直接证明和间接证明4个课时教案
直接证明和间接证明课程教案
直接证明和间接证明课程教案第一章:引言1.1 课程目标本课程旨在帮助学生理解直接证明和间接证明的基本概念,掌握它们的应用方法,并能够灵活运用这两种证明方式解决实际问题。
1.2 课程内容本章将介绍直接证明和间接证明的定义、分类和基本方法。
1.3 教学方法采用讲授、案例分析、小组讨论等多种教学方法,帮助学生理解和掌握相关概念和方法。
第二章:直接证明2.1 定义和分类2.1.1 直接证明的定义直接证明是通过逻辑推理,直接从已知事实或前提出发,推导出要证明的结论。
2.1.2 直接证明的分类(1)直接逻辑推理:根据已知事实或前提,直接推导出结论。
(2)数学归纳法:先证明基本情况,再证明归纳步骤。
2.2 基本方法2.2.1 演绎法从一般到特殊的证明方法,即从一般原理推导出特殊情况下的结论。
2.2.2 归纳法从特殊到一般的证明方法,即先证明特殊情况,再推导出一般结论。
第三章:间接证明3.1 定义和分类3.1.1 间接证明的定义间接证明是通过证明相反命题的假性,从而证明原命题的真性。
3.1.2 间接证明的分类(1)反证法:假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
(2)归谬法:假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
3.2 基本方法3.2.1 反证法假设相反命题为真,通过逻辑推理得出矛盾,从而证明原命题为真。
3.2.2 归谬法假设相反命题为真,推导出明显错误的结论,从而证明原命题为真。
第四章:证明的辅助方法4.1 数学归纳法数学归纳法是一种包含直接证明和间接证明的方法,先证明基本情况,再证明归纳步骤。
4.2 逆否命题法将原命题的逆否命题作为证明对象,先证明逆否命题,再根据逆否命题与原命题的等价性得出原命题的证明。
第五章:练习与案例分析5.1 练习题设计一些有关直接证明和间接证明的练习题,帮助学生巩固所学内容。
5.2 案例分析分析一些实际案例,让学生运用直接证明和间接证明的方法解决问题。
直接证明和间接证明(4个课时)教案
直接证明和间接证明(4个课时)教案2.2直接证明与间接证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.③求差比较法的基本步骤是:“作差→变形→断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:(已知)<==(逐步推演不等式成立的必要条件)<==(结论)④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明(比较法)教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点:比较法的意义和基本步骤.教学难点:常见的变形技巧.教学方法;启发引导法.教学过程:(-)导入新课教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?找学生回答问题.(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】作差比较法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比较法.目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 .已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>Q 2()0a b a b ≠∴->Q 又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a b a b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a b a b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立 小结:作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式. (最后是与1比较)(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.练习:1.求证2.已知 , , ,d 都是正数,且,求证 目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.(四)布置作业2、已知:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 3 2211x x ≤+3、求证: .7341(0)q q q q +≥+>4、求证: 2,()a ba b R a b ab ++∈≥5、设a,b 求证:第二课时 综合法●教学目标(一)教学知识点 综合法证明不等式. (二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式. (三)德育渗透目标 掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A (已知)⇒B 1⇒B 2⇒…⇒B n ⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有: (1)a 2≥0或(a ±b )2≥0.(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab 即a 2+b 2≥2|ab |.(3)ab ba ≥+2,对a >0,b >0,当且仅当a =b 时取“=”号. (4)当a ,b 同号时有abb a +≥2,当且仅当a =b 时取“=”号.(5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. (6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. ●教学难点“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点. ●教学过程 1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系: (1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |;(3)ab ba ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=”号; (4)ab ≤222b a +,(a ,b ∈R);ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=”号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=”号; (6)33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号;(7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。
直接证明和间接证明(4个课时)课程教案
2.2直接证明与间接证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.③求差比较法的基本步骤是:“作差→变形→断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:(已知)<==(逐步推演不等式成立的必要条件)<==(结论)④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明(比较法)教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点: 比较法的意义和基本步骤.教学难点: 常见的变形技巧.教学方法;启发引导法.教学过程:(-)导入新课教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?找学生回答问题.(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】作差比较法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比较法.目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 . 已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>2()0a b a b ≠∴->又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a ba b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a ba b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立小结:作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(最后是与1比较)(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题. 练习:1.求证2.已知 , , ,d 都是正数,且,求证目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学. (四)布置作业2、已知:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 32211xx ≤+3、求证: .7341(0)q q q q +≥+>4、求证:2,()a ba bR a b ab ++∈≥5、设a,b 求证:第二课时综合法●教学目标(一)教学知识点综合法证明不等式.(二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式.(三)德育渗透目标掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A(已知)⇒B1⇒B2⇒…⇒B n⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有:(1)a2≥0或(a±b)2≥0.(2)a2+b2≥2ab,a2+b2≥-2ab即a2+b2≥2|ab|.(3)ab ba ≥+2,对a >0,b >0,当且仅当a =b 时取“=”号. (4)当a ,b 同号时有abb a +≥2,当且仅当a =b 时取“=”号.(5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号.(6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. ●教学难点“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点. ●教学过程 1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系: (1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |; (3)ab ba ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=”号; (4)ab ≤222b a +,(a ,b ∈R );ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=”号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=”号; (6)33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号; (7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。
人教版高中选修1-22.2直接证明与间接证明教学设计
人教版高中选修1-22.2直接证明与间接证明教学设计背景在高中数学中,直接证明和间接证明是一项重要的内容。
在初学阶段,学生可能会对这两种证明方式感到困惑,并将其视为难以理解的概念。
因此,在高中选修1课程中,适当地引入这些概念,有助于提升学生的证明能力,加深对数学的理解。
教学目标•了解直接证明和间接证明的含义和定义。
•掌握直接证明和间接证明的基本结构和方法。
•能够运用直接证明和间接证明的方法证明一些简单的数学命题。
教学内容直接证明•手动沙盘演示•直接证明的定义和特点•直接证明的基本步骤•示例讲解:证明“两角相等则对边相等”间接证明•手动沙盘演示•间接证明的定义和特点•间接证明的基本步骤•示例讲解:证明“正整数的平方不是偶数”教学实施本教学设计中,我们主要采用了手动沙盘演示的方法,来帮助学生更好地理解直接证明和间接证明的过程以及步骤。
直接证明•首先,我们在黑板上画一个三角形,并画出对边。
•然后,我们在沙盘上放置一个形状类似的三角形。
•接下来,我们让学生沿着直接证明的基本步骤,依次证明两个三角形的相等性,即可从直接证明中得到结论。
•在讲解示例时,我们还可以让学生自己尝试证明一些简单的数学命题,如“同弧度圆周角相等”等。
间接证明•在沙盘上摆放一些正整数的平方以及偶数。
•接下来,我们让学生依照间接证明的基本步骤,用矛盾法来证明正整数的平方不是偶数。
•我们还可以鼓励学生们自己构造出一些有关平方数的证明问题,让他们自行尝试间接证明的方法。
教学效果通过本教学设计,我们得到了良好的教学效果。
不仅可以帮助学生更好地理解直接证明和间接证明的定义和特点,而且可以在沙盘演示的过程中,使学生更好地了解证明的基本步骤,提升学生的证明能力。
同时,让学生自行构造有关数学证明的问题,也可以激发学生的思考能力,培养其数学兴趣。
高中数学教案学案直接证明与间接证明含习题答案与解析.doc
高中数学教案学案直接证明与间接证明学习目标: 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程及特点.2.了解间接证明的一种基本方法——反证法,了解反证法的思考过程及特点.1.直接证明(1)综合法①定义:利用已知条件和某些数学定义、定理、公理等,经过一系列的________,最后推导出所要证明的结论________,这种证明方法叫做综合法. ②框图表示:P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q (其中P 表示已知条件,Q 表示要证的结论).(2)分析法①定义:从________________出发,逐步寻求使它成立的__________,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等).这种证明的方法叫做分析法.②框图表示:Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件.2.间接证明反证法:假设原命题__________(即在原命题的条件下,结论不成立),经过正确的推理,最后得出________,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.1.分析法是从要证的结论出发,寻求使它成立的( )A .充分条件B .必要条件C .充要条件D .既不充分又不必要条件2.(2011·揭阳模拟)用反证法证明“如果a >b ,那么3a >3b ”的假设内容应是( )A.3a =3bB.3a <3bC.3a =3b 且3a <3bD.3a =3b 或3a <3b3.设a 、b 、c 是互不相等的正数,则下列不等式中不恒成立的是( )A .|a -c |≤|a -b |+|c -b |B .a 2+1a 2≥a +1aC.a +3-a +1<a +2-aD .|a -b |+1a -b≥2 4.(2010·广东)在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:那么d ⊗(a ⊕c )等于( )A .aB .bC .cD .d5.(2011·东北三省四市联考)设x 、y 、z ∈R +,a =x +1y ,b =y +1z ,c =z +1x,则a 、b 、c 三数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2考点一 综合法 例1 已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .举一反三1 设a ,b ,c >0,证明:a 2b +b 2c +c 2a≥a +b +c .考点二 分析法例2 (2011·马鞍山月考)若a ,b ,c 是不全相等的正数,求证:lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .举一反三2 已知a >0,求证: a 2+1a 2-2≥a +1a-2.考点三 反证法例3 若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立.举一反三3 若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a ,b ,c 中至少有一个大于0.例 (12分)(2010·上海改编)若实数x 、y 、m 满足|x -m |>|y -m |,则称x 比y 远离m .(1)若x 2-1比1远离0,求x 的取值范围.(2)对任意两个不相等的正数a 、b ,证明:a 3+b 3比a 2b +ab 2远离2ab ab .多角度审题 (1)本题属新定义题,根据“远离”的含义列出不等式,然后加以求解.(2)第(2)小题,实质是证明不等式|a 3+b 3-2ab ab |>|a 2b +ab 2-2ab ab |成立.证明时注意提取公因式及配方法的运用.【答题模板】(1)解 由题意得||x 2-1>1,即x 2-1>1或x 2-1<-1.[2分]由x 2-1>1,得x 2>2,即x <-2或x >2;由x 2-1<-1,得x ∈∅.综上可知x 的取值范围为(-∞,-2)∪(2,+∞).[4分](2)证明 由题意知即证||a 3+b 3-2ab ab >||a 2b +ab 2-2ab ab 成立.[6分]∵a ≠b ,且a 、b 都为正数,∴||a 3+b 3-2ab ab =||(a 3)2+(b 3)2-2a 3b 3=||(a 3-b 3)2=(a a -b b )2,||a 2b +ab 2-2ab ab =||ab (a +b -2ab )=ab (a -b )2=(a b -b a )2,[8分]即证(a a -b b )2-(a b -b a )2>0,即证(a a -b b -a b +b a )(a a -b b +a b -b a )>0,需证[](a -b )(a +b )[](a -b )(a +b )>0,[10分]即证(a +b )(a -b )2>0,∵a 、b 都为正数且a ≠b ,∴上式成立.故原命题成立.[12分]【突破思维障碍】1.准确理解题意,提炼出相应不等式是解决问题的关键.2.代数式|a 3+b 3-2ab ab |与|a 2b +ab 2-2ab ab |中的绝对值符号去掉为后续等价变形提供了方便.【易错点剖析】1.推理论证能力较差,绝对值符号不会去.2.运用能力较差,不能有效地进行式子的等价变形或中间变形出错.一、选择题(每小题5分,共25分)1.用反证法证明命题“若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a 、b 、c 中至少有一个是偶数”时,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数2.(2011·济南模拟)a ,b ,c 为互不相等的正数,且a 2+c 2=2bc ,则下列关系中可能成。
高中数学选修1-2《直接证明与间接证明》教案
高中数学选修1-2《直接证明与间接证明》教案教学内容:直接证明与间接证明教学目标:1、了解直接证明和间接证明的定义2、能够应用直接证明和间接证明的方法解决问题3、通过练习,掌握直接证明和间接证明的技巧,提高数学思维能力教学重点:1、了解直接证明和间接证明的方法2、掌握直接证明和间接证明的技巧教学难点:1、掌握间接证明的方法2、理解并应用间接证明的原理教学方法:讲授、演示,课堂练习教学工具:教材、黑板、彩色粉笔教学过程:Step1.导入新知教师通过提问,引出本节课的主题:直接证明与间接证明T:在讲解定理和证明的时候,我们遇到了不同的方法,例如直接证明和间接证明。
那么,大家知道直接证明与间接证明是什么吗?它们有什么区别?S:老师,直接证明是用已知的事实来推出结论,而间接证明是用推论的相反来推出结论。
直接证明与间接证明的区别在于前者是从已知开始,后者是从结论开始。
T:非常好!接下来,我们就来学习直接证明和间接证明的方法。
Step2.学习新知教师通过讲解及举例,介绍直接证明和间接证明的方法。
直接证明:从已知出发,逐步推出结论间接证明:采用反证法,否定假设,得到结论例1:直接证明已知:若n是偶数,则n^2是偶数结论:若n是奇数,则n^2是奇数T:大家看一下这个例子,我们可以通过直接证明来证明结论。
首先,我们假设n是奇数,那么我们可以把n表示为2k+1,其中k是整数。
接着,我们可以将n^2表示为(2k+1)^2=4k^2+4k+1。
我们可以看到,4k^2+4k是一个偶数,而1是一个奇数,所以n^2是奇数。
这样,我们就证明了原来的结论。
例2:间接证明已知:对于任意的正整数n,当n取模3时余数为1或2结论:不存在正整数a、b、c,使得a^2+b^2=c^2且a、b、c均除以3余1T:在这个例子中,我们需要用到间接证明的方法来证明结论。
首先,我们假设存在正整数a、b、c,满足a^2+b^2=c^2且a、b、c均除以3余1。
22直接证明与间接证明教学设计教案
22直接证明与间接证明教学设计教案第一章:直接证明与间接证明概述1.1 直接证明的概念与特点1.2 间接证明的概念与特点1.3 直接证明与间接证明的联系与区别第二章:直接证明方法2.1 综合法2.2 分析法2.3 穷举法2.4 构造法第三章:间接证明方法3.1 反证法3.2 归谬法3.3 举例法3.4 类比法第四章:直接证明与间接证明的应用4.1 数学定理的证明4.2 数学命题的证明4.3 实际问题的证明第五章:案例分析与练习5.1 案例分析:运用直接证明与间接证明解决实际问题5.2 练习题:选择题、填空题、解答题第六章:证明策略与证明方法的选择6.1 证明策略的选择6.2 直接证明与间接证明的转换6.3 证明方法的适用场景分析第七章:证明过程中的逻辑思维训练7.1 逻辑思维的基本概念7.2 证明过程中的逻辑推理7.3 逻辑思维在证明中的应用实例第八章:数学竞赛中的直接证明与间接证明8.1 数学竞赛证明题的特点8.2 数学竞赛中的直接证明策略8.3 数学竞赛中的间接证明技巧第九章:数学研究中的直接证明与间接证明9.1 数学研究中的证明方法9.2 直接证明与间接证明在数学研究中的应用9.3 数学研究中的证明策略案例分析10.1 直接证明与间接证明的核心概念回顾10.2 证明方法的综合运用10.3 证明策略在数学学习和研究中的应用10.4 拓展阅读材料与思考题重点和难点解析一、直接证明与间接证明概述补充说明:直接证明与间接证明是数学证明的两种基本方式,它们在证明过程中的应用场景和证明方法各有不同。
理解它们之间的联系与区别有助于学生更好地选择合适的证明方法。
二、直接证明方法补充说明:构造法是直接证明中的一种重要方法,通过构造特定的数学对象或模型来证明问题的正确性。
学生在学习构造法时,需要掌握构造的核心思想和方法。
三、间接证明方法补充说明:反证法是间接证明中的一种常用方法,通过假设命题的反面成立,进而得出矛盾,从而证明原命题的正确性。
人教版高中选修1-22.2直接证明与间接证明课程设计
人教版高中选修1-22.2直接证明与间接证明课程设计一、前言本课程设计旨在帮助高中数学教师更好地教授人教版高中选修1-22.2直接证明与间接证明课程,通过本课程设计,希望能帮助学生更好地理解并掌握课程中的知识点。
二、教学目标1. 知识与技能1.了解直接证明和间接证明的概念和方法;2.掌握直接证明和间接证明的常用技巧;3.熟悉求解几何问题的方法。
2. 过程与方法1.积极思考,在教师的指导下独立完成课程设计要求;2.能够熟练使用直接证明和间接证明的方法求解几何问题;3.可以在实际生活中运用所学知识。
3. 情感态度与价值观1.培养学生科学求证、敢于思考、勇于探究的精神;2.培养学生良好的学习习惯和态度。
三、教学内容及安排第1课时:直接证明课堂内容1.直接证明的概念;2.直接证明的一般方法;3.直接证明的经典例题。
课后作业1.熟记直接证明的方法;2.完成直接证明的练习。
第2课时:间接证明课堂内容1.间接证明的概念;2.间接证明的一般方法;3.间接证明的经典例题。
课后作业1.熟记间接证明的方法;2.完成间接证明的练习。
第3-4课时:综合应用课堂内容1.综合应用的基本思路;2.综合应用的例题分析。
课后作业1.完成综合应用的练习。
四、教学方法1.讲授法:通过讲解、演示等方式传授知识;2.体验法:让学生通过实际操作提高技能;3.案例法:让学生通过分析具体问题,掌握解决问题的方法。
五、教学评价教学评价将采用以下几种方式:1.课堂表现:评价学生的听讲、思考、提问等表现;2.平时作业:评价学生对知识的掌握程度;3.课程综合应用:评价学生将所学知识应用于实际情境中的能力。
六、教学资源本课程设计所需资源如下:1.人教版高中选修1-22.2教材;2.带有直接证明和间接证明例题的教案;3.练习册和试卷。
七、教学反思本课程设计要注重培养学生的实践能力和创新意识,让学生能够独立思考和解决问题。
同时,要注重理论与实践相结合,让学生掌握课程所涉及的知识和技能。
直接证明和间接证明课程教案
直接证明和间接证明课程教案一、教学目标1. 让学生理解直接证明和间接证明的概念。
2. 培养学生运用直接证明和间接证明解决问题的能力。
3. 引导学生掌握数学归纳法、反证法等间接证明方法。
二、教学内容1. 直接证明:定义、分类、方法及应用。
2. 间接证明:数学归纳法、反证法的原理与步骤。
3. 实例分析:利用直接证明和间接证明解决实际问题。
三、教学重点与难点1. 重点:直接证明和间接证明的概念、方法及应用。
2. 难点:数学归纳法、反证法的原理与步骤。
四、教学方法1. 采用讲授法,讲解直接证明和间接证明的定义、分类、方法及应用。
2. 运用案例分析法,让学生通过实例掌握直接证明和间接证明的解题技巧。
3. 运用讨论法,引导学生探讨数学归纳法、反证法的原理与步骤。
五、教学准备1. 教案、课件、教材等相关教学资源。
2. 练习题及答案。
3. 教学工具:黑板、粉笔、多媒体设备等。
六、教学过程1. 引入新课:通过讲解一个实际问题,引导学生思考如何运用直接证明和间接证明解决问题。
2. 讲解直接证明:介绍直接证明的定义、分类及方法,并通过例题展示如何运用直接证明解决问题。
3. 讲解间接证明:介绍数学归纳法和反证法的原理与步骤,并通过例题展示如何运用数学归纳法和反证法解决问题。
4. 练习与讨论:让学生分组练习,运用直接证明和间接证明解决给定的问题,并进行讨论交流。
5. 总结与拓展:总结本节课所学内容,强调直接证明和间接证明在数学论证中的重要性,并给出一些拓展问题,激发学生进一步学习的兴趣。
七、课后作业1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固直接证明和间接证明的方法。
3. 选择一道拓展问题进行思考,下节课分享解答过程。
八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习积极性。
2. 课后作业:检查学生完成的课后作业,评价学生的掌握程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作意识、交流能力等。
22直接证明与间接证明教学设计教案
22直接证明与间接证明教学设计教案第一章:直接证明的概念与方法1.1 直接证明的定义引导学生了解直接证明的概念,理解直接证明是通过逻辑推理直接证明命题的正确性。
举例说明直接证明的过程和方法。
1.2 直接证明的基本方法介绍直接证明的基本方法,包括数学归纳法、反证法、归纳法等。
通过具体例子讲解这些方法的应用和步骤。
第二章:直接证明的运用2.1 运用直接证明解决简单命题让学生练习运用直接证明解决简单的数学命题,巩固对直接证明的理解。
提供一些练习题,让学生独立完成并解释证明过程。
2.2 运用直接证明解决复杂命题引导学生如何将复杂命题分解为简单的子命题,逐个进行直接证明。
提供一些综合性的练习题,让学生练习证明过程。
第三章:间接证明的概念与方法3.1 间接证明的定义引导学生了解间接证明的概念,理解间接证明是通过反证法、归纳法等方法间接证明命题的正确性。
举例说明间接证明的过程和方法。
3.2 间接证明的基本方法介绍间接证明的基本方法,包括反证法、归纳法等。
通过具体例子讲解这些方法的应用和步骤。
第四章:间接证明的运用4.1 运用间接证明解决简单命题让学生练习运用间接证明解决简单的数学命题,巩固对间接证明的理解。
提供一些练习题,让学生独立完成并解释证明过程。
4.2 运用间接证明解决复杂命题引导学生如何将复杂命题转化为反证法或归纳法问题,进行间接证明。
提供一些综合性的练习题,让学生练习证明过程。
第五章:直接证明与间接证明的综合运用5.1 综合运用直接证明与间接证明解决实际问题引导学生如何根据问题的特点选择直接证明或间接证明的方法。
提供一些实际问题,让学生练习综合运用直接证明与间接证明的方法。
5.2 案例分析与讨论提供一些案例,让学生分析并讨论如何运用直接证明与间接证明的方法解决问题。
引导学生总结经验,提高解题能力和逻辑思维能力。
第六章:证明题的类型与策略6.1 证明题的类型分析常见的证明题类型,如几何证明、代数证明、数列证明等。
《直接证明与间接证明》教案正式版
《直接证明与间接证明》教案教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) >6abc .分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果.③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形. 分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系?→ 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B ++=,求证:60A B +=o . (提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题)(两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++.3. 作业:教材P 54 A 组 1题.第二课时 2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推)⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥.略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos C C -≥cos 2C C +≤,即证:sin()16C π+≤(成立).2. 作业:教材P 52 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A 、B 、C 不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个⊙O 过A 、B 、C 三点,则O 在AB 的中垂线l 上,O 又在B C 的中垂线m 上, 即O 是l 与m 的交点。
22直接证明与间接证明教学设计教案
22直接证明与间接证明教学设计教案第一章:直接证明与间接证明的概念介绍1.1 直接证明的概念引导学生回顾数学证明的基本概念,引入直接证明的概念。
通过具体例子解释直接证明的思路和方法。
让学生尝试用直接证明的方法证明一些简单的数学命题。
1.2 间接证明的概念引导学生理解直接证明的局限性,引入间接证明的概念。
通过具体例子解释间接证明的思路和方法,如反证法、归纳法等。
让学生尝试用间接证明的方法证明一些简单的数学命题。
第二章:直接证明的方法与技巧2.1 综合法引导学生学习综合法的概念和思路。
通过具体例子讲解综合法的运用方法和技巧。
让学生练习运用综合法证明一些简单的数学命题。
2.2 分析法引导学生学习分析法的概念和思路。
通过具体例子讲解分析法的运用方法和技巧。
让学生练习运用分析法证明一些简单的数学命题。
第三章:间接证明的方法与技巧3.1 反证法引导学生学习反证法的概念和思路。
通过具体例子讲解反证法的运用方法和技巧。
让学生练习运用反证法证明一些简单的数学命题。
3.2 归纳法引导学生学习归纳法的概念和思路。
通过具体例子讲解归纳法的运用方法和技巧。
让学生练习运用归纳法证明一些简单的数学命题。
第四章:直接证明与间接证明的应用实例4.1 几何证明引导学生运用直接证明和间接证明解决几何问题。
通过具体例子讲解几何证明的思路和方法。
让学生练习解决一些几何证明问题。
4.2 代数证明引导学生运用直接证明和间接证明解决代数问题。
通过具体例子讲解代数证明的思路和方法。
让学生练习解决一些代数证明问题。
第五章:总结与提高5.1 总结直接证明与间接证明的概念和方法。
引导学生总结本节课所学的直接证明和间接证明的概念和方法。
强调直接证明和间接证明的运用技巧和注意事项。
5.2 提高证明能力引导学生思考如何提高自己的数学证明能力。
提供一些证明题目,让学生进行练习和思考。
第六章:综合法与分析法的比较与应用6.1 综合法与分析法的异同引导学生比较综合法与分析法的相同点和不同点。
直接证明和间接证明课程教案
直接证明和间接证明课程教案一、教学目标1. 让学生理解直接证明和间接证明的定义及概念。
2. 培养学生运用直接证明和间接证明解决几何问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维。
二、教学内容1. 直接证明:定义、分类及方法。
2. 间接证明:定义、分类及方法。
3. 直接证明与间接证明的应用。
三、教学重点与难点1. 教学重点:直接证明和间接证明的定义、分类及方法。
2. 教学难点:如何运用直接证明和间接证明解决几何问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究直接证明和间接证明的方法。
2. 通过几何图形的分析,让学生直观地理解直接证明和间接证明的原理。
3. 运用案例教学法,让学生在实际问题中学会运用直接证明和间接证明。
五、教学准备1. 教案、课件、黑板。
2. 几何图形、模型。
3. 练习题。
教案内容依次按照教学目标、教学内容、教学重点与难点、教学方法、教学准备进行展开。
后续章节(六至十)分别针对直接证明和间接证明的分类、方法、应用等进行详细讲解和练习。
六、直接证明的分类及方法1. 定义:直接证明是通过已知条件和几何性质,直接推导出要证明的结论。
2. 分类:a) 几何法:利用几何图形的性质进行证明。
b) 代数法:利用代数式和方程进行证明。
c) 综合法:结合几何法和代数法进行证明。
七、间接证明的分类及方法1. 定义:间接证明是通过已知条件和几何性质,证明与要证明的结论相反的命题不成立,从而证明要证明的结论。
2. 分类:a) 反证法:假设要证明的结论不成立,推导出矛盾,从而证明要证明的结论成立。
b) 归纳法:从特殊情况推导出一般情况的结论。
c) 逆否法:先证明逆命题成立,再证明原命题成立。
八、直接证明与间接证明的应用1. 例题讲解:分析例题,运用直接证明和间接证明解决几何问题。
2. 练习题:让学生独立解决练习题,巩固直接证明和间接证明的应用。
九、直接证明和间接证明的局限性1. 直接证明的局限性:当问题复杂时,直接证明可能较为困难。
教案(直接证明与间接证明)
1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明(1)反证法:假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.(2)反证法的步骤:①反设——假设命题的结论不成立,即假定原结论的反面为真;②归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × )(3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × )(4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为_________.答案 c n +1<c n解析 由条件得c n =a n -b n =n 2+1-n =1n 2+1+n , 则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号).①2ab -1-a 2b 2≤0;②a 2+b 2-1-a 4+b 42≤0; ③(a +b )22-1-a 2b 2≤0; ④(a 2-1)(b 2-1)≥0.答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________.答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a )=(a -b )(a -b )=(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0.∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为________三角形.答案 等边解析 由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac , 由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c ,∴A =C ,∴A =B =C =π3, ∴△ABC 为等边三角形.题型一 综合法的应用例1 对于定义域为[0,1]的函数f (x ),如果同时满足:①对任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,都有f (x 1+x 2)≥f (x 1)+f (x 2)成立,则称函数f (x )为理想函数.(1)若函数f (x )为理想函数,证明:f (0)=0;(2)试判断函数f (x )=2x (x ∈[0,1]),f (x )=x 2(x ∈[0,1]),f (x )=x (x ∈[0,1])是不是理想函数.(1)证明 取x 1=x 2=0,则x 1+x 2=0≤1,∴f (0+0)≥f (0)+f (0),∴f (0)≤0.又对任意的x ∈[0,1],总有f (x )≥0,∴f (0)≥0.于是f (0)=0.(2)解 对于f (x )=2x ,x ∈[0,1],f (1)=2不满足新定义中的条件②,∴f (x )=2x ,(x ∈[0,1])不是理想函数.对于f (x )=x 2,x ∈[0,1],显然f (x )≥0,且f (1)=1.任意的x 1,x 2∈[0,1],x 1+x 2≤1,f (x 1+x 2)-f (x 1)-f (x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f (x 1)+f (x 2)≤f (x 1+x 2).∴f (x )=x 2(x ∈[0,1])是理想函数.对于f (x )=x ,x ∈[0,1],显然满足条件①②.对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f (x 1)+f (x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0,即f 2(x 1+x 2)≤[f (x 1)+f (x 2)]2.∴f (x 1+x 2)≤f (x 1)+f (x 2),不满足条件③.∴f (x )=x (x ∈[0,1])不是理想函数.综上,f (x )=x 2(x ∈[0,1])是理想函数,f (x )=2x (x ∈[0,1])与f (x )=x (x ∈[0,1])不是理想函数. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设知(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22, 只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22, 只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2). 由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2,即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2,即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝ ⎛⎭⎪⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x-2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22, 即证明1212(32)(32)2x x x x -+-≥1223x x +-2·x 1+x 22, 因此只要证明12332x x +-(x 1+x 2)≥1223x x +-(x 1+x 2), 即证明12332x x +≥1223x x +,因此只要证明12332x x + 由于x 1,x 2∈R 时,1230,30x x>>,由基本不等式知12332x x + 思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.已知a >0,求证 a 2+1a 2-2≥a +1a -2. 证明 要证 a 2+1a 2-2≥a +1a -2, 只需要证 a 2+1a 2+2≥a +1a+ 2. 因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a +2)2, 即a 2+1a2+4 a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2, 从而只需要证2 a 2+1a 2≥2(a +1a), 只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立. 题型三 反证法的应用命题点1 证明否定性命题例3 已知数列{a n }的前n 项和为S n ,且满足a n +S n =2.(1)求数列{a n }的通项公式;(2)求证:数列{a n }中不存在三项按原来顺序成等差数列.(1)解 当n =1时,a 1+S 1=2a 1=2,则a 1=1.又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n , 所以{a n }是首项为1,公比为12的等比数列, 所以a n =12n -1. (2)证明 反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p <q <r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p +1.(*) 又因为p <q <r ,且p ,q ,r ∈N *,所以r -q ,r -p ∈N *.所以(*)式左边是偶数,右边是奇数,等式不成立.所以假设不成立,原命题得证.命题点2 证明存在性问题例4 若f (x )的定义域为[a ,b ],值域为[a ,b ](a <b ),则称函数f (x )是[a ,b ]上的“四维光军”函数.(1)设g (x )=12x 2-x +32是[1,b ]上的“四维光军”函数,求常数b 的值; (2)是否存在常数a ,b (a >-2),使函数h (x )=1x +2是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解 (1)由题设得g (x )=12(x -1)2+1,其图象的对称轴为x =1,区间[1,b ]在对称轴的右边,所以函数在区间[1,b ]上单调递增.由“四维光军”函数的定义可知,g (1)=1,g (b )=b ,即12b 2-b +32=b ,解得b =1或b =3. 因为b >1,所以b =3.(2)假设函数h (x )=1x +2在区间[a ,b ] (a >-2)上是“四维光军”函数, 因为h (x )=1x +2在区间(-2,+∞)上单调递减, 所以有⎩⎪⎨⎪⎧ h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧ 1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾.故不存在.命题点3 证明唯一性命题例5 已知M 是由满足下述条件的函数构成的集合:对任意f (x )∈M ,(ⅰ)方程f (x )-x =0有实数根;(ⅱ)函数f (x )的导数f ′(x )满足0<f ′(x )<1.(1)判断函数f (x )=x 2+sin x 4是不是集合M 中的元素,并说明理由; (2)集合M 中的元素f (x )具有下面的性质:若f (x )的定义域为D ,则对于任意[m ,n ]⊆D ,都存在x 0∈(m ,n ),使得等式f (n )-f (m )=(n -m )f ′(x 0)成立.试用这一性质证明:方程f (x )-x =0有且只有一个实数根.(1)解 ①当x =0时,f (0)=0,所以方程f (x )-x =0有实数根为0;②f ′(x )=12+14cos x ,所以f ′(x )∈⎣⎡⎦⎤14,34,满足条件0<f ′(x )<1. 由①②可得,函数f (x )=x 2+sin x 4是集合M 中的元素. (2)证明 假设方程f (x )-x =0存在两个实数根α,β (α≠β),则f (α)-α=0,f (β)-β=0. 不妨设α<β,根据题意存在c ∈(α,β),满足f (β)-f (α)=(β-α)f ′(c ).因为f (α)=α,f (β)=β,且α≠β,所以f ′(c )=1.与已知0<f ′(x )<1矛盾.又f (x )-x =0有实数根,所以方程f (x )-x =0有且只有一个实数根.思维升华 应用反证法证明数学命题,一般有以下几个步骤:第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列. (1)解 由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2, 故a n =2n -1+2,S n =n (n +2).(2)证明 由(1)得b n =S n n=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0.∴(p +r 2)2=pr ,即(p -r )2=0.∴p =r ,与p ≠r 矛盾. ∴假设不成立,即数列{b n }中任意不同的三项都不可能成等比数列.23.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点. (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思维点拨 (1)根据菱形对角线互相垂直平分及点B 的坐标设出点A 的坐标,代入椭圆方程求得点A 的坐标,后求AC 的长;(2)将直线方程代入椭圆方程求出AC 的中点坐标(即OB 的中点坐标),判断直线AC 与OB 是否垂直.规范解答(1)解 因为四边形OABC 为菱形,则AC 与OB 相互垂直平分.由于O (0,0),B (0,1)所以设点A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1, 则t =±3,故|AC |=2 3.[4分](2)证明 假设四边形OABC 为菱形,因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分]设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 2+y 22=k ·x 1+x 22+m =m 1+4k 2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k, 因为k ·⎝⎛⎭⎫-14k =-14≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.[13分]所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]温馨提醒 (1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去.[方法与技巧]1.分析法的特点:从未知看需知,逐步靠拢已知.2.综合法的特点:从已知看可知,逐步推出未知.3.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.[失误与防范]1.用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直至一个明显成立的结论.2.利用反证法证明数学问题时,要假设结论错误,并用假设的命题进行推理,如果没有用假设命题推理而推出矛盾结果,其推理过程是错误的.A 组 专项基础训练(时间:45分钟)1.若a 、b ∈R ,则下面四个式子中恒成立的是________(填序号).①lg(1+a2)>0 ②a2+b2≥2(a-b-1)③a2+3ab>2b2④ab<a+1 b+1答案②解析在②中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.2.①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.以下正确的是________(填字母).a.①与②的假设都错误b.①与②的假设都正确c.①的假设正确;②的假设错误d.①的假设错误;②的假设正确答案 d解析反证法的实质是否定结论,对于①,其结论的反面是p+q>2,所以①不正确;对于②,其假设正确.3.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac<3 a”索的因应是_______________.①a-b>0 ②a-c>0③(a-b)(a-c)>0 ④(a-b)(a-c)<0答案③解析由题意知b2-ac<3a⇐b2-ac<3a2⇐(a+c)2-ac<3a2⇐a2+2ac+c2-ac-3a2<0⇐-2a2+ac+c2<0⇐2a2-ac-c2>0⇐(a-c)(2a+c)>0⇐(a-c)(a-b)>0.4.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系是____________.答案P<Q解析∵P2=2a+7+2a·a+7=2a +7+2a 2+7a , Q 2=2a +7+2a +3·a +4 =2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是_____________________________. 答案 ③解析 若a =12,b =23,则a +b >1, 但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,即a +b >2,则a ,b 中至少有一个大于1,反证法:假设a ≤1且b ≤1,则a +b ≤2与a +b >2矛盾,因此假设不成立,a ,b 中至少有一个大于1.6.用反证法证明命题“a ,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,那么假设的内容是____________________________.答案 a ,b 中没有一个能被5整除解析 “至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________.答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 令⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足条件的p 的范围为⎝⎛⎭⎫-3,32. 9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .证明 要证明2a 3-b 3≥2ab 2-a 2b 成立,只需证:2a 3-b 3-2ab 2+a 2b ≥0,即2a (a 2-b 2)+b (a 2-b 2)≥0,即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0,从而(a +b )(a -b )(2a +b )≥0成立,∴2a 3-b 3≥2ab 2-a 2b .10.已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD .同理SA ⊥AB .又AB ∩AD =A ,∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD .∴BC ∥平面SAD .而BC ∩BF =B ,∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾,∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD .B 组 专项能力提升(时间:30分钟)11.已知函数f (x )=(12)x ,a ,b 是正实数,A =f (a +b 2),B =f (ab ),C =f (2ab a +b),则A 、B 、C 的大小关系为__________.答案 A ≤B ≤C解析 ∵a +b 2≥ab ≥2ab a +b,又f (x )=(12)x 在R 上是减函数. ∴f (a +b 2)≤f (ab )≤f (2ab a +b),即A ≤B ≤C . 12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则下列说法正确的是________.①△A 1B 1C 1和△A 2B 2C 2都是锐角三角形;②△A 1B 1C 1和△A 2B 2C 2都是钝角三角形;③△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形;④△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形.答案 ④解析 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin ⎝⎛⎭⎫π2-A 1,sin B 2=cos B 1=sin ⎝⎛⎭⎫π2-B 1,sin C 2=cos C 1=sin ⎝⎛⎭⎫π2-C 1,得⎩⎪⎨⎪⎧ A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2, 这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形.所以△A 2B 2C 2是钝角三角形.13.凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案 332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数,且A 、B 、C ∈(0,π). ∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3), 即sin A +sin B +sin C ≤3sin π3=332, 所以sin A +sin B +sin C 的最大值为332. 14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是f (x )=0的一个根; (2)试比较1a与c 的大小; (3)证明:-2<b <-1.(1)证明 ∵f (x )的图象与x 轴有两个不同的交点,∴f (x )=0有两个不等实根x 1,x 2,∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a ,∴x 2=1a ⎝⎛⎭⎫1a ≠c , ∴1a是f (x )=0的一个根. (2)解 假设1a <c ,又1a>0, 由0<x <c 时,f (x )>0,知f ⎝⎛⎭⎫1a >0与f ⎝⎛⎭⎫1a =0矛盾, ∴1a ≥c ,又∵1a ≠c ,∴1a>c . (3)证明 由f (c )=0,得ac +b +1=0, ∴b =-1-ac .又a >0,c >0,∴b <-1. 二次函数f (x )的图象的对称轴方程为x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a, 即-b 2a <1a. 又a >0,∴b >-2,∴-2<b <-1.15.已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n ≥1),数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.(1)解 由题意可知,1-a 2n +1=23(1-a 2n ). 令c n =1-a 2n ,则c n +1=23c n . 又c 1=1-a 21=34,则数列{c n }是首项为c 1=34, 公比为23的等比数列,即c n =34·(23)n -1, 故1-a 2n =34·(23)n -1⇒a 2n =1-34·(23)n -1. 又a 1=12>0.a n a n +1<0,故a n =(-1)n -1 1-34·(23)n -1. b n =a 2n +1-a 2n =[1-34·(23)n ]-[1-34·(23)n -1] =14·(23)n -1. (2)证明 用反证法证明.假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列, 于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14(23)t -1, 两边同乘以3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s .由于r <s <t ,∴上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.。
2.2直接证明与间接证明(4课时)
2.2
直接证明与间接证明
2.2.2
反证法
问题提出
1.综合法和分析法的基本含义分别 是什么? 综合法:利用已知条件和某些数学定义、 公理、定理、性质、法则等,经过一系 列的推理论证,最后推导出所证结论成 立. 分析法:从所证结论出发,逐步寻求使 它成立的充分条件,直到归结为判定一 个显然成立的条件(已知条件、定义、 公理、定理、性质、法则等)为止.
2
2
2
9 4
例4 求证:面积为1的三角形不能被 面积小于2的平行四边形所覆盖.
D P
E N F B
C
K
M
A
流程:
P Þ Q1 Q1 Þ Q 2 Q 2 Þ Q 3
„
Qn Þ Q
2.分析的基本含义和思维流程分别 是什么?
含义:从所证结论出发,逐步寻求使它成 立的充分条件,直到归结为判定一个显 然成立的条件(已知条件、定义、公理、 定理、性质、法则等)为止. 流程: Q Ü P1 P1 Ü P2 P2 Ü P3 …
大前提:已知的一般原理; 小前提:所研究的特殊情况;
结 论:根据一般原理,对特殊情况做 出判断.
3.合情推理所得结论的正确性是需要 证明的,演绎推理的实施也需要具体的 操作方法,因此,从理论上获取证明数 学命题的基本方法,是我们需要进一步 学习的内容.
探究(一):综合法
思考1:对于不等式
a(b + c ) + b(c + a )
2.2
2.2.1
直接证明与间接证明
综合法和分析法
问题提出
1 5730 p 2
t
1.合情推理的主要作用和思维过程是 什么?
作用:提出猜想,发现结论; 过程:从具体问题出发→观察、分析、 比较、联想→归纳、类比→提出猜想.
人教版高中选修(B版)2-22.2直接证明与间接证明课程设计
人教版高中选修(B版)2-22.2直接证明与间接证明课程设计一、课程背景本课程是人教版高中选修(B版)2-22.2直接证明与间接证明,共计5个学时。
本课程原本是在高中数学教学中,采用了系统的教学方法来对直接证明和间接证明进行详细介绍,让学生们通过实际操作,掌握证明思想与方法,提高数学素养,也让学生们更好地了解到数学在实际生活中的运用。
二、课程内容本课程主要内容包括直接证明和间接证明两个部分,分别从如下几个方面进行讲解:1. 直接证明•直接证明的定义和原理•直接证明的方法和技巧•直接证明的实践操作2. 间接证明•间接证明的定义和原理•间接证明的方法和技巧•间接证明的实践操作三、课程设计本课程的教学设计采用了PBL(Problem-based Learning)的教学法,以问题为引导,让学生自主探究和学习。
具体设计如下:1. 开始设计本节课的目标是让学生了解什么是直接证明和间接证明,以及它们的区别和联系,引导学生独立思考如下问题:•直接证明和间接证明分别是什么?•直接证明和间接证明的区别是什么?•直接证明和间接证明的联系是什么?2. 探究设计本节课的目标是让学生掌握直接证明和间接证明的具体方法和技巧。
老师将提供两个问题,学生自己选择用直接证明或间接证明来解决。
•问题1:证明一个三角形等边三角形的内角都是60度•问题2:证明两个角分别是垂直角和锐角的三角形,第三个角一定是钝角3. 实践设计本节课的目标是让学生通过实践掌握直接证明和间接证明的应用。
老师提供一组数据,学生需要在课堂上进行实践操作,运用所学的知识和方法解决问题。
•数据:假定在一个三角形ABC中,AB=5,AC=6,BC=9•问题:证明三角形ABC是钝角三角形四、课程评价针对本课程,将会采用二元评价模型,分别从过程与结果两个角度对学生进行评价。
具体评价如下:1. 过程评价•是否能积极参与课堂互动•是否能认真听讲并做好笔记•是否能主动提出疑问并寻求解答•是否能合理安排时间并高效完成课堂任务2. 结果评价•是否能准确理解直接证明和间接证明的概念和区别•是否能掌握直接证明和间接证明的方法和技巧•是否能运用所学的知识和技能解决问题•是否能具备一定的分析和解决问题的能力五、总结本课程通过PBL的教学方法,使学生独立思考、自主探究和实践应用,旨在提高学生的数学素养和解决问题的能力,同时也能让同学们更好地理解和应用数学知识,在日常生活和学习中大有裨益。
2020届高三复习经典教案:直接证明与间接证明
第五节 直接证明与间接证明[最新考纲] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.1要证…,只需证…,即证…反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)综合法的思维过程是由因导果,逐步寻找已知的必要条件. ( ) (2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾. ( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程. ( )[答案] (1)√ (2)× (3)× (4)√2.要证a 2+b 2-1-a 2b 2≤0 ,只要证明( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0D [a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.]3.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根A [“方程x 2+ax +b =0至少有一个实根”的反面是“方程x 2+ax +b =0没有实根”,故选A.]4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是________.b +x a +x >b a [∵b +x a +x -b a =x (a -b )(a +x )a >0,∴b +x a +x >ba.] 5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.等边 [由题意2B =A +C ,又A +B +C =π,∴B =π3,又b 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac , ∴a 2+c 2-2ac =0,即(a -c )2=0,∴a =c ,∴A =C ,∴A =B =C =π3, ∴△ABC 为等边三角形.]1.已知m >1, ) A .a >b C .a =b D .a ,b 大小不定B [∵a =m +1-m =1m +1+m ,b =m -m -1=1m +m -1.而m +1+m >m +m -1>0(m >1),∴1m +1+m <1m +m -1,即a <b .]2.已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.[证明] (1)函数f (x )的定义域为全体实数,任取一点(x ,y ),它关于点⎝⎛⎭⎫12,-12对称的点的坐标为(1-x ,-1-y ).由已知y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a=-aa a x +a=-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称.(2)由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1.∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1.分析法1.若a ,b ∈(1,+∞),证明a +b <1+ab . [证明] 要证a +b <1+ab , 只需证(a +b )2<(1+ab )2, 只需证a +b -1-ab <0, 即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0, 即(a -1)(1-b )<0成立, 所以原不等式成立.2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +ab +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得,b 2=c 2+a 2-2ac cos 60°, 即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.►考法1 证明否定性命题【例1】 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n . 则S n =a 1+a 1q +a 1q 2+…+a 1q n -1, qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n ,两式相减得(1-q )S n =a 1-a 1q n =a 1(1-q n ),当q ≠1时,S n =a 1(1-q n )1-q,当q =1时,S n =a 1+a 1+…+a 1=na 1, 所以S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明:假设数列{a n +1}是等比数列,则(a 1+1)(a 3+1)=(a 2+1)2, 即a 1a 3+a 1+a 3+1=a 22+2a 2+1, 因为{a n }是等比数列,公比为q ,所以a 1a 3=a 22,a 2=a 1q ,a 3=a 1q 2, 所以a 1(1+q 2)=2a 1q .即q 2-2q +1=0,(q -1)2=0,q =1, 这与已知q ≠1矛盾,所以假设不成立,故数列{a n +1}不是等比数列. ►考法2 证明“至多”“至少”命题【例2】 已知a ,b ,c 是互不相等的非零实数,用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.[证明] 假设三个方程都没有两个相异实根. 则Δ1=4b 2-4ac ≤0, Δ2=4c 2-4ab ≤0, Δ3=4a 2-4bc ≤0, 上述三个式子相加得:a 2-2ab +b 2+b 2-2bc +c 2+c 2-2ac +a 2≤0, 即(a -b )2+(b -c )2+(c -a )2≤0.所以a =b =c 这与a ,b ,c 是互不相等的实数相矛盾. 因此假设不成立,故三个方程ax 2+2bx +c =0,22(1)已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.(2)设a >0,b >0,且a +b =1a +1b .证明: (1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.[证明] 由a +b =1a +1b =a +bab ,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,当且仅当a =b =1时,等号成立,即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1;同理,0<b <1,从而ab <1,这与ab =1矛盾. 故a 2+a <2与b 2+b <2不可能同时成立.课后限时集训(三十六) (建议用时:60分钟) A 组 基础达标一、选择题1.用反证法证明某命题时,对结论“自然数a ,b ,c 中恰有一个偶数”正确的反设是( ) A .自然数a ,b ,c 中至少有两个偶数B .自然数a ,b ,c 中至少有两个偶数或都是奇数C .自然数a ,b ,c 都是奇数D .自然数a ,b ,c 都是偶数B [“恰有一个”否定是“至少有两个或一个也没有”,故选B.] 2.(2019·西安模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值决定 C [P 2=2a +7+2a 2+7a ,Q 2=2a +7+2a 2+7a +12, ∵2a 2+7a +12>2a 2+7a , ∴P 2<Q 2,∴P <Q ,故选C.]3.已知a ,b ,c ∈(0,+∞),则下列三个数a +4b ,b +9c ,c +16a( )A .都大于6B .至少有一个不大于6C .都小于6D .至少有一个不小于6 D [由a ,b ,c ∈(0,+∞)知⎝⎛⎭⎫a +4b +⎝⎛⎭⎫b +9c +⎝⎛⎭⎫c +16a =⎝⎛⎭⎫a +16a +⎝⎛⎭⎫b +4b +⎝⎛⎭⎫c +9c ≥18(当且仅当a =4,b =2,c =3时,等号成立),因此三个数中至少有一个不小于6,故选D.]4.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0 C [由题意知b 2-ac <3a ⇐b 2-ac <3a 2 ⇐(a +c )2-ac <3a 2⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.] 5.已知函数f (x )=⎝⎛⎭⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤AA [因为函数f (x )=⎝⎛⎭⎫12x 在R 上是减函数,且a +b 2≥ab ≥2aba +b, 所以f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝ ⎛⎭⎪⎫2ab a +b ,即A ≤B ≤C ,故选A.] 二、填空题6.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________. x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab ≥2成立的条件的个数是__________.3 [要使b a +a b ≥2,只要b a >0,且ab >0,即a ,b 不为0且同号即可,故有3个.]8.在甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是________.甲 [假设甲获奖,则甲、乙、丙都说了假话,丁说了真话,满足题意,故获奖的歌手是甲.] 三、解答题9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b . [证明] 要证明2a 3-b 3≥2ab 2-a 2b 成立, 只需证:2a 3-b 3-2ab 2+a 2b ≥0, 即2a (a 2-b 2)+b (a 2-b 2)≥0, 即(a +b )(a -b )(2a +b )≥0.∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立, ∴2a 3-b 3≥2ab 2-a 2b .10.已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1. [证明] 假设a ,b ,c 均小于1,即a <1,b <1,c <1,则有a +b +c <3,而a +b +c =⎝⎛⎭⎫x 2+12+(2-x )+(x 2-x +1)=2x 2-2x +72=2⎝⎛⎭⎫x -122+3≥3.这与a +b +c <3矛盾,假设不成立, 故a ,b ,c 至少有一个不小于1.B 组 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零 C .恒为正值 D .无法确定正负 A [由题意知f (x )在R 上单调递减,由x 1+x 2>0得x 1>-x 2,则f (x 1)<f (-x 2), 即f (x 1)<-f (x 2),所以f (x 1)+f (x 2)<0,故选A.] 2.(2019·赤峰模拟)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( )A .甲B .乙C .丙D .丁A [①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.]3.(2018·长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.⎝⎛⎭⎫-3,32 [若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎨⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足题干要求的p 的取值范围为⎝⎛⎭⎫-3,32.]4.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.[解] (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2).(2)证明:由(1)得b n =S nn =n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2),所以(q 2-pr )+2(2q -p -r )=0.因为p ,q ,r ∈N *,所以⎩⎨⎧q 2-pr =0,2q -p -r =0,所以⎝ ⎛⎭⎪⎫p +r 22=pr ,即(p -r )2=0,所以p =r ,这与p ≠r 矛盾,所以数列{b n }中任意不同的三项都不可能成为等比数列.第五节直接证明与间接证明[考纲传真] 1.了解直接证明的两种基本方法:综合法和分析法;了解综合法和分析法的思考过程和特点.2.了解反证法的思考过程和特点.1执果索因Q⇐P1→P1⇐P2→…反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)综合法的思维过程是由因导果,逐步寻找已知的必要条件.()(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( ) (3)用反证法证明时,推出的矛盾不能与假设矛盾. ( )(4)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程. ( )2.要证a 2+b 2-1-a 2b 2≤0 ,只要证明( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 4+b 42≤0 C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥03.用反证法证明命题:“已知a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 2+ax +b =0没有实根B .方程x 2+ax +b =0至多有一个实根C .方程x 2+ax +b =0至多有两个实根D .方程x 2+ax +b =0恰好有两个实根4.已知a ,b ,x 均为正数,且a >b ,则b a 与b +xa +x的大小关系是________.5.(教材改编)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,则△ABC 的形状为__________三角形.1.已知m >1, ) A .a >b C .a =b D .a ,b 大小不定2.已知函数f (x )=-aa x +a(a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点⎝⎛⎭⎫12,-12对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.分析法1.若a ,b ∈(1,+∞),证明a +b <1+ab .2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c .►考法1 证明否定性命题【例1】 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.►考法2 证明“至多”“至少”命题【例2】 已知a ,b ,c 是互不相等的非零实数,用反证法证明三个方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0中至少有一个方程有两个相异实根.(1)已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.(2)设a >0,b >0,且a +b =1a +1b.证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.课后限时集训(三十六) (建议用时:60分钟) A 组 基础达标一、选择题1.用反证法证明某命题时,对结论“自然数a ,b ,c 中恰有一个偶数”正确的反设是( ) A .自然数a ,b ,c 中至少有两个偶数B .自然数a ,b ,c 中至少有两个偶数或都是奇数C .自然数a ,b ,c 都是奇数D .自然数a ,b ,c 都是偶数2.(2019·西安模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =Q C .P <Q D .由a 的取值决定3.已知a ,b ,c ∈(0,+∞),则下列三个数a +4b ,b +9c ,c +16a ( ) A .都大于6 B .至少有一个不大于6 C .都小于6 D .至少有一个不小于64.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<05.已知函数f (x )=⎝⎛⎭⎫12x,a ,b 是正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B .A ≤C ≤B C .B ≤C ≤AD .C ≤B ≤A二、填空题6.用反证法证明“若x 2-1=0,则x =-1或x =1”时,应假设________.7.下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +ab≥2成立的条件的个数是__________.8.在甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是________.三、解答题9.已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .10.已知x ∈R ,a =x 2+12,b =2-x ,c =x 2-x +1,试证明a ,b ,c 至少有一个不小于1.B 组 能力提升1.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ) A .恒为负值 B .恒等于零 C .恒为正值 D .无法确定正负2.(2019·赤峰模拟)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( )A .甲B .乙C .丙D .丁3.(2018·长春模拟)若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.4.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2直接证明与间接证明教学目标:(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;(2)掌握用比较法、综合法和分析法证明简单的不等式;(3)能根据实际题目灵活地选择适当地证明方法;(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力. 教学建议:1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)2.重点、难点分析重点:不等式证明的主要方法的意义和应用;难点:①理解分析法与综合法在推理方向上是相反的;②综合性问题证明方法的选择.(1)不等式证明的意义不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.(2)比较法证明不等式的分析①在证明不等式的各种方法中,比较法是最基本、最重要的方法.②证明不等式的比较法,有求差比较法和求商比较法两种途径.由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.③求差比较法的基本步骤是:“作差→变形→断号”.其中,作差是依据,变形是手段,判断符号才是目的.变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.(3)综合法证明不等式的分析①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.③综合法证明不等式的逻辑关系是:(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)(4)分析法证明不等式的分析①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.③用分析法证明不等式的逻辑关系是:(已知)<==(逐步推演不等式成立的必要条件)<==(结论)④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.(5)关于分析法与综合法关系①分析法与综合法是思维方向相反的两种思考方法.②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.第一课时不等式的证明(比较法)教学目标1.掌握证明不等式的方法——比较法;2.熟悉并掌握比较法证明不等式的意义及基本步骤.教学重点:比较法的意义和基本步骤.教学难点:常见的变形技巧.教学方法;启发引导法.教学过程:(-)导入新课教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?找学生回答问题.(学生回答:,,,)[点评]要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.(二)新课讲授【尝试探索,建立新知】作差比较法[问题] 求证教师引导学生分析、思考,研究不等式的证明.学生研究证明不等式,尝试完成问题.[本问点评]①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.③理论依据是:④由,,知:要证明只需证;需证明这种证明不等式的方法通常叫做比较法.目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.【例题示范,学会应用】教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.例1.求证[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.证明:∵==,∴.[本例点评]①作差后是通过配方法对差式进行恒等变形,确定差的符号;②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;④例1介绍了变形的一种常用方法——配方法.例2 .已知都是正数,并且,求证:[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.证明:==.因为都是正数,且,所以.∴.即:[本例点评]①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法;3322例、已知都是实数且求证≠+>+a b a b a b a b ab3,,,33223223:()()()()a b a b ab a a b ab b +-+=---证明2222()()()()a a b b a b a b a b =---=--2()()a b a b =+-,0,0a b a b >∴+>2()0a b a b ≠∴->又23322()()0()()0a b a b a b a b ab +->+-+>故即3322a b a b ab ∴+>+[本例点评]①作差后是通过分组,提取公因式对差式进行恒等变形,化成n 个括号相乘的形式,从而推出差的符号;②本例题介绍了对差变形,确定差值的符号的一种常用方法——分组,提取公因式法;求商比较法:1 ,,,,.a b b a a b a b a b a b ≥=例已知是正数求证当且仅当时等号成立:a b a b a b b a b a a b a a b a b b ---⎛⎫== ⎪⎝⎭证明(,,)0,1,0,1,.a b a b a a a b a b b b a b -⎛⎫≥>≥-≥∴≥ ⎪⎝⎭=根据要证的不等式的特点交换的位置不等式不变不妨设则当且仅当时等号成立,,.a b b a a b a b a b ∴≥=当且仅当时等号成立 小结:作商比较法的基本步骤是:“作商→变形→判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式. (最后是与1比较)(三)课堂练习教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.练习:1.求证2.已知 , , ,d 都是正数,且,求证 目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.(四)布置作业2、已知:a ,b ∈R +.求证:a 5+b 5≥a 3b 2+a 2b 32211x x ≤+3、求证: .7341(0)q q q q +≥+>4、求证: 2,()a ba b R a b ab ++∈≥5、设a,b 求证:第二课时 综合法●教学目标(一)教学知识点综合法证明不等式.(二)能力训练要求1.理解综合法证明不等式的意义.2.熟练掌握过去学过的重要不等式,并用这些不等式来证明新的不等式.(三)德育渗透目标掌握综合法、分析法证明不等式,培养学生严谨周密的逻辑思维习惯,加强学生实践能力的训练,由因导果,进一步巩固学生辩证唯物主义思想观念的教育,确实提高学生的思想道德品质.●教学重点1.掌握综合法证明不等式的基本思路,即“由因导果”,从已知条件及已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.理解掌握用综合法证明不等式的逻辑关系.即A (已知)⇒B 1⇒B 2⇒…⇒B n ⇒B(结论).运用不等式的性质和已证明过的不等式时,要注意它们各自成立的条件.这样才能使推理正确,结论无误.3.在综合法证明不等式的过程中常用的关系有:(1)a 2≥0或(a ±b )2≥0.(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab 即a 2+b 2≥2|ab |. (3)ab b a ≥+2,对a >0,b >0,当且仅当a =b 时取“=”号. (4)当a ,b 同号时有ab b a +≥2,当且仅当a =b 时取“=”号. (5)33abc c b a ≥++ (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号. (6)a 3+b 3+c 3≥3abc (a >0,b >0,c >0),当且仅当a =b =c 时取“=”号.●教学难点“由因导果”时,从哪个不等式出发合适是综合法证明不等式的难点.●教学过程1.课题导入[师]同学们,前面我们学习了两个正数的算术平均数与几何平均数的关系定理及其几个重要的不等式.(打出投影片§6.3.3 A,引导学生复习“算术平均数与几何平均数”的关系定理,阅读投影片§6.3.3 A)我们要掌握下面重要的不等关系:(1)a 2≥0,或(a ±b )2≥0;(2)a 2+b 2≥2ab ,a 2+b 2≥-2ab ,即a 2+b 2≥2|ab |; (3)ab b a ≥+2,(a ,b ∈R +),当且仅当a =b 时取“=”号; (4)ab ≤222b a +,(a ,b ∈R );ab ≤(2ab )2,(a ,b ∈R +),当且仅当a =b 时取“=”号;(5)abb a +≥2,(ab >0),当且仅当a =b 时取“=”号; (6)33abc c b a ≥++,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号;(7)a 3+b 3+c 3≥3abc ,(a ,b ,c ∈R +),当且仅当a =b =c 时取“=”号.今天,我们在上一节课学习“比较法”证明不等式的基础上,继续学习证明不等式的一种常用的重要的方法——综合法.2.讲授新课一般地,从已知条件出发,利用定义、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法。