高中数学必修五《基本不等式》培优专题(无答案)
基本不等式培优专题
![基本不等式培优专题](https://img.taocdn.com/s3/m/5da1260a172ded630a1cb64d.png)
x y 1
3
13.已知正实数 x, y ,满足 1 2 1 ,则 xy 的最大值为__________, 3 2
(2x y) y (x 2y)x
2
补充:已知正实数 x, y ,则
6xy x2 9y2
2xy x2 y2
的最大值为__________,
3
三、换元法
14.已知实数 x y 0 ,满足 x y 1,则 1 1 的最小值为__________, 3 2 2
21.已知实数
x
0,
y
0
,满足
1 x
1 y
1,则
4x x 1
9y y 1
的最小值为__________,25
22.已知实数 x, y ,满足 4x 9y 1 ,则 2 x13y1 的取值范围为__________, (2, 13]
23.已知实数 x, y ,满足 4x 4y 2x1 2y1 ,则 S 2 x 2y 的取值范围为__________, (2, 4]
一、常规配凑发
1.已知 2a 4b 2(a, b R) ,则 a 2b 的最大值为__________,0
2.已知实数 x, y ,满足 x2 y2 1,则 x 2 y 2 的最大值为__________, 9
16
4
3. 已 知 不 等 式 (x my)( 1 1 ) 9 对 任 意 正 实 数 x, y 恒 成 立 , 则 正 实 数 m 的 最 小 值 xy
______,4
4.已知实数 x, y ,满足 x 1 ,则
x y
x
1
1
y
的最小值为__________,1
5.已知实数 x 0, y 0 ,满足 2 3 xy ,则 xy 的最小值为__________, 2 6 xy
专题复习高中数学必修5基本不等式经典例题(word文档良心出品)
![专题复习高中数学必修5基本不等式经典例题(word文档良心出品)](https://img.taocdn.com/s3/m/36b415d0102de2bd960588b8.png)
基本不等式知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
高中数学必修5不等式解答题专项练习附答案学生版
![高中数学必修5不等式解答题专项练习附答案学生版](https://img.taocdn.com/s3/m/f71c83a7d5bbfd0a7856733b.png)
淇淋供不应求.
第 1 页 共 35 页
(1)求冰淇淋店进一次货,经加工售卖后所得净利润 w 与车速 v 和进货量 x 之间的关系式; (2)每次至少进货多少千克,才能使得销售后不会亏本(净利润 w≥0)? (3)当一次进货量 x 与车速 v 分别为多少时,能使得冰淇淋店有最大净利润?并求出最大值.(提示:
(I)用 x,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?
19.已知动点 到定点
和到直线
2 的距离之比为 2 ,设动点 的轨迹为曲线 ,过点作
2
垂直于 轴的直线与曲线 相交于两点,直线
ā 与曲线 交于 h 两点,与 相交于
第 4 页 共 35 页
18.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时, 连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万)
甲
70
5
60
乙
60
5
25
已知电视台每周安排的甲、乙连续剧的总播放时间不多于 600 分钟,广告的总播放时间不少于 30 分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的 2 倍.分别用 x,y 表示每周计划播出的甲、乙两套连续 剧的次数.(13 分)
一点(交点位于线段 上,且与 不重合).
(1)求曲线 的方程;值?若有,求出其最大值及对
应的直线的方程;若没有,请说明理由.
20.已知函数
2
(1)若
,求关于
(2)若不等式 ⩽
2
2
的不等式
对任意实数
基本不等式(培优)-学案
![基本不等式(培优)-学案](https://img.taocdn.com/s3/m/356616cf102de2bd96058873.png)
授课主题 第12讲---基本不等式授课类型T 同步课堂P 实战演练S 归纳总结教学目标① 掌握基本不等式的证明及应用;② 会用基本不等式求函数的最大值或最小值; ③ 掌握基本不等式的实际应用。
授课日期及时段T (Textbook-Based )——同步课堂1、算术平均值与几何平均值(1) 算术平均值:对任意两个正实数,a b ,数2a b+ 叫做,a b 的算术平均值 (2) 几何平均值:对任意两个正实数,a b ,数ab 叫做,a b 的几何平均值 2、均值定理如果,a b R +∈,那么2a bab +≥,当且仅当a b =时,等号成立 3、均值不等式的常见变形(1)()2,a b ab a b R ++≥∈(2)()2,2a b ab a b R +⎛⎫≤∈ ⎪⎝⎭(3)2b aa b+≥(,a b 同号且不为0) (4)()2,11ab a b R a b+≤∈+4、利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x=y 时,x +y 有最最小值是p 2。
(简记:积定和最小)知识梳理(2)如果和x +y 是定值p ,那么当且仅当x=y 时,xy 有最大值是42s 。
(简记:和定积最大)考点一: 基本不等式的理解例1、下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>> B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈ D .211()1x R x >∈+例2、已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m -≤ B .2m ≥或4m -≤ C .24m -<< D .42m -<<考点二:基本不等式与最值例1、已知M 是ABC ∆内的一点,且23,30⋅=∠=︒AB AC BAC ,若,,MBC MCA MAB ∆∆∆的面积分别为1,,2x y ,则14x y +的最小值为( )A .20B .18C .16D .9例2、设+∈R x 且1222=+y x ,求21y x +的最大值.例3、设b a 、为正实数,且2211=+ba . (1)求22b a +的最小值;(2)若32)(4)(ab b a ≥-,求ab 的值.典例分析考点四:基本不等式的实际问题例1、如图,已知小矩形花坛ABCD中,AB=3 m,AD=2 m,现要将小矩形花坛建成大矩形花坛AMPN,使点B在AM上,点D在AN上,且对角线MN过点C.(1)要使矩形AMPN的面积大于32 m2,AN的长应在什么范围内?(2)M,N是否存在这样的位置,使矩形AMPN的面积最小?若存在,求出这个最小面积及相应的AM,AN的长度;若不存在,说明理由.4800m,深为3m.如果池底每平方米的造价为150例2、某工厂要建造一个长方形无盖蓄水池,其容积为3元,池底每平方米的造价为120元,怎样设计水池能使总造价最低?最低造价是多少?例3、图画柱挂在墙上,它的下边缘在观察者的眼睛上方a米处,而上边缘在b米处,问观察者站在离墙多远处才能使视角最大?P (Practice-Oriented)——实战演练➢ 课堂狙击1、已知a b >,二次三项式220ax x b ++≥对于一切实数x 恒成立,又0x R ∃∈,使20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1B .2C .2D .222、若()0,0,lg lg lg a b a b a b >>+=+,则a b +的最小值为( )A .8B .6C .4D .23、若,0>>b a 则下列不等式成立的是( )A.ab b a b a >+>>2 B.b ab ba a >>+>2C.ab b b a a >>+>2 D.b b a ab a >+>>24、函数()()130,1x f x a a a -=+>≠且的图象过一个定点P ,且点P 在直线()100,0mx ny m n +-=>>上,则14m n+的最小值是( ) A.12 B.13 C.24 D.255、已知为正实数,且,则的最小值为__ _.实战演练10、 已知a 、b 、c ∈R +,求证:a 2b +b 2c +c 2a≥a +b +C11、某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元.试求:(1)仓库面积S 的取值范围是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计多长?1、【优质试题·四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )A .16B .18C .25D .8122、【优质试题·福建,13】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是直击高考每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)。
基本不等式培优专练参考答案(1)
![基本不等式培优专练参考答案(1)](https://img.taocdn.com/s3/m/9a1bc64749649b6649d74730.png)
基本不等式培优专练参考答案培优点一 常规配凑法1.答案:0 提示:242a b +=≥20a b ⇒+≤;2.答案:94 提示:2229121682y x ++=≥=3.答案:B 提示:柯西不等式知:211()()(194x my m xy ++≥≥⇒≥4.答案:1 提示:1111111a b b a a a ++-≥++-≥++ 5.答案:6223a b =+≥62≥⇒ab 6.答案:9 提示:241()(2)(21)92a b b a b b+-+≥+=-7.答案:B 提示:2112[+12(1)]()3(1311a b a b a b +=+++-≥-=++培优点二 “1”的代换8.答案:3,21 提示:311≥++=+b a a b b a b ,当且仅当21==b a 时取等号 9.答案:D 提示:9)12()2)(12(22=+≥++=+b ab a b a10.答案:49 提示:49)12(41)134)(3(411342=+≥-++-++=-++y x y x y x y x y x y x 11.答案:C 提示:(1)当2≥≥b a 时,由2431≤≤+b b a 知,231,,max ≥=⎭⎬⎫⎩⎨⎧+a b a b a(2)当b a ≥≥2时,231,,max ≥=⎭⎬⎫⎩⎨⎧+a b a b a (3)当b a ≥≥2时,23131,,max ≥+=⎭⎬⎫⎩⎨⎧+ba b a b a 故⎭⎬⎫⎩⎨⎧+b a b a 31,,max 的最小值为2 12. 答案:322 提示:111221)11(2212222-++=-+-+++=-+++b a b b a a b b a a32213)12(1)112)(13111122=-+≥-++++=-++b a b a b a (Θ 13. 答案:3222-提示:ba ab a b b b a a a a b b b a ab ab +++=+++=+++=2221222))2(2)2(1(令abt =,则252112521621222112221222++-+=++++=+++=+++=t t t t t t t t t t tt ab 再令1-=t m ,3222926119921199212-=++≤+++=+++=mm m m m ab (补充题)答案:3 提示:109)3(810248296224224332222+⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+=+++=+++x y y x yxy x y y x x xy y x y x xy y x xy )323(3338848484)3()3822≥+==≤+=+=+++=x y y x t t t t t x y y x xyy x ( 培优点三 换元法14.答案:C 提示:令25221,1=+⇒=+=+n m n y m x , 则n m y x 1121111+=+++5223)211(52)11)(252112+=+≥++=+n m n m n m ( 15.答案:9 提示:由已知可知:2)1)(2≥--b a (,9545)1()2(22=+≥+-+-=+b a b a 16.答案:B 提示:令52,522,2m n y m n x n y x m y x -=+=⇒=+=-,)3(51n m y x +=+5324)31(51)11)3(512+=+≥++=+n m n m y x (17.答案:32 提示:)1111)(11(312)1111(211++++++-=+++-=+++b a b a b a b b a a32342=-≤(当且仅当21==b a 时取等号) 18.答案:54提示:54)2(51)2214)(32(51221422222=+≥+++++=+++y x x y y x y x x y y x19.答案:B 提示:1)1)(1(111=--⇒=+b a b a,61911≥-+-b a (当且仅当4,34==b a 取等号) 20.答案:C 提示:由y x xy +=-3得13-+=x x y ,则251313611)8)(3()8(≥+-+-=-++=+x x x x x x y (当且仅当35,7==y x 时取等号)21.答案:25 提示:1)1)(1(111=--⇒=+y x y x ,251914131914≥-+-+=-+-y x y y x x (当且仅当25,35==y x 时取等号)22.答案:]13,2( 提示:θθsin 3,cos 2194==∴=+yx y x Θ(20πθ<<))32tan )(sin(13sin 3cos 23211=+=+=+++ϕϕθθθ其中y x)2,(ϕπϕϕθ+∈+Θ1)sin(≤+∴ϕθ,最小值为⎭⎬⎫⎩⎨⎧+)2sin(,sin min ϕπϕ132133cos )2sin(133cos ,132sin >==+∴==ϕϕπϕϕΘ]1,132()(sin ∈+∴ϕθ,因此1132+++y x 的取值范围是]132,( 23.答案:]4,2( 提示:2)12()12(224411=-+-∴+=+++y x y x yxΘ,令)43,4(,sin 212,cos 212ππθθθ-∈=-=-y x因此]4,2()4sin(2222∈++=+=πθyxS培优点四 和、积、平方和三量减元24.答案:4 提示:4)2(,42=+≤∴=+b a ab b a Θ(当且仅当2==b a 时取等号)1616)1(12)()(1)()1)(1(22222222≥+-=+-++=+++=++ab ab b a ab b a ab b a25. 答案:34、32 提示:342)(4≤⇒≥+=xy xy xy y x xy (当且仅当y x =时取等号)32)(333333332≥+-+++=+y x y x y x 分析:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=⇒⎪⎩⎪⎨⎧+===+=+⇒+++=+33333333)(12)(2t n m y x t ny mx t n t m y x t ny mx y x 26.答案:C 提示:1)(2)(22)(1)(211112222222222++-++-+=+++++=+++ab ab b a ab b a b a ab b a b a 4)1(262+--=ab ab0)1(1)2(12≤--=+-=-=a a a ab t 令4241111222+-=+++∴t tb a ,令22≥-=t m21248284242411112222+≤-+=+-=+-=+++∴mm m m m t t b a 27.答案:432- 提示:42642242122-≤⇒+≥+++=xy xy xy y x y x 432-≤xy 28.答案:C 提示:xy y x xy y x xyx y y x 21)2(14214222+=+⇒-=+⇒-=+ 121222)12)(12++=-+⇒=++-+y x y x xyxy y x y x (又 22)2(411)22(121y x y x xy ++=++≤+ 3322)2(411)222≤+⇒++≤+⇒y x y x y x (29.答案:4 16 提示:422222)2(161)2(44432y x y x y x xy y x +++≤+++=42≥+⇒y x 由已知可知:324)2(222=++y x y x ,因此2222]2)2(7[)17](4)2[(xy y x y x y x ++≥+++,即162)2(7≤++xy y x30.答案:]253,171(提示:20224≤<⇒+≥++=xy xy xy xy yx1161116)1(11721222+++=+++=+++xy xy xy xy xy y x xy ]253,171(∈ 31.答案:55 提示:210032424232<<⇒>+-=⇒=++x x xy y x xy 55148)1(3313168493452≥++++=+++=++x x x x x y x xy (当且仅当x=3时取等号)32.答案:61 提示:)12(6112)12)(12(6-+=++⇒-+++=b a b a ab b a b a ab 又22)22(3161)2(b a ab b a ++≤+=+22≤+⇒b a 61)12(6112≤-+=++∴b a b a ab培优点五 轮换对称与万能k 法33. 答案:5102 提示:方法1:222222)2(85)2(83)2(3)2(41y x y x y x xy y x y xy x +=+-+≤-+=++=51022≤+∴y x (当且仅当1010,510==y x 时取等号)方法2:51051)2(2≤⇒≥-=-xy xy y x ,5831)2(2≤+=+xy y x 51022≤+⇒∴y x(当且仅当1010,510==y x 时取等号)方法3:1415)2(22=++y y x ,222)2()531](415)2[(y x y y x +≥+++51022≤+⇒∴y x(当且仅当1010,510==y x 时取等号) 方法4:令y t x y x t 22-=⇒+=代入转化成关于y 的一元二次方程有解,判别式0≥∆可求;方法5:2222222)4()24()1()()2()2(y n xy mn x m ny mx y x y x ++-++=-++≤+512,53442412222==⇒+=-=+n m n mn m58)4()24()1()()2()2(2222222≤++-++=-++≤+y n xy mn x m ny mx y x y x34.答案:58提示:方法1:数形结合,可以理解为22=+y x 上的动点到原点的距离与到y 轴距离之和;)0,0(关于直线22=+y x 的对称点为)54,58(Q ,Q 到y 的距离为所求,即58方法2:令04)4(242222=-+-+⇒++=t x t x y x x t , 580≥⇒≥∆t 35.答案:122 提示:令)2,0(,cos ,sin 3πθθθ∈==b a ,)cos (sin 3cos sin 3θθθθ+=+b a ab令2)4sin(2cos sin ≤+=+=πθθθt ,122)1(61)cos (sin 3cos sin 3≤-=+=+t t b a ab θθθθ 36.答案:36 提示:,1,222a c b a c b -=+-=+又222)2(2c b c b +≥+322≤⇒a 36≤⇒a37.答案:32 提示:33223)23(41161)23(22≤+⇒++≤+=+y x y x xy y x 因此3269≤+y x 参考33题 培优点六 消元法38.答案:51提示:414511145351≥+=-⇒-=+⇒+=-y y x x y x y x y x x y xy 5101452≤⇒≤-+⇒x x x39.答案:3,3 提示:3)21)(2(3121≥++=+ba b a b a ;133232≤⇒≥++=ab ab b b a )(b a =3131112134222222≥≥++=+b a b b a b a (当且仅当1==b a 时取等号) 40.答案:C 提示:a b -=1,3321331331122222+≤-+=+-=+-+=+++tt t t t a a a b a b b a a (令11>+=a t )41.答案:B 提示:5141413433322≥++-=++-≥+-=++=aa a a ab a a b a b a μ(当且仅当2=a )42.答案:494、 提示:由已知可知9423≥⇒≥+=ab ab b a ab (当且仅当32==b a 时取等号)又4112114≤+⇒+≥++=ab b ab b b b a (当且仅当1,21==b a 时取等号) 培优点七 不等式算两次 43.答案:C 提示:44)(1222≥+≥-+aa b a b a (当且仅当22,2==b a 时取等号)44.答案:12 提示:12)(36)()2(9)(222≥-+-≥-+-b a b a b a b b a (当且仅当3,9==b a 时取等号) 45.答案:4 提示:41414142244≥+≥+≥++abab ab b a ab b a (当且仅当42,2222==b a 取等号) 46.答案:4 提示:方法1. 4)22(21)2121(21)21()21(2222=+≥+++≥+++y y x x x y y x(当且仅当22==y x 时取等号) 方法2:4)11(2)411(2)21)(21(2)21()21(22=+≥++=++≥+++xyxy x y y x x y y x(当且仅当22==y x 时取等号) 方法3:42114141)21()21(222222=++≥+++++=+++yxx y y y x x x y y x(当且仅当22==y x 时取等号)47.答案:4 提示:)2(52)54()51(2222222bc ac c b c a c b a +≥+++=++ 即22222)2(54)(bc ac c b a +≥++425)2(5425)2(5425)(22222≥+++=+++≥++++acbc ac bc ac bc ac bc ac bc c b a分析:bc n ac m nc b mc a c b a 22)()(2222222+≥+++=++54,511,2212==⇒=+=n m n m n m 48.答案:2232+ 提示:22322)(3)(232+≥-+-++++=-+++∴ba b a b a b a b a b a a49.答案:B 提示:41题50.答案:510+ 提示:25452)(21222221122222≥+=-++=-+=-+ab b a ab ab b a a ab ab a ab b a2525252-+≥-+-+c c c c ab c b ac 510525)2(25+≥+-+-=c c 培优点八 齐次化51.答案:422- 提示:))1,0((112121)(22222∈=--=--=--≤xyt t t t t x y x y x c422411)1(21122-≥--+-=--tt t t (当且仅当221-=t 时取等号)52.答案:B 提示:12212)2(3322222+≥++=++=+∴=+xyy x xy y x y x xy y x y x Θ 53.答案:]30,350[3、 提示:4)3()3(8109)3(829624224332222+++=+++=+++ab b a a bb a a b a b ab b a a b ab a b ab令323≥+=a b b a t 3324328484)3()3(829622222≤+≤+=+++=+++t t a b b a a b b a a b ab a b ab 方法1.令223y x t +=,θθsin ,cos 3t y t x ==代入已知条件可得]30,350[)2sin(626725∈--=ϕθt 方法2.由已知可得:25415)2(22=+-x x y ,令θθcos 3152,sin 52==-x x y θθcos 315sin 5+=y]30350[)2sin(320370322∈-+=+ϕθy x 54.答案:224- 提示:可以用三角换元,参考53题也可以使用判别式;222222222)2(22)1()(22y n xy mn x m ny mx y x y x -+--=+-+≥+)12(2,122212222-=-=⇒-==-n m n mn m2)22()2(22)1(2222222⨯-=-+--≥+y n xy mn x m y x培优点九 待定与技巧性强的凑配55.答案:37提示:6543=++z y x Θ 36212421-+++=++++∴z x z y z x z y z y 316)232(61)3318242)(3324616212=+≥++++++=+++z x z y z x z y z x z y (37331636212421=-≥-+++=++++∴z x z y z x z y z y56.答案:36- 提示:由已知可知xy y x =+,36)6(12)(102222--=-+=+-xy xy y x y xy x57.答案:222- 提示:1321222111211111122++++=+++=+++≥∴≤y y y y y y y y yM xy Θ2222231131********-=+-=++-=++-=yy y y y(当且仅当22=y 时取等号) 58.答案:C 提示:)22(4121214141411222bc ac ab bc ac ab c b a ++=++≥++=Θ 422≤++∴bc ac ab又2220211)2121(2-≥++∴≥+++=++bc ac ab bc ac ab c b a Θ 59.答案:210 提示:yz m xy m z y m my x z y x -+≥+-++=++=122)1(1222222210111232=⇒-=m m m 即)3102122yz xy yz m xy m +=-+(2103≤+yz xy 60.答案:212+ 提示:)()1()1()(12222222222w nz z n y m my x w z y x ++-+-++=+++=zw n yz n m xy m 2)1)(1(22+--+≥2)12(223122)1)(1(212-=-==⇒=--=m n nn m m )2)(1222)1)(1(221zw yz xy zw n yz n m xy m +-=+--+≥(212)12(212+=-≤++∴zw yz xy 61.答案:A 提示:依题意T y x ≥+2)(,T y z ≥+2)(,T z x ≥+2)(≤T 3++2)(y x ++2)(y z zx yz xy xz yz xy z x 222222)(2+++++=+8)4=++≤xz yz xy (,38≤T62.答案:25提示:参考47题 63.答案:72 提示:bc m ab m c b m mb a c b a -+≥+-++=++=122)1(422222227521252=⇒-=m m m)25721224222bc ab bc m ab m c b a +=-+≥++=(7225≤+∴bc ab64.答案:36222、提示:)(2212142222222bc ab c b b a c b a +≥+++=++=22≤+∴bc ab,,222c b a c b a -=+-=+由36238)2(22222≤⇒≤⇒+≥+c c b a b a 培优点十 多元变量的不等式最值问题 65.答案:B 提示:414121≥⇒≤⇒≥+=abab ab b a Θ 9)12()14)((14112=+≥++=+≥+∴dc d c d c d abc66.答案:21132119-=-z 、 提示:81)21(21212+--=-=xy xy xyxyz ,又2222)1(412)1(415xy xy xy y x -+≥-++=37200196)(,02-≤≤⇒≤-+≥xy xy xy xy ,,0<xy 0112501910)(2<≤-⇒≤--xy xy xy3211981)21(212-≥+--=xy xyz ,此时211-=z67.答案:212- 提示:21241)()(41)(222-≤+⇒≤+++⇒+≤=++c b a c b a c b a c b bc c b a a68.答案:A提示:21211-<<-⇒>-->⇒>-->a c a c a c c c a a 222222222)(12121)(a c a c c a ac c a c a c a b ++=++=++=+Θ 令a c t = )51,0[121)(12121)(222222222∈++=++=++=++=+∴tt a c a c c a ac c a c a c a b 69.答案:C 提示:ab ab b a c 221222-=≥+=-(当0,0<<c ab 时最小)11)1(212122-≥-+=+-≥+∴c c c c ab 70.答案:A 提示:132222=++c b a Θ,12022≤+≤∴b a ,令θθsin 22,cos t b t a ==33)sin(3sin 2cos 2≤≤+=+=+t t t t b a ϕθθθ71.答案:78提示:8222≥⇒≥+=ab ab b a ab 7811112≤-=-=⇒+=++=abab ab c c ab c b a abc72.答案:212- 提示:)()21(211212a bt t t t t b a a a b c b a a b =++=++=++≥++21221)21(2121)21(21-≥-+++=++≥++t t t t c b a a b(当且仅当212-==a b t 时取等号) 73.答案:]34,1( 提示:42111≥⇒≥+=∴=+ab ab b a ab b a Θ,411≤ab34111,4311111≤<∴<≥-=+-=c c ab b a c 又 74.答案:26 提示:依题意01222=--++-bc c b ab a 有解,04443022≤-+-⇒≥∆c bc b有解,则262302≤⇒≤⇒≥∆c c75.答案:]1,81[- 提示:1)31(49)21()1()())((2222≤-=-+--≤++-=--c c c c c ab c b a c b c a c 8181)41(2)1()())((222-≥--=--≥++-=--c c c c ab c b a c b c a c76.答案:91-提示:222914,312z y x z y x -=+-=+Θ,319101627)231(291222≤≤-⇒≤--⇒-≥-∴z z z z z 91min -=∴z培优点十一 不等式综合应用 77.答案:C 提示:)14(6)14)(4()14(14642yx y x y x y x y x y x ++++=+∴+=++Θ2)14(y x +∴)146222y x +++≥()(814≥+⇒yx78.答案:B 提示:9)(8)41)(()(8)(2++≥++++=+y x yx y x y x y x (当且仅当y=2x 取等号)9≥+∴y x79.答案:41-提示:在已知等式两边加y x 1673-可2921416141613419=+≥+++=-+y y x x y x (当且仅当41,2==y x 时取等号)411673-≥-∴y x 80.答案:B 提示:依题意可知:b a M -+≥112,c b M -+≥112,ac M -+≥112 a a M -+≥∴1123b b -++112cc -++112 Θ223)12()112)(1(1122+=+≥-+-+=-+aa a a a a223+≥∴M81.答案:9 提示:101114)1(111114=+-++-∴=+-++y x y x y x y x Θ,两边同承yx 111+-)111](4)1[()111()111102y x y x y x y x +-+-++-=+-(9)111(2++-≥yx91111≤+-≤⇒yx 82.答案:122- 提示:2222)2(4443)2)(23)1(+-=--=-+=-y y y y y y xy (Θ 4)21()1(22=++-∴y y x 1221)11(21)2112122-≤+⇒++=++-≥yx y x y y x (83.答案6 提示:6838)18(118322=≥++=++=+∴=+y yx x y y x x y x y x Θ。
完整word版)高中数学必修五基本不等式练习题
![完整word版)高中数学必修五基本不等式练习题](https://img.taocdn.com/s3/m/9b8658ec6e1aff00bed5b9f3f90f76c661374c9a.png)
完整word版)高中数学必修五基本不等式练习题基本不等式练题一、单项选择1.已知$x>0$,函数$y=\frac{4}{x}+x$的最小值是()A.4.B.5.C.6.D.82.在下列函数中,最小值为2的是()A $y=x+1$B $y=3x+3-x^2$C $y=\log_{10}x+\frac{11}{\pi}$D $y=\sin x+\log_{10}(x\sin^2x)$3.已知$\frac{5}{3}x+\frac{3}{5}y=1(x>0,y>0)$,则$xy$的最小值是()A.15.B.6.C.60.D.14.已知$x>1,y>1$且$xy=16$,则$\log_2x\cdot\log_2y$()A.有最大值2.B.等于4.C.有最小值3.D.有最大值465.若$a,b\in\mathbb{R}$,且$ab>0$,则下列不等式中恒成立的是()A.$a^2+b^2>2ab$。
B.$a+b\geq2ab$。
C.$\frac{1}{a}+\frac{1}{b}>\frac{2}{a+b}$。
D.$\frac{a}{b}+\frac{b}{a}\geq2$6.若正数$a$、$b$满足$ab=a+b+3$,则$a+b$的取值范围是()A.$[9,+\infty)$。
B.$[6,+\infty)$。
C.$(0,9]$。
D.$(0,6)$7.已知正项等比数列$\{a_n\}$满足$a_7=a_6+2a_5$。
若存在两项$a_m$,$a_n$使得$a_ma_n=4a_1$,则$(19+\sqrt{17})$的最小值为()A.3456.B.811.C.1417.D.198.设$0<b<a<1$,则下列不等式成立的是()A.$a+b>1$。
B.$a+b1$9.已知$a+2b=2(a,b>0)$,则$ab$的最大值为( )A。
基本不等式培优专题(学生版)
![基本不等式培优专题(学生版)](https://img.taocdn.com/s3/m/94442cc67fd5360cbb1adb98.png)
2
,则
ac b
c ab
c 2
c
5 2
的最小值是
培优点八 齐次化
51.(2019 届杭高高三下开学考 T17) 若不等式 x2 2 y2 d cx( y x) 对满足 x ! y ! 0 的任
意实数 x, y 恒成立,则实数 c 的最大值为
52.(2019 届绍兴一中 4 月模拟)已知 x ! 0, y ! 0, x 2 y 3,则 x2 3y 的最小值为(
4.
则
x2
y2
xy 1 2xy
17
的取值范围
31.(2017 武进区模拟)已知正实数 x 、 y 满足 xy 2x 3y 42, 则 xy 5x 4 y 的最小值
为
4
基本不等式培优专题学生版
32.(2017 宁波期末)若正实数 a,b 满足 (2a b)2
1
6ab
,且
2 a
+
3 b
=
ab ,则 ab 的最小值是
6.(诸暨市 2016 届高三 5 月教学质量检测)已知 a ! b ! 0 , a b
1,则
a
4
b
1 2b
的最小
值等于
7.(2018
届浙江省部分市学校高三上学期
9+1
联考)已知实数
a
!
0
,b
!
0
,
a
1
1
b
1
1
1,
则 a 2b 的最小值是
1 ,则
2a a2 b
b a b2
的
最大值是
高中数学必修5基本不等式精选题目(附答案)
![高中数学必修5基本不等式精选题目(附答案)](https://img.taocdn.com/s3/m/cf0814f07e192279168884868762caaedd33ba6c.png)
高中数学必修5基本不等式精选题目(附答案)高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤? ????a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <="">D .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数,求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数,且a +b +c =1,求证:? ????1a -1? ????1b -1? ??1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<="">x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bc< p="">C.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lg< p="">a+b2=R.所以P<q<r.< p="">3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得? ????2b a +a 2b +? ????3c a +a 3c +? ????3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴? ????2b a +a 2b -1+? ????3c a +a 3c -1+? ????3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得? ????1a -1? ????1b -1? ????1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2,即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20,当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·?2x +3y 22=16·? ????622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1,∴x +y =(x +y )·? ??1x +9y=1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0,∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由y =3x ,1x +9y=1,得x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6? 2a +1b =1,∴2a +b =6? ????2a +1b ·(2a +b )=6? ?5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy ,=120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.练习:1.解析:选B A 中,当0<="">lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤?a +b 22≤? ??422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =? ????2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当 a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4? ??900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 答案:15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-43-x +(3-x )+3≤-243-x·(3-x )+3=-1,当且仅当43-x=3-x ,即x =1时取等号,∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )? ????1x +3y =4+? ????y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32,故1x +3y 的最小值为1+32.</q<r.<></lg<></bc<>。
高中数学必修5基本不等式精选题目(附答案)
![高中数学必修5基本不等式精选题目(附答案)](https://img.taocdn.com/s3/m/e5606ef6960590c69ec3769c.png)
高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
2020年高中数学人教A版 必修5 不等式《基本不等式》 培优练习(含答案解析)
![2020年高中数学人教A版 必修5 不等式《基本不等式》 培优练习(含答案解析)](https://img.taocdn.com/s3/m/5b585f4690c69ec3d4bb752c.png)
2020年高中数学必修5 不等式 基本不等式培优练习一、选择题1.下列不等式中正确的是( )A .a +4a ≥4B .a 2+b 2≥4ab C.ab ≥a +b 2 D .x 2+3x 2≥2 32.已知f(x)=x +1x-2(x<0),则f(x)有( ) A .最大值为0 B .最小值为0 C .最大值为-4 D .最小值为-43.已知m=a +1a+1(a>0),n=3x (x<1),则m ,n 之间的大小关系是( ) A .m>n B .m<n C .m=n D .m≤n4.下列不等式正确的是( )A .a +1a ≥2B .(-a)+⎝ ⎛⎭⎪⎫-1a ≤-2C .a 2+1a 2≥2D .(-a)2+⎝ ⎛⎭⎪⎫-1a 2≤-25.若x >0,则函数y=-x -1x( ) A .有最大值-2 B .有最小值-2 C .有最大值2 D .有最小值26.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2]7.函数y=x 2+2x +2x +1(x>-1)的图象的最低点的坐标是( ) A .(1,2) B .(1,-2) C .(1,1) D .(0,2)8.设0<x<2,则函数y=x (4-2x )的最大值为( )A .2 B.22C. 3D. 29.若函数f(x)=x +1x -2(x>2)在x=a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .410.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( ) A. 2 B .2 C .2 2 D .411.已知x >0,y >0,且4x +y=xy ,则x +y 的最小值为( )A .8B .9C .12D .1612.若2x +2y =1,则x +y 的取值范围是( )A .[0,2]B .[-2,0]C .[-2,+∞) D.(-∞,-2]二、填空题13.若x ,y 均为正实数,且x +4y=1,则x·y 的最大值为________.14.当x>12时,函数y=x +82x -1的最小值为________.15.若正数a ,b 满足ab=a +b +3,则ab 的取值范围是________.16.设x>-1,则函数y=(x +5)(x +2)x +1的最小值是________.三、解答题17.已知x ,y>0,且x +2y +xy=30,求xy 的范围.18.已知x ,y ∈(0,+∞),x 2+y 2=x +y.(1)求1x +1y的最小值; (2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.19.已知lg(3x)+lg y=lg(x +y +1).(1)求xy 的最小值;(2)求x +y 的最小值.20.某地需要修建一条大型输油管道通过240 km 宽的沙漠地带,该段输油管道两端的输油站已建好,余下工程是在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的费用为400万元,铺设距离为x km 的相邻两增压站之间的输油管道的费用为x 2+x 万元.设余下工程的总费用为y 万元.(1)试将y 表示成x 的函数;(2)需要修建多少个增压站才能使y 最小,其最小值为多少?答案解析1.答案为:D ;解析:a<0,则a +4a≥4不成立,故A 错;a=1,b=1,a 2+b 2<4ab ,故B 错,a=4,b=16, 则ab<a +b 2,故C 错;由基本不等式可知D 项正确.2.答案为:C ;解析:∵x<0,∴f(x)=-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x=1-x ,即x=-1时取等号.3.答案为:A ; 解析:因为a>0,所以m=a +1a +1≥2a ·1a+1=3,当且仅当a=1时等号成立. 又因为x<1,所以n=3x <31=3,所以m>n.4.答案为:C ;解析:因为a 2+1a 2中a 2>0,所以a 2+1a 22≥a 2·1a 2,即12⎝ ⎛⎭⎪⎫a 2+1a 2≥1,所以a 2+1a 2≥2.5.答案为:A ;解析:因为x >0,所以x +1x≥2. 所以-x -1x ≤-2.当且仅当x=1时,等号成立,故函数y=-x -1x有最大值-2.6.答案为:D ;解析:∵1=2x +2y ≥22x ·2y =22x +y 当且仅当2x =2y =12,即x=y=-1时等号成立, ∴2x +y ≤12,∴2x +y ≤14,得x +y≤-2.7.答案为:D ;解析:y=(x +1)2+1x +1=(x +1)+1x +1≥2,当x=0时取最小值.8.答案为:D ;解析:∵0<x<2,∴2-x>0,∴y=x (4-2x )=2·x (2-x )≤2·x +2-x 2=2, 当且仅当x=2-x ,即x=1时取等号.9.答案为:C ;解析:∵x >2,∴x-2>0,∴f(x)=x +1x -2=(x-2)+1x -2+2≥2(x -2)·1x -2+2=2+2=4, 当且仅当x-2=1x -2,即(x-2)2=1时等号成立,解得x=1或3.又∵x >2,∴x=3, 即a 等于3时,函数f(x)在x=3 处取得最小值,故选C.10.答案为:C.解析:由1a +2b =ab 知a >0,b >0,所以ab=1a +2b ≥22ab,即ab≥22, 当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a=42,b=242时取“=”,所以ab 的最小值为2 2.11.答案为:B.解析:由题意可得4y +1x =1,则x +y=(x +y)⎝ ⎛⎭⎪⎫4y +1x =5+4x y +y x ≥5+24x y ×y x =9, 当且仅当4x y =y x,即x=3,y=6时等号成立,故x +y 的最小值为9.12.答案为:D.解析:因为1=2x +2y ≥22x ·2y ,所以2x +y ≤14,即x +y≤-2,当且仅当x=y 时取等号. 13.答案为:116; 解析:1=x +4y≥24xy=4xy ,∴xy≤116,当且仅当x=4y 时等号成立.14.答案为:92; 解析:设t=2x-1,∵x>12,∴2x-1>0,即t>0,∴y=t +12+8t =t 2+8t +12≥2t 2·8t +12=92. 当且仅当t 2=8t ,即t=4, x=52时,取等号.15.答案为:[9,+∞);解析:ab=a +b +3≥2ab +3,所以(ab -3)(ab +1)≥0,所以ab ≥3,所以ab≥9.16.答案为:9;解析:因为x>-1,所以x +1>0,设x +1=t>0,则x=t -1,于是有y=(t +4)(t +1)t =t 2+5t +4t =t +4t +5≥2t ·4t+5=9, 当且仅当t=4t,即t=2时取“=”,此时x=1. 所以当x=1时,函数y=(x +5)(x +2)x +1取得最小值9.17.解:因为x ,y 是正实数,故30=x +2y +xy≥22xy +xy ,当且仅当x=2y ,即x=6,y=3时,等号成立.所以xy +22xy -30≤0.令xy=t ,则t>0,得t 2+22t -30≤0,解得-52≤t ≤3 2.又t>0,知0<xy ≤32,即xy 的范围是(0,18].18.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy=2,当且仅当x=y=1时,等号成立, 所以1x +1y的最小值为2. (2)不存在.理由如下:因为x 2+y 2≥2xy,所以(x +y)2≤2(x 2+y 2)=2(x +y).又x ,y ∈(0,+∞),所以x +y≤2. 从而有(x +1)(y +1)≤(x +1)+(y +1)22≤4, 因此不存在x ,y 满足(x +1)(y +1)=5.19.解:由lg(3x)+lg y=lg(x +y +1),得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)因为x >0,y >0,所以3xy=x +y +1≥2xy +1.所以3xy -2xy -1≥0,即3(xy)2-2xy -1≥0.所以(3xy +1)(xy -1)≥0.所以xy ≥1.所以xy≥1.当且仅当x=y=1时,等号成立.所以xy 的最小值为1.(2)因为x >0,y >0,所以x +y +1=3xy≤3·⎝ ⎛⎭⎪⎫x +y 22. 所以3(x +y)2-4(x +y)-4≥0.所以[3(x +y)+2][(x +y)-2]≥0.所以x +y≥2.当且仅当x=y=1时取等号.所以x +y 的最小值为2.20.解:(1)设需要修建k 个增压站,则(k +1)x=240,即k=240x-1. 所以y=400k +(k +1)(x 2+x)=400⎝ ⎛⎭⎪⎫240x -1+240x()x 2+x =96000x +240x-160. 因为x 表示相邻两增压站之间的距离,则0<x<240.故y 与x 的函数关系是y=96000x+240x-160(0<x<240). (2)y=96000x +240x-160≥296000x·240x -160=2×4800-160=9440, 当且仅当96000x =240x ,即x=20时等号成立,此时k=240x -1=24020-1=11. 故需要修建11个增压站才能使y 最小,其最小值为9440万元.。
高中数学必修5不等式训练(含详细答案)
![高中数学必修5不等式训练(含详细答案)](https://img.taocdn.com/s3/m/be22ca13f01dc281e43af03b.png)
高中数学必修5不等式训练(含详细答案)第三章 不等式一、选择题.1. 若 a ∈R ,则下列不等式恒成立的是( ).A. a 2 + 1>aB.112+a <1C. a 2 + 9>6aD. lg (a 2 +1)>lg|2a |2. 下列函数中,最小值为 2 是( ).A. y =xx 55+,x ∈R ,且 x ≠0 B. y = lg x+x lg 1,1<x <10C. y = 3x + 3-x ,x ∈RD. y = sin x+x sin 1,2π0<<x3. 不等式组 表示的平面区域的面积等于( ).A. 28B. 16C.439 D. 1214. 不等式 lg x 2<lg 2x 的解集是( ).x ≤3 x + y ≥0 x - y + 2≥0A. ⎪⎭⎫⎝⎛11001, B. (100,+∞)C.⎪⎭⎫⎝⎛11001,∪(100,+∞)D. (0,1)∪(100,+∞)5. 不等式(x 4 - 4)-(x 2 - 2)≥0 的解集是( ).A. x ≥2,或 x ≤-2B. -2≤x ≤2C. x <-3,或 x >3D. -2<x <2 6. 若 x ,y ∈R ,且 x + y = 5,则 3x + 3y 的最小值是( ).A. 10B.C.D. 7. 若 x >0,y >0,且 281x y+=,则 xy 有( ).A. 最大值 64B. 最小值164C. 最小值12D. 最小值648. 若 ,则目标函数 z = 2x + y 的x ≤2 y ≤2x + y ≥1取值范围是( ).A. [0,6] B . [2,4] C. [3,6] D. [0,5] 9. 若不等式 ax 2 + bx + c >0 的解是 0<α<x <β,则不等式 cx 2 - bx + a >0 的解为( ).A. α1<x <β1B. -β1<x <-α1C. -α1<x <-β1D. β1<x <α110. 若 a >0,b >0 ,且1a b +=,则⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-111122b a 的最小值是( ).A. 9B. 8C.7D. 6二、填空题. 1. 函数y 的定义域是 .2. 若 x ,y 满足 ,则x y 的最大值为____________________,最小值x + 2y - 5≤0x ≥1y ≥0 x + 2y - 3≥0为_________________.3. 函数y=的最大值为.4. 若直角三角形斜边长是1,则其内切圆半径的最大值是.5. 若集合A = {(x,y)| |x| + |y|≤1},B = {(x,y)|(y-x)(y+x)≤0},M = A∩B,则M的面积为___________.6. 若不等式2x - 1>m(x2 - 1)对满足-2≤m≤2 的所有m都成立,则x的取值范围是.三、解答题.1. 若奇函数f(x)在其定义域(-2,2)上是减函数,且f(1 - a)+ f(1 - a2)<0,求实数a的取值范围.2. 已知 a >b >0,求216()a b a b +-的最小值.3. 设实数 x ,y 满足不等式组 .(1)作出点(x ,y )所在的平面区域; (2)设 a >-1,在(1)所求的区域内,求f (x ,y )= y – ax 的最大值和最小值.1≤x + y ≤4y + 2≥|2x - 3|4. 某工厂拟建一座平面图形为矩形,且面积为200 m2 的三级污水处理池(平面图如右). 如果池外圈周壁建造单价为每米400 元,中间两条隔墙建筑单价为每米248 元,池底建造单价为每平方米80 元,池壁的厚度忽略不计. 试设计污水池的长和宽,使总造价最低,并求出最低造价.参考答案一、选择题. 1. A【解析】A :a 2 - a + 1 = a 2- a +4341+=221⎪⎭⎫ ⎝⎛-a +43>0. a 2 + 1>a 恒成立.B :当 a = 0 时,左 = 右.C :当 a = 3 时,左 = 右.D :当 a = ±1 时,左 = 右. 2. C【解析】A :y 没有最小值. B :∵ 1<x <10, ∴ 0<lg x <1. ∴ y ≥2.lg x =1,即x =10时,y min = 2. 此时不符合1<x <10. C :∵ 3x >0, ∴ y = 3x +x31≥2.x = 0时,y min = 2. D :∵ 0<x <2π, ∴ sin x >0. ∴ y ≥2.当 sin x =xsin 1时,此时 sin x = 1,x =2π,不符合 0<x <2π. 3. B【解析】由不等式组,画出符合条件的平面区域(下图阴影部分).解两两直线方程组成的方程组,可得 A (3,5),B (3,-3), C (-1,1).∴ S 阴 =21· |AB | · |x A - x c | = 21×8×4 = 16. 4. D 【解析】∵∴ x >0. ∵ lg x 2<lg 2x , ∴ lg 2x - 2lg x >0. ∴ lg x >2 ,或 lg x <0, ∴ x >100 ,或 0<x <1. 5. A【解析】∵(x 4 - 4)-(x 2 - 2)≥ 0,∴ x 4 - x 2 - 2≥0,∴(x 2 - 2)(x 2 + 1)≥0.x 2>0,x >0,∴ x 2≥2.∴ x ≥2,或 x ≤-2. 6. D【解析】 3x + 3y ≥2yx33⋅= 2yx +3,∴ 3x + 3y ≥2×9×3= 183,当 x = y =25时,等号成立.7. D 【解析】 yx 82+≥2yx 82⋅= 8xy 1,当yx 82=,即 时,8xy1取最大值,即 xy取最小值 64. 8. A【解析】 据不等式组画出可行域.易知 A (-1,2),B (2,2).将 y = -2x 进行平移,当直线过 A 点时,z min = 0,当直线过 B 点时,z max = 6. 9. Cx = 4, y = 16【解析】由题知, 且 a <0.∴ b = -a (α + β ), c = a (αβ ).∴ 所求不等式可代为 a (αβ )x 2 + a (α + β )x + a >0.∴(αβ )x 2 +(α + β )x + 1<0. ∴(αx + 1)(βx + 1)<0. ∵ 0<α<β,∴ -α1<-β1. ∴ -α1<x <-β1. 10. A 【解析】⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-111122b a =22221b a b a --+ 1 =22222)(b a b a b a --++ 1=ab 2+1≥222⎪⎭⎫⎝⎛+b a + 1 = 9.∴ 当 a = b=21时,原式取最小值 9.二、填空题. 1. (-8,8).【解析】∵ 64 - x 2>0 ∴ x 2<64,-8<xα + β = ab- α β = ac<8,即(-8,8).2. 2,0.【解析】 据不等式组画出可行域.由图可知,2max=⎪⎭⎫⎝⎛xy ,=⎪⎭⎫ ⎝⎛m inxy 0.3. 21. 【解析】设 x = cos , ∈[0,π]. ∴ y = cos sin =21sin 2 . ∵ ∈[0,π],∴ 2 ∈[0,2π],∴ y max =21,此时 =4π,x = cos 4π=22. 4. 21-.【解析】如图,r =21-+b a =212-+b a ≤21222-+b a =2122-=212-. 当且仅当 a = b =22时, r max =212-.5. 1.【解析】如图,M 为阴影部分. M 的面积为()2221⨯= 1.6. 271+-<x <231+. 【解析】令 f (m )= m (x 2 - 1)-(2x - 1)(x ≠±1),把它看作关于 m 的一次函数.由于 -2≤m ≤2 时,f (m )<0 恒成立,x 2 - 1>0 x 2 - 1<0 ∴ 或f (2)<0 f (-2)<0解得 1<x <231+,或271+-<x <1,又x = 1 时,亦符合题意.∴ 271+-<x <231+. 三、解答题.1. 由f (1 - a )+ f (1 - a 2)<0,得 f (1 - a )<- f (1 - a 2). 又因为函数f (x )为奇函数,所以- f (1 - a 2) = f (a 2 - 1).∴ f (1 - a )< f (a 2 - 1). 又∵ 函数 f (x ) 在其定义域(-2,2)上是减函数,1 - a >a2 – 1 -2<a <1 ∴ -2<1 - a <2 解得 -1<a <3-2<a 2 - 1<2 -3<a <3∴ a ∈(-1,1).2. 由 a >b >0 知,a - b >0,∴ b (a - b )≤4222a b a b =⎪⎭⎫⎝⎛-+.∴ a 2 +)(16b a b -≥a 2 +264a ≥22264a a ⋅= 16.当且仅当 a 2 =264a,b = a - b , 即当 a = 22,b =2时,a 2 +)(16b a b -取得最小值 16.3. (1)(-3,7) 【解析】(2) 最大值为7+3a ,最小值为4. 【解】设污水池总造价为 y 元,污水池长为 x m. 则宽为x200m ,水池外圈周壁长2x + 2 · x 200(m ),中间隔墙长2 · x200(m ),池底面积200(m 2).∴ y = 400⎪⎭⎫⎝⎛+⋅x x 20022+ 248 · x 200 · 2 + 80×200 = 800⎪⎭⎫⎝⎛+x x 324+ 16 000- 1- 2a , -1<a ≤2 1 - 3a , a >2≥1 600xx 324+ 16 000 = 44 800.当且仅当 x =x324,即 x = 18,x 200=9100时,y min = 44 800.答:当污水池长为 18 m ,宽为9100m 时,总造价最低,最低为 44 800元.。
基本不等式培优拓展资料
![基本不等式培优拓展资料](https://img.taocdn.com/s3/m/6446f81bbf1e650e52ea551810a6f524ccbfcbf1.png)
故选:BC.
练透核心考点
1.(2023· 全国· 高三专题练习)当 0 x 2 时, x(2 x) 的最大值为(
)
A. 0
B.1
C. 2
D. 4
【答案】B
【详解】 0 x 2 ,2 x 0 ,又 x (2 x) 2
x(2 x) x (2 x)2 1 ,当且仅当 x 2 x ,即 x 1时等号成立,
f (x) x a 在 (, a ) , x
( a, ) 上单调递增;在 ( a, 0) , (0, a ) 单调递减
类型一:直接法
典型例题
例题 1.(2023· 高一课时练习)下列不等式中正确
x2
3 x2
2
3
C.
ab a b 2
D. a2 b2 4ab
【答案】B 【详解】A. 当 a<0 时, a 4 0 ,故错误;
ab
a
成立,故 C 正确;
对于 D, y x 1 x 2 1 2 2 (x 2) 1 2 4 ,故 D 错误.
x2
x2
x2
故选;C.
3.(2022 秋· 安徽· 高三蚌埠二中校联考阶段练习)下列几个不等式中,不能取到等号的是(
)
A.
x 1 2x 0
x
B.
x
2 x
2
2 x 0
对于 B,要 y
x2 2
1 x2 2 取到最小值 2,需满足
x2 2
1 x2 2 ,此时 x2 1,不可能成立,故
B 错误;
对于 C, ab 0, b 0 , y b a [( b ) ( a)] 2 ( b ) ( a) 2 ,当且仅当 b 1 时,等号
a
最新人教A版高中数学必修5同步培优训练3.4 第1课时 基本不等式
![最新人教A版高中数学必修5同步培优训练3.4 第1课时 基本不等式](https://img.taocdn.com/s3/m/6c67d9054693daef5ff73dc6.png)
第三章不等式3.4 基本不等式:√ab ≤a+b 2第1课时 基本不等式课后篇巩固提升基础巩固1.若a ≥0,b ≥0,且a+b=2,则下列不等式正确的是 ( )A.ab ≤1B.ab ≥1C.a 2+b 2≥4D.a 2+b 2<4ab ≤(a+b 2)2=1,而a 2+b 2=(a+b )2-2ab=4-2ab ≥2,故只有A 正确.2.若x>0,y>0,且x+y=13,则xy 的最大值为( ) A.2√33B.2√3C.19D.136xy ≤(x+y 2)2=(132)2=136,当且仅当x=y=16时,xy 取最大值136.3.已知3a+2b=2(a>0,b>0),则ab 的最小值是( )A.4B.5C.6D.7∵3a +2b =2(a>0,b>0),∴2≥2√3a ·2b ,化为ab ≥6,当且仅当a=3,b=2时取等号.∴ab 的最小值是6.故选C .4.已知a ,b 均为正实数,则下列不等式不一定成立的是 ( )A.a+b+√ab ≥2√2 B.(a+b )(1a +1b )≥4C.22√ab≥a+b D.√a+b≥√ab选项,a+b+√ab ≥2√ab √ab≥2√2,当且仅当a=b=√22时等号同时成立;B 选项,(a+b )(1a+1b )=2+a b +b a≥4,当且仅当a=b 时取等号;C 选项,22√ab≥22√ab≥(a+b )2a+b=a+b ,当且仅当a=b 时取等号.故选D .5.若lg x+lg y=2,则1x+1y的最小值为( ) A.120B.15C.12D.2lg x+lg y=2可知x>0,y>0,且xy=100,于是1x +1y =x+yxy =1100(x+y )≥1100·2√xy =15,当且仅当x=y=10时,取等号.故1x +1y 的最小值为15.6.已知a>1,且m=log a (a 2+1),n=log a (a+1),p=log a (2a ),则m ,n ,p 的大小关系是 .(用“>”连接)a>1,∴a 2+1>2a>a+1,∴log a (a 2+1)>log a (2a )>log a (a+1),∴m>p>n.7.已知t>0,则y=t 2-3t+1t的最小值为 .y=t 2-3t+1t =t+1t -3≥2√t ·1t-3=-1,当且仅当t=1时,取等号.故函数的最小值为-1.18.已知a>b>c ,则√(a -b )(b -c )与a -c2的大小关系是 .a>b>c ,∴a-b>0,b-c>0,∴a -c2=(a -b )+(b -c )2≥√(a -b )(b -c ).当且仅当b=a+c2时取等号. √(a -b )(b -c )≤a -c29.已知a ,b 均为正实数,求证:1a 2+1b2+ab ≥2√2.a ,b 均为正实数,所以1a 2+1b 2≥2√1a 2·1b 2=2ab ,当且仅当1a2=1b2,即a=b 时,等号成立.又因为2ab +ab ≥2√2ab ·ab =2√2,当且仅当2ab =ab 时等号成立,所以1a 2+1b2+ab ≥2ab +ab ≥2√2,当且仅当{1a2=1b 2,2ab=ab ,即a=b=√24时取等号.10.已知不等式ax 2-3x+2<0的解集为A={x|1<x<b }. (1)求a ,b 的值; (2)求函数f (x )=(2a+b )x-9(a -b )x (x ∈A )的最小值. 由题意知{ 1+b =3a ,1×b =2a,a >0,解得{a =1,b =2.(2)由(1)知a=1,b=2,A={x|1<x<2},所以f (x )=4x+9x (1<x<2),而当x>0时,4x+9x ≥2√4x ·9x =2×6=12.当且仅当4x=9x ,即x=32时取等号. 而x=32∈A ,故f (x )的最小值为12.能力提升1.若a,b,c ∈R ,且ab+bc+ca=1,则下列不等式成立的是 ( )A.a 2+b 2+c 2≥2B.a+b+c ≤√3C.1a +1b +1c≤2√3 D.(a+b+c )2≥3a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,于是a 2+b 2+c 2≥ab+bc+ca=1,故选项A 错;而(a+b+c )2=a 2+b 2+c 2+2(ab+bc+ca )≥3(ab+bc+ca)=3,故选项D 正确;从而选项B 错误;令a=b=c=√33,则ab+bc+ca=1,但1a +1b +1c =3√3>2√3,故选项C 错误. 2.已知x ,y 均为正数,且x ≠y ,则下列四个数中最大的一个是( ) A.12(1x +1y )B.1x+yC.√xyD.√12(x 2+y 2)x=1,y=2,可得12(1x +1y )=34,1x+y =13√xy =√2√12(x 2+y 2)=√10,因此最大的是12(1x +1y ).3.若正数a ,b 满足1a +2b =√ab ,则当ab 取最小值时,b 的值为( ) A.2√24B.√24C.2√2D.√2正数a ,b 满足1a+2b=√ab ,∴√ab =1a +2b ≥2√1a ·2b =2√2ab ,∴ab ≥2√2,当且仅当1a =2b ,即a=√24,b=2√24时取等号, ∴当ab 取最小值时,b=2√24.4.已知a>0,b>0,且a+b=1,则下列不等式不成立的是 ( )A.a 2+b 2≥12B.2a-b >12C.log 2a+log 2b ≥-2 D .√a +√b ≤√2a+b=1,∴(a+b )2=1=a 2+b 2+2ab ≤2(a 2+b 2),∴a 2+b 2≥12,故选项A 正确;∵a+b=1,a>0,b>0,∴a+1=2a+b>b , ∴a-b>-1,∴2a-b >2-1=12,故选项B 正确; ∵a+b=1≥2√ab ,∴ab ≤14,log 2a+log 2b=log 2ab ≤log 214=-2,故选项C 错误;∵a+b=1≥2√ab ,∴2√ab ≤1,(√a +√b )2=a+b+2√ab ≤2,∴√a +√b ≤√2,故选项D 正确.故选C .5.已知a>0,b>0,若lg a 和lg b 的等差中项是0,则1a +1b 的最小值是 .lg a+lg b=0,即ab=1,于是1a +1b =a+bab=a+b ≥2√ab =2,当且仅当a=b=1时,取等号.故1a +1b的最小值是2.6.已知函数f (x )=4x+a x(x>0,a>0)在x=3处取得最小值,则a= .,得4x+ax ≥2√4x ·ax =4√a ,当且仅当4x=ax ,即x=√a2时,等号成立,即√a2=3,a=36.7.若x ,y ∈R ,且满足(x 2+y 2+2)(x 2+y 2-1)-18≤0. (1)求x 2+y 2的取值范围;(2)求证:xy ≤2.(x 2+y 2)2+(x 2+y 2)-20≤0,得(x 2+y 2+5)·(x 2+y 2-4)≤0,因为x 2+y 2+5>0,所以有0≤x 2+y 2≤4.故x 2+y 2的取值范围是[0,4].(1)知x 2+y 2≤4,所以xy ≤x 2+y 22≤42=2,当且仅当x=y 时,取等号.故xy ≤2.8.已知a ,b 为正实数,且1a +1b =2√2. (1)求a 2+b 2的最小值; (2)若(a-b )2≥4(ab )3,求ab 的值.∵a ,b 为正实数,且1a +1b =2√2,∴1a +1b =2√2≥2√1ab ,即ab ≥12(当且仅当a=b 时等号成立).∵a 2+b 2≥2ab ≥2×12=1(当且仅当a=b 时等号成立), ∴a 2+b 2的最小值为1.(2)∵1a+1b=2√2,∴a+b=2√2ab.∵(a-b )2≥4(ab )3,∴(a+b )2-4ab ≥4(ab )3,即(2√2ab )2-4ab ≥4(ab )3,即(ab )2-2ab+1≤0,(ab-1)2≤0.∵a ,b 为正实数,∴ab=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学——基本不等式培优专题目录培优(1)常规配凑法培优(2)“1”的代换培优(3)换元法培优(4)和、积、平方和三量减元培优(5)轮换对称与万能k法培优(6)消元法(必要构造函数求异)培优(7)不等式算两次培优(8)齐次化培优(9)待定与技巧性强的配凑培优(10)多元变量的不等式最值问题培优(11)不等式综合应用培优(1) 常规配凑法1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________2. 已知实数x,y 满足11622=+y x ,则22y x +的最大值为_____________3.(2018春湖州模拟)已知不等式9)11)((≥++yx my x 对任意正实数x,y 恒成立,则正实数m 的最小值是( )A.2B.4C.6D.84.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++11的最小值是_____________5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab ba =+32,则ab 的最小值是_____________6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则bb a 214+-的最小值是_____________7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11111=+++b a ,则a+2b 的最小值 是( )A.23B.22C.3D.2培优(2) “1”的代换8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则ba b 1+的最小值为_____________此时a=______9.(2018浙江期中)已知正数a,b 满足112=+b a 则b a+2的最小值为( ) A.24 B.28 C.8 D.910.(2017西湖区校级期末)已知实数x,y 满足x ﹥y ﹥0,且x+y=2,则3yx 4y -x 1++的最小值是_____________11.(18届金华十校高一下期末)记max {x,y,z }表示x,y,z 中的最大数,若a ﹥0,b ﹥0,则max {a,b,ba 31+} 的最小值为( )A.2B.3C.2D.312. 已知a,b 为正实数,且a+b=2,则21222-+++b b a a 的最小值为_____________13. 已知正实数a,b 满足1)2(221=+++aa b b b a )(,则ab 的最大值为_____________(补充题)已知x,y ﹥0,则2222296y x xyy x xy +++的最大值是_____________培优(3) 换元法14.(2019届超级全能生2月)已知正数x,y 满足x+y=1,则yx 21111+++的最小值是( ) A. 2833 B.67 C.5223+ D.5615.(2019届模拟7)已知㏒2(a-2)+ ㏒2(b-1)≥1,则2a+b 取到最下值时ab=( )A.3B.4C.6D.916.(2018温州期中)已知实数x,y 满足2x ﹥y ﹥0,且12121=++-yx y x ,则x+y 的最小值为( ) A.5323+ B.5324+ C.5342+ D.5343+17.(2018杭州期末)若正数a,b 满足a+b=1,则bba a +++11的最大值是_____________18.(2017湖州期末)若正实数x,y 满足2x+y=2,则221422+++x y y x 的最小值是_____________19.(2018河北区二模)若正数a,b 满足111=+b a ,则1911-+-b a 的最小值为( )A.1B.6C.9D.1620.(温岭市2016届高三5月高考模拟)已知实数x,y 满足xy-3=x+y,且x ﹥1,则y(x+8)的最小值是( )A.33B.26C.25D.2121. 若正数x,y 满足111=+y x ,则1914-+-y yx x 的最小值为_____________22.(2018届嘉兴期末)已知实数x,y 满足194=+y x ,则1132+++y x 的取值范围是_____________23.(2018上海二模)若实数x,y 满足112244+++=+y x y x ,则S=y x 22+的取值范围是_____________培优(4) 和、积、平方和三量减元24.(2019届台州4月模拟)实数a,b 满足a+b=4,则ab 的最大值为_____________,则)1)(1(22++b a 的最小值是_____________25. (2019届镇海中学考前练习14)已知正数x,y 满足xy(x+y)=4,则xy 的最大值为_____________,2x+y 的最小值为_____________26.(2018春台州期末)已知a,b ∈R ,a+b=2,则的最大值为( )A.1B.56C.212+D.227.(2016宁2波期末14)若正数x,y 满足12422=+++y x y x ,则xy 的最大值是_____________28.(2018届诸暨市期中)已知实数x,y 满足214-=+xy x y y x ,则122-+y x xy 的最大值为( ) A.332 B.23 C.1332+ D. 213+29.(2018台州一模)非负实数x,y 满足324442222=+++y x xy y x ,则x+2y 的最小值为_____________,xy y x 2)2(7++的最大值是_____________30.(2018春南京)若x,y ∈(0,+∞),,42=++xy yx 则172122+++xy y x xy 的取值范围是_____________31.(2017武进区模拟)已知正实数x,y 满足xy+2x+3y=42,则xy+5x+4y 的最小值为_____________32.(2017宁波期末)若正实数a,b 满足ab b a 61)2(2+=+,则12++b a ab的最大值为_____________培优(5) 轮换对称与万能k 法33.(2019嘉兴9月基础测试17)已知实数x,y 满足1422=++y xy x ,则x+2y 的最大值为_____________34.(2016暨阳联谊)已知正实数x,y 满足2x+y=2,则22y x x ++的最小值为_____________35. 已知正实数a,b 满足1922=+b a ,则ba ab+3的最大值为_____________36. 已知实数a,b,c 满足a+b+c=0, 1222=++c b a 则a 的最大值为_____________37.(2018届杭二高三下开学)若164922=++xy y x ,x ∈R ,y ∈R ,则9x+6y 的最大值为_____________培优(6) 消元法(必要构造函数求异)38.(2016十二校联考13)若存在正实数y,使得yx x y xy 451+=-,则实数x 的最大值为_____________39.(2019届镇海中学5月模拟13)已知a,b ∈+R ,且a+2b=3,则ba 21+的最小值是_____________, 2221ba +的最小值是_____________40.(2019届金华一中5月模拟9)已知正实数a,b 满足a+b=1,则的最大值是( )A.2B.21+C. 1332+D. 2223+41.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514C.没有最小值D.有最大值为342.(2018湖州期末)已知a,b 都为正实数,且311=+ba ,则ab 的最小值是_____________ abb+1的最大值是_____________培优(7) 不等式算两次43. 设a >b >0,那么)(12b a b a -+的最小值为( )A.2B.3C.4D.544. 设a >2b >0,则)2(9)(2b a b b a -+-的最小值为_____________45.(2017天津)若a,b ∈R,ab >0,则abb a 1444++的最小值为_____________46. 若x,y 是正数,则22)21()21(xy y x +++的最小值是_____________47. 已知a,b,c ∈(0,+∞),则acbc c b a ++++25)(2222的最小值为_____________48.(2018天津一模)已知a >b >0,则ba b a a -+++232的最小值为_____________49.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514C.没有最小值D.有最大值为350. 已知a >0,b >0,c >0且a+b=2,则252-+-+c c ab c b ac 的最小值是_____________培优(8) 齐次化51.(2019届杭高高三下开学考T17)若不等式)(222x y cx y x -≤-对满足x >y >0的任意实数x,y 恒成立,则实数c 的最大值为_____________52.(2019届绍兴一中4月模拟)已知x >0,y >0,x+2y=3,则xyy x 32+的最小值为( ) A.223- B.122+ C.12- D.12+53.(2018浙江模拟)已知a >0,b >0,则2222296ba ab b a ab +++的最大值为_____________ 若25422=+-y xy x ,则223y x +的取值范围是_____________54.(2016新高考研究联盟二模)实数x,y 满足22222=+-y xy x ,则222y x +的最小值是_____________培优(9) 待定与技巧性强的配凑55.(2016大联考)若正数x,y,z 满足3x+4y+5z=6,则zx z ++++2y 4z y 21的最小值为_____________56.(2016杭二最后一卷)若正数x,y 满足11x 1=+y,则2210y xy x +-的最小值为_____________57.(2016宁波二模)已知正数x,y 满足xy ≤1,则M=1211x 1+++y 的最小值为_____________58.(2016浙江模拟)已知实数a,b,c 满足14141222=++c b a ,则ab+2bc+2ca 的取值范围是( ) A.(]4,∞- B. []44,- C. []42,- D. []41,-59.(2019江苏模拟)已知x,y,z ∈(0,+∞)且1222=++c b a ,则3xy+yz 的最大值为_____________60.(2016大联考)已知12222=+++d c b a ,则ab+2bc+cd 的最大值为_____________61.(2017学年杭二高三第三次月考)已知{}222)()()(min T z x y z y x +++=,,,且x+y+z=2,则T 的最大值是( ) A.38 B.8 C. 34 D. 32 62. 已知a,b,c ∈+R ,则bc ab c b a 2222+++的最小值是_____________63. 已知a,b,c ∈R ,且4222=++c b a ,则bc ab 25+的最大值是_____________64. 已知a,b,c ∈R ,且4222=++c b a ,则ac+bc 的最大值为_____________,又若a+b+c=0,则c 的最大值是_____________培优(10) 多元变量的不等式最值问题65.(2019届浙江名校新高考研究联盟第9题)已知正实数abcd 满足a+b=1,c+d=1, 则d1abc 1+的最小值是( ) A.10 B.9 C.24 D.3366.(2019届杭四仿真卷)已知实数x,y,z 满足⎩⎨⎧=++=+512222z y x z xy ,则xyz 的最小值为_____________ 67.(2019届慈溪中学5月模拟)若正实数a,b,c 满足a(a+b+c)=bc ,则c b +a 的最大值为_____________ 68.(2017浙江期末)已知实数a,b,c 满足a+b+c=0,a ﹥b ﹥c,则22c a b+的取值范围是( ) A.)55,55(- B. )51,51(- C.)2,2(- D. )55,2(- 69.(2018浦江县模拟)已知实数a,b,c 满足1222=++c b a ,则ab+c 的最小值为( ) A.-2 B.23- C.-1 D.-21 70.(2016秋湖州期末)已知实数a,b,c 满足132222=++c b a ,则a+2b 的最大值为( ) A.3 B.2 C.5 D.371.(2019江苏一模)若正实数a,b,c 满足ab=a+2b ,abc=a+2b+c ,则c 的最大值为_____________72.(2018秋辽宁期末)设a,b,c 是正实数且满足a+b ≥c ,则cb a a b ++的最小值为_____________73.(2017秋苏州期末)已知正实数a,b,c 满足11a 1=+b ,11b a 1=++c ,则c 的取值范围是_____________74.(2019届浙江名校协作体高三下开学考17)若正数a,b,c 满足1222=--++bc ab c b a ,则c 的最大值为_____________75.(2018届衢州二中5月模拟12)已知非负实数a,b,c 满足a+b+c=1,则(c-a)(c-b)的取值范围是_____________76.(2018届上虞5月模拟16)若实数x,y,z 满足x+2y+3z=1, 194222=++z y x ,则z 的最小值为_____________培优(11) 不等式综合应用77.(2018春衢州期末)已知x,y >0,若,1464x y x y +=++ 则yx 14+的最小值是( ) A.6 B.7 C.8 D.978.(2018嘉兴模拟)已知,0x ,841x )>(y yx y ++=+则x+y 的最小值为( ) A.35 B.9 C.2624+ D.1079.(2018越城区校级)已知x,y >0,且,419211x =+++y x y 则y 167x 3-的最小值是_____________ 80.(2016台州期末)已知a,b,c ∈(0,1),设ac c b b a -+-+-+112,112,112这三个数的最大值为M , 则M 的最小值为( )A.5B.223+C. 223-D.不存在81.(2019乐山模拟)已知实数x,y 满足x >1,y >0, ,111114x =+-++y x y 则y 11-x 1+的最大值 为_____________82.(2019乐山模拟)已知x,y 为正实数,且满足)2)(23(12-+=-y y xy )(,则y1+x 的最大值 为_____________83.(2019届镇海中学最后一卷)已知x,y >0,且1y1x 82=+,则x+y 的最小值为_____________。