市期末)已知3A a b =+,B 比A 小2a b -,C 比A 大2a b +,则B = ,C = .38.(2021秋•乌兰察布期末)已知轮船在静水中的速度为()a b +千米/时,逆流速度为(2)a b -千米/时,则顺流速度为 千米/时.39.(2021秋•岱岳区期末)若a 比b 大1,则代数式()2(2)a b a b ++-的值为 . 40.(2022•丰顺县校级开学)有一道数学题:“求代数式22222(2)3()4x y x y x +++-的值,其中13x =,2y =.”粗心的小李在做此题时,把“13x =”错抄成了“3x =”,但他的计算结果却是正确的,原因为 .41.(2022秋•东城区校级期中)若2()4s t -=,2()16s t +=,则st = . 42.(2022•雨花区校级开学)若5x y +=,3xy =,则22x y +的值为 . 43.(2022春•合川区校级期中)如图,用一个面积为a 的正方形和四个相同的长方形拼成一个面积为4a 的图案,求一个长方形的周长 .(用含a 的式子表示)44.(2022春•海安市校级月考)如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是26cm 和22cm ,那么两个长方形的周长和为 cm .45.(2022春•武宣县期末)10298⨯= .46.(2022•遵义)已知4a b +=,2a b -=,则22a b -的值为 .47.(2021秋•思明区校级期末)如图,边长为(3)m +的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),则拼成的长方形的周长是 .48.(2022•石家庄三模)如图,图1为边长为a 的大正方形中有一个边长为b 的小正方形,图2是由图1中阴影部分拼成的一个长方形. (1)以上两个图形反映了等式: ; (2)运用(1)中的等式,计算2202220212023-⨯= .49.(2022春•金牛区期末)若规定符号a b c d 的意义是a bad bc c d=-,则当2230a a +-=时,312a a a a +-+的值为 .50.(2022春•新吴区期中)计算: (1)23()x = ; (2)3x x ÷= ; (3)(23)x x -= ; (4)2(2)a b += 三.解答题51.(2021秋•平定县期中)已知关于x ,y 的多项式42(2)3n x m x y xy ++-+,其中n 为正整数.(1)当m ,n 为何值时,它是五次四项式? (2)当m ,n 为何值时,它是四次三项式?52.(2021秋•荔湾区校级月考)如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x -+的一次项系数,b 是最大的负整数,单项式13xy 的次数为c . (1)a = ,b = ,c = ;(2)若将数轴在点B 处折叠,则点A 与点C 重合(填“能”或“不能”); (3)点A ,B ,C 开始在数轴上运动,若点A 和点B 分别以每秒0.4个单位长度和0.3个单位长度的速度向左运动,同时点C 以每秒0.2个单位长度的速度向左运动,点C 到达原点后立即以原速度向右运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC .请问:5AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.53.(2022秋•长沙期中)整式的加减: (1)22222237833a b ab a b ab -+++-; (2)32233()2()x x x x -+-.54.(2022秋•浠水县校级期中)化简:(1)(52)(2)x x y x y ++--; (2)223[2(2)]3a b ab ab a b ab ----.55.(2022秋•北辰区期中)化简(1)已知多项式:22A a b =-,2223B a b =-,求3A B -;(2)先化简,再求值:(45)(87)a b a b ---,其中1a =-,1b =.56.(2022秋•宝安区期中)先化简,再求值:2275[23()]3a b ab ab a b ab ---+,其中4a =,14b =. 57.(2022春•贵阳期末)在数学学习中,我们常把数(或表示数的字母)与图形结合起来.如图可直观地表示两数a ,b 的和()a b +,差()a b -与积ab 之间的关系.已知0a >,0b >,4a b -=,12ab =,利用此图求出2()a b +的值.58.(2022春•青羊区期末)阅读材料:若x 满足(9)(4)4x x --=,求22(4)(9)x x -+-的值.设9x a -=,4x b -=,则(9)(4)4x x ab --==,(9)(4)5a b x x +=-+-=,22222222(4)(9)(9)(4)()252417x x x x a b a b ab ∴-+-=-+-=+=+-=-⨯=.请仿照上面的方法求解下面问题: 已知m 满足22(25)(42)5m m -+-=. (1)求(52)(42)m m --的值;(2)求49m -的值.59.(2022春•上虞区期末)图1是一个长为2b ,宽为2a 的长方形,沿虚线平均分成四块,然后按图2拼成一个正方形.解答下列问题.(1)图2中阴影部分的面积可表示为 ;对于2()b a -,2()b a +,ab ,这三者间的等量关系为 .(2)利用(1)中所得到的结论计算:若3x y +=-,74xy =-,则x y -= . (3)观察图3,从图中你能得到怎样的一个代数恒等式?再根据你所得到的这个代数恒等式探究:若22430(0)m mn n n ++=≠,试求mn的值. 60.(2022春•沙坪坝区校级期中)如图所示,从边长为()a b +的正方形中剪掉边长为a 的正方形,剩余部分为2个长方形和1个小正方形,据此回答下列问题: (1)用如图所示图形验证的乘法公式是: ;(2)运用(1)中的等式,计算:221.23 2.46 2.77 2.77+⨯+的值为 ; (3)运用(1)中的等式,若2310x x -+=,求221x x +的值.。
中考数学专题复习《整式的运算》测试卷-附带答案

中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
【中考数学】整式及分式化简专题训练(解析版)

题型一 计算类型二 整式及分式化简1.下列等式正确的是( ) A .3tan 452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+-【答案】D 【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可. 【详解】A. 3tan 45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意故选D . 【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义. 2.下列运算正确的是( ) A .235a a a ⋅= B .()235aa = C .22()ab ab = D .632(0)a a a a=≠【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解. 【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意; B 、()236a a =,故本选项错误,不符合题意;C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.下列运算中,正确的是( ) A .3515x x x ⋅= B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=-【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则. 4.计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2aa + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则.5.已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )A B .C D .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=,a b +=代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∴222a ab b ab -+=,∴()2a b ab -=,∵a>b>0,∴a b -∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴a b +==B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 6.下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=- 【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意; B.()222m n m n -=-,故该选项错误,不符合题意; C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意; D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 7.下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a = 【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确; B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误; D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键. 8.因式分解:24x -=__________. 【答案】(x+2)(x-2) 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +- 9.分解因式:34x x -=______. 【答案】x (x+2)(x ﹣2). 【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2). 考点:提公因式法与公式法的综合运用;因式分解. 10.分解因式:2a 3﹣8a=________. 【答案】2a (a+2)(a ﹣2) 【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.11.因式分21x -= . 【答案】(1)(1)x x +-. 【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-. 考点:1.因式分解-运用公式法;2.因式分解. 12.分解因式:23x x -=_____________. 【答案】x(x-3) 【详解】直接提公因式x 即可,即原式=x(x-3). 13.分解因式:2ab a -=______. 【答案】a (b+1)(b ﹣1). 【详解】解:原式=2(1)a b -=a (b+1)(b ﹣1), 故答案为a (b+1)(b ﹣1). 14.分解因式:24m -=_____. 【答案】(2)(2)m m +- 【分析】直接根据平方差公式进行因式分解即可. 【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +- 【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式. 15.因式分解:24-=x x _____. 【答案】2(1)(1)+-x x x【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.16.分解因式:2x x + = ______. 【答案】(1)x x +【分析】利用提公因式法即可分解. 【详解】2(1)x x x x +=+, 故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解. 17.分解因式:x 2-2x+1=__________. 【答案】(x-1)2【详解】由完全平方公式可得:2221(1)x x x -+=- 故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底. 18.若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∴10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键. 19.计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减. 20.化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2aa + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2aa +【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键.21.化简:2291(1)362m m m m -÷---.【解析】2291(1)362m m m m -÷---()()()333322m m m m m m +--=÷--()()()332323m m m m m m +--=⋅--33m m+=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 22.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 【答案】12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++ 2212x x x =-++12x =+当12x =时,原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键. 23.先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-. 【答案】2a 2ab +,3-【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算. 【详解】解:原式222222a b ab b a ab =-++=+, 将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.24.已知23230x x --=,求()2213x x x ⎛⎫-++ ⎪⎝⎭的值.【答案】24213x x -+,3【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解. 【详解】原式222213x x x x =-+++24213x x =-+. ∵23230x x --=,∴2213x x -=. ∴原式22213x x ⎛⎫=-+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键. 25.先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键. 26.先化简,再求值:()()212(2)x x x +++-,其中1x =.【答案】25x +,7. 【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得. 【详解】解:原式22214x x x =+++-,25x =+,将1x =代入得:原式2157=⨯+=. 【点睛】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键.27.先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 【答案】4,5a【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】221a a a a224a a a =-+- 4a =-当4a =时,原式44-=. 【点睛】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 28.先化简,再求值:()()()221x x x x +---,其中12x =. 【答案】4x -,132- 【分析】先根据平方差公式和单项式乘以多项式进行计算,再合并同类项,最后代入求出答案即可. 【详解】解:()()()221x x x x +---224x x x =--+4x =-,当12x =时,原式114322=-=-. 【点睛】本题考查了平方差公式,单项式乘以多项式,合并同类项,运用平方差公式是解题的关键. 29.已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy=-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=, ∴1121y x x y xy xy---===, ∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.30.化简:22311(1).m m m m m -+-+÷【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可. 【详解】解:22311(1)m m m m m -+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键. 31.先化简,再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭,其中x【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121x x x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+1x =+,∵x∴原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 32.计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++-=()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.33.先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2cos601a =︒+. 【答案】1a a -;12【分析】根据分式的混合运算法则进行化简,再结合特殊角的三角函数值求出a 的值,再代入求解即可.【详解】 解:原式22(1)1(1)(1)a a a a a a a +-=÷++- 2(1)(1)1a a a a a+-=⨯+ 1a a-=; 当12cos6012122a =︒+=⨯+=时, 原式121122a a --===. 【点睛】本题主要考查分式的化简求值问题,掌握运算法则与顺序,熟记特殊角的三角函数值是解题关键.34.先化简,再求值:21111m m m-⎛⎫+ ⎪-⎝⎭,其中2m =. 【答案】1m +,3【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m-+-+=⋅- (1)(1) 1m m m m m-+=⋅- 1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键.35.先化简,再求值:22211a a a a a ⎫⎛-÷⎪ +-⎝⎭,其中2tan45a =︒+1.【答案】1a a -,23【分析】先去括号,然后再进行分式的化简,最后代值求解即可.【详解】解:原式=2222111a a a a a a a a+---⨯=+, ∵2tan45a =︒+1,∴2113a =⨯+=,代入得:原式=31233-=. 【点睛】本题主要考查分式的化简求解及特殊三角函数值,熟练掌握分式的化简求解及特殊三角函数值是解题的关键.36.先化简,再求值: 2212(1)121x x x x x x +++-÷+++,其中x 满足220x x --=. 【答案】x (x+1);6【分析】先求出方程220x x --=的解,然后化简分式,最后选择合适的x 代入计算即可.【详解】解:∵220x x --=∴x=2或x=-1 ∴2212(1)121x x x x x x +++-÷+++ =()221212()111x x x x x x +++÷+++- =()2222()11x x x x x ++÷++=()()22112x x x x x ++⨯++=x (x+1)∵x=-1分式无意义,∴x=2当x=2时,x (x+1)=2×(2+1)=6.【点睛】本题主要考查了分式的化简求值、分式有意义的条件以及解一元二次方程等知识点,化简分式是解答本题的关键,确定x 的值是解答本题的易错点.37.先化简,再求值:23219a a a ⎛⎫+⋅ ⎪-⎝⎭,其中2a =. 【答案】23a -,2-. 【分析】先计算括号内的分式加法,再计算分式的乘法,然后将2a =代入求值即可得.【详解】 解:原式32(3)(3)a a a a a a ⎛⎫+⋅+= ⎪-⎝⎭, 32(3)(3)a a a a a +=+⋅-, 23a =-, 将2a =代入得:原式222323a ===---. 【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.38.先化简,再求值:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭,其中x 是1,2,3中的一个合适的数. 【答案】13x x -+,15. 【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可.【详解】 解:23210119x x x x --⎛⎫⋅- ⎪--⎝⎭ 2392101(3)(3)(3)(3)x x x x x x x x ⎡⎤---=⋅-⎢⎥-+-+-⎣⎦ 23211(3)(3)x x x x x x --+=⋅-+-23(1)1(3)(3)x x x x x --=⋅-+- 13x x -=+, ∵1x ≠,3x ≠±,∴2x =, 原式211235-==+. 【点睛】本题考查了分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.39.先化简2222424421a a a a a a a a a ---++++-÷,然后从0,1,2,3中选一个合适的a 值代入求解.【答案】2a ,6【分析】将分子、分母因式分解除法转化为乘法,约分、合并同类项,选择合适的值时,a 的取值不能使原算式的分母及除数为0.【详解】解:原式()2(2)(2)(2)(1)212a a a a a a a a a -++-=⨯+--+ 2a =因为a=0,1,2时分式无意义,所以3a =当3a =时,原式6=【点睛】本题考查了分式的化简求值,关键是先化简,后代值,注意a 的取值不能使原算式的分母及除数为0.40.先化简,再求值:2293411x x x x x x-+÷+--,其中2x =. 【答案】1x x +,32【分析】先通过约分、通分进行化简,再把给定的值代入计算即可.【详解】解:原式()()()313341x x x x x xx -=⨯++--+ 1x x+=, 当2x =时,原式32=. 【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握因式分解,正确进行约分、通分.41.先化简,再求值:32212111x x x x x x --+⎛⎫+÷ ⎪+-⎝⎭,其中1x =.【答案】21x -;3【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入式子进行计算即可.【详解】 原式21(1)11(1)(1)x x x x x x --⎛⎫=+÷ ⎪++-⎝⎭ 22(1)(1)1(1)x x x x x x +-=⋅+- 21x =-当1x =+时,原式3== 【点睛】本题主要考查的是分式的化简求值,最简二次根式,在解答此类型题目时,要注意因式分解、通分和约分的灵活运算,熟练掌握分式的混合运算法则是解题的关键.42.先化简,再求值:222442342x x x x x x-+-÷+-+,其中4x =-. 【答案】x+3,-1【解析】【分析】先根据分式混合运算的法则把原式进行化简,再把x=-4代入进行计算即可.【详解】解:原式=()()()()2223222x x x x x x -+⨯++-- =3x +,将4x =-代入得:原式=-4+3=-1,故答案为:-1.【点睛】本题考查了分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 43.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=. 【答案】2m m+1,1. 【解析】【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案.【详解】 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m -m+1m+1+ =2m m+1, 又∵m 满足2m -m-1=0,即2m =m+1,将2m 代入上式化简的结果,∴原式=2m m+1==1m+1m+1. 【点睛】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.44.先化筒,再求值:22221244y x x y x y x xy y---÷+++其中11cos30(3)()3x y π-==-︒-︒ 【答案】23x y x y++,0 【解析】【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案.【详解】 解:22221244y x x y x y x xy y ---÷+++ ()()()2122x y x y x y x y x y +--=+÷++, ()()()2212x y x y x y x y x y +-=+⨯++-, 21x y x y +=++, 23x y x y+=+;∵cos3032x ==⨯=,()10131323y π-⎛⎫=--=-=- ⎪⎝⎭所以,原式()()2332032⨯+⨯-==+-. 【点睛】 此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.45.先化简,再求值:22244242x x x x x x -+-÷-+,其中12x =. 【答案】2.【解析】【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可.【详解】解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=∙+-- 1x = 当1,2x = 上式11 2.2=÷= 【点睛】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键.46.先化简,再求值:229222a a a -⎛⎫-÷ ⎪--⎝⎭,其中3=-a .【答案】23a + 【解析】【分析】首先计算小括号里面的分式的减法,然后再计算括号外分式的除法,化简后,再代入a 的值可得答案.【详解】 解:原式226229a a a a --=⋅--, 2(3)22(3)(3)a a a a a --=⋅-+-, 23a =+.当3=a 时,原式3=== 【点睛】 此题主要考查了分式的化简求值以及分母有理化,关键是熟练掌握分式的减法和除法计算法则.47.先化简,再求值:222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y +,其中x ,y 1.【答案】化简结果为2y x y-;求值结果为2【解析】【分析】 根据分式四则运算顺序和运算法则对原式进行化简222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y +,得到最简形式后,再将x 、y ﹣1代入求值即可.【详解】 解:222y y x y x y ⎛⎫- ⎪--⎝⎭÷2x xy y + =2()()()()()y x y y x y x y x y x y ⎡⎤+-⎢⎥+-+-⎣⎦÷()x y x y + =()()xy x y x y +-×()y x y x+ =2y x y-当x ,y 1时=2 【点睛】本题考查分式的混合运算,掌握计算法则,依据运算顺序进行计算是得出正确答案的关键.48.先化简,再求值:211()11a a a a a a ---÷++,其中2a =- 【答案】1a a +;2a =-时,原式=2. 【解析】【分析】先利用分式的运算法则化简,然后代入2a =-计算即可.【详解】 解:211()11a a a a a a---÷++ 111a a a a --=÷+ 111a a a a -=+-1a a =+ 2a =-时,原式=2221-=-+ 【点睛】 本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键.49.先化简,再求值:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭,其中2a =. 【答案】31a +,1 【解析】【分析】先根据分式的混合运算步骤进行化简,然后代入求值即可.【详解】 解:2221221(2)1144a a a a a a a a ⎛⎫+-+-⋅⋅+ ⎪+-++⎝⎭ 2212(1)(2)1(1)(1)(2)a a a a a a a ⎡⎤+-=-⋅⋅+⎢⎥++-+⎣⎦ 11(2)1(1)(2)a a a a a ⎡⎤-=-⋅+⎢⎥+++⎣⎦ 2111a a a a +-=-++ 31a =+ 当2a =时,原式3121==+ 【点睛】此题主要考查分式的化简求值,熟练掌握分式混合运算法则是解题关键.50.先化简,再求值:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭,其中1x =+【答案】11x x +-1 【解析】【分析】先将括号中的两个分式分别进行约分,然后合并后再算括号外的除法,化简后的结果再将1x =.【详解】解:原式()()()()()22111111x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥⎢⎥⎣⎦+-- 1211x x x x x x +⎛⎫=-⋅⎪⎝⎭- - 11x x x x +=⋅- 11x x +=-将1x =111x x +===-. 【点睛】 本题考查分式的混合运算,遇到分子分母都能因式分解的,可以先把分子分母进行因式分解,将分式进行约分化简之后再进行通分,然后再合并,合并的时候分子如果是多项的话注意符号;求值的时候最后的结果必须是最简的形式.。
专题02 整式加减及其运算(6大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

第一部分数与式专题02 整式加减及其运算(6大考点)核心考点一列代数式及代数式求值核心考点二整式的有关概念及运算核心考点三乘法公式的应用核心考点四整式的化简求值核心考点五因式分解核心考点核心考点六规律探索题新题速递核心考点一列代数式及代数式求值例1(2022·贵州六盘水·中考真题)已知,则的值是()A.4B.8C.16D.12【分析】令,代入已知等式进行计算即可得.【详解】解:观察所求式子与已知等式的关系,令,则,故选:C .,求代数式的值.”可以这样解:.根据阅读材料,解决问题:若是关于x的一元一次方程的解,则代数式的值是________.【答案】【分析】先根据是关于x的一元一次方程的解,得到,再把所求的代数式变形为,把整体代入即可求值.【详解】解:∵是关于x的一元一次方程的解,∴,∴.故答案为:14,的正方形秧田,,其中不能使用的面积为.(1)用含,的代数式表示中能使用的面积___________;(2)若,,求比多出的使用面积.【答案】(1)(2)50【分析】(1)利用正方形秧田的面积减去不能使用的面积即可得;(2)先求出中能使用的面积为,再求出比多出的使用面积为,利用平方差公式求解即可得.【详解】(1)解:中能使用的面积为,故答案为:.(2)解:中能使用的面积为,则比多出的使用面积为,,,,答:比多出的使用面积为50.【点睛】本题考查了列代数式、平方差公式与图形面积,熟练掌握平方差公式是解题关键.代数式及求值(1)概念:用基本运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫代数式.单独的一个数或一个字母也是代数式;(2)列代数式:找出数量关系,用表示已知量的字母表示出所求量的过程;(3)代数式求值:把已知字母的值代入代数式中,并按原来的运算顺序计算求值.【变式1】(2022·山东济宁·三模)若是方程的两个根,则的值为( )A.9B.8C.7D.5【答案】A【分析】根据一元二次方程根的定义以及根与系数的关系,求解即可.【详解】解:是方程的两个根,则,,∴,,故选:A【点睛】此题考查了一元二次方程根的定义以及根与系数的关系,解题的关键是熟练掌握相关基础知识.【变式2】(2022·甘肃·平凉市第十中学三模)十八世纪伟大的数学家欧拉最先用记号的形式来表示关于的多项式,把等于某数时一的多项式的值用来表示.例如时,多项式的值可以记为,即我们定义.若,则的值为()A.B.C.D.【答案】C【分析】代入多项式可以得,把整体代入求解即可.【详解】,,得:,,故选:C.【点睛】本题考查求代数式的值,整体代入是解题的关键.【变式3】(2022·浙江丽水·一模)已知,实数m,n满足,.(1)若,则_______;(2)若,则代数式的值是______________.【答案】 7 42或252##252或42【分析】(1)将已知式子因式分解代入得出,然后利用两个完全平方公式之间的关系求解即可;(2)利用(1)中结论得出或,然后分两种情况,将原式化简代入求值即可.【详解】解:(1)∵m+n=3,∴,∴,∴,∴,∵m>n,∴,∴;(2),由(1)得或解得:或当m=5,时,∵,∴,∴m+p=2,∴原式;当,n=5时,∵,∴,∴,∴原式;∴代数式的值为42或252;故答案为:①7;②42或252.【点睛】题目主要考查因式分解的运用,求代数式的值及完全平方公式与平方差公式,熟练掌握运算法则进行变换是解题关键.【变式4】(2022·福建省福州屏东中学模拟预测)已知,,且,则代数式的值是______ .【答案】【分析】先计算,利用平方差公式求出的值,再把化为完全平方式,代入求值即可.【详解】解:,,.∴.,..故答案为:.【点睛】本题考查了平方差公式和完全平方式,代数式求值,掌握平方差公式和完全平方式的特点,利用平方差公式求出的值,是解决本题的关键.【变式5】(2022·安徽芜湖·模拟预测)阅读下列材料,完成后面的问题.材料1:如果一个四位数为(表示千位数字为a,百位数字为b,十位数字为c,个位数字为d的四位数,其中a为1~9的自然数,b,c,d为0~9的自然数),我们可以将其表示为:;材料2:把一个自然数(个位不为0)的各位数字从个位到最高位倒序排列,得到一个新的数.我们称该数为原数的兄弟数.如数“123”的兄弟数为“321”.(1)四位数______;(用含x,y的代数式表示)(2)设有一个两位数,它的兄弟数比原数大63,请求出所有可能的数;(3)求证:四位数一定能被101整除.【答案】(1)1000x+10y+505(2)18、29(3)证明过程见详解【分析】(1)依据材料1的方法即可作答;(2)先根据(1)的方法表示出和,在结合题意列出二元一次方程,化简得:,再根据x、y均是1至9的自然数即可求解;(3)利用(1)的方法表示出,依据a为1~9的自然数,b为0~9的自然数,可得10a+b必为整数,即命题得证.(1)根据题意有:,即答案为:;(2)∵,,又∵,∴,∴,∵根据题意有x、y均是1至9的自然数,∴满足要求的x、y的数组有:(1,8)、(2,9),∴可能的数有18和29;(3)证明:∵,∴,∵a为1~9的自然数,b为0~9的自然数,∴10a+b必为整数,∴一定能被101整除,命题得证.【点睛】本题考查了列代数式和求解二元一次方程的整数解的知识,充分理解材料1、2所给的新定义是解答本题的关键.核心考点二整式的有关概念及运算例1(2021·四川绵阳·中考真题)整式的系数是()A.-3B.3C.D.【答案】A【详解】解:的系数为本题主要考查了单项式的系数,追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):等于;JXND(觉醒年代):的个位数字是6;QGYW(强国有我):我知道,所以我估计比大.其中对的理解错误的网友是___________(填写网名字母代号).用,将化为,再与比较,即可判断的乘方的个位数字的规律即可判断的逆用可得,即可判断【详解】是200个2相乘,YYDS,DDDD(懂的都懂)的理解是错误的;,2的乘方的个位数字4个一循环,,的个位数字是,,且,故QGYW(强国有我)的理解是正确的;故答案为:DDDD.【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算第1个等式:,第2个等式:,第3个等式:,第4个等式:,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【答案】(1)(2),证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n个等式为,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:,故答案为:;(2)解:第n个等式为,证明如下:等式左边:,等式右边:,故等式成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.整式及有关概念(1)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的_次数,单项式中的数字因数叫做单项式的系数.单独的数、字母也是单项式;(2)多项式:由几个单项式组成的代数式叫做多项式,多项式里次数最高项的次数叫多项式的次数,一个多项式中的每个单项式叫做多项式的项,其中不含字母的项叫做常数项;(3)整式:单项式和多项式统称为整式;(4)同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项;所有的常数项都是同类项.整式的运算1.同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。
中考数学专题复习训练代数式及整式

代数式及整式一、选择题1. 计算x x ÷)2(3的结果正确的是( )A )28xB )26xC )38xD )36x 2.下列运算正确的是( )A .-3(x -1)=-3x -1B .-3(x -1)=-3x +1C .-3(x -1)=-3x -3D .-3(x -1)=-3x +3 3.下列命题中,正确的是( )A .若a ·b >0,则a >0,b >0B .若a ·b <0,则a <0,b <0C .若a ·b =0,则a =0,且b =0D .若a ·b =0,则a =0,或b =0 4. 34a a ⋅的结果是( )A. 4aB. 7aC.6aD. 12a6. 图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( ) A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+=C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-7.如果33-=-b a ,那么代数式b a 35+-的值是( ) A .0 B .2 C .5 D .88.由m (a +b +c )=ma +mb +mc ,可得:(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3,即(a +b )(a 2-ab +b 2)=a 3+b 3.我们把等式①叫做多项式乘法的立方公式。
下列应用这个立方公式进行的变形不正确...的是(A )(x +4y )(x 2-4xy +16y 2)=x 3+64y 3 (B )(2x+y )(4x 2-2xy+y 2)=8x 3+y 3(C )(a +1)(a 2+a +1)=a 3+1 (D )x 3+27=(x +3)(x 2-3x +9) 9.下列运算正确的是A .xy y x 532=+B .a a a =-23C .b b a a -=--)(D .2)2(12-+=+-a a a a )( 10.已知1=-b a ,则a 2-b 2-2b 的值为( )A .4B .3C .1D .0 11.下列运算中正确的是A .2325a a a +=B .22(2)(2)4a b a b a b +-=-C .23622a a a ⋅=D .222(2)4a b a b +=+12.已知有一多项式与(2x 2+5x -2)的和为(2x 2+5x +4),求此多项式为何?(A) 2 (B) 6 (C) 10x +6 (D) 4x 2+10x +2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式及其运算
知识点1.整式的运算: 例1.计算: (1)
)3
1
23()31(22122y x y x x +-+--;
(2)()()
222223254bc a b a c b a ab -÷-⋅+; (3)()()y x a y x a +--+22.
知识点2.因式分解:
例2.把下列多项式因式分解:
(1)2
2
3
2xy y x x +-;(2)()()m n n n m n m 2243
2-+-.
知识点3.化简,求值:
例3.先化简,再求值:()()()2
2
32a b a b a b a -+-++,其中62==
b a ,.
知识点4.探索规律:
例4.观察下列各算式,并寻找规律:
()25111100225152++⨯⨯==;()25122100625252++⨯⨯==; ()251331001225352++⨯⨯==;()251441002025452++⨯⨯==;…
(1)找出规律,并按规律在横线上填空:
_____________________________5625752==;_____________________________7225852==;
(2)用含字母的等式表示上述规律:__________________________________________;(3)利用上述规律,计算2
995的值.
知识点5.乘法公式的相关背景:
例5.图1是一个长为m 2、宽为n 2的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)请用两种不同的方法求图2中阴影部分的面积(用含m ,n 的代数式表示);(2)根据(1)中结论,请写出下列三个代数式()2
n m +,()2
n m -,m n 之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:若
78==+ab b a ,,求b a -和22b a +的值.
基础训练:
1.用代数式表示“比2
m 的2倍大1”的那个数是( )
()12.2+m A 12.2+m B ()212.+m C ()2
12.+m D
2.若正方形的周长是a ,则这个正方形的面积为( )
2
.a A 2
16.a B 16
.2
a C a D .
3.下列计算中,正确的是( )
222.x x x A =+ ()2263.x x B = ()42.22-=-x x C 23.x x x D =÷
4.下列各代数式中,是六次式的是( )
3
2
.y x A 6
2.xy B 3
.32c ab C ()6
.mn D
5.下列去括号中,正确的是 ( )
.A ()b a b a --=--22 ()b a b a B +-=--22. ()b a b a C 222.--=-- ()b a b a D 222.+-=--
6.下列运算中,正确的是( )
xy y x A 532.=+ y x xy y x B 22254.-=- 632623.--=⋅x x x C ()3224224.x xy y x D -=-÷
7.若2232
=-y y ,则=--1462
y y ( )
1.A
2.B
3.C
4.D
8.单项式5
2bc
a -的系数是_____________,次数是______________.
9.计算:()__________________122=--a a . 10.分解因式:___________3
=-xy y x .
11.若m y x 32与2
3y x n -是同类项,则:_________=+n m .
12.若一个三角形的面积为()02
>>-b a ab a ,其中一边长为a 3,则这条边上的高线的长度是_____________.
13.把多项式()2
222c b a --分解因式,结果是__________________________.
14.若21-==-ab b a ,,则:()()=-+11b a __________. 15.若,96432
=+-x x 则=+-
63
4
2
x x __________. 16.化简,求值:()()(),7633--+-+m m m m 其中2-=m .
17.求()()()()x y x y x y x 2][2
÷+-++的值,其中26=-=y x ,.
提高训练:
18.若7252
2
=+=+y x y x ,,且y x >,求y x -的值.
挑战压轴题:
19.如图,二次函数c bx x y ++=
2
2
1的图象交x 轴于D A 、两点,并经过点B ,且()02,A ,()68,B . (1)求二次函数的解析式;(2)求函数图象的顶点坐标及点D 的坐标;(3)该二次函数的对称轴交x 轴于点C ,连结BC ,并延长BC 交抛物线于点E ,连结DE BD 、,求BDE △的面积;(4)抛
物线上有动点P ,是否存在BCD ADP S S △△2
1
=,若存在,求点P 的坐标,若不存在,请说明理由.。