基本统计分析与单一样本t检验方法分析PPT(20张)

合集下载

t检验教学课件讲学讲义PPT

t检验教学课件讲学讲义PPT

(1)建立检验假设 ,确定检验水准
H0:d 0 ,儿童的皮肤反应直径无差别
H1:d 0 ,儿童的皮肤反应直径有差别
0.05
2020/1/17
9
(2)计算t值 本例n = 12, Σd = 39,Σd2 = 195,
=3.25(mm )
d=Σd /n = 39/12
Sd
d 2 d 2 n

1 n2

式中,S2称为两均数合并的方差,计算公式为:
2020/1/17
12
S 2 (n1 1)S12 (n2 1)S22 n1 n2 2
上式如果n1=n2,则
S X1X 2
S12 S22 n1 n2
t | X1 X2 | S12 S22 n1 n2
2020/1/17
第八章 t 检验
2020/1/17
1
[学习要求] 了解:正态性检验和变量变换的基本概念。 熟悉:方差齐性检验的基本概念;两样本方差齐性
检验的计算;t’检验的计算。 掌握:t检验的步骤和t分布的关系;样本均数和总
体均数比较、配对设计均数的比较、两样本均数的比 较t检验的方法与步骤。
2020/1/17
计检验的效率最高。本检验要求:两总体分布为正态分布,且
方差齐同

2 1
.22
2020/1/17
11
一、两样本均数比较的t检验
t | X1 X2 | S
X1X 2
ν=n1+n2-1
式中,S X1X 2 称为两均数之差的标准误的估计值,其计
算公式为
S X1X 2
S
2
1 n1
7
配对资料的t检验(paired samples t-test)先求出各对子的差

独立样本T检验课件

独立样本T检验课件

独立性
两个样本之间相互独立,没有关联性 ,即一个样本的数据不会对另一个样 本的数据产生影响。
目的与意义
比较两组数据的均值差异
通过独立样本t检验,可以比较两组数据的均值是否存在显 著差异,从而判断不同组别之间的差异是否具有统计学上 的意义。
探索潜在的分组因素
在研究过程中,有时需要探索不同分组之间的差异,独立 样本t检验可以帮助我们确定这些差异是否具有统计学上的 显著性。
假设检验
独立样本t检验是一种假设检验方法,通过设定原假设和备 择假设,进行统计推断,以决定是否拒绝原假设或接受备 择假设。
02
独立样本t检验的步骤
数据准备
确定样本来源
明确实验或调查的样本来 源,确保数据具有代表性 。
数据收集
按照研究目的和范围收集 数据,确保数据准确性和 完整性。
数据筛选与整理
对数据进行筛选,排除异 常值和缺失值,并进行数 据整理,使其满足分析要 求。
样本量的大小对独立样本t检验的结果具有重要影响。较小的样本量可能会导致 结果的不稳定和不可靠,而较大的样本量则可以提供更准确和可靠的结果。
确定合适的样本量
在进行分析之前,需要根据研究目的、研究设计和数据情况,确定合适的样本量 。如果样本量不足,可能需要重新收集数据或采用其他统计方法。
05
独立样本t检验的案例分析
数据正态性检验
正态分布检验
使用统计量或图形方法检验数据 是否符合正态分布,如直方图、 P-P图、Q-Q图等。
异常值处理
若数据不符合正态分布,需对异 常值进行处理,如用中位数或平 均数进行替代。
方差齐性检验
方差齐性检验方法
选择适当的方差齐性检验方法,如 Bartlett检验或Levene检验。

独立样本T检验课件

独立样本T检验课件
独立样本t检验课件
目录
• 独立样本t检验概述 • 独立样本t检验的步骤 • 独立样本t检验的应用场景 • 独立样本t检验的注意事项 • 独立样本t检验案例分析 • 独立样本t检验总结与展望
01
独立样本t检验概述
Chapter
定义与概念
定义
独立样本t检验(Independent Sample t-test)是一种统计假设 检验,用于比较两个独立样本的 均值是否存在显著差异。
概念
独立样本t检验基于假设,即两个 样本的总体分布都是正态分布, 且两个总体方差齐性。
目的与用途
目的
通过独立样本t检验,我们可以判断两个样本的均 值是否存在显著差异,从而支持或否定原假设。
用途
独立样本t检验在科学、工程、医学等领域广泛应 用,用于检验实验组和对照组之间的差异是否具有 统计学意义。
假设与条件
解读结果
如果p值小于显著性水平(通常为0.05),则拒绝原假设,认为两组样本的均值存在 显著差异。
如果p值大于显著性水平,则无法拒绝原假设,认为两组样本的均值不存在显著差异 。
根据需要,可以进一步进行方差分析(ANOVA)等统计方法来比较两组样本的差异 。
03
独立样本t检验的应用场景
Chapter
案例三
目的
检验一个样本是否显著不 同于另一个样本。
数据
两个样本数据,每个样本 包含多个观察值。
方法
使用独立样本t检验进行分 析。
案例三
步骤
1. 收集数据:收集两个样本数据,每个样本包含 多个观察值。
2. 数据清洗:对数据进行清洗,包括处理缺失值 、异常值和离群点等。
案例三
01
3. 数据转换

医学统计学——t检验课件

医学统计学——t检验课件

医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。

t检验常用于小样本数据,特别是两个独立样本的比较。

t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。

两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。

t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。

两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。

适用条件样本应来自正态分布总体,且方差相等。

结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。

如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。

03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。

数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。

数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。

[正式版]数据分析方法-单样本T检验ppt资料

[正式版]数据分析方法-单样本T检验ppt资料
第四,计算检验统计量的观测值和概率P值。 现采用某种方法,测量该药物溶解液11次,测量后得到的结果见“单样本T检验. 第二,确定检验统计量。 第四,计算检验统计量的观测值和概率P值。 第三,确定显著性水平α。 单样本T检验 ——原理 单样本T检验 ——原理 “按分析顺序排除个案”表示在分析时,检验变量中含有缺失值的将不被计算; 前提是样本来自的总体服从正态分布。 单样本T检验 ——原理 第一,提出零假设和备选假设。 “缺失值”栏用于选择处理缺失值的方式: 一般情况下,使用的最多的α值是,当然也可能是等。 第四,计算检验统计量的观测值和概率P值。 问:用该方法测量所得结果是否与标准浓度值有所不同? “单样本T检验”主对话框 式中的μ0通常表示为零假设中的均值
单样本T检验
北京信息职业技术学院 | 陈悦
01 单样本T检验
单样本T检验的目的是利用来自某总体的样本数据,推断该 总体的均值是否与指定的检验值之间存在显著性差异。
前提是样本来自的总体服从正态分布。
01 单样本T检验
其基本思想是:
计算出样本均值以后,先根据
经验或以往的调查结果,对总体 的均值提出一个假设,即μ=μ0 ,
第五,作出决策。
• p=0.012<0.05, 就应该拒绝零假设,认为 总体均值与检验值之间存在显著差异;
• 因此,可以得出结论,用该方法测量所得 结果与标准浓度值有差异。
μ0就是待检验的总体均值。
然后分析计算出的样本均值来
自均值为μ0的总体的概率有多 大。如果概率很小,就认为总体
的均值不是μ0。
02 单样本T检验 ——原理
第一,提出零(原)假设和备选假设。
“按分析顺序排除个案”表示在分析时,检验变量中含有缺失值的将不被计算; “按列表排除个案”表示任何一个变量中含有缺失值的个案都不被计算。 现采用某种方法,测量该药物溶解液11次,测量后得到的结果见“单样本T检验.

t检验ppt课件

t检验ppt课件

1. 建立检验假设,确定检验水准 令两组患者血糖值的总体均数分别为μ1 和μ2 。 H0: μ1 = μ2 ; H1: μ1 ≠ μ2 ;α= 0.05。
2. 计算检验统计量
t X1 X2 SX1X2
X1 X2
SC2 X1X2
是两样本均数之差的联合标准误, S
2 C
是联合方差。
SC 2
X12(
X1)2 n1
X22(
X2)2 n2
n1n22
另外,如果已知两样本标准差为
S1
,
S2
时,可按以下公式计算S
2 C

SC 2 (n11n)1S12 n2(n221)S22
本例中,t = 2.639
3. 确定P值,得出推断结论
自由度ν= n1 + n2 – 2 = 23, 查 t 界值表,t 0.05/2,(23) = 2.069,
t > t 0.05(23), P < 0.05, 差别有统计学意义。按α= 0.05 水准, 拒绝 H0 ,接 受H1,可认为两组患者2个月后测得的空腹血糖值的均数不同。
总体方差不具齐性的两样本 t' 检验
方差齐性检验
两总体的方差齐性决定了,采用何种统计检验的方法去比较两小
样本均数的差异。
两总体方差的齐性检验,即 F 检验。
二. t' 检验
t' 检验有3种方法,本章介绍Cochran & Cox法和Satterthwaite法。 检验统计量t'为:
t X1 X 2
S
2 1
S
2 2
n1 n2
ν 1 = n1 – 1, ν2 = n2 – 1
校正临界值 t'α/2为:

T检验及应用ppt课件

T检验及应用ppt课件
⑴选择菜单:【分析】 → 【比较均值】 → 【配对样本T检验】 出现如图所示的窗口。
ppt课件.
14
喝茶前后体重平均值有较大差异, 说明喝茶后的平均体重低于喝茶 前的平均体重。
它表明在显著性水平为0.05 时,肥胖志愿者服用减肥茶 前后的体重有明显的线性变 化,喝茶前和喝茶后体重的 线性相关程度较强.
⑵选择统计量。两配对样本T检验采用T统计量。首先,对两组样本分别计算 出每对观测值的差值得到差值样本;然后,体用差值样本,通过对其均值是 否显著为0的检验来推断两总体均值的差是否显著为0.
⑶计算检验统计量观测值和概率P-值
SPSS将计算两组样本的差值,并将
相应数据代入式①,计算出T统计量的观测值和对应的概率P-值。
至此,SPSS将自动计算平均值和对应的概率P-值。分析结果如表3和表4所示。 表3.人均住房面积的基本描述统计结果
ppt课件.
100个家庭的人均住房面积 的平均值为21.2平方米, 标准差为1.7平方米
5
表4人均住房面积单样本T检验结果
总体均值的95%的置信区间 为(20.8,21.5)平方米。即: 我们有95%的把握认为家庭 人均住房面积均值在 20.8~21.5平方米之间。
⑴选择菜单【分析】 → 【比较均值】 → 【独立样本T检验】
⑵将数学成绩到【检验变量(T)】 框中。于是出现如图所示的窗口。
ppt课件.
10
⑶选择总体标识变量到【分组变 量】框中。
样本均值有一定的差异
ppt课件.
11
p>0.05,认为二者方差 无显著差异
P>0.05,因此认为两 总体的均值无显著差异。
得到的检验统计量为 t 统计量,数学定义为:
t

医学统计学——t检验课件

医学统计学——t检验课件

•t检验概述•t检验的前提条件•单一样本t检验•独立样本t检验•配对样本t检验•t检验的扩展•t检验在医学中的应用•t检验的常见错误及注意事项目录t检验的定义0102031t检验的适用范围23t检验主要用于比较两组数据的均值是否存在显著差异,例如比较两组病人的平均血压、平均血糖等指标是否存在显著差异。

t检验还可用于检测单个样本的均值与已知的某个值是否存在显著差异,例如检测某种新药的有效性。

在医学研究中,t检验常用于临床试验、流行病学调查等数据统计分析中。

t检验的历史与发展t检验起源于英国统计学家G.E.皮尔逊,最初用于解决科学实验中的数据分析问题。

随着科学技术的不断发展,t检验逐渐成为医学统计学中最常用的统计分析方法之一。

目前,t检验已经广泛应用于医学、生物、社会科学等领域的数据统计分析中,成为研究者和学者们必备的统计工具之一。

样本正态分布样本独立性独立性是指样本数据来自不同的总体,且各总体之间相互独立。

在进行t检验时,要求样本数据是来自两个或多个相互独立的总体。

如果样本数据不是来自相互独立的总体,那么t检验的结果可能会受到影响。

在实际应用中,如果样本数据不满足独立性要求,可以通过将数据分为不同的组(如按时间、按个体等)来满足独立性要求。

如果数据无法分组满足独立性要求,则可以考虑使用其他统计方法。

方差齐性单一样本t检验是用来检验一个样本均值是否显著地不同于已知的参考值或“零”(即检验假设H<sub>0</sub>:μ=μ<sub>0</sub>)。

这种检验通常用于检验单个观察值是否与已知的参考值有显著差异。

公式t=(X-μ<sub>0</sub>)/S<sub>X</sub>/√n,其中X是样本均值,μ<sub>0</sub>是已知的参考值或“零”,S<sub>X</sub>是样本标准差,n是样本大小。

t检验与单方差分析PPT资料

t检验与单方差分析PPT资料
t检验与单因素方差分析
事实上,小概率事件在随机抽样中还是可能发生的,
如果该P值太小,成为了我们所定义的小概率事件(小于等于α水准),则我们怀疑所做的假设不成立,从而拒绝H0。
察在假设条件下随机样本的特征信息是否属小概率事
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
统计方法应当注意其适用条件
近,不存在差别)考试后的成绩是否存在差异?
均数为正,因此可推断出是使得病人血压下
三、计算检验统计量和P值
三、完全随机的两样本t检验
完全随机的两样本t检验


目的:
推断两个样本是否来自相同的总体,更具体地说,
是要检验两样本所代表的总体均数是否相等。
检验假设
无效假设H0:μ1=μ2
检验结果
多个子集,利用studentized
range分布来进行
件,若为小概率事件,则怀疑假设成立有悖于该样本
基本思想:先建立一个关于样本所属总体的假设,考
D=X- u0
所提供特征信息,因此拒绝假设
•因此,认为两者的差别无统计学意义,但是这并不意味着可以接受H0
• 二是与H0相对立的备择假设 (alternative hypothesis),记为H1。
检验假设H0本来是成立的,而根据样本信息拒
绝H0的可能性大小的度量,换言之,α是拒绝
了实际上成立的H0的概率。
常用的检验水准为α = 0.05,其意义是:在所设
H0的总体中随机抽得一个样本,其均数比手头
样本均数更偏离总体均数的概率不超过5%
假设检验的基本步骤
三、计算检验统计量和P值
检验统计量的特点:
基本思想:先建立一个关于样本所属总体的假设,考

t检验ppt课件

t检验ppt课件

1.96 X 1.96
SX
X
1.96
X
SX
SX
1.96
99% 界限值 ? xx
正态性 ?
3
第一节 t 检验
一、t 值及假设检验的界限值
对于近似正态性资料,t的界限值为: 查t界值表
t 0.05 1.96 t 0.0520 2.086 t0.0550 2.009
8 3.73 13.9129
9
4.32 18.6624
9 4.57 20.8849
10
5.78 33.4084 10 4.82 23.2324
11
3.73 13.9129 11 5.78 33.4084
12 4.17 17.3889
13 4.14 17.1396
11
51.82 261.0968 13 43.61 166.7113
表5.1 克矽平治疗矽肺患者治疗前后血红蛋白含量病人 血红蛋白(克%)
编号 治疗前 治疗后
治疗前后差数d
d2
1
11.3
14.0
2.7
7.20
2
15.0
13.8
-1.2
1.44
3
15.0
14.0
-1.0
1.00
4
13.5
13.5
0.0
0.00
5
12.8
13.5
0.7
0.49
6
10.0
12.0
2.0
4.00
xx
10
四、两独立样本均数比较的t 检验
(two independent sample t test)
1.H0:设克山病患者与当地健康者的血磷值的均数相同。

医学统计学——t检验课件

医学统计学——t检验课件

样本量大小的问题
足够的样本量是t检验准确性的重要保障
如果样本量过小,t检验的结果可能不准确。
确定合适的样本量
在医学研究中,一般认为样本量至少需要达到30才能进行t检验。同时,可以使用如Bootstrap、jackknife等 重采样方法来评估t检验的稳定性。
06
t检验的复习与巩固
概念辨析
t检验
医学统计学——t检验课件
xx年xx月xx日Βιβλιοθήκη contents目录
• t检验的基本概念 • t检验的原理 • t检验的步骤 • t检验的应用 • t检验的局限性 • t检验的复习与巩固
01
t检验的基本概念
t检验的定义
总结词
t检验是一种常用的参数检验方法,用于比较两组数据的均值 是否存在显著差异。
详细描述
计算t值
正态性检验
对数据进行正态性检验,以确定数据是否符合正态分布。
t值计算
根据样本数据计算t值,并确定自由度。
查表得出p值
p值定义
p值是统计学中表示样本数据是 否显著的重要指标。
p值计算
使用t值和自由度查表得出p值 。
解读p值
根据p值大小,判断样本数据的 显著性,从而得出结论。
04
t检验的应用
t检验是通过计算t值来评价两组数据之间的差异程度,以确定 这种差异是随机误差引起还是处理效应引起。
t检验的适用范围
总结词
t检验适用于小样本数据,特别是样本数据呈正态分布或近似正态分布的情况 。
详细描述
在医学研究中,t检验常用于比较两组病例的疗效、安全性等指标的差异,也 可以用于评价不同剂量、不同处理方式之间的差异。
实例
例如在肺癌患者的预后评估中,根据患者年龄、性别、病理 类型、肿瘤大小、淋巴结转移情况等数据,使用t检验进行统 计分析,可以得出患者的生存期是否存在显著差异,从而为 临床医生提供参考依据。

实验三基本统计分析与单一样本t检验

实验三基本统计分析与单一样本t检验

本实验的主要发现
实验结果显示,样本均值与已 知总体均值存在显著差异,说 明样本数据与总体数据存在偏 离。
通过单一样本t检验,我们发现 样本数据的标准差较小,说明 样本数据相对集中。
本实验中,样本数据的分布呈 现出正态分布的特点,符合统 计学中的正态分布假设。
对实际应用的启示
在实际应用中,当需要对总体数据进 行推断时,可以采用本实验的方法对 样本数据进行统计分析,以了解样本 数据与总体数据的差异。
样本选取
为了保证实验结果的可靠性,我们选 取了其中50名年龄、性别、体重等特 征相似的受试者作为样本。
使用统计软件进行单一样本t检验
01
软件选择:我们选择了SPSS软件进行统计分析,因为其 功能强大且易于操作。
04
2. 在菜单栏中选择“分析”-“比较均值”-“单一样本t 检验”。
02
实验步骤
05
3. 在弹出的对话框中,将体重作为检验变量,将标准值 设定为某个特定值(例如,正常体重范围的中值)。
实验三基本统计分析与单一样本t 检验
目录
• 引言 • 基本统计概念 • 单一样本t检验的原理 • 单一样本t检验的步骤 • 实验操作与演示 • 结论
01 引言
主题简介
01
基本统计分析与单一样本t检验是 统计学中常用的方法,用于分析 单一样本数据的均值与已知的参 考值或理论值之间的差异。
02
在科学实验、医学研究、社会科 学调查等领域,单一样本t检验被 广泛应用于检验样本均值是否显 著不同于已知的参考值。
实验目的
掌握单一样本t检验 的基本原理和方法。
了解单一样本t检验 在实际问题中的应用 和注意事项。
学习如何使用统计软 件进行单一样本t检 验。

基本统计分析与单一样本t检验方法分析共21页

基本统计分析与单一样本t检验方法分析共21页
基本统计分析与单一样本t检验方法分 析
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在左侧变量框中选择一个或多个变量作为待分析变量,并 单击箭头按钮使其移入“变量”框中。
选中“将标准化得分另存为变量”复选项,可将所选择的每 个变量进行标准化产生相应的Z分,作为新变量保存在数 据窗中,其变量名为相应变量名加前缀Z。
单击“选项”按钮,打开“选项”对话框。 单击“确定”按钮,执行SPSS命令。

16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。

17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。

18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。

5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。

6、没什么可怕的,大家都一样,在试探中不断前行。

7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。

8、世上的事,只要肯用心去学,没有一件是太晚的。要始终保持敬畏之心,对阳光,对美,对痛楚。
单击“选项”按钮,打开“选项”对话框。该对话框可设置置 信度和缺失值的处理方法。
单击“确定”,执行SPSS命令。
“频率”主对话框
“统计量”对话框
“图表”对话框
“格式”对话框
“描述性”对话框
“选项”对话框
“交叉表”主对话
“精确检验”对话框
“统计量”对话框
“单元显示”对话框
“表格格式”对话框
实验三 基本统计分析与单一样本t检验
温州大学教育学院 潘玉进
实验三 基本统计分析与单一样本t检验
实验目的
掌握SPSS for Windows基本统计分析。 掌握单一样本t检验。
实验设备
微机、SPSS for Windows V17.0统计软件包。
实验内容
完成频率过程的基本操作。 完成描述过程的基本操作。 完成交叉表过程的基本操作。 完成单一样本t检验的4道上机练习题。
实验三 基本统计分析与单一样本t检验
实验步骤
频率过程
建立至少包含一个变量的SPSS数据文件。 鼠标单击“分析→描述统计→频率”菜单项,打开“频率
”主对话框。 在左侧变量框中选择一个或多个变量,单击箭头按钮,使
其移到“变量”框中。 选中“显示频率表格”选项。 单击“统计量”按钮,打开“统计量”对话框,选择要输

19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。

20、没有收拾残局的能力,就别放纵善变的情绪。

1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。

2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
“单样本t检验”主对话框

1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。

2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。

3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。

4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
实验三 基本统计分析与单一样本t检验
单一样本t检验
建立至少包含一个因变量的SPSS数据文件,变量均定义为 数值型。
鼠标单击“分析→比较均值→单样本T检验”菜单项,打开“ 单样本T检验”主对话框。在左边变量框中选择待检变量, 单击中间向右按钮,把选中的变量移到右边“检验变量”框 中;在“检验值”右边的输入框中输入检验值,即已知总体 的平均数μ0。

9、别再去抱怨身边人善变,多懂一些道理,明白一些事理,毕竟每个人都是越活越现实。

10、山有封顶,还有彼岸,慢慢长途,终有回转,余味苦涩,终有回甘。

11、人生就像是一个马尔可夫链,你的未来取决于你当下正在做的事,而无关于过去做完的事。

12、女人,要么有美貌,要么有智慧,如果两者你都不占绝对优势,那你就选择善良。
实验三 基本统计分析与单一样本t检验
交叉表过程ห้องสมุดไป่ตู้
建立至少包含二个变量的SPSS数据文件。 鼠标单击“分析→描述统计→交叉表”菜单项,打开“交叉表
”主对话框。在左侧变量框中选择一个或多个变量进入“行” 框,作为交叉表中的行变量;在左侧变量框中选择一个或 多个变量进入“列”框,作为交叉表中的列变量。 根据需要选择一个分层变量进入“层”框中。 选中“显示复式条形图”复选项,可显示每一组中各变量的 分类条形图。 选中“取消表格”复选项,将禁止输出交叉表。 单击“精确”按钮,打开“精确检验”对话框。 单击“统计量”按钮,打开“统计量”对话框。 单击“单元格”按钮,出现“单元显示”对话框。 单击“格式”按钮,打开“表格格式”对话框。 单击“确定”按钮,执行SPSS命令。
出的统计量。 单击“图表”按钮,打开“图表”对话框。 单击“格式”按钮,打开“格式”对话框。 单击“确定”按钮,执行SPSS命令。
实验三 基本统计分析与单一样本t检验
描述过程
建立至少包含一个变量的SPSS数据文件。 单击“分析→描述统计→描述”菜单项,打开“描述性”对话
框。

3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力!

13、时间,抓住了就是黄金,虚度了就是流水。理想,努力了才叫梦想,放弃了那只是妄想。努力,虽然未必会收获,但放弃,就一定一无所获。

14、一个人的知识,通过学习可以得到;一个人的成长,就必须通过磨练。若是自己没有尽力,就没有资格批评别人不用心。开口抱怨很容易,但是闭嘴努力的人更加值得尊敬。

15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。
相关文档
最新文档