柔性直流输电基本控制原理

合集下载

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。

随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。

本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。

一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。

其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。

通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。

2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。

(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。

(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。

二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。

传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。

2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。

在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。

3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。

通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述随着能源结构的优化和电网技术的发展,柔性直流输电(VSC-HVDC)技术以其独特的优势,在电力系统中的应用越来越广泛。

本文旨在全面概述柔性直流输电工程的技术研究、应用现状以及未来的发展趋势。

我们将从柔性直流输电的基本原理出发,深入探讨其关键技术和设备,包括换流器、控制系统、保护策略等。

我们还将分析柔性直流输电在新能源接入、电网互联、城市电网建设等领域的应用案例,评估其在实际运行中的性能表现。

我们将展望柔性直流输电技术的发展前景,探讨其在构建清洁、高效、智能的电力系统中发挥的重要作用。

通过本文的阐述,我们希望能够为从事柔性直流输电技术研究和应用的同行提供有益的参考和启示。

二、柔性直流输电技术原理柔性直流输电技术,又称为电压源换流器直流输电(VSC-HVDC),是近年来直流输电领域的一项重大技术革新。

与传统的基于电网换相换流器(LCC)的直流输电技术不同,柔性直流输电技术采用基于可关断器件的电压源换流器(VSC),这使得它在新能源接入、城市电网增容和孤岛供电等方面具有独特的优势。

柔性直流输电技术的核心在于电压源换流器(VSC)。

VSC采用可关断的电力电子器件(如绝缘栅双极晶体管IGBT),通过脉宽调制(PWM)技术实现对交流侧电压和电流的有效控制。

VSC既可以作为有功功率的源,也可以作为无功功率的源,因此它具有更好的控制灵活性和响应速度。

在柔性直流输电系统中,VSC通常与直流电容器和滤波器并联,以维持直流电压的稳定和滤除谐波。

VSC通过改变其输出电压的幅值和相位,可以独立地控制有功功率和无功功率的传输,从而实现对交流电网的灵活支撑。

柔性直流输电技术还采用了先进的控制系统,包括换流器控制、直流电压控制、功率控制等,以确保系统的稳定运行和电能质量。

这些控制系统可以根据系统的运行状态和实际需求,对VSC的输出进行实时调整,从而实现对交流电网的精准控制。

柔性直流输电技术以其独特的电压源换流器和先进的控制系统,实现了对交流电网的灵活支撑和精准控制。

柔性直流输电基本控制原理

柔性直流输电基本控制原理
详细描述
暂态稳定性分析是评估柔性直流输电系统在故障或其他大的扰动情况下的性能的重要手段。通过模拟 系统在各种故障情况下的响应,可以了解系统的暂态行为和稳定性,为控制策略的制定提供依据。
运行稳定性分析
总结词
运行稳定性分析是研究系统在正常运行 条件下的动态性能,通过仿真和实验等 方法,分析系统的运行稳定性和控制性 能。
促进可再生能源的接入
柔性直流输电能够更好地接入可再生能源,有助于实现能源 的可持续发展。
02
柔性直流输电系统概述
柔性直流输电系统的基本结构
换流阀
换流阀是柔性直流输电系统的核心部件,负责 实现直流电的转换和传输从一端传 输到另一端。
滤波器
滤波器用于滤除谐波和噪声,保证传输电能的 纯净。
柔性直流输电基本控制原理
$number {01}
目 录
• 引言 • 柔性直流输电系统概述 • 柔性直流输电系统的控制策略 • 柔性直流输电系统的稳定性分析 • 柔性直流输电系统的保护与控制
一体化 • 柔性直流输电系统的应用与发展
趋势
01 引言
背景介绍
传统直流输电的局限性
传统直流输电在电压源换流器(VSC) 控制策略上存在局限,难以满足现代 电力系统的需求。
3
保护和控制设备之间的通信应具有高可靠性和实 时性,以确保快速响应和准确控制。
保护与控制一体化的优点与挑战
优点
保护和控制一体化可以提高系统的快速响应 能力和稳定性,减少故障对系统的影响,降 低维护成本和停机时间。
挑战
保护和控制一体化需要解决多种技术难题, 如传感器精度、数据处理速度、通信可靠性 和实时性等,同时也需要加强相关标准和规 范的建设和完善。
柔性直流输电系统的未来展望

柔性直流输电技术概述

柔性直流输电技术概述

电力系统2020.9 电力系统装备丨79Electric System2020年第9期2020 No.9电力系统装备Electric Power System Equipment2006年,中国电力科学研究院组织研讨会将基于电压源换流器(VSC )技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。

“柔性”翻译自单词“Flexible ”,主要指相较于常规直流输电技术。

柔性直流输电技术的控制手段更为灵活[1],并且具有对交流系统无依赖、运行方式多样等优点,为异步电网互联、新能源接入、电力市场构建等应用场景提供了新的解决方案[2]。

我国首个柔性直流输电工程于2011年投运。

经过近年来不断发展,在电压等级、系统容量、拓扑结构等方面均取得了长足的进步,已经在柔性直流技术的诸多领域处于世界领先地位[3]。

1 发展历程回顾通过电压源换流器来实现高压直流输电的技术方案最早由加拿大McGill 大学的Boon-Teck 等人于1990年提出。

随着柔性直流技术的发展,国际上多个电力权威学术组织将这种新兴输电方式命名为电压源换流器型直流输电(VSCHVDC )。

ABB 公司对其投入大量研究力量,取得一系列专利成果,多年来一直在该领域处于世界领先地位,并将这种输电方式称为轻型直流输电(HVDCLight )。

2006年,中国电力科学研究院经过讨论将其统一命名为“柔性直流输电”。

世界上第一条柔性直流输电工程于1997年投入工业试验运行,由瑞典投资建设,电压等级10 kV ,容量3 MW 。

随后,欧美各国纷纷开始了柔性直流输电技术的理论研究与工程建设,主要应用于新能源并网、电网互联、海上钻井平台供电等领域,早期的柔性直流工程几乎全部由ABB 制造。

国内的柔性直流输电工程最早始于2011年,经历了从无到有,电压等级从低到高,输电容量从小到大,拓扑结构由简单到复杂的发展历程。

2011年7月,亚洲首个具有自主知识产权的柔性直流工程上海南汇风电场工程投运,电压等级±30 kV ;2013年12月,世界上第一个多端柔性直流工程南澳示范工程顺利投产,电压等级±160 kV ;2014年7月,世界范围内首个五端柔性直流输电工程舟山工程建成,电压等级±200 kV ;2015年12月,采用真双极接线的厦门柔性直流输电示范工程正式投运,电压等级±320 kV ,标志着我国在高压大容量柔性直流输电工程设计、设备制造、工程施工调试、运营等关键技术方面达到世界领先水平;2016年8月,位于云南省曲靖市罗平县的鲁西背靠背异步联网工程顺利投运,电压等级±350 kV ,是世界上首次采用大容量柔性直流与常规直流组合的背靠背直流工程;2016年12月,渝鄂直流背靠背联网工程正式核准建设,电压等级±420 kV ,是世界上电压等级最高、规模最大的柔性直流背靠背工程;2019年12月,张北±500 kV 柔性直流示范工程进入全面调试阶段,构建了输送大规模风、光、抽蓄等多种能源的四端环形柔性直流电网,标致着我国柔性直流输电技术迈向新的高度。

柔性输电技术简介

柔性输电技术简介

柔性输电之直流输电内容简介轻型直流输电技术是20世纪90年代开始发展的一种新型直流输电技术,核心是采用以全控型器件(如GTO和IGBT等)组成的电压源换流器(VSC)进行换流。

这种换流器功能强、体积小,可减少换流站的设备、简化换流站的结构,故称之为轻型直流输电,其系统原理如图2-1所示。

图2.1 柔性直流输电系统原理示意图其中两个电压源换流器VSC1和VSC2分别用作整流器和逆变器,主要部件包括全控换流桥、直流侧电容器;全控换流桥的每个桥臂均由多个绝缘栅双极晶体管IGBT或门极可关断晶体管GTO等可关断器件组成,可以满足一定技术条件下的容量需求;直流侧电容为换流器提供电压支撑,直流电压的稳定是整个换流器可靠工作的保证;交流侧换流变压器和换流电抗器起到VSC与交流系统间能量交换纽带和滤波作用;交流侧滤波器的作用是滤除交流侧谐波。

由于柔性直流输电一般采用地下或海底电缆,对周围环境产生的影响很小。

1引言随着科学技术的发展,到目前为止,电力传输经历了直流、交流和交直流混合输电三个阶段。

早期的输电工程是从直流输电系统开始的,但是由于不能直接给直流电升压,使得输电距离受到较大的限制,不能满足输送容量增长和输电距离增加的要求。

19世纪80年代末发明了三相交流发电机和变压器,交流输电就普遍地代替了直流输电,并得到迅速发展,逐渐形成现代交流电网的雏形。

大功率换流器的研究成功,为高压直流输电突破了技术上的障碍,因此直流输电重新受到人们的重视。

直流输电相比交流输电在某些方面具有一定优势,自从20世纪50年代联接哥特兰岛与瑞典大陆之间的世界第一条高压直流输电(HVDC)线路建成以来,HVDC在很多工程实践中得到了广泛的应用,如远距离大功率输电、海底电缆输电、两个交流系统之间的非同步联络等等。

目前,国内已有多个大区之间通过直流输电系统实现非同步联网:未来几年,南方电网将建成世界上最大的多馈入直流系统;东北电网也有多条直流输电线路正在建设或纳入规划。

柔性直流输电系统的设计与优化

柔性直流输电系统的设计与优化

柔性直流输电系统的设计与优化直流输电系统作为电力传输领域的一项重要技术,在解决远距离电力传输、提高输电效率和稳定性等方面具有独特优势。

而柔性直流输电系统作为直流输电的一种新型形式,在电力系统领域得到了广泛关注和研究。

本文将从柔性直流输电系统的设计与优化角度展开讨论,探究其在电力系统中的应用与发展。

一、柔性直流输电系统的基本原理与特点柔性直流输电系统主要由直流母线、换流站、逆变站以及相应控制系统等组成。

其基本原理是通过硅控整流和逆变技术,将交流电能转换成直流电流进行传输,并在需要的地方再次将其转换为交流电能。

在这个过程中,可以通过控制直流母线的电压和频率来实现对输电系统的柔性控制。

相比传统的交流输电系统,柔性直流输电系统具有以下几个特点:1. 高效能:柔性直流输电系统在电能转换的过程中,能够大大减少电能的损耗。

传统交流输电系统由于存在变压器等能量转换设备,会存在一定的能量损耗。

而柔性直流输电系统采用直流电能传输,能够减少能量转换环节,提高能量传输的效率。

2. 高稳定性:柔性直流输电系统具有更好的稳定性。

由于直流电路的特点,柔性直流输电系统能够更好地应对电力系统中的故障和波动。

例如,在输电线路出现瞬态故障时,柔性直流输电系统能够通过控制直流母线电压和频率,迅速稳定系统运行,减少对系统的影响。

3. 较小的占地面积:柔性直流输电系统相比传统交流输电系统在占地面积上具有较大优势。

传统交流输电系统需要设置变电站、输电线路等设备,占用大量土地资源。

而柔性直流输电系统不仅仅可以减少变电站设备,还可以通过多级换流站的方式,进一步减小占地面积。

二、柔性直流输电系统的设计要点柔性直流输电系统的设计涉及到许多技术和工程要点。

下面将从输电线路、换流站和逆变站等方面来介绍设计要点。

1. 输电线路设计:柔性直流输电系统中的输电线路是电力传输的核心环节。

在设计时需要考虑线路的传输能力、损耗、抗风荷载能力等因素。

同时,为提高输电线路的可靠性,还需要进行断面选择和材料选择。

MMC柔性直流电基本原理精选全文

MMC柔性直流电基本原理精选全文

可编辑修改精选全文完整版MMC柔性直流电基本原理通常,为了减小长距离输电线路的损耗必须提高输电线路的电压等级,即必须采用高压输电。

现有的高压输电技术主要包括高压交流(HVAC)和高压直流(HVDC)两种主流技术。

由于输电线路造价低、相同绝缘条件下线路的电力输送能力强,高压直流输电技术更适用于长距离大容量的电力输送,目前,高压直流输电技术主要有:基于电流源型换流器的HVDC(LCC-HVDC),即常规直流输电技术基于电压源型换流器的HVDC(VSC-HVDC)由于可控性和兼容性更佳,VSC-HVDC在中国也被称为柔性直流输电,简称“柔直”。

近年来,模块化多电平换流器(MMC)以其模块化的结构、低谐波含量、高运行效率等优点在柔性直流输电领域获得了广泛关注,并在多个实际工程中获得应用。

对应用于直流输电系统的MMC来说,具有如下特点:换流器容量大——通常在数百至上千MW电压等级高——交、直流电压在百kV等级功率模块数量巨大——高达数百至数千例如:广东南澳多端柔直工程容量200MW,直流电压±160kV,交流电压166kV,青澳站换流器功率模块数量为1320个云南鲁西背靠背柔直工程容量1000MW,直流电压±350kV,交流电压380kV,广西侧换流器功率模块数量高达2808个现有文献对应用于柔性直流输电系统的MMC开展了较多的研究,包括电路拓扑、数学模型、调制与均压、桥臂环流谐波抑制、快速仿真方法、故障保护策略等在电路拓扑方面,现有文献重点研究了具有直流短路故障抑制能力的换流器拓扑基于半桥型功率模块构建的换流器结构简单,运行效率高,但是无法抑制直流短路故障基于全桥或者双箝位型功率模块构建的换流器具有短路故障抑制能力,但是所需功率器件多,损耗大,造价高在MMC的数学模型方面,现有文献主要对MMC的交流侧、直流侧等效模型进行了研究,分析了电容参数及桥臂电感参数的设计方法现有文献对MMC的均压与调制策略也进行了研究载波移相脉宽调制策略开关频率固定,需要对每个功率模块都进行闭环均压控制,功率模块数量较多时几乎难以实现最近电平逼近调制策略具有开关频率低、均压实现简单的特点,但是模块的开关具有随机性,功率模块的开关频率不固定在基于最近电平逼近调制策略的低开关频率均压策略方面,现有文献提出了若干方法,但是这些方法在基波周期中的大多数时间内令功率模块投切状态不变,导致模块电容电压波动范围很大现有文献分析了桥臂环流谐波分量产生的原因,推导了桥臂环流谐波特性,提出了桥臂环流dq同步旋转坐标系下多PI控制器的抑制方法,实现较为复杂;基于PR控制器的抑制方法坐标变换简便,易于实现另外,在实际工程中发现,功率模块中的控制电路具有恒功率的负载特性,负载的恒功率特性导致了MMC在不控充电阶段会出现正反馈机制的电压发散现象2.MMC基本原理MMC特点:模块化结构,冗余设计降低系统停机概率多电平输出,输出电压谐波含量低储能电容分散,降低了直流储能电容的体积单个功率模块电压等级低通过功率模块串联可以适用于高压大功率场合功率模块介绍:半桥功率模块工作状态上管(S1)开:输出电压为UC上管(S2)开:输出电压为0上管开,对电容进行充放电,定义为投入状态下管开,功率模块不参与工作,定义为切除状态2个半桥功率模块串联输出电压S2开(切除), S4开(切除),输出电压之和为0S2开(切除), S3开(投入),输出电压之和为UC2S1开(投入), S3开(投入),输出电压之和为UC1+ UC2两个功率模块串联连接时输出电压为0,UC,2 UC所以当多个半桥功率模块串联输出电压所有功率模块均处于切除状态,输出电压为零;任意一个处于投入状态,输出电压为UC;任意两个处于投入状态,输出电压为2UC;任意x个功率模块均处于投入状态,输出电压为xUC。

柔性直流输电系统的设计与分析

柔性直流输电系统的设计与分析

柔性直流输电系统的设计与分析近年来,随着电力需求的不断增加和清洁能源的广泛应用,柔性直流输电系统作为一种新型的能源输送技术,受到了广泛关注和应用。

本文将对柔性直流输电系统的设计原理和分析方法进行探讨,旨在为相关领域的研究人员和工程师提供参考。

第一部分:柔性直流输电系统的基本原理柔性直流输电系统是一种基于直流电的高效、可靠的能源输送技术。

它通过将交流电转换为直流电,减少输电损耗和电网压力,并能够实现灵活的电力调度和能量存储。

柔性直流输电系统主要由三部分组成:直流输电线路、换流站和电力电子设备。

在柔性直流输电系统中,直流输电线路是实现能量传输的重要部分。

根据输电距离和电流负载的不同,可以选择不同的输电线路类型。

常见的输电线路类型有海底电缆、空中输电线路和地下电缆等。

直流输电线路的设计需要考虑输电效率和成本,保证能量的有效传输和电网的可靠运行。

换流站是柔性直流输电系统中的核心设备,其作用是将交流电转换为直流电,并实现直流到交流的逆变。

换流站主要由换流器、滤波器和控制器等组件组成。

换流器由可控硅和可逆晶闸管构成,能够使直流电的极性和电压保持稳定。

滤波器能够过滤电网中的谐波和干扰信号,保证直流电的纯净度。

控制器则通过运行算法和反馈控制,实现对换流站的工作状态和电力调度的控制。

电力电子设备是柔性直流输电系统中的核心技术之一。

它采用了先进的电力电子器件和控制技术,能够实现高效、可靠的能量转换和传输。

电力电子设备主要包括变流器、逆变器和控制系统等。

变流器能够将直流电转换为交流电,并按需调整频率和电压。

逆变器则将交流电转换为直流电,供给直流设备使用。

控制系统通过实时监测和分析电力数据,实现对电力设备和输电线路的监控和故障检测。

第二部分:柔性直流输电系统的设计与优化柔性直流输电系统的设计需要综合考虑输电距离、电流负载、环境影响、成本效益等多个因素。

为了提高输电效率和降低成本,可以采用以下几种设计与优化方法。

首先,选择合适的输电线路类型和参数是柔性直流输电系统设计的基础。

柔性直流输电基本控制原理[优质ppt]

柔性直流输电基本控制原理[优质ppt]
超高压输电公司
柔性直流输电系统的基
请播放幻灯本片控,制然原后理点击此处
学习时长:60分钟
对应培训规范课程单元:请输入对应课程单元名称 对应培训规范课程编码:请输入课程单元对应编码
.
超高压输电公司
课程内容目录
1 abc坐标系下MMC的数学模型 2 坐标系的变换 3 dq坐标系下的数学模型
4
瞬时无功理论

三相abc坐标下数学模型

L
c

d ia dt

R ia
u conv_a
usa

L
c

d ib dt

R ib
u conv_b
usb

L
c
d ic dt

R ic
u conv_c
usc
.
超高压输电公司
MMC换流器控制策略
dia

dt


SM 1
Ud
2
uan
SM 2
……
SM N
- ian
.
超高压输电公司
MMC换流器控制策略
Ud (napnan)E
Usa-LcddaitpnaE p U2d Usa-Lcddait n-naE n -U2d
.
超高压输电公司
MMC换流器控制策略
Id

iap
SM 1
uap
SM 2
Usa-LcddaitpnaE p U2d
Id
iap
ibp
icp
SM 1
SM 1
SM 1
ubrg_ap
SM 2
SM 2

对柔性直流输电技术的相关要点分析

对柔性直流输电技术的相关要点分析

对柔性直流输电技术的相关要点分析摘要:柔性直流输电是有广泛应用前景的输电技术,而且也有比较先进的技术。

能够在国家能源结构方面进行调整,让区域能源实现互联发展。

能够进行自换相,如果没有换相失败的时候,也可以向弱交流系统供电。

如果缺乏无功补偿,可以设置常规直流的补偿功率为50%到60%,另外,整个占地面积比较大。

有比较低的谐波水平,这也决定了柔性直流输电,也不会有更多的滤波。

如果在海上风电和海上石油平台方面也会有大的发展。

由于电的波动性也会比较大,也会有比较强的间歇性,针对调整这些间歇性的问题,可以更快的去调节能量。

针对柔性直流输电技术的特点和发展现状问题,也总结出了柔性直流输电技术的应用领域,更好地对未来柔性直流发电技术发展前景进行了分析。

关键词:柔性直流输电;技术要点;技术分析柔性直流输电能够构成多端直流电网,而且也不需要去改变直流的电压极性,如果只改变直流电压的方向,可能在常规反送的时候去改变电压,对于柔性直流输电并不用改变电压方向和电流方向,因此构成了直流网和只是电流调节。

对于直流电网的实际意义是要实现能量流的双向流动与双向控制,并且提高大功率电力电子性能,从而保证能量流自动调节,这种设计也比较小型化。

一、柔性直流输电的现状优势目前,人们越来越重视以晶闸管换流器为核心的高压直流输电技术。

柔性直流输电的主要优势是可以降低高压输电走廊的建设成本,并且对相位交流电网的柔性进行关联,让负荷中心可以进行远距离大功率的输电。

常规直流输电技术有非常多的优势,柔性直流输电技术也有其独有的特点。

1.孤岛特性常规高压直流输电技术要求受端电网是强电网,受端电网应当提供电压作为支撑方,从而保证输电的稳定性。

在一开始建设常规直流电的时候,由于交流电网容量会比较大,高压直流输电一般都是作为小部分来进行补充,没有比较明显的问题。

我国新能源建设都得到了蓬勃发展,新能源需要借助直流线路输到东部负荷中心,交流端容量无法更好地支撑大量的直流线路输入。

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究一、柔性直流输电技术的基本原理柔性直流输电技术是一种将交流电转换为直流电进行输送的技术,在输电过程中可以通过调节输电系统的电压和频率来适应电网负载的变化。

其基本原理是利用电力电子器件和高压换流器将交流电转换为直流电,然后通过高压直流输电线路进行输送。

在接收端利用相同的技术将直流电转换为交流电。

相比传统的交流输电技术,柔性直流输电技术具有更低的损耗和更高的输电效率,可以更好地应对电网的负载变化。

1. 柔性直流输电技术在远距离输电中的应用由于柔性直流输电技术的低损耗和高效率,它在远距离输电方面具有明显的优势。

传统的交流输电技术在长距离输电时会有较大的电力损耗,而柔性直流输电技术可以有效解决这一问题,使得电力输送更加经济高效。

在长距离输电的项目中,柔性直流输电技术得到了广泛的应用。

随着海上风电、海上太阳能等海洋能利用项目的发展,海底输电技术也越来越受到关注。

传统的交流输电技术在海底输电中存在电力损耗大、成本高等问题,而柔性直流输电技术可以很好地解决这些问题,使得海底输电更加可行。

目前,柔性直流输电技术已经在一些海上风电项目中得到了应用,并取得了良好的效果。

随着电力系统的不断升级和改造,柔性直流输电技术也得到了广泛的应用。

在电网升级中,柔性直流输电技术可以有效地提高电网的稳定性和安全性,同时还可以实现电网的智能化管理。

柔性直流输电技术在电网升级改造项目中具有很大的潜力。

1. 技术的不断创新随着技术的不断进步,柔性直流输电技术也在不断创新。

未来,随着新型的电力电子器件和高压换流器的不断发展,柔性直流输电技术将会变得更加高效和可靠。

柔性直流输电技术在控制和管理方面也将得到进一步的改进,以满足电力系统对于稳定性和灵活性的需求。

2. 应用范围的进一步扩大随着技术的不断成熟,柔性直流输电技术的应用范围也会进一步扩大。

除了在远距离输电、海底输电和电网升级中的应用外,柔性直流输电技术还可以在微电网、电力市场等领域发挥重要作用。

柔性输电知识点总结

柔性输电知识点总结

柔性输电知识点总结柔性输电技术其实最主要的就是通过传统的输电技术和电力电子技术的结合,来有效地提高电力传输的效率和可靠性。

在柔性输电技术中,不仅仅包括了柔性交流传输技术和柔性直流传输技术,还包括了一些辅助设备,比如牵引空气绝缘导线、高温超导输电技术、柔性直流输电技术等等。

这些技术的出现,都为柔性输电技术的完善提供了有效的技术支持。

接下来,我们将从柔性输电技术的基本原理、应用领域和未来发展三个方面来阐述柔性输电技术的知识点。

一、柔性输电技术的基本原理柔性输电技术的基本原理就是通过电力电子设备,来控制输电系统的电压、电流和功率等参数。

在柔性输电技术中,主要采用了半导体器件来进行控制,比如各种类型的晶闸管、晶闸管整流器、可控硅、晶体管等等。

利用这些电子设备,就可以有效地实现对输电系统的控制,使其具备一定的灵活性和可靠性。

柔性输电技术中,主要有两种方式来实现控制,一种是通过控制电压来实现控制,另一种是通过控制电流来实现控制。

通过电压控制来实现柔性输电技术,其主要就是通过控制输电系统的电压等参数,来实现对电力传输的调节。

在柔性输电技术中,主要采用了一些电压型的电力电子设备,比如晶闸管整流器、可控硅电压调节器等等。

通过这些设备,就可以有效地实现对输电系统电压的调节,从而使其具备一定的灵活性和可靠性。

另一种是通过电流控制来实现柔性输电技术,其主要就是通过控制输电系统的电流等参数,来实现对电力传输的调节。

在柔性输电技术中,主要采用了一些电流型的电力电子设备,比如牵引空气绝缘导线、高温超导输电技术等等。

通过这些设备,就可以有效地实现对输电系统电流的调节,从而使其具备一定的灵活性和可靠性。

二、柔性输电技术的应用领域柔性输电技术主要的应用领域就是在输电系统中,主要用来提高输电系统的灵活性和可靠性。

在传统的输电系统中,由于其固有的特点,就存在着很多的问题,比如输电线路容量不足、电压不稳定、电流负载能力受限等等问题。

这些问题都会对电力输送产生一定的影响,甚至会造成输电事故。

柔性直流输电系统控制研究综述

柔性直流输电系统控制研究综述

柔性直流输电系统控制研究综述一、本文概述随着能源转型和可再生能源的大规模开发,电力系统的稳定性和可靠性面临着前所未有的挑战。

柔性直流输电系统(VSC-HVDC)作为一种新型的输电技术,以其独特的优势在解决这些问题中发挥着重要作用。

本文旨在对柔性直流输电系统的控制研究进行全面的综述,以期为未来该领域的研究提供有价值的参考。

本文将简要介绍柔性直流输电系统的基本原理和主要特点,阐述其在现代电力系统中的应用场景和优势。

接着,将重点回顾和梳理柔性直流输电系统在控制策略方面的研究历程和主要成果,包括基本控制策略、保护控制策略、优化控制策略等。

还将对柔性直流输电系统控制中的关键技术问题,如换流器控制、系统稳定性分析、故障穿越能力等,进行深入的分析和讨论。

通过本文的综述,读者可以对柔性直流输电系统的控制研究有一个全面而深入的了解,掌握该领域的研究现状和发展趋势,为相关研究和工程实践提供有益的参考和借鉴。

本文也期望能够激发更多学者和工程师对柔性直流输电系统控制技术的深入研究和探索,共同推动该领域的技术进步和应用发展。

二、柔性直流输电系统控制技术概述柔性直流输电系统(VSC-HVDC)作为新一代直流输电技术,以其独特的优势在电网建设中逐渐占据重要地位。

其核心在于采用了电压源型换流器(VSC),这种换流器能够通过快速控制其开关状态来实现对直流电流和电压的灵活调节,因此得名“柔性”。

柔性直流输电系统的控制技术是确保其高效、稳定运行的关键。

柔性直流输电系统的控制技术主要包括换流器控制、系统控制和保护控制三个方面。

换流器控制直接决定了VSC的运行特性,其核心任务是实现有功功率和无功功率的独立控制。

这通常通过控制VSC的触发角和调制比来实现,从而确保直流电压和电流的稳定。

系统控制则关注于整个直流输电系统的稳定性和经济性。

这包括直流电压控制、有功功率分配、无功功率补偿等。

系统控制需要综合考虑交流侧和直流侧的动态行为,确保在各种运行工况下系统都能够保持稳定。

柔性直流输电(VSC-HVDC)技术

柔性直流输电(VSC-HVDC)技术

2011/11/23
hfliang@
20
柔性直流输电(VSC-HVDC)技术
3 VSC-HVDC的发展与现状(续)
(3)2000年4月,澳大利亚建成投运Directlink VSC-HVDC工程 (4)2000年8月,丹麦修建的第1个用于风力发 电的VSC-HVDC示范工程-Tjæreborg 工程正式 投运 (5)2000年9月,美国的Eagle Pass建设了世界 上第1个采用VSC-HVDC技术实现电网背靠背异 步互联的工程 (6)2002年7月美国Cross Sound VSC-HVDC工 程投运
1 VSC-HVDC的基本原理(续)
VSC
直流输电线
VSC
U&S 电抗器
U&C
滤 波 器
电抗器
滤 波 器
图1 两端接有源网络的VSC-HVDC系统原理图
P = U SU C sin δ
X1
Q = U S (U S − U C cosδ )
X1
2011/11/23
hfliang@
正常运行时VSC可以同时且独立控制有 功和无功,控制更加灵活方便。
2011/11/23
hfliang@
12
柔性直流输电(VSC-HVDC)技术
2 VSC-HVDC的技术特点(续)
VSC不仅不需要交流侧提供无功功率,而且能够 起到STATCOM的作用,即动态补偿交流母线无 功功率,稳定交流母线电压。这意味着如果VSC 容量允许,故障时VSC-HVDC系统既可向故障区 域提供有功功率的紧急支援,又可以提供无功功 率的紧急支援,从而提高系统的电压和功角稳定 性。
技术
UC由换流器输出的PWM电压脉冲宽度控

柔性直流输电

柔性直流输电
[4]
150KV,输送功率达到 400MW 。柔性直流输电技术的特点主要表现在: (1) 电流能够自关断, 可以工作在无源逆变方式, 不需要外加的换相电压, 受端系统可以是无源网络, 能够向小容量系统或不含旋转电机的系统供电,使远 距离的孤立负荷直流送电成为可能。 (2)控制灵活方便。正常运行时,可以同时且独立地控制有功功率和无功 功率,不仅不需要交流测提供无功功率,而且能够起到静态同步补偿器的作用。 如果容量允许,那么系统的紧急支援,提高系统的功角稳定性和电压稳定性。 (3)系统在潮流反转时,直流电流反响反转而直流电压极性不变。这个特 点有利于构成潮流控制方便且可靠性高的并联多端直流系统, 克服了常规多段直 流系统并联连接时潮流控制不便、串联连接时又影响可靠性的缺点。 (4)采用脉宽调制控制技术,开关频率相对较高,经过高通滤波后就可得 到所需交流电压,不需要变压器,简化了换流站的结构。其相关设备可以采用模 块化设计,工程建设周期大为缩短,正常维护工作量大为减少,有理于实现无人 值班或少人值守,提高生产效率。
中电压和电流的谐波分量, 柔性直流输电采用 VSC 技术, 直流侧采用电容器滤 波。 2) 在应用场合上, 柔性直流输电可用于向无源网络供电。如小岛, 钻井平 台等远离电网的负载, 在距离超过 50~ 100 km 以上或者传输功率过大时, 采用 交流电缆变得不可行, 而传统 HVDC 因占地面积大而难以实施。在柔性直流输电 技术出现以前 , 小岛和钻井等地往往采用代价昂贵的本地柴油发电 , 成本高 , 且对环境造成污染, 采用了柔性直流输电技术后 , 可以从电网直接输送电能至 这些负荷区, 降低了成本, 减小了占地面积和对环境的污染。传统 HV DC 往往 用于大容量电能传输, 在中、小容量电能传输成本方面,柔性直流输电更具有竞 争力。柔性直流输电灵活的潮流控制能力使其具有系统中静止无功补偿器( SVC) 或者静止同步补偿器( STATCOM) 的功能, 两端换流站可以各自独立地调节交流 电压, 在系统故障情况下, 其控制交流电压的能力对于稳定电力系统更有利。 传 统 HVDC 要求所连接电网的短路容量足够大, 柔性直流输电则可以用于短路容 量小的系统, 甚至是无源网络。 3) 在控制方式上, 传统 HVDC 靠控制无功补偿器, 如电容器的投切达到无 功补偿的目的, 其控制方式比较复杂, 且成本较高。柔性直流输电系统中的 VSC 本身可以自由控制有功和无功功率, 甚至可以使功率因数为 1, VSC 的这种调节 能够快速完成; 柔性直流输电可以自由控制输出交流电压的幅值和频率 , 可将 变压器一次电压稳定在常数值, 在系统发生短路故障时能通过调节输出电压来 降低短路电流, 有利于提高系统稳定性;柔性直流输电系统两个站之间不需要快 速通信联系, 每个站可以独立控制。 2.3 柔性直流输电技术国外应用情况 国际上关于柔性直流输电技术的研究相对重视, 无论是在基础理论方面还是 在工程实用化方面都已经比较深入。从 1997 年 Hellsjion 工程作为第一个柔性 直流输电工业试验工程建设投运以来, 柔性直流输电技术在世界范围内得到了推 广和应用,建成或在建工程超过 10 个。这些工程主要应用于系统互联、海上风 电场输电、风电联网以及海上作业供电等,而在孤远地区供电如海岛等,以及城 市电网等方面目前还没有实际应用。我国柔性直流输电技术研究还刚刚起步,开 始在上海研究建设用于风电接入的示范工程。

柔性直流输电技术研究与应用

柔性直流输电技术研究与应用

柔性直流输电技术研究与应用近年来,随着能源的迅速增长,电力输送的需求也越来越急迫。

在这样的形势下,柔性直流输电技术为电力输送提供高效、可靠的解决方案。

今天我们将探讨柔性直流输电技术的发展历程、原理及其在现代电力系统中的应用。

一、柔性直流输电技术的发展历程柔性直流输电技术最初是在20世纪60年代初期提出的。

它的前身是HVDC(高压直流输电)技术,但当时的HVDC技术存在很多问题,例如输送距离有限,电压等级受限,不适用于超过500千伏的高压输电等。

因此,为了解决这些问题,研究人员开始探索柔性直流输电技术,并于20世纪90年代初期实现了这一技术的商业应用,它成为了HVDC技术的一种变体。

在21世纪初,随着电网技术的发展,柔性直流输电技术得到了更广泛的运用。

使用柔性直流输电技术,电力系统可以实现更可靠、高效的输电,同时也可以更好地应对复杂的电网环境和负荷变化。

二、柔性直流输电技术的原理柔性直流输电技术的原理是利用直流电流的优点,通过直流电压的调整和逆变器的控制,实现电力系统中交流和直流之间的转换。

在这一过程中,柔性直流输电技术使用高能效、低损失的半导体器件来逆变电流,并利用高速控制器以精确的方式控制转换过程。

与传统的HVDC技术相比,柔性直流输电技术对输电线路和电缆的电压等级不再是局限性,能够适应各种电力系统的需求。

三、柔性直流输电技术的应用现代电力系统中的柔性直流输电技术广泛运用于电力输送、换流站、再生能源接入等领域。

在电力输送方面,柔性直流输电技术可以实现长距离、高电压电力输送。

它不仅可以减少能源损耗,还可以提高电力传输效率。

例如,在欧洲的海底电力输送系统中,柔性直流输电技术已经得到广泛应用。

在换流站方面,柔性直流输电技术可以提高交流和直流之间的电力转换效率,还可以帮助电力系统维持稳定的电压和频率。

例如,在中国南方的某一个换流站,柔性直流输电技术帮助电力系统解决了频繁的电压波动问题。

在再生能源方面,柔性直流输电技术可以帮助电力系统更好地集成太阳能、风能等再生能源。

特高压直流背靠背方式和柔性直流原理介绍

特高压直流背靠背方式和柔性直流原理介绍

(五)柔性直流输电技术原理
三、柔性直流输电技术原理
从由交流系统流入柔性直流系统的潮流可表示为:
P UsUr sin X
Q U(s Us Ur cos ) X
(1) (2)
四、柔性直流输电技术特点
四、柔性直流输电技术特点
(一)柔性直流换流器工作模式
(1)功率控制模式是指当柔性直流系统连接有源网络时,通过调整换 流器 输出正弦电压的幅值和与网侧电源相角差(根据公式(1)和(2)), 实现 控制有功和无功功率的目的。 (2)直流电压控制模式指在功率控制的基础上,通过动态的调节注入 直流 电容的有功功率,达到控制直流电压的主要目的。当注入有功大于负 载功率 时,直流电容处于充电状态,直流电压上升;反之则直流电压下降。 工作在 该模式下的换流站在直流系统中相当于一个平衡节点,起到有功功 率平衡和 直流电压维持的作用。 (3)交流电压控制模式是指当柔性直流系统连接无源网络时,换流器 输出 一个幅值、频率、角度恒定的正弦电压,为无源网络提供电压源支撑。
三、柔性直流输电技术原理
三、柔性直流输电技术原理
(一)柔性直流输电技术
柔性直流输电指的是基于全控型器件的高压直流输电。 柔性直流输电的主要工作原理是通过控制IGBT换流阀开通或关断,在交流侧调 制出一个正弦电压,通过控制电压的幅值和相角实现与交流系统的功率交换。 柔性直流输电的核心技术是采用可关断的电力电子器件和脉宽调制技术的电压源 型换流器。
逆变和整流的区别: 1)0<α<π/2时,换流器工作在整流 状态。 2)π/2<α<π时,换流器工作在逆变 状态。
三相桥式整流回路 三相桥式有源逆变
一、直流输电基本原理
(六)三相桥式有源逆变状态时的电压波形
一、直流输电基本原理

柔性直流电与刚性直流电

柔性直流电与刚性直流电

柔性直流电与刚性直流电摘要:刚性直流输电技术是当今电力电子技术领域中较为成熟的输电技术。

刚性直流输电技术包括整流桥和逆变桥以连接线路。

灵活的直流输电技术包括脉宽调制技术和电力电子器件。

本文对柔性直流输电技术进行了分析,并对刚性直流输电技术进行了探讨。

最后得出刚性直流输电与柔性直流输电的发展趋势。

关键词:柔性直流电;刚性直流电;趋势发展一、柔性直流电1.柔性直流电介绍柔性直流输电技术出生于上个世纪末期,柔性直流是根据电压源换流器的原理,由加拿大麦克吉尔大学的博恩-塔克-博恩-泰克提出的。

由于其更理想的控制功能和工作特性,使得柔性直流输电成为可能。

电气技术在远距离水和短距离传输中非常实用。

通过使用GTO和IGBT可切换的开关系统,可以有效地避免传输过程中的换向失败。

它是一种新型的基于电压源变换器、自闭合器件和脉宽调制(PWM)技术的传输技术。

而灵活的直流输电技术对接收端系统容量没有其它要求。

因此,对于分布式发电系统和输电系统,灵活的直流输电技术非常适合于风电接入。

电力、光伏发电等发电。

该输电技术具有无源网络供电、无换流失败、换流站之间无通信、易形成多终端直流系统的优点。

1.1柔性直流输电技术原理柔性直流输电不同于基于相控相控开关技术的电流源换流器型刚性直流输电。

柔性直流输电中的变换器是电压源变换器,柔性直流输电最大的特点是采用了关断装置(通常是IGBT)和高频调制技术。

通过调节变流器出口电压的幅值和系统电压与输出电压之间的功角差,可以独立地控制有功功率和无功功率。

这样,两个通信网络之间的有功功率的来去传输可以通过两头的换流站的控制来实现。

同时,两端的换流站也可以独立地调节它们吸收或放射的无功功率,从而给交流系统提供无功功率。

1.2柔性直流输电技术的特点FMS的技术特点是设计、安装、生产和调试的整个过程比较短,可以进行独立的有功和无功潮流整定。

商店系统可以自动调解,而不需要与转换器通信,从而大大减少了通信资金和维修资金。

柔性直流输电基本控制原理

柔性直流输电基本控制原理

MMC换流器控制策略
N2is N3iAN3iBco2s3N3iCco4s3
N2is
0N3iBsin23N3iCsi
n4
3
h
i0 N N2 3(KAiKBiKCi)
10
abc/αβ0坐标变换
h
MMC换流器控制策略
i i
2
1
3 0
1 2 3 2
1 2 3 2
ia ib ic
ia
15
dq坐标系下 的数学模型 MMC换流器控制策略
R RssLL cciq id LLiq iduuco cn ov n_ vd _quusd sq
vsd
uconv_d
1
R sL
id
L
d轴和q轴电流是相互耦合的
L
uconv_q
1
h R sL
iq
16
vsq
dq坐标系下
的数学模型
uconv_d uconv_q
v1
v2
L
2
L
2
iq id
usd usq
h
19
瞬时无 功理论
MMC换流器控制策略
p q
uu
u i
u
i
h
20
瞬时无
功理论
MMC换流器控制策略
【定义1】三相电路瞬时有功电流ip和瞬时无功电流iq分别
为矢量i在矢量e及其法线上的投影。
【定义2】三相电路瞬时有功功率p为电压矢量e的模e和三相电
17
dq坐标系下 的数学模型
Lddtiid q0R 0Riid qvv1 2
v1
1
id
R sL
v2
1

柔性输电的基本原理

柔性输电的基本原理

jIX 1
jIX 1
jIX 2
U2
I
a) 无补偿
U in
U2
I
b) 容性补偿
jIX 2
I
U in
jIX 2
U2
c) 感性补偿

容性补偿时,注入电压滞后线路电流 90°,与线路阻抗上的电压降反向,使 线路电流的幅值增加,如图(b)所示, 从而在不改变功角差的情况下,使线路 输送功率增加。若保持相同输送功率不 变时,减小输电线路两端的电压降和相 角差,从而将提高系统的稳定裕度和输 送能力。

传统补偿方法的缺点:


1)其调节是离散的; 2)其调节速度缓慢,不能满足系统的 动态要求; 3)其电压负特性,即当节点电压降低 (升高)时,并联电容注入系统的无功 功率也降低(升高)。

属于柔性输电技术范畴的现代静止无功 发生器(Static Var Compensator )将电 力电子元件引入传统的静止并联无功补 偿装置,从而实现了补偿的快速和连续 平滑调节。理想的SVC 可以支持所补偿 的节点电压接近常数。良好的动、静态 调节特性使SVC 得到了广泛的应用。

SVC 的等值电抗为
2 sin 2 L X SVC C L 2 sin 2 2 LC
1

SVC 的等值伏安特性由TCR 和TSC组合 而成
系统电压变化时SVC的等值阻抗随β 变化的示意图
SVC的伏安特性

当系统电压在SVC的控制范围内变化时,SVC 可以看成电源电压为 V 和内电抗为 X e 的 同期调相机: V Vref X e I SVC


STATCOM也称为静止无功发生器 (ASVG , Advanced Static Var Generator) ,其功能与SVC 基本相同, 但是运行范围更宽、调节速度更快。 SVC 的控制元件为晶闸管。晶闸管是半 控型器件,只能在阀电流过零时关断。 STATCOM 是用全控型器件实现的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


dt

R / L

dib dt



0

dic


0
dt
0 R / L
0
0 0 R /
ia

ib


L ic
1 Lc
uuccoonnvv__ab uconv_c

usa usb

usc
1 2

0
3



3 2
αβ0/dq0坐标变换
MMC换流器控制策略
is is


cos sin
sin ids
cos

iqs

abc/dq0坐标变换
MMC换流器控制策略

iA
iB


iC
MMC换流器控制策略
Lc

2
dia dt

Sa E usa

Lc 2
dib dt
Sb E usb
Lc 2
dic dt

Sc E usc

Sa


1 2 (nan
nap )

Sb


1 2
(nbn

nbp )

Sc

1 2
(ncn

ncp )
……
Ud
-
SM N
2
usa
ia Lc
n
0
Lc

SM 1
Ud
2
uan
SM 2
……
SM N
- ian
MMC换流器控制策略
Usa
-
Lc
diap dt
napE

Ud 2
Id

iap
SM 1
uap
SM 2
……
Ud
-
SM N
2
usa
ia Lc
n
0
Lc

SM 1
Ud
2
uan
SM 2
……
SM N
- ian
MMC换流器控制策略
SM 1
ubrg_ap
SM 2
SM 2
SM 2
usa usb n usc
…… …… ……
Ud
2
SM N
SM N
SM N
ia
ib
Lc
Lc
Lc
0
ic
Lc
Lc
Lc
ubrg_an
SM 1 SM 2
SM 1 SM 2
SM 1 Ud 2
SM 2
… … … … ……
SM N ian
SM N ibn
SM N icn
1
2

1
3 2

1 2
0 3 2 3 2
scions
sin cos

ids iqs


cos
2 3
c
os(
120)
cos( 120)

s in sin( sin(

120) 120)
abc坐标系变dq坐标系

L
did dt
Rid
Liq uconv_d
usd

L
diq dt
Riq
Lid
uconv_q
usq
拉普拉斯变换
R sLid s Liq s uconv_d s usd s R sLiq s Lid s uconv_q s usq s
( Ki A

KiB

KiC )
abc/αβ0坐标变换
MMC换流器控制策略
i i


2
1
3 0
1 2 3 2

1 2 3 2

ia ib ic

ia
ib


ic

1

2 3

1 2


dib dt



0

dic


0
dt
0 R / L
0
0 0 R /
ia

ib

L ic

1 Lc
uuccoonnvv__ba uconv_c

usa usb

usc
MMC换流器控制策略
dia
- nanE

- Ud 2
n
0
Lc

SM 1
Ud
Lc 2
d(ian dt
iap)
-
1(n 2
an
-
nap)E

Usa
2
uan
SM 2
……
ia iap ian
SM N
- ian
Lc dia 2 dt
- 12(nan - nap)E Usa
Id
iap
ibp
icp
SM 1
SM 1
下臂电流


uap

- 交流侧电流
usa
ia
n
iap SM 1
SM 2 ……
SM N Lc
Lc
Id
直流侧电流
直流侧电压Ud
Ud 2
Ud (nap nan )E
0
直流侧虚拟中点

桥臂电
SM 1
下 抗器

uan
SM 2
Ud 2

……
SM N
- 上桥臂电流
ian
Id

iap
SM 1
uap
SM 2
Ud (nap nan )E
Usa
-
Lc
diap dt
napE

Ud 2
Usa
- Lc
dian dt
- nanE

- Ud 2
MMC换流器控制策略
Id

iap
SM 1
uap
SM 2
Usa
- Lc
diap dt
napE

Ud 2
+
……
Ud
-
SM N
2
usa
ia Lc
Usa
- Lc
dian dt
ids iqs

三相abc坐标
下数学模型

Lc

dia dt
Ria
uconv_a
usa

Lc

dib dt
Rib
uconv_b
usb

Lc
dic dt
Ric
uconv_c
usc
MMC换流器控制策略
dia

dt

R / L
αβ0坐标系是一个两相坐标系,其中α轴与a相绕组 轴线重合,β轴超前α轴90°电角,0序则是一个孤立 的系统。
abc/αβ0坐标变换
MMC换流器控制策略
N 2is

N3iA
N3iB
cos 2
3

N3iC
cos 4
3
N 2is

0
N3iB sin
2
3
N3iC
sin
4
3
i0

N3 N2
MMC换流器控制策略
MMC 在三相abc 坐标系下,通过控制换流器的 三相输出电压,即可以实现换流器三相输出电流 的控制,从而实现有功/无功功率控制。
在三相a,b,c 坐标系下的各个电气量均为时变交 流量,并且不利于直观的得到有功分量或者无功 分量。需要进行坐标系的转换。
abc/αβ0坐标变换
MMC换流器控制策略
柔性直流输电系统的基 本控制原理
学习时长:60分钟 制作时间:2015年3月04日
对应培训规范课程单元:请输入对应课程单元名称 对应培训规范课程编码:请输入课程单元对应编码
课程内容目录
1 abc坐标系下MMC的数学模 型
2 坐标系的变换
3 dq坐标系下的数学模型
4
瞬时无功理论
5 鲁西站单元控制
MMC换流器控制策略
相关文档
最新文档