人教版七年级下册数学 511 相交线 考试测试卷
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
人教版七年级数学下册第五章5.1.1相交线同步检测试题合集(共4套)
5.1.1 相交线班级:___________ 姓名:___________ 得分:___________一、填空题(每小题6分,共30分)1.下面四个图形中,∠1与∠2是对顶角的图形()A.甲B.乙C.丙D.丁2.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°3.下列说法中:①对顶角相等;②相等的角是对顶角;③互补的两个角是邻补角;④邻补角一定互补;⑤两条相交直线形成的四个角中,同一角的两邻补角一定是对顶角.其中说法正确的个数是()A. 2个B. 3个C. 4个D. 5个4.如图所示,三条直线AB、CD、EF相交于一点O,则∠AOE+∠DOB+∠COF等于()A. 150°B. 180°C. 210°D. 120°第4题图第5题图5.如图,直线AB,CD交于点O.射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38°B.104°C.142°D.144°二、填空题(每小题6分,共30分)6.如图,A、B、O在同一条直线上,如果OA的方向是北偏西24030',那么OB的方向是东偏南.第6题图第7题图7.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOC=1040,,则∠COM =.8.如图所示,其中共有________对对顶角.甲21丙12丁21乙12第8题图第10题图9.三条直线两两相交,则交点有_________个.10.如图,直线AB、CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=.三、解答题(每小题20分,共40分)11.如图所示,三条直线AB、CD、EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC 的度数.12.如图,直线AB、CD相交于O,OE⊥CD,且∠BOD的度数是∠AOD的4倍.求:(1)∠AOD、∠BOD的度数;(2)∠BOE的度数.参考答案【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
人教版七年级数学下册第五章相交线练习试题(含答案) (20)
人教版七年级数学下册第五章相交线练习试题(含答案) 如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=25°,求∠2的度数?【答案】65°【解析】试题分析:直接利用邻补角的定义得出∠BOE=65°,再根据对顶角相等,即可得出答案.试题解析:∵直线AB,CD,EF相交于点O,且AB⊥CD∴∠BOC=90°,∵∠1=25°,∴∠BOE=65°,∴∠2=∠BOE=65°.92.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.【答案】(1)∠1的对顶角是∠AOC;(2)∠AOC=40°.【解析】分析:(1)根据对顶角的定义解答;(2)先求出∠1、∠2、∠3的比,再根据平角的定义列式求出这三个角,再根据对顶角相等求解.详解:(1)∠1的对顶角是∠AOC;(2)∵∠1=∠2,∠2和∠3的度数比是2:5,∴∠1:∠2:∠3=2:2:5,设∠2=2x,则∠1=2x,∠3=5x,由题意得,2x+2x+5x=180∘,解得x=20,所以,∠1=40∘,∠2=40∘,∠3=100∘,根据对顶角相等,∠4=∠BOC=40∘,∠AOC=∠1=40∘.点睛:考查对顶角的概念以及平角的概念,熟练掌握对顶角的性质,平角的性质是解题的关键.93.如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.【答案】(1)54°;(2)120°【解析】试题分析:(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数.试题解析:解:(1)∠∠AOC=36°,∠COE=90°,∠∠BOE=180°﹣∠AOC﹣∠COE=54°;=30°,∠∠AOC=30°,(2)∠∠BOD:∠BOC=1:5,∠∠BOD=180°×115∠∠AOE=30°+90°=120°.94.如图,△ABC中,∠A+∠B=900.⑴根据要求画图:①过点C画直线MN∥AB②过点C画AB的垂线,交AB于点D.⑵请在⑴的基础上回答下列问题:①已知∠B+∠DCB=900,则∠A与∠DCB的大小关系为__________,理由是__________.②图中线段_________的长度表示点A到直线CD的距离.【答案】(1)作图见解析(2)①;∠A=∠DCB;同角的余角相等;②AD 【解析】【分析】【详解】试题分析:(1)根据题意画出MN∠AB,CD∠AB于D;(2)①根据同角的余角相等可判断∠A=∠DCB;②根据点到直线的距离的定义求解.试题解析:解:(1)①如图,MN为所求;②如图,CD为所求;(2)①∠∠B+∠DCB=90°,∠B+∠A=90°,∠∠A=∠DCB;②线段AD长度表示点A到直线CD的距离.故答案为∠A=∠DCB,同角的余角相等;AD.95.如图所示,射线OM与直线交于点O,OM平分∠AOB,求∠AOM 度数,并用符号表示OM与AB的位置关系.【答案】90°.【解析】试题分析:根据角平分线定义得出∠AOM=12∠AOB,代入求出∠AOM=90°,根据垂直定义得出即可.试题解析:∵∠AOB=180°,OM平分∠AOB,∴∠AOM=12∠AOB=12×180°=90°,∴OM⊥AB.96.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)【答案】详见解析.【解析】试题分析:(1)过点C作AB的平行线.(2)过点C作CD垂直于AB交AB于点D.根据垂线段最短,可得CD长度最小,量出CD的长度,然后按比例尺求出实际的距离.试题解析:如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.经测量0.9,=CD cm⨯==cm m0.92000180018.97.已知:如图所示,∠1=∠2,∠3=∠4,GF ∠AB 于G 点,那么CD 与AB 是否互相垂直?试判断并说明理由.【答案】相互垂直,证明详见解析.【解析】试题分析:首先由GF AB ⊥可得2490∠+∠=︒, 又因为1234∠=∠∠=∠,, 得到1390∠+∠=︒, 由此即可得到CD 与AB 的位置关系.试题解析:相互垂直.理由:∵GF AB ⊥∴2490∠+∠=︒,而1234∠=∠∠=∠,,∴1390∠+∠=︒,CD AB ∴⊥.98.如图,将一副三角尺的直角顶点重合在一起.()1若DOB ∠与DOA ∠的比是2:11,求BOC ∠的度数.()2若叠合所成的(090)BOC n n ∠=<<,则AOD ∠的补角的度数与BOC ∠的度数之比是多少?【答案】(1)70°;(2)1:1.【解析】试题分析:根据条件可知∠AOB =∠COD =90°,并且∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,根据这个关系就可以求解.试题解析:解:(1)设∠DOB =2x °,则∠DOA =11x °.∵∠AOB =∠COD ,∴∠AOC =∠DOB =2x °,∠BOC =7x °.又∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,则得方程:11x =180﹣7x ,解得:x =10,∴∠BOC =70°.(2)∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,∴∠AOD 与∠BOC 互补,则∠AOD 的补角等于∠BOC .故∠AOD 的补角的度数与∠BOC 的度数之比是1:1.点睛:正确认识∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC 这一个关系是解题的关键,这是一个常用的关系,需熟记.99.如图,//30100CE AB B AOB ∠=∠=,,,求C ∠和ODE ∠的度数.【答案】30°,130°.【解析】试题分析:由已知能得出∠COD =∠AOB =100°(对顶角相等),再由CE ∥AB ,可求出∠C =∠B =30°,根据三角形外角定理可求出∠ODE 的度数.试题解析:解:∵CE ∥AB ,∴∠C =∠B =30°.∠COD =∠AOB =100°(对顶角相等),∠ODE =∠C +∠COD =30°+100°=130°(三角形外角和定理).点睛:本题考查了的知识点是平行线的性质、对顶角及三角形外角定理,解题的关键是由平行线的性质和对顶角求出∠C 和∠ODE 的度数.100.如图,直线AB 与CD 相交于点O OP ,是BOC ∠的平分线,OF CD ⊥,如果40AOD ∠=.求:()1COP ∠的度数;()2BOF ∠的度数.【答案】(1)20°;(2)50°【解析】试题分析:(1)先由对顶角相等得出∠BOC =∠AOD =40°,再根据角平分线定义即可求解;(2)先由OF ⊥CD 得出∠COF =90°,再根据∠BOF =∠COF ﹣∠BOC 即可求解.试题解析:解:(1)∵直线AB 与CD 相交于点O ,∴∠BOC =∠AOD =40°.∵OP 是∠BOC 的平分线,∴∠COP =12∠BOC =20°; (2)∵OF ⊥CD ,∴∠COF =90°,∴∠BOF =∠COF ﹣∠BOC =90°﹣40°=50°.点睛:本题考查了对顶角的性质,垂直的定义,角平分线的定义,是基础知识,需熟练掌握.。
人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案
人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。
2019-2020年人教版七年级数学下册 5.1 相交线 同步训练(解析版)
2019-2020学年人教版七年级数学下册5.1 相交线同步训练一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =°.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=度.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是(用字母表示).13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为.14.如图,图中,∠B的同旁内角除了∠A还有.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):,并说明理由:;(3)求∠AON的度数.18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.2019-2020学年人教版七年级数学下册5.1 相交线同步训练参考答案与试题解析一.选择题(共8小题)1.平面上4条直线两两相交,交点的个数是()A.1个或4个B.3个或4个C.1个、4个或6个D.1个、3个、4个或6个【分析】4条直线相交,有3种位置关系,画出图形,进行解答.【解答】解:若4条直线相交,其位置关系有3种,如图所示:则交点的个数有1个,或4个,或6个.故选:C.【点评】本题主要考查了直线相交时交点的情况,关键是画出图形.2.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°.故选:C.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.【分析】根据对顶角相等,判断C组中的两个角是对顶角,前提均不是对顶角,而D只有两直线平行同位角相等,当两条直线不平行时,这两个不相等.【解答】解:根据对顶角相等可知,C选项是正确的,故选:C.【点评】考查对顶角的意义及性质,正确判断对顶角是判断的关键.4.如图,OA⊥OB,若∠1=55°30′,则∠2的度数是()A.34°B.34°30′C.35°D.35°30′【分析】由图象可知,∠1与∠2互余,根据∠1的度数,可求出∠2得度数,做出选择.【解答】解:∵OA⊥OB,∴∠AOB=90°∵∠1=55°30′,∴∠2=90°﹣55°30′=34°30′,故选:B.【点评】考查互相垂直、互为余角的意义以及角度的计算,掌握互余的意义是前提.5.能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直【分析】根据直线的性质解答即可.【解答】解:用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是两点确定一条直线,故选:B.【点评】此题主要考查了直线的性质,关键是掌握两点确定一条直线.6.若直线l上一点P和直线l外一点Q的距离为8cm,则点Q到直线l的距离是()A.等于8cm B.小于或等于8cmC.大于8cm D.以上三种都有可能【分析】根据点到直线的距离的定义与垂线段最短的性质,易得答案.【解答】解:根据题意,点P到l的距离为P到直线l的垂线段的长度,其垂足是P到直线l上所有点中距离最小的点;而不能明确PQ与l是否垂直,则点P到l的距离应小于等于PQ的长度,即不大于8cm.故选:B.【点评】本题考查了点到直线的距离,关键是根据点到直线的距离的定义及垂线段最短的性质解答.7.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角【分析】根据同位角、内错角以及同旁内角的定义进行解答.【解答】解:A、∠A与∠B是同旁内角,故说法正确;B、∠2与∠1是邻补角,故说法错误;C、∠A与∠2是同位角,故说法错误;D、∠2与∠3是内错角,故说法错误;故选:A.【点评】本题考查了同位角、内错角以及同旁内角的定义.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.8.如图,与∠B互为同旁内角的角有()个A.2B.3C.4D.5【分析】根据同旁内角的定义,结合图形进行寻找即可.【解答】解:与∠B互为同旁内角的角有∠AOB,∠BAO,∠BCD,∠BAD共4个.故选:C.【点评】此题考查了同旁内角的定义,属于基础题,关键是掌握互为同旁内角的两个角的位置特点.二.填空题(共6小题)9.观察图形,并阅读相关的文字,回答:如有9条直线相交,最多有交点36.【分析】根据题意,结合图形可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点.【解答】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点,而3=×2×3,6=×3×4,10=1+2+3+4=×4×5,∴n条直线相交,最多有1+2+3+…+(n﹣1)=n(n﹣1)个交点,∴当n=9时,n(n﹣1)=×8×9=36.故答案为:36.【点评】此题主要考查了相交线,着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.10.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF =28.5°.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF﹣∠BOF求解.【解答】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=∠BOD=×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=∠COE=×139°=69.5°,∴∠BOF=∠EOF﹣∠BOF=69.5°﹣41°=28.5°.故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.11.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40°,则∠COF=25度.【分析】根据对顶角相等的性质可得∠AOC=∠BOD=40°,根据垂直的定义可得∠COE=90°,根据角的和差关系得出∠AOE的度数,再根据角平分线的定义求出∠AOF的度数,再根据角的和差关系计算即可.【解答】解:∠AOC=∠BOD=40°,∵OE⊥OC,∴∠COE=90°,∴∠AOE=∠AOC+∠COE=130°,∵OF平分∠AOE,∴∠AOF=,∴∠COF=∠AOF﹣∠AOC=65°﹣40°=25°.故答案为:25【点评】此题主要考查了对顶角的性质,角平分线的性质以及垂直的定义,正确利用角平分线的性质分析是解题关键.12.如图所示,想在河的两岸搭建一座桥,搭建方式最短的是PM(用字母表示).【分析】根据垂线段最短的性质填写即可.【解答】解:∵PM⊥MN,∴由垂线段最短可知PM是最短的,故答案为:PM.【点评】本题主要考查垂线段的性质,掌握垂线段最短是解题的关键.13.如图,AH⊥BC,若AB=3cm、AC=4.5cm、AH=2cm,则点A到直线BC的距离为2cm.【分析】根据点到直线的距离的定义解答即可.【解答】解:点A到直线BC的距离是线段AH的长度,AH=2,∴点A到直线BC的距离为2cm.故答案为:2cm【点评】此题考查点到直线的距离,关键是根据点到直线的距离的概念解答.14.如图,图中,∠B的同旁内角除了∠A还有∠ACB,∠ECB.【分析】直接利用同旁内角的定义化简得出答案.【解答】解:∠B的同旁内角除了∠A还有:∠ACB,∠ECB.故答案为:∠ACB,∠ECB.【点评】此题主要考查了同旁内角的定义,正确掌握定义是解题关键.三.解答题(共4小题)15.如图,直线AB,CD相交于点O,OA平分∠EOC;(1)请你数一数,图中有8个小于平角的角;(2)若∠EOC=80°,求∠BOD的度数.【分析】(1)根据角的定义,平角的定义得到;(2)根据角平分线定义得到∠AOC=∠EOC=×80°=40°,然后根据对顶角相等得到∠BOD=∠AOC=40°.【解答】解:(1)小于平角的角有:∠AOC,∠AOE,∠EOD,∠BOD,∠BOC,∠EOC,∠AOD,∠EOB,共有8个,故答案为:8;(2)∵OA平分∠EOC,∴∠AOC=∠EOC=×80°=40°,∴∠BOD=∠AOC=40°.【点评】考查了角的计算,角平分线的定义和对顶角的性质.解题的关键是明确角平分线的定义和对顶角的性质,1直角=90°;1平角=180°.16.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是∠AOE;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.【分析】(1)根据平角的意义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∴∠BOE的补角是∠AOE,故答案为:∠AOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点评】考查互为余角、互为补角、角平分线的意义,通过图形直观,得到各个角之间的关系式解决问题的关键.17.如图,AB、CD、NE相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小(用“<”号连接):MO<MN,并说明理由:垂线段最短;(3)求∠AON的度数.【分析】(1)根据点到直线的距离解答即可;(2)根据垂线段最短解答即可;(3)根据垂直的定义和角之间的关系解答即可.【解答】解:(1)线段MO的长度表示点M到NE的距离;(2)比较MN与MO的大小为:MO<MN,是因为垂线段最短;(3)∵∠BOD=∠AOC=50°,OM平分∠BOD,∴∠BOM=25°,∴∠AON=180°﹣∠BOM﹣∠MON=180°﹣25°﹣90°=65°.故答案为:MO;MO<MN;垂线段最短.【点评】本题考查的是点到直线的距离,掌握点到直线的距离是解题的关键18.如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=145°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.【点评】本题考查了对同位角定义,内错角定义的应用,主要考查学生的理解能力,题目是一道比较好的题目,难度适中.。
寒假预习《5.1.1 相交线》课时检测卷精选 2021-2022学年人教版数学七年级下册(含答案)
寒假预习《5.1.1 相交线》同步测试培优卷精选 2021-2022学年人教版数学七年级下册(含答案)一、精心选一选1. 根据语句“直线1l与直线2l相交,点M在直线1l上,直线2l不经过点M.”画出的图形是()A.B.C.D.2. 下列各图中,∠1和∠2是对顶角的是( )A.B.C.D.3. 如图,对顶角量角器中α∠的度数为()A.120°B.60°C.90°D.50°4. 下面各图中∠1和∠2是对顶角的是()A.B.C .D .5. 如图,直线AB ,CD 交于点O ,射线OM 平分∠AOD ,若∠BOD=760,则∠BOM等于( )A .B .C .D .6. 两条直线相交于一点,则共有对顶角的对数为( )A .1对B .2对C .3对D .4对7. 如图所示,直线AB ,CD 交于点O ,射线OM 平分AOC ∠.若38AOM ∠=︒,则BOC∠等于( )A .104︒B .144︒C .106︒D .136︒8. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,垂足为点O ,若50BOD ∠=︒,则COE∠的度数为( )A .40°B .45°C .50°D .55°9. 下列结论中错误的是( )A .连接两点的线段叫两点之间的距离B .两点之间,线段最短C .同角的补角相等D .两点确定一条直线二、细心填一填10. 如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 的度数是__.11. 如图是一把剪刀,若∠AOB+∠COD=60°,则∠BOD=____°.12. 如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=________.13. 若∠α=70°,则它的补角是________.14. 如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD-∠DOB=60°,则∠EOB=___.15. 已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______.16. 如图,直线AB、CD相交于点O,135∠=︒,则直线AB与直线CD的夹角是BOC______︒.17. 如图,直线AB和OC相交于点O,∠AOC=100°,则∠1=_______度.18. 如图,直线AB CD 、相交于O 点,OE AB ⊥.(1)2∠和3∠互为___角; 1∠和3∠互为_______角;2∠和4∠互为___角. (2)若125∠=︒,那么2∠=_________;3BOE ∠=∠-∠______=_______︒-____︒=___︒;4∠=∠_____1-∠=__︒-____︒=______︒.三、用心做一做19. 如图,直线AB 、CD 相交于点O ,DOE BOD ∠∠=,OF 平分AOE ∠,20BOD ∠︒=.(1)求AOE ∠的度数;(2)求COF ∠的度数.20. 如图所示,已知∠AOC=160°,OC 平分∠BOD ,OE 平分∠AOD ,求∠BOE 的度数.21. 如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON=20°.求∠AOM 和∠NOC 的度数.22. 如图,已知DM 平分ADC ∠,BM 平分ABC ∠,且27A ∠=︒,33M ∠=︒,求C ∠的度数.23. 已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,DOE α∠=.(1)如图1,70α=︒,当OD 平分AOC ∠时,求EOB ∠的度数.(2)如图2,若2DOC AOD ∠=∠,且80α<︒,求EOB ∠(用α表示). (3)若90α=︒,点F 在射线OB 上,若射线OF 绕点O 顺时针旋转n ︒(0180n <<︒),2FOA AOD ∠=∠,OH 平分EOC ∠,当120FOH ∠=︒时,求n 的值.24. 如图,要测得两堵墙形成的∠AOB 的度数,但人不能进入围墙,请你写出两种不同的测量方法,并说明几何道理.参考答案一、精心选一选1. D【分析】利用直线2l 不经过点M 可判断A ,利用点M 在直线1l 上,不在直线2l 上可判断B ,利用点M 在直线1l 外可判断C ,根据直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M 可判断D .【详解】解:A .直线2l 不经过点M ,故本选项不合题意;B .点M 在直线1l 上,不在直线2l 上,故本选项不合题意;C .点M 在直线1l 外,故本选项不合题意;D .直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M ,故本选项符合题意;答案:D .【点睛】本题考查根据语句画图问题,掌握画图的基本语句是解题关键. 2. B【分析】根据对顶角的定义对各图形判断即可.【详解】解:A 、∠1和∠2不是对顶角,故选项错误;B 、∠1和∠2是对顶角,故选项正确;C 、∠1和∠2不是对顶角,故选项错误;D 、∠1和∠2不是对顶角,故选项错误.故选B .【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键. 3. B【分析】根据量角器的读数以及的对顶角相等即可求得α∠的度数.【详解】由图可知α∠的对顶角为60︒,根据对顶角相等,则α∠的度数为60︒, 故选B .【点睛】本题考查了量角器的使用,对顶角相等,理解对顶角相等是解题的关键. 4. C【解析】【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【详解】A 、∠1和∠2不是对顶角,故A 错误;B 、∠1和∠2不是对顶角,故B 错误;C 、∠1和∠2是对顶角,故C 正确;D 、∠1和∠2不是对顶角,是邻补角,故D 错误.故选:C .【点睛】本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.5. C【解析】角平分线定义,对顶角的性质,补角的定义.由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040.由射线OM 平分∠AOD ,根据角平分线定义,∠COM=380.∴∠BOM=∠COM +∠BOC=1420.故选C .6. B如图,直线AB、CD相交于一点O,图中的∠AOD和∠BOC,∠AOC和∠BOD 是对顶角,共计2对.故选B.7. A【分析】根据2∠的度数,利用平角的定义计算即可.∠=∠AOC AOM计算AOC【详解】∵OM平分AOC∠,38∠=︒,AOM∴∠=∠=⨯︒=︒,AOC AOM223876∴∠=︒-∠=︒-︒=︒.BOC AOC180********故选:A.【点睛】本题考查了角的平分线,平角的定义,熟记角的定义,平角的定义是解题的关键.8. A【分析】根据对顶角相等得到AOC∠的度数.∠,再根据作余角定义,求COE【详解】解:∵50⊥∠=∠=,OE ABAOC BOD︒∴90905040∠=︒-∠=︒-︒=︒,COE AOC故选:A.本题考查了对顶角的性质和互为余角的性质,熟悉相关性质并能进行计算是解题的关键.9. A【分析】根据两点之间的距离,同角的余角或补角相等,两点确定一条直线,线段的性质即可判断.【详解】解:A、连接两点的线段的长度叫两点之间的距离,故错误;B、两点之间,线段最短,故正确;C、同角的补角相等,故正确;D、两点确定一条直线,故正确;故选A.【点睛】本题考查了对余角或补角,直线的性质,线段的性质的理解和运用,知识点有:同角的余角或补角相等,两点确定一条直线,两点之间线段最短二、细心填一填10. 140°【分析】先根据对顶角相等得出∠AOC=80°,再根据角平分线的定义得出∠COM,最后解答即可.【详解】解:∵∠BOD=80°,∴∠AOC=80°,∠COB=100°,∵射线OM是∠AOC的平分线,∴∠COM=40°,∴∠BOM=40°+100°=140°,故答案为:140°.【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.11. 150【分析】根据对顶角相等得到∠AOB的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB=∠COD,∠AOB+∠COD=60°,∴∠AOB=∠COD=30°,∴∠BOD=180°-∠AOB=180°-30°=150°.故答案为150°.【点睛】本题考查了对顶角相等和邻补角的定义.求出∠AOB的度数是解题的关键.12. 35°【详解】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.13. 110°.【详解】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.14. 30°【详解】∵∠AOD-∠BOD=60°,∴∠AOD=∠BOD+60°,∵AB为直线,∴∠AOD+∠BOD=∠AOB=180°,∴∠BOD+60°+∠BOD=180°,∴∠BOD=60°,∵OE平分∠BOD,∴∠EOB=30°故答案为: 30°.15. 60°【解析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,x,∠AOE=150°,可求∠AOC.设∠AOC=x, ∠AOD=180°-x,∠DOE=12x,解:设∠AOC=x, ∠AOD=1800-x,∠AOC=∠DOB,OE平分∠BOD,∠DOE=12x=150°,x=60°, ∠AOC=60°∵∠AOE=150°,∴180°-x+ 12故答案为60°“点睛”本题主要考查对顶角的性质以及角平分线的定义,邻补角,解决问题的关键是用方程思想解题.16. 45【分析】先根据邻补角的定义求出∠AOC,再根据直线的夹角为锐角解答.【详解】解:∵∠BOC=135°,∴∠AOC=180°-∠BOC=180°-135°=45°,∴直线AB与直线CD的夹角是45°.故答案为:45.【点睛】本题考查了邻补角的定义,要注意直线的夹角是锐角.17. 80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为80.考点:对顶角、邻补角.18. 余余邻补25 2 90 25 65 AOB180 25155根据余角、补角、邻补角、平角的定理计算求解即可.【详解】解:∵OE AB ⊥,∴90AOE EOB ==︒∠∠,∴2390=+︒∠∠,1390∠+∠=︒,∴2∠和3∠互为余角; 1∠和3∠互为余角;∵24180∠+∠=︒且有公共边,∴2∠和4∠互为邻补角;∵125∠=︒,1∠和2∠互为对顶角,∴1225∠=∠=︒,32BOE ∠=∠-∠=90︒-25︒=65︒;4∠=∠AOB 1-∠=180︒-25︒=155︒.故答案为:余;余;邻补;25︒;2;90;25;65;AOB ;180;25;155.【点睛】本题考查的是余角和补角、对顶角和邻补角的概念,如果两个角的和等于90°(直角),就说这两个角互为余角,如果两个角的和等于180°(平角),就说这两个角互为补角.三、用心做一做19. (1)140︒;(2)90︒【分析】(1)因为DOE BOD =∠,求出∠BOE ,得出AOE ∠;(2)利用180COF DOE EOF ∠=︒-∠-∠,从而求出COF ∠的度数.【详解】解:(1)20BOD ∠=︒,DOE BOD ∠=∠,202040BOE ∴∠=︒+︒=︒,18040140AOE ∴∠=︒-︒=︒;(2)20DOE ∠=︒,111407022EOF AOE ∠=∠=⨯︒=︒, 180207090COF ∴∠=︒-︒-︒=︒.本题考查了平角的性质、对顶角、角平分线的性质,解题的关键是根据题意得出各角之间的关系.20. 110°【分析】先利用平角的概念求出∠BOC的度数,然后利用角平分线的定义即可求出∠BOD的度数和∠EOD的度数,最后利用∠BOE=∠EOD+∠BOD即可求解.【详解】∵∠AOC=160°,∠AOC+∠BOC=180°,∴∠BOC=180°-160°=20°.∵OC平分∠BOD,∴∠BOD=2∠BOC=40°.又∵∠AOD+∠BOD=180°,∴∠AOD=180°-40°=140°.∵OE平分∠AOD,∴∠EOD=12∠AOD=70°,∴∠BOE=∠EOD+∠BOD=70°+40°=110°.【点睛】本题主要考查角平分线的定义,平角的定义和角的和与差,掌握角平分线的定义是解题的关键.21. 50AOM︒∠=,140NOC︒∠=.【解析】【分析】要求∠AOM的度数,可先求它的余角.由已知∠EON=20°,结合角平分线的概念,即可求得∠BON.再根据对顶角相等即可求得;要求∠NOC的度数,根据邻补角的定义即可.【详解】解:∵OE平分∠BON,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°,∵AO ⊥BC ,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,所以∠NOC=140°,∠AOM=50°. 【点睛】结合图形找出各角之间的关系,利用角平分线的概念,邻补角的定义以及对顶角相等的性质进行计算.22. 39C ∠=︒.【分析】根据角平分线的性质及对顶角相等可求得,2C M A ∠=∠-∠,然后再利用已知条件及角的和差计算求解即可.【详解】解:如图所示:设BC 与MD 的交点为E DM 平分ADC ∠,BM 平分ABC ∠21CDQ ∴∠=∠,22ABQ ∠=∠在CDQ ∆与ABQ ∆中,CQD AQB ∠=∠2122C A ∴∠+∠=∠+∠①在CDE ∆与MBE ∆中,CED MEB ∠=∠12C M ∴∠+∠=∠+∠②用2⨯-②①得:2C M A ∠=∠-∠27A ∠=︒,33M ∠=︒2332739C ∴∠=⨯︒-︒=︒故39C∠=︒【点睛】角平分线的性质及对顶角相等、角的和差计算是本题的考点,根据题意求得2C M A∠=∠-∠是解题的关键.23. (1)50°;(2)140EOBα∠=︒-;(3)168或72.【分析】(1)利用角平分线的定义和邻补角的定义求得∠BOC和∠EOC,再利用角的和差即可求得∠BOE;(2)先根据已知数量关系求得∠DOE,再利用角的和差即可得出结论;(3)设BOF n∠=︒,分①若DOE∠在AOC∠的内部,②当DOE∠在射线OC的两侧时两种情况,利用角的和差列出方程求解即可.【详解】解:(1)∵120AOC∠=︒,OD平分AOC∠,∴60AOD DOC∠=∠=︒,60BOC∠=︒,又70DOEα∠==︒,∴706010COE∠=︒-︒=︒,∴6050BOE COE∠=︒-∠=︒;(2)∵120AOC∠=︒,2DOC AOD∠=∠,∴1403AOD AOC∠=∠=︒,80DOC∠=︒,60BOC∠=︒,∴80EOCα∠=︒-,∴6080140 EOB BOC EOCαα∠=∠+∠=︒+︒-=︒-;(3)①如图,若DOE∠在AOC∠的内部设BOF n∠=︒则依题意有:()11118090222AOD FOA n n ∠=∠=︒-︒=︒-︒, ∵120AOC ∠=︒,90DOE α∠==︒,∴1209030AOD EOC AOC DOE ∠+∠=∠-∠=︒-︒=︒,又∵OH 平分EOC ∠,∴()113022EOH EOC AOD ∠=∠=︒-∠111309030224n n ⎛⎫=︒-︒+︒=︒-︒ ⎪⎝⎭, 又120FOH ∠=︒,∴1118090903012024n n n ︒-︒+︒-︒+︒+︒-︒=︒,∴168n =;②当DOE ∠在射线OC 的两侧时如图设BOF n ∠=︒,则依题意有119022AOD AOF n ∠=∠=︒-︒,∵120AOC ∠=︒,90DOE α∠==︒,∴190120602COE AOD n ∠=∠+︒-︒=︒-︒,又OH 平分EOC ∠,∴113024EOH EOC n ∠=∠=︒-︒,又120FOH ∠=︒,∴1130909012042n n n ⎛⎫︒+︒-︒+︒-︒-︒=︒ ⎪⎝⎭, ∴72n =,∴综上所述OF 顺时针旋转的角度为168或72.【点睛】本题考查邻补角的有关计算,角平分线的有关计算,角的和差,一元一次方程的应用.(3)中能分类讨论画出图形,结合图形利用角的和差列出方程是解题关键.24. 见解析【分析】根据邻补角和对顶角的性质进行设计即可.【详解】方法一:如图所示,延长AO至C,测量∠BOC的度数,根据邻补角的性质得:∠AOB=180°-∠BOC,即可求解;方法二:如图所示,分别延长AO,BO,测量∠COD的度数,根据对顶角相等得:∠AOB=∠COD,即可求解.【点睛】本题考查邻补角和对顶角的实际应用,熟记基本定义和性质并灵活运用是解题关键.。
人教版七年级数学下册《511相交线》同步测试含答案初一数学考点要点试卷.docx
5.1.1 相交线姓名年级分数B有公共顶点且互补的两个角D有公共顶点且有一条公共边,另一边互为反向延长3•如图,直线AB与CD相交于点O ,若ZAOC+ZBOD=90° ,则ZBOC ()5•如果一个角比它的邻补角小30°,则这个角的度数为______ ° o6.如图,AB交CD于O点,OE是端点为O的一条射线,图中的对顶角有____ 对邻补角各有______ 对一、选择题1 •如图所示,Z1和Z2是对顶角的图形冇(A 135°B 120°C 100°D 145°4题图训是-----A和为180°的两个角C有一条公共边相等的两个角线的两个角ZAOC=80° , Zl=30°,求Z2 的度数 )&如图,直线AB、CD相交于点O,解:因为ZDOB=Z ______ ((己知)所以,ZDOB二__ ° (等量代换)=80°又因为ZI=30°( )所以Z2=Z ___ - Z _____ = ______ - ______ =____ °三、解答题:9.如图,直线AB, CD相交于点O , OE平分ZBOD, OF平分ZCOE, ZAOD: ZAOF的度数。
ZBOE=4:L 求F10.如图所示是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的ZABC的大小的方案,并说明理由。
参考答案:1. A2.D3.A4.2 个ZACD ZB5.75°6. 2; 57.35°8. ZAOC,对顶角相等,ZAOC,8()° ,已知ZBOD, Z1, 80° , 30° , 50°9 解:由已知设ZAOD=4x° , ZBOE=x°VOE 平分ZBOD,・*. ZBOD=2ZBOE=2x°VZAOD+ZBOD=180°・\6x=180°x=30°・°・ ZBOE=30° ,・\ZAOD=120°ZBOD=60° ZCOE=150°VOF 平分ZCOE ・•・ ZEOF=- ZCOE=75°2・・・ Z BOF= ZEOF- ZBOE=450ZAOF=ZAOB-ZBOF=135°10.方法一:作AB的延长线,如图1所示,量出ZCBD的度数,ZABC=180° -ZCBD 方法二:作AB和CB的延长线,如图2所示,量I1IZDBE的度数,ZABC=ZDBE我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
人教版数学七年级下册第5章专题01 相交线与平行线测试试卷(含答案)
人教版数学7年级下册第5章专题01 相交线与平行线一、选择题(共24小题)1.下面各图中∠1和∠2是对顶角的是( )A.B.C.D.2.如图,下列图形中的∠1和∠2不是同位角的是( )A.B.C.D.3.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30',则下列结论中不正确的是( )A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30'4.如图,点O在直线BD上,已知∠1=20°,OC⊥OA,则∠DOC的度数为( )A.20°B.70°C.110°D.90°5.下列说法错误的是( )A.两条直线相交,只有一个交点B.在连接直线外一点与直线上各点的线段中,垂线段最短C.同一平面内,过一点有且只有一条直线垂直于已知直线D.直线外一点到直线的距离就是这点到直线的垂线段6.如图,在三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则下列说法不正确的是( )A.线段AC的长是点A到BC的距离B.线段AD的长是点C到AB的距离C.线段BC的长是点B到AC的距离D.线段BD的长是点B到CD的距离7.如图,已知AC⊥BC于点C,CD⊥AB于点D,亮亮总结出了如下结论:①线段AC的长,表示点A到直线BC的距离;②线段CD的长,表示点C到直线AB的距离;③线段AD的长,表示点A到直线CD的距离;④∠ACD是∠BCD的余角.亮亮总结的结论正确的有( )个.A.1B.2C.3D.48.如图,AC⊥BC,CD⊥AB,则点A到CD的距离是线段( )的长度.A.CD B.AD C.BD D.BC9.如图,点P是直线l外一点,从点P向直线l引PA,PB,PC,PD四条线段,其中只有PC与l垂直,这四条线段中长度最短的是( )A.PA B.PB C.PC D.PD10.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )使AC=53A.3.5B.4.1C.5D.5.511.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠3;②∠2=∠6;③∠4+∠7=180°;④∠5+∠3=180°.其中能判定a∥b的是( )A.①②④B.①③④C.②③④D.①②③12.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是( )A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行13.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )A.15°B.25°C.35°D.50°14.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2( )A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°15.若将一副三角板按如图所示的方式放置,则下列结论正确的是( )A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE16.如图,下列说法中,正确的是( )A.若∠3=∠8,则AB∥CDB.若∠1=∠5,则AB∥CDC.若∠DAB+∠ABC=180°,则AB∥CDD.若∠2=∠6,则AB∥CD17.如图,下列能判定AB∥CD的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.418.如图,在下列条件中,能够证明AD∥CB的条件是( )A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠319.如图为平面上五条直线l1,l2,l3,l4,l5相交的情形,根据图中标示的角度,下列叙述正确的是( )A.l1和l3平行,l2和l3平行B.l1和l3平行,l2和l3不平行C.l2和l3平行,l4和l5不平行D.l2和l3平行,l4和l5平行20.下列说法中正确的是( )A.过一点有且只有一条直线与已知直线平行B.两条直线有两种位置关系:平行或相交C.同一平面内,垂直于同一直线的两条直线平行D.三条线段两两相交,一定有三个交点21.如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知∠1=∠3,∠2+∠3=180°,求证:AB与DE平行.证明:①:AB∥DE;②:∠2+∠4=180°,∠2+∠3=180°;③:∠3=∠4;④:∠1=∠4;⑤:∠1=∠3.A.①②③④⑤B.②③⑤④①C.②④⑤③①D.③②④⑤①22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.15°B.18°C.25°D.30°23.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为( )A.40°B.35°C.30°D.25°24.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A.58°B.42°C.32°D.30°二、填空题(共11小题)25.如图,CE∥AB,∠ACB=75°,∠ECD=45°,则∠A的度数为 .26.如图,已知DE∥BC,BE平分∠ABC,若∠1=70°,则∠AEB的度数为 .27.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC 为 度.28.如图,l1∥l2,则﹣γ+α+β= .29.如图,∠PQR=138°.SQ⊥QR于Q,QT⊥PQ于Q,则∠SQT等于 .30.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为 度.31.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=80°,则∠BOD = .32.如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,则点A到直线BC的距离是 cm,点B到直线AC的距离是 cm,点C到直线AB的距离是 cm.33.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,AB=5,则点C到AB的距离为 .34.如图,要从马路对面给村庄P处拉网线,在如图所示的几种拉网线的方式中,最短的是PB,理由是 .35.如图,小华同学的家在点P处,他想尽快到公路边,所以选择沿线段PC去公路边,那么他的这一选择体现的数学基本事实是 .三、解答题(共16小题)36.如图,AB∥CD,点E在BC上.求证:∠B=∠D+∠CED.37.如图:已知直线AB、CD相交于点O,EO⊥CD.(1)若∠AOC=34°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:4,直接写出∠AOE= .38.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFD=30°.则∠EPF= ;(2)【问题归纳】如图1,若AB∥CD,请猜想∠BEP,∠PFD,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?直接写出结论.39.如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.40.如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.41.如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°,求∠AGC的度数.42.如图,直线AB与CD相交于点O,OE是∠BOC的平分线,如果∠BOC:∠DOF:∠AOC =1:2:4.求∠BOE和∠DOF的度数.43.如图,OB⊥OD,OC平分∠AOD,∠BOC=40°,求∠AOB的大小.44.如图,直线AB,CD,EF相交于点O,OG平分∠BOC,∠DOF=90°.(1)写出∠AOE的余角和补角;(2)若∠BOF=30°,求∠AOE和∠COG的度数.45.已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .46.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°( )又,∵∠1=∠B(已知)∴ (同位角相等,两直线平行)∴∠AFB=∠AOE( )∴∠AFB=90°( )又,∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=( )°又∵∠A+∠2=90°(已知)∴∠A=∠AFC( )∴AB∥CD.(内错角相等,两直线平行)47.如图,已知点D是△ABC中BC边上的一点,DE⊥AC于点E,∠AGF=∠ABC,∠1+∠2=180°.(1)求证:DE∥BF;(2)若AF=3,AB=4,求BF的长.48.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数,请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2= ( ),又∵∠1=∠2(已知),∴∠1=∠3( ),∴AB∥DG( )∴∠BAC+ =180°( ),∵∠BAC=70°(已知),∴∠AGD=110°49.如图,点O在直线AB上,OC⊥OD,∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.50.如图,已知∠A=∠F,∠MCB+∠B=180°,AC⊥BC,垂足是C.(1)AN和EF平行吗?为什么?请说明理由.(2)若∠BEF=70°,求∠MCN的度数.51.如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,求证:AC∥DF.参考答案一、选择题(共24小题)1.B2.C3.D4.C5.D6.B7.D8.B9.C10.D11.B12.C13.C14.A15.B16.D17.C18.D19.D20.C21.B22.A23.B24.C二、填空题(共11小题)25.60°26.35°27.7028.180°29.42°30.3531.40°32.4;1.5;233.12534.垂线段最短35.垂线段最短三、解答题(共16小题)36.证明:∵AB∥CD,∴∠B+∠C=180°,在△ECD中,∠CED+∠D+∠C=180°,∴∠C=180°﹣∠CED﹣∠D,∴∠B+180°﹣∠CED﹣∠D=180°,∴∠B=∠CED+∠D.37.解:(1)∵EO⊥CD,∴∠EOC=90°,∵∠AOC=34°,∴∠BOE=180°﹣∠AOC﹣∠COE=56°,∴∠BOE的度数为56°;(2)∵∠BOD:∠BOC=1:4,∠BOD+∠BOC=180°,∴∠BOD=180°×1=36°,14∴∠AOC=∠BOD=36°,∵∠COE=90°,∴∠AOE=∠AOC+∠COE=126°,∴∠AOE的度数为126°,故答案为:126°°.38.解:(1)如图1,过点P作PM∥AB,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP=25°,∠2=∠PFD=30°,∴∠EPF=∠1+∠2=25°+30°=55°.故答案为:55°;(2)∠EPF=∠BEP+∠PFD,理由如下:如图1,∵AB∥CD,∴AB∥PM∥CD,∴∠1=∠BEP,∠2=∠PFD,∴∠EPF=∠1+∠2=∠BEP+∠PFD;(3)∠PFC=∠PEA+∠EPF,理由如下:如图2,过P点作PN∥AB,∵AB∥CD,∴AB∥PN∥CD,∴∠PEA=∠NPE,∠FPN=∠PFC,∴∠PFC=∠FPN=∠NPE+∠EPF=∠PEA+∠EPF.39.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE于E,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,∴∠ADC=∠2=∠DAF﹣∠FAB,∵∠FAB=55°,∴∠ADC=35°,∵DA平分∠BDC,∠1=∠BDC,∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.40.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.41.(1)证明:∵AB ∥DF ,∴∠D +∠BHD =180°,∵∠D +∠B =180°,∴∠B =∠DHB ,∴DE ∥BC ;(2)解:∵DE ∥BC ,∠AMD =70°,∴∠AGB =∠AMD =70°,∴∠AGC =180°﹣∠AGB =180°﹣70°=110°.42.解:设∠BOC =x °,则∠DOF =2x °,∠AOC =4x °,由题意得:x +4x =180,解得:x =36,∴∠BOC =36°,∠DOF =72°,∠AOC =144°,∵OE 是∠BOC 的平分线,∴∠BOE =∠COE =12∠BOC =12×36°=18°.43.解:∵OB ⊥OD ,∴∠BOD =90°,又∵∠BOC =40°,∴∠COD =90°﹣40°=50°,∵OC 平分∠AOD ,∴∠AOD =2∠COD =100°,∴∠AOB =∠AOD ﹣∠BOD=100°﹣90°=10°,即∠AOB=10°.44.解:(1)∠AOE的余角是∠AOC,∠BOD;补角是∠AOF,∠EOB;(2)∠AOE=∠BOF=30°;∵∠DOF=90°,∴∠COF=90°,∵∠BOC=∠BOF+∠COF,∴∠BOC=90°+30°=120°,∵OG平分∠BOC,∠BOC=60°.∴∠COG=1245.解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∠MAB.∴∠GAF=12∵CH平分∠NCB,∠BCN.∴∠BCF=12∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,(∠BCN﹣∠MAB).∴∠AGH=12由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=1×92°=46°.2故答案为:46°.46.证明:∵AF⊥CE(已知),∴∠AOE=90°(垂直的定义).又∵∠1=∠B(已知),∴CE∥BF(同位角相等,两直线平行),∴∠AFB=∠AOE(两直线平行,同位角相等),∴∠AFB=90°(等量代换).又∵∠AFC+∠AFB+∠2=180°(平角的定义),∴∠AFC+∠2=90°.又∵∠A+∠2=90°(已知),∴∠A=∠AFC(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).故答案为:垂直的定义;CE∥BF;已知;两直线平行,同位角相等;等量代换;90;同角的余角相等.47.(1)证明:∵∠AGF=∠ABC,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°,∴DE∥BF;(2)解:∵DE⊥AC,∴∠DEA=90°,∵DE∥BF,∴∠BFA=∠DEA=90°,∵AF=3,AB=4,∴BF===48.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.49.(1)证明:∵OC⊥OD,∴∠COD=90°,∴∠1+∠DOB=90°,∵∠D与∠1互余,∴∠D+∠1=90°,∴∠D=∠DOB,∴ED∥AB;(2)解:如图,∵ED∥AB,∠OFD=65°,∴∠AOF=∠OFD=65°,∵OF平分∠AOD,∴∠AOD=2∠AOF=130°,∵∠COD=90°,∠AOD=∠1+∠COD,∴∠1=40°.50.解:(1)AN∥EF,理由如下:∵∠MCB+∠B=180°,∴FM∥AB,∴∠A=∠MCA,∵∠A=∠F,∴∠MCA=∠F,∴AN∥EF;(2)∵∠BEF=70°,AN∥EF,∴∠A=∠BEF=70°,∵FM∥AB,∴∠FCN=∠A=70°,∴∠MCN=180°﹣∠FCN=110°.51.证明:如图,∵∠1=∠2(已知),且∠1=∠3(对顶角相等),∴∠2=∠3,∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF(内错角相等,两直线平行).。
《5﹒1﹒1 相交线》同步提升试卷精选 2021-2022学年人教版数学七年级下册(含答案)
《5﹒1﹒1 相交线》同步提升试卷精选2021-2022学年人教版数学七年级下册(含答案)一、精心选一选1. 下列说法中正确的是().A.两条直线相交所成的角是对顶角B.两点之间,直线最短C.一个角的补角比它的余角大90°D.若AB BC,则点B是线段AC的中点2. 如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=()度.A.66 B.50 C.64 D.763. 观察下列图形并阅读图形下方的文字,像这样,20条直线相交,交点的个数最多为()A.185 B.190C.200 D.2104. 下面四个图中,∠1=∠2是对顶角的是( )A.B.C.D.5. 如图,当光线从空气射入水中,光线的传播发生了改变,这就是折射现象,∠1的对顶角是()A.∠AOB B.∠BOC C.∠AOC D.∠OAB6. 下列命题是真命题的有()个①对顶角相等;②一个角的补角大于这个角;③互为邻补角的两个角的平分线互相垂直;④若两个实数的和是正数,则这两个实数都是正数.A.1个B.2个C.3个D.4个7. 下列图形中∠1和∠2是对顶角的是()A.B.C.D.8. 三条直线相交于一点,则A.90°B.120°C.140°D.180°9. 下列各图中,∠1,∠2是对顶角的是()A.B.C.D.10. 如图,直线AB、CD相交于点O,OE平分∠BOC,若∠AOD=68°,则∠COE的度数是()A.32°B.34°C.36°D.38°11. 下列各图中,∠1和∠2是对顶角的是()A.B.C.D.二、细心填一填12. 同一平面内有3条直线a,b,c,如果b∥c,a⊥c,那么a________b.13. 若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为______.14. 如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD=2∠DOB,则∠EOB= .15. 如图,已知直线AB,CD,MN相交于O,若∠1=21°,∠2=47°,则∠3的度数为__________16. 如图,直线AB、CD相交于点O,100∠=__________.∠=︒,那么BOCAOD17. 如图,直线AB 、CD 相交于O ,对顶角有__对,它们是__,∠AOD 的邻补角是__.三、用心做一做18. 如图,直线AB ,CD 和EF 相交于点O ,(1)写出AOC ∠,BOF ∠的对顶角;(2)如果70AOC ∠=︒,20BOF ∠=︒,求BOC ∠和DOE ∠的度数.19. 如图,直线a ,b 相交,∠1=40°,求∠2、∠3、∠4的度数.20. 如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.21. 观察图形,回答下列各题:(1)图A 中,共有____对对顶角;(2)图B 中,共有____对对顶角;(3)图C 中,共有____对对顶角;(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n 条直线相交于一点,则可形成________对对顶角;22. 如图所示,已知∠AOC=160°,OC 平分∠BOD ,OE 平分∠AOD ,求∠BOE 的度数.23. 如图,己知直线AB CD .相交于点O ,EO AB ⊥.(1)若OC 平分EOA ∠,求BOD ∠的度数;(2)若:3:7AOC BOC ∠∠=,则AOC ∠=______°,DOE ∠=_____°.(直接写出答案)24. 如图,点A ,O ,B 在同一条直线上,OD 、OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =70°,求∠AOE 的度数.25. 如图,三条直线AB 、CD 、EF 相交于点O ,若∠3=3∠2、∠2=2∠1,求∠1、∠2、∠3的度数.26. 如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD=50°,求∠DOP 的度数.参考答案一、精心选一选1. C【分析】根据对顶角的定义,线段的性质,余角与补角的关系,线段中点的定义分别判断即可.【详解】解:A、两条直线相交所成的角是对顶角或邻补角,故错误;B、两点之间,线段最短,故错误;C、一个角的补角比它的余角大90°,故正确;D、在同一条直线上,若AB BC,则点B是线段AC的中点,故错误;故选C.【点睛】本题考查了对顶角的定义,线段的性质,余角与补角的关系,线段中点的定义,是基础知识要熟练掌握.2. A【分析】先根据平角求出∠DOE,再根据对顶角相等求出即可.【详解】∵∠1=50°,∠2=64°∴∠DOE=180°−∠1−∠2=66°∴∠COF=∠DOE=66°故选A.【点睛】本题主要考查了对顶角、邻补角的性质,熟练掌握对顶角、邻补角的性质是关键.3. B【分析】结合所给的图形找出交点个数的计算公式.【详解】设直线有n 条,交点有m 个.有以下规律:直线n 条 交点m 个2 13 1+24 1+2+3…n m=1+2+3+…+(n-1)=(1)2n n - , 20条直线相交有2020(21)-=190个.故选:B .【点睛】此题考查了相交线,解题关键是找出直线条数与交点个数的计算公式. 4. D【解析】【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:A 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;B 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;C 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;D 、是对顶角,故此选项正确;故选D .【点睛】本题考查对顶角的定义,理解定义是解题关键.5. A【解析】根据折射的规律以及图形可知OC 是折射光线,OA 是入射光线的延长线,所以∠1的对顶角是∠AOB ;故选A.点睛:本题考查对顶角的定义及性质,注意对顶角的定义中的关键词,如:一个公共顶点,反向延长线等.能正确地识图并能应用是解题的关键.6. B【分析】根据对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法逐个判断即可.【详解】对顶角相等,则命题①是真命题当这个角是钝角时,它的补角小于这个角,则命题②是假命题如图,AOC ∠和BOC ∠互为邻补角,,OD OE 是,AOC BOC ∠∠的角平分线 AOC ∠和BOC ∠互为邻补角180AOC BOC ∴∠+∠=︒,OD OE 是,AOC BOC ∠∠的角平分线 11,22COD AOC COE BOC ∴∠=∠∠=∠ 111()90222DOE COD COE AOC BOC AOC BOC ∴∠=∠+∠=∠+∠=∠+∠=︒ 即OD OE ⊥,则命题③是真命题若两个实数的和是正数,则这两个实数不一定都是正数反例:121-+=,但实数1-是负数则命题④是假命题综上,真命题的有2个故选:B .【点睛】本题考查了对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法,熟记各定义与性质是解题关键.7. D【分析】根据对顶角的定义“两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角”判断即可.【详解】根据对顶角的概念可知,A、B、C中的∠1与∠2都不符合对顶角的特征,而D图中的∠1与∠2只有一个公共顶点且两个角的两边互为反向延长线,属于对顶角.故选D.【点睛】本题主要考查了对顶角的概念,解题时要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点,反向延长线等.8. D【解析】【分析】根据对顶角相等和平角的定义,即可得到答案.【详解】解:如图:∵∠AOF与∠3是对顶角,∴∠AOF=∠3,∵,∴,故选择:D.【点睛】 本题考查了对顶角相等的性质,解题的关键是掌握对顶角相等和平角的定义. 9. B【分析】根据对顶角的定义:两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,对各项进行分析即可.【详解】解:A 中∠1和∠2顶点不在同一位置,不是对顶角;B 中∠1和∠2是对顶角;C 中∠1和∠2角度不同,不是对顶角;D 中∠1和∠2不存在公共顶点,不是对顶角;故选:B .【点睛】本题考查了对顶角的定义,熟记对顶角的定义是解题的关键.10. B【分析】根据对顶角的性质得到∠BOC =∠AOD =68°,再根据角平分线的定义得到∠COE 的度数.【详解】解:∵∠BOC 与∠AOD 互为对顶角,∴∠BOC =∠AOD ,∵∠AOD =68°,∴∠BOC =68°,∵OE 平分∠BOC ,11683422COE BOC ∴∠=∠=⨯︒=︒ 故选:B .【点睛】本题考查了角平分线的定义、对顶角的性质,解题关键是掌握角平分线的定义,对顶角的性质.11. D【分析】根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义可得,D是对顶角,故选D.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.二、细心填一填12. ⊥【解析】试题解析:a,b,c是同一平面内有的3条直线,如果b∥c,a⊥c,那么a⊥b.故答案为:⊥.13. 135°【分析】根据邻补角的定义,可得∠2+∠3=180°,再根据对顶角的相等求解即可.【详解】∵∠l的对顶角是∠2∴∠1=∠2∵∠2的邻补角是∠3∴∠2+∠3=180°∵∠3=45°∴∠1=∠2=135°.故答案为135°.【点睛】此题主要考查了邻补角的性质和对顶角的性质,关键是明确领补角的性质:互为邻补角的两角的和为180°.14. 30°【解析】试题分析:根据∠AOD+∠BOD=180°,∠AOD=2∠BOD,则∠BOD=60°,根据角平分线的性质可得:∠EOB=60°÷2=30°.考点:角度的计算15. 112°【分析】已知∠1=21°,∠2=47°,可以求出∠COB的度数,而∠3与∠COB是对顶角,所以∠3的度数可求.【详解】解:∵∠1=21°,∠2=47°,∴∠COB=∠180°-21°-47°=112°,∴∠3=112°.故答案为:112°.【点睛】本题考查了对顶角相等的性质,平角等于180°,是基础题,准确计算是解题的关键.16. 100︒【分析】根据两直线相交,对顶角相等即可得出答案.【详解】∠是对顶角,∠与BOCAOD∴AOD∠=100︒∠=BOC故答案为:100︒【点睛】本题考查了对顶角的定义,熟练掌握对顶角相等是解题的关键.17. 两、∠AOD和∠BOC,∠AOC与∠BOD、∠AOC与∠BOD【解析】对顶角有两对:∠AOC和∠BOD、∠AOD和∠BOC;∠AOD 的邻补交是:∠AOC 与∠BOD .故答案为(1). 两;(2). ∠AOC 和∠BOD 、∠AOD 和∠BOC ;(3). ∠AOC 与∠BOD . 点睛:掌握邻补交、对顶角的概念.三、用心做一做18. (1)AOC ∠的对顶角是BOD ∠;BOF ∠的对顶角是AOE ∠;(2)110BOC ∠=°,90DOE ∠=︒【分析】(1)根据对顶角的概念即可解答;(2)直接利用根据邻补角互补、对顶角相等可得答案.【详解】解:(1)AOC ∠的对顶角是BOD ∠BOF ∠的对顶角是AOE ∠(2)∵70AOC ∠=︒180AOC BOC ∠+∠=︒∴110BOC ∠=°∵20BOF ∠=︒∴90DOF ∠=︒∴90DOE ∠=︒【点睛】此题主要考查了邻补角和对顶角,关键是掌握邻补角和对顶角的定义和性质.19. 140°; 40°; 140°. 【分析】根据对顶角的性质和邻补角的定义求解即可.【详解】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140° 【点睛】本题考查了对顶角的性质及邻补角的定义,对顶角相等,邻补角之和等于180°,熟记性质和定义是解答本题的关键.20. 110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC的度数,然后根据角平分线的定义求出∠COE的度数,最后根据∠OCE与∠EOD互为邻补角即可得出答案.【详解】∠=︒,35BOD35∴∠=︒AOC∠,OA平分EOC∴∠=∠=⨯︒=︒COE AOC223570∴∠=︒-∠=︒.EOD COE180110【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是解决此题的关键.21. (1)2对;(2)6对;(3)12对;(4)n(n-1) (n≥2).【详解】试题分析:(1)图A中,共有2对对顶角;(2)图B中,共有6对对顶角;(3)图C中,共有12对对顶角;(4)找出对顶角的对数与直线的条数n之间的关系式为:n(n-1)(n≥2).试题解析:(1)2对;(2)6对;(3)12对;(4)2条直线相交时,对顶角对数为:1×2=2对;3条直线相交时,对顶角对数为:3×2=6对;4条直线相交时,对顶角对数为:4×3=12对;…n条直线相交时,对顶角对数为:n(n-1)(n≥2)对.点睛:本题关键在于找出直线的条数与对顶角对数的关系式.22. 110°【分析】先利用平角的概念求出∠BOC的度数,然后利用角平分线的定义即可求出∠BOD的度数和∠EOD的度数,最后利用∠BOE=∠EOD+∠BOD即可求解.【详解】∵∠AOC=160°,∠AOC+∠BOC=180°,∴∠BOC=180°-160°=20°.∵OC平分∠BOD,∴∠BOD=2∠BOC=40°.又∵∠AOD+∠BOD=180°,∴∠AOD=180°-40°=140°.∵OE平分∠AOD,∴∠EOD=12∠AOD=70°,∴∠BOE=∠EOD+∠BOD=70°+40°=110°.【点睛】本题主要考查角平分线的定义,平角的定义和角的和与差,掌握角平分线的定义是解题的关键.23. (1)45°;(2)54°,144°【分析】(1)根据垂直得到∠AOE,根据角平分线的定义得到∠AOC,再根据对顶角相等得到∠BOD;(2)设∠AOC=3x,利用邻补角的性质得出方程,解之得到∠AOC的度数,从而得到∠DOE.【详解】解:(1)∵EO⊥AB,∴∠AOE=∠BOE=90°,∵OC平分∠EOA,∴∠AOC=∠EOC=45°,∴∠BOD=45°;(2)∵∠AOC:∠BOC=3:7,∴设∠AOC=3x,则∠BOC=7x,∵∠AOC+∠BOC=180°,∴3x+7x=180°,解得:x=18°,∴∠AOC=54°,∵∠BOD=∠AOC,∴∠BOD=54°,∴∠DOE=∠BOE+∠BOD=90°+54°=144°.【点睛】此题主要考查了角平分线的定义,对顶角以及邻补角,根据邻补角列出方程是解题关键.24. (1)90°;(2)160°【分析】(1)利用角平分线的定义解答即可;(2)利用角平分线的定义和角的和差的意义解答即可.【详解】解:(1)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC).∵点A,O,B在同一条直线上,∴∠AOC+∠BOC=180°.∴∠DOE=12×180°=90°;(2))∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=12∠AOC,∠COE=12∠BOC,∵∠COD=70°,∴∠AOC=140°.∴∠BOC=180°-∠AOC=40°.∴∠COE=12∠BOC=20°.∴∠AOE=∠AOC+∠COE=140°+20°=160°.【点睛】本题主要考查了角的计算,角平分线的定义,邻补角的意义.熟练应用角平分线的意义是解题的关键.25. ∠1=20°,∠2=40°,∠3=120°【分析】利用对顶角相等,再利用平角180°,列方程计算解答.【详解】解:由图可知∠FOD=∠2,∴∠1+∠2+∠3=180°,∵∠3=3∠2,∠2=2∠1,∴可得:∠1=20°,∠2=40°,∠3=120°.【点睛】此题主要考查了对顶角相等,根据平角180°列方程是解题关键.26. 155°【分析】注意到∠AOD与∠BOC为对顶角,OP平分∠BOC,则只要求得∠POC即可求∠DOP【详解】解:∵∠AOD=∠BOC,∠AOD=50°∴∠BOC=50°∵OP平分∠BOC∴∠POB=∠POC=1122BOC∠=×50°=25°∴∠DOP=180°﹣∠POC=180°﹣25°=155°【点睛】本题利用平角的定义,对顶角和互补的性质进行计算.。
2020-2021学年人教版七年级下册数学:5.1《相交线》习题
5.1.1 相交线1.下列说法中,不正确的是( )A .经过一点能画一条直线和已知线段垂直B .一条直线可以有无数条垂线C .过射线的端点与该射线垂直的直线只有一条D .过直线外一点并过直线上一点可画一条直线与该直线垂直2.如图所示,直线AB 和CD 相交于点O ,若∠AOD 与∠BOC 的和为236°,则∠AOC •的度数为( )A .62°B .118°C .72°D .59°3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个4.如图所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A .∠1=90°,∠2=30°,∠3=∠4=60° B .∠1=∠3=90°,∠2=∠4=30C .∠1=∠3=90°,∠2=∠4=60°D .∠1=∠3=90°,∠2=60°,∠4=30°5.过一条线段外一点,画这条线段的垂线,垂足在( ) A .这条线段上 B .这条线段的端点C .这条线段的延长线上D .以上都有可能6.如图所示,三条直线AB ,CD ,EF 相交于一点O ,则∠AOE +∠DOB +∠COF 等于( • )A .150°B .180°C .210°D .120°7.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过一点不可能向一条射线或线段所在的直线作垂线;⑥若1l ⊥2l ,则1l 是2l 的垂线,2l 不是垂线.A .2个B .3个C .4个D .5个OFED CBAODCBA8.如图,直线AB、CD相交于点O,∠AOC=34°,∠DOE=56°.则:(1)∠BOD=________,∠BOC=__________,∠AOE=___________.(2)写出表示下列各对角关系的名称:∠BOD和∠EOD____________;∠BOD和∠AOC____________;∠BOD和∠A O D____________;∠AOC和∠DOE____________.9.如图所示,直线AB,CD相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.10.如图所示,直线AB,CD,EF相交于点O,则∠AOD的对顶角是_____,∠AOC的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.第8题第9题第10题11.如图,AOE是一条直线,OB⊥AE,OC⊥OD,则图中互补的角有_____对.第11题12.如图,直线AB、CD、EF相交于点O,∠AOE=30°,∠BOC=2∠AOC,求∠DOF的度数.第12题13.如图,三条直线相交于一点,求∠1+∠2+∠3的度数.14.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.15.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.第13题第14题第15题16.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD∶∠BOE =4∶1,求∠AOF的度数.FCDEOBA17.观察下列图形,寻找对顶角(不含平角).(1)两条直线相交(如图1),图中共有______对对顶角;(2)三条直线相交于一点(如图2),图中共有______对对顶角;(3)四条直线相交于一点(如图3),图中共有______对对顶角;……(4)n条直线相交于一点,则可构成_______对对角角;(5)2006条直线相交于一点,则可构成_______对对顶角.(1) (2) (3)OFE DCBA1234L3L2L112。
人教版七年级下册数学相交线练习题(含答案)
人教版七年级下册数学5.1相交线练习题(含答案)一、单选题1.如图,直线AB⊥CD于点O,直线EF经过点O,若⊥1=25°,则⊥2的度数是()A.25°B.65°C.55°D.64°2.下列图形中,⊥1与⊥2是对顶角的是()A.B.C.D.3.如图,下列各角与⊥A是同位角的是()A.⊥1B.⊥2C.⊥3D.⊥44.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,其中AC=6,BC=8,AB=10,CD=4.8,那么点B到AC的距离是()A.6B.8C.10D.4.85.如图,直线AB、CD相交于点O,下列描述:①⊥1和⊥2互为对顶角;②⊥1和⊥2互为邻补角;③⊥1=⊥2,④∠1=∠3,其中正确的是()A .①③B .②④C .②③D .①④6.如图,要把河中的水引到村庄A ,小凡先作AB ⊥CD ,垂足为点B ,然后沿AB 开挖水渠,就能使所开挖的水渠最短,其依据是( )A .两点确定一条直线B .两点之间线段最短C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .连结直线外一点与直线上各点的所有线段中,垂线段最短7.如图,射线OC 的端点O 在直线AB 上,设⊥1的度数为x ,⊥2的度数为y ,且x 比y 的2倍多10°,则列出的方程组正确的是( )A .{x +y =180x =y +10B .{x +y =180x =2y +10C .{x +y =180x =10−2yD .{x +y =90y =2x −108.如图,若⊥1+⊥2=220°,则⊥3的度数为( )A .70°B .60°C .65°D .50°9.如图,直线 AB 、直线 CD 交于点 E , EF ⊥AB ,则 ∠CEF 与 ∠BED 的关系是( )A .互余B .相等C .对顶角D .互补10.如图所示,下列判断正确的是( )A.图(1)中∠1和∠2是一组对顶角B.图(2)中∠1和∠2是一组对顶角C.图(4)中∠1和∠2互为邻补角D.图(3)中∠1和∠2是一对邻补角11.如图,直线a,b被c所截,则∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角12.两直线被第三条直线所截,⊥1与⊥2是同旁内角,且⊥1=30° ,则⊥2的度数为()A.150°B.30°C.30° 或150°D.无法确定二、填空题13.如果⊥A=135°,那么⊥A的邻补角的度数为°.14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若⊥EOC=55°,则⊥AOD=°.15.如图,直线AB,CD,EF相交于点O,若∠AOE:∠COE=1:2,AB⊥CD,则∠COF=度.16.如图,已知直线AB、CD相交于点O,EO⊥AB,若∠1=32°,则∠2=,∠4=.17.如图,在公园绿化时,需要把管道l中的水引到A,B两处.工人师傅设计了一种又快又节省材料的方案如下:画法:如图,⊥连接AB;⊥过点A画线段AC⊥直线l于点C,所以线段AB和线段AC即为所求.请回答:工人师傅的画图依据是.18.如图,已知直线AB和CD相交于点O,射线OE在∠COB内部,OE⊥OC,OF平分∠AOE,若∠BOD=40∘,则∠COF=度.19.如图,点A,B,C是直线l上的三点,点P在直线l外,PA⊥l,垂足为A,PA=5cm,PB=7cm,PC=6cm,则点P到直线l的距离是cm.20.已知A 、O、B 三点共线,⊥BOC=35°,作OD⊥OC,则⊥DOB=.三、作图题21.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.四、解答题22.如图,直线AB、CD相交于点O,∠AOC=70°,过点O画EO⊥CD,O为垂足,求∠BOE 的度数.23.如图,直线AB和CD相交于点O,若∠BOD=40°,OA平分∠EOC,求∠EOD的度数.24.如图,直线AB,CD,EF相交于点O.如果⊥BOD=60°,EF垂直于AB于点O,求⊥AOD和⊥FOC的度数.25.如图,直线AB,CD相交于点O,∠BOC=125°,∠AOE=∠BOD,求∠DOE的度数.答案1.B 2.C 3.C 4.B 5.B 6.D 7.B 8.A 9.A 10.C 11.A 12.D 13.45 14.35 15.120 16.58°;122°17.两点之间,线段最短;垂线段最短18.25 19.5 20.125°或55°21.解:理由是:垂线段最短.作图如下:22.解:如图:∵⊥AOC=70°,∴⊥BOC=180°-70°=110°,∵EO⊥CD,∴⊥BOE=⊥BOC-⊥COE=20°;如图,∵⊥AOC=70°,∴⊥BOD=70°,∵EO⊥CD,∴⊥BOE=⊥BOD+⊥DOE=160°;综上:⊥BOE的度数为20°或160°.23.解:∵⊥BOD=40°,∴⊥AOC=⊥BOD=40°.∵OA平分⊥EOC,∴⊥AOE=⊥AOC=40°,∴∠EOD=180°−∠AOE−∠BOD=180°−40°−40°=100°.24.解:∵⊥BOD =60°∴⊥AOD =120°,⊥AOC =60°,∵EF垂直于AB于点O∴⊥AOF =90°,∴⊥FOC=⊥AOF+⊥AOC=90°+60°=150°.25.解:∵直线AB,CD相交于点O,∠BOC=125°,∴∠BOD=180°−∠BOC=180°−125°=55.又∵∠AOE=∠BOD,∴∠AOE=55°,∴∠DOE=180°−∠AOE−∠BOD=180°−55°−55°=70°.。
人教版七年级下册数学5.1.1相交线与平行线练习题(含答案)
第五章相交线与平行线5.1.1相交线知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( )3.下面四个图形中,∠1与∠2是邻补角的是( )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠1的对顶角是.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60°D.30°7.如图,测角器测得工件(圆台)的角度是度,其测量角的原理是.第4题图第5题图第6题图第7题图8.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°( ),∠1=∠2( ).AB9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是___________,∠EOC 的对顶角是___________②∠AOC 的邻补角是_________________,∠BOE 的邻补角是__________________. ③若∠AOC=50°,求∠BOD ,∠COB 的度数. 解:∵∠AOC=50° ∴∠BOD=__________=________( ); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠________( )=180°-________°=________°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.【综合训练】11.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( )A .62°B .118°C .72°D .59°第12题图 第13题图14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x = . 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为 . 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD=__________=________( );∵OE 平分∠AOD ∴∠AOE=21___________( ) ∵∠AOD+∠AOC=180°∴∠AOD=180°-∠________( )=_________________________=___________ ∠AOE=____________.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.20.探究题:(1)三条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有 个交点,最多有 个交点,对顶角有 对,邻补角有 对.OE DC BA第五章相交线与平行线5.1.1相交线答案知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( A )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( C )3.下面四个图形中,∠1与∠2是邻补角的是( D )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( A )A.120° B.90° C.60°D.30°AB 7.如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.8.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是_∠BOC__,∠EOC 的对顶角是__∠DOF___ ②∠AOC 的邻补角是_∠AOD____,∠BOE 的邻补角是___∠AOE__. ③若∠AOC=50°,求∠BOD ,∠COB 的度数.解:∵∠AOC=50°∴∠BOD=_∠AOC_=_50°(对顶角相等); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠AOC (邻补角互补) =180°- 50° = 130°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC =35°.所以∠BOD =∠AOC =35°. 【综合训练】11.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( C )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( A )A .62°B .118°C .72°D .59° 14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x=40或80. 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为135°. 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD= ∠AOC = 120° (对顶角相等); ∵OE 平分∠AOD∴∠AOE=21∠AOD∵∠AOD+∠AOC=180°∴∠AOD=180°-∠AOC (邻补角互补)=180°-120°= 60° ∠AOE= 30°.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°.因为OB 平分∠DOF ,所以∠DOF =2∠DOB =80°.OE DCBA19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数. 解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 20.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.。
人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)
人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)1 / 65.1《相交线》同步练习题一、选择题(每小题只有一个正确答案)1.在下列四个图中,∠1与∠2是同位角的图是( ).A. ①②B. ①③C. ②③D. ③④2.如图所示,在灌溉农田时,要把河(直线l 表示一条河)中的水引到农田P 处,设计了四条路线PA ,PB ,PC ,PD(其中PB ⊥l),你选择哪条路线挖渠才能使渠道最短( )A. PAB. PBC. PCD. PD3.三条直线相交于同一点时,有m 对对顶角,交于不同三点时,有n 对对顶角,则m 与n 的关系是( )A. m=nB. m >nC. m <nD. m +n=104.下列说法正确的是( )A. 在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B. 在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C. 过线段或射线外一点不一定能画出该线段或射线的垂线D. 过直线外一点与直线上一点画的一条直线与该直线垂直5.如图所示,下列结论中正确的是( )A. ∠1和∠2是同位角B. ∠2和∠3是同旁内角C. ∠1和∠4是内错角D. ∠3和∠4是对顶角6.如图,OA ⊥OB ,∠BOC=50°,OD 平分∠AOC ,则∠BOD 的度数是( )A. 20oB. 30oC. 40oD. 50o7.如图,直线相交于点O ,则∠1+∠2+∠3等于()A. 90°B. 120°C. 180°D. 360°二、填空题8.如图,直线AB、CD、EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么∠FOC=_____度.9.如图所示,∠B与____是直线_________和直线_______被直线____所截得的同位角.10.同一平面内的三条直线,其交点的个数可能为________.11.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是______;∠EOC的对顶角是_____;(2)∠AOC的邻补角是_________;∠EOB的邻补角是_______.12.在同一平面内,OA⊥MN,OB⊥MN,所以OA,OB在同一直线上,理由是________________.三、解答题13.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC的度数.14.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)所示.以上说法谁对谁错?为什么?15.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.16.观察图形,回答下列各题:(1)图A中,共有____对对顶角;(2)图B中,共有____对对顶角;(3)图C中,共有____对对顶角;(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;3 / 6人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)1 / 6参考答案1.B2.B3.A4.A5.B6.A7.C8.1569. ∠FAC AC BC FB11. ∠BOC ∠DOF ∠AOD 和∠BOC ∠EOA 和∠BOF13.135°解析:∵∠DOE=3∠COE ,∠DOE+∠COE=180°,∴3∠COE+∠COE=180°,∴∠COE=45°,∵OE ⊥AB ,∴∠AOC=45°=∠BOD∴∠BOC=180°-∠BOD=135°14.甲,乙说法都不对,各自少了三种情况,具体见解析.解析:甲、乙说法都不对,都少了三种情况.a ∥b ,c 与a ,b 相交如图(1);a ,b ,c 两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.15.垂直.理由见解析.解析:OD 与OE 的位置关系垂直.因为OD 平分∠BOC所以∠DOC=12∠BOC. 由OE 平分∠AOC ,即∠EOC=12∠AOC. 即∠DOE=∠DOC+∠EOC=12 (∠BOC+∠AOC)= 12 180°=90°. 16.(1)2对;(2)6对;(3)12对;(4)n(n-1) (n≥2).解析:(1)2对;(2)6对;(3)12对;(4)2条直线相交时,对顶角对数为:1×2=2对;3条直线相交时,对顶角对数为:3×2=6对;4条直线相交时,对顶角对数为:4×3=12对;…n条直线相交时,对顶角对数为:n(n-1)(n≥2)对.点睛:本题关键在于找出直线的条数与对顶角对数的关系式.。
最新新版人教版七年级数学下册-第五章-相交线与平行线测试题(含答案)
精品文档 参考答案:
1.C 2.C
3.A
4.C 5.( 1)∠ 1,同位角相等,两直线平行; ( 2)∠ 2,内错角相等,两直线平行
6.( 1)如果两条直线被第三条直线所截,内错角相等,那么这两条直线互相平行; 个角的补角,那么这两个角相等 .
7.△ OAB 2
8.52 128
9.∠ CAB ,∠ CAB , DC 10.1080, 720
精品文档
新版人教版七年级数学下册 第五章 相交线与平行线测试题
(时间: 45 分钟,满分: 100 分) 一、选择题(每小题 4 分,共 16 分)
1.下面四个图形中,∠ 1 与∠ 2 是对顶角的是(
)
12 A
1
2
B
2 1
C
2 1
D
2.如图, AB ∥ CD,∠ A=70 0,则∠ 1 的度数是( )
证明:∵ BE 平分∠ ABD (已知)
∴∠ ABD=2 ∠α(
)
∵ DE 平分∠ BDC (已知)
∴∠ BDC=_________ (
)
∴∠ ABD+ ∠ BDC=2 ∠α +2∠β =2(∠α +∠β)(
)
∵∠α +∠β =90 0(已知)
∴∠ ABD+ ∠ BDC=___________ (
)
∵ AD 是∠ EAC 的平分线,
∴∠ DAC= ∠ EAD=30 0
B
( 2)如果两个角是同一 A
D
E C
F 第 11 题
E
A
D
C
∵ AD ∥ BC ∴∠ C=∠ DAC=30 0 14.解:∠ AFC= ∠ A- ∠ C.理由如下: ∵ AB ∥ EF ∴∠ A= ∠ AEF
人教版七年级数学下册《5.1相交线》同步练习(含答案)
人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步练习一、单选题(共10题;共30分)1.如图所示,∠1和∠2是对顶角的图形有( )A. 1个B. 2个C. 3个D. 4个2.如图,下列说法不正确的是()A. ∠1和∠2是同旁内角B. ∠1和∠3是对顶角C. ∠3和∠4是同位角D. ∠1和∠4是内错角3.如图所示,∠1和∠2是对顶角的是()A. B. C. D.4.下列说法中正确的个数为()①两条直线相交成四个角,如果有两个角相等,那么这两条直线垂直;②两条直线相交成四个角,如果有一个角是直角,那么这两条直线垂直;③一条直线的垂线可以画无数条;④在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.A. 1B. 2C. 3D. 45.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°6.如图所示,下列说法错误的是()A. ∠A和∠B是同旁内角B. ∠A和∠3是内错角C. ∠1和∠3是内错角D. ∠C和∠3是同位角7.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于()A. 30°B. 34°C. 45°D. 56°8.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9.如图,下列6种说法:①∠1与∠4是内错角;②∠1与∠2是同位角;③∠2与∠4是内错角;④∠4与∠5是同旁内角;⑤∠2与∠4是同位角;⑥∠2与∠5是内错角.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10题;共30分)11.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________12.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=________.13.如图,∠1和∠2是________角,∠2和∠3 是________角。
《5﹒1﹒1 相交线》同步培优检测题精选 2021-2022学年人教版数学七年级下册(含答案)
《5﹒1﹒1 相交线》同步培优检测题精选2021-2022学年人教版数学七年级下册(含答案)一、选择题1. 两条直线相交所成的四个角分别满足下列条件之一,其中不能判定这两条直线垂直的条件是()A.两对对顶角分别相等B.有一对对顶角互补C.有一对邻补角相等D.有三个角相等2. 下列说法正确的是()A.相等的角是对顶角;B.邻补角一定互补;C.互补的两角一定是邻补角; D.两个角不是对顶角,则这两个角不相等;3. 下列图形,1∠与2∠不是邻补角的是()A.B.C.D.4. 如图所示,直线AB、CD相交于O点,OE平分∠BOC,若∠COA∶∠EOB=4∶1,则∠AOD的度数是()A.75°B.60°C.50°D.55°5. 根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.6. 如图,直线AB与CD相交于点O,OB平分∠DOE,若∠BOD=30°,则∠AOE的度数是()A .90°B .120°C .150°D .170°7. 如图,直线AB ,CD 相交于点O ,所形成的∠1、∠2、∠3和∠4中,一定相等的角有( )A .0对B .1对C .2对D .4对8. 如图,直线AB 与直线CD 相交于点O ,其中∠AOC 的对顶角是( )A .∠AODB .∠BODC .∠BOCD .∠AOD 和∠BOC9. 如图所示,下列判断正确的是( )A .图⑴中∠1和∠2是一组对顶角B .图⑵中∠1和∠2是一组对顶角C .图⑶中∠1和∠2是一对邻补角D .图⑷中∠1和∠2互为邻补角二、填空题10. 如图所示,直线AB ,CD 相交于点O ,若∠1-∠2=70°,则∠BOD =__________,∠2=__________.11. 如图,已知直线AB 、CD 相交于点O ,EO AB ⊥,垂足为O .若30EOC ∠=︒,则AOD∠的度数为__________.12. 如图,直线a ,b 相交于点O ,已知3∠1-∠2=100°,则∠3=_____.13. 下列说法中正确的有_________________.①如果两个角相等,那么这两个角是对顶角.②如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.③有一条公共边的两个角是邻补角.④如果两个角是邻补角,那么它们一定互为补角.⑤有一条公共边和公共顶点,且互为补角的两个角是邻补角.14. 如图,直线AB 、CD 、EF 相交于点O ,AOE ∠的对顶角是___,∠COF 的邻补角是_____,若AOC ∠:AOE ∠=2:3,130EOD ∠=,则BOC ∠=_____.15. 如图,若∠1+∠2=220°,则∠3=______.三、解答题16. 如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,:4:1AOD BOE ∠∠=,求DOE ∠和AOF ∠的度数.17. 如图,直线AB CD 、相交于点O ,BOE EOD ∠=∠,且10AOE ∠=︒,求AOC ∠的度数.18. 如图,直线,AB CD 相交于点O ,OE 平分BOC ∠,090∠=COF .(1)若065BOE ∠=,求AOF ∠的度数;(2)若:1:2BOD BOE ∠∠=,求AOF ∠的度数.19. 如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD=50°,求∠DOP 的度数.20. 如图,直线AB 、CD 相交于点O ,且OA 平分∠EOC ,∠EOC=80°,求∠BOD的度数.21. 如图,直线,AB CD 相交于点,,,O OE OF AOC DOE αβ⊥∠=∠=,求BOF ∠.(结果用,αβ表示)22. 为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:把平面最多写成和的形式直线条数分成的部分数1 2 1+12 4 1+1+23 7 1+1+2+34 11 1+1+2+3+4………(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n时,把平面最多分成多少部分?参考答案一、选择题1. A【分析】两直线相交所成的四个角中,有一个角为90°,则这两条直线互相垂直,根据定义判断即可.【详解】由B,C,D都能得到一个90°的角,所以能判定这两条直线垂直,只有A不能得到一个角为90°,所以不能判断两直线垂直.故选:A【点睛】本题主要考查对顶角的知识和补角的概念:若两条直线相交,则对顶角相等.补角的概念:如果两个角的和等于180°,那么这两个角叫做互为补角.2. B【解析】【分析】按照对顶角的概念和邻补角的概念逐一判断即可.【详解】解:A项,对顶角相等,但相等的角不一定是对顶角,故本选项错误;B项,由邻补角的定义可知,两个邻补角一定互补,故本选项正确;C项,如30°和150°的两个角一定互补,但它们不一定是邻补角,故本选项错误;D项,两个角不是对顶角,但它们有可能相等,如角平分线的模型,故本选项错误;故答案为B.【点睛】本题考查了对顶角和邻补角的概念和性质,熟知对顶角和邻补角的概念和性质是正确判断的关键.3. C【分析】根据邻补角的定义逐一判断即可.【详解】根据邻补角的定义可知:A选项中的1∠与2∠是邻补角,故不选A;B选项中的1∠与2∠是邻补角,故不选B;C选项中的1∠与2∠不是邻补角,故选C;D选项中的1∠与2∠是邻补角,故不选D故选C.【点睛】此题考查的是邻补角的判断,掌握有一条公共边,另一边互为反向延长线,具有这种关系的两个角是邻补角是解决此题的关键.4. B【解析】【分析】设EOB=x,根据角平分线的定义表示出∠BOC,再表示出∠COA,然后根据邻补角的和等于180°列式求出x,再求出∠BOC,最后根据对顶角相等解答即可.【详解】解:∵OE平分∠BOC,∴∠BOC=2x,∵∠COA:∠EOB=4:1,∴∠COA=4x,∵∠COA+∠BOC=180°,∴4x+2x=180°,解得x=30°,∴∠BOC=2×30°=60°,∴∠AOD=∠BOC=60°.故选:B.【点睛】本题考查了对顶角相等的性质,邻补角的定义,准确识图,设出未知数并列出方程是解题的关键.5. D【分析】根据直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M进行判断,即可得出结论.【详解】解:A.由于直线l2不经过点M,故本选项不合题意;B.由于点M在直线l1上,故本选项不合题意;C.由于点M在直线l1上,故本选项不合题意;D.直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M,故本选项符合题意;故选:D.【点睛】本题主要考查了相交线以及点与直线的位置关系,两条直线交于一点,我们称这两条直线为相交线.6. C【分析】根据角平分线的定义求出∠EOB的度数,根据邻补角的性质计算即可.【详解】解:∵OB平分∠DOE,∴∠BOE=∠BOD,∵∠BOD=30°,∴∠BOE=30°,∴∠AOE=180°-∠BOE=180°-30°=150°.故选:C.【点睛】本题考查的是角平分线的定义、邻补角的性质,掌握邻补角之和等于180°是解题的关键.7. C【详解】解:由图可知:∠1和∠2是对顶角,∠3和∠4是对顶角,根据对顶角相等,∴∠1=∠2,∠3=∠4,∴相等的角有2对.故选C.点睛:本题考查了对顶角,解答本题的关键是熟记对顶角相等.8. B【分析】结合图形,根据对顶角的定义选择即可.【详解】直线AB与直线CD相交于点O,由图可知,∠AOC的对顶角是∠BOD,故选B.【点睛】本题考查了对顶角,熟练掌握对顶角的定义以及图形的结构特征是解题的关键.9. D【详解】根据对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,由此可得图(4)中∠1和∠2互为邻补角,故选D.二、填空题10. 125°55°【解析】【分析】根据邻补角的性质,可得∠1与∠2的关系,再根据∠1-∠2=70°,可得∠1与∠2的度数,根据对顶角的性质,可得答案.【详解】解:由题可得:解得由对顶角相等,得∠BOD=∠1=125°.故答案为:125°,55°.【点睛】本题考查对顶角、邻补角,解决本题的关键先由邻补角得出∠1与∠2的大小,再由对顶角得出答案.11. 120︒【分析】根据已知条件和EO AB ⊥,求得AOC ∠,再根据邻补角的概念即可求得AOD ∠【详解】EO AB ⊥,30EOC ∠=︒90AOE ∴∠=︒903060AOC AOE COE ∠=∠-∠=︒-︒=︒180********AOD AOC ∴∠=︒-∠=︒-︒=︒故答案为:120︒【点睛】本题考查了垂直的定义,互余,互补的概念,熟练以上知识点是解题的关键.12. 130°【详解】解:∵∠1与∠2是对顶角,∴∠1=∠2.∵3∠1-∠2=100°,∴2∠1=100°,∴∠1=50°.∵∠1与∠3是邻补角,∴∠1+∠3=180°,∴∠3=180°-∠1=130.故答案为130°. 点睛:此题考查了对顶角,邻补角的定义.解题的关键是:根据∠1与∠2是对顶角及3∠1-∠2=100°,求出∠1的度数.13. ④【分析】根据对顶角,邻补角的定义以及性质对各选项分析判断后利用排除法求解.【详解】解:①相等的两个角是对顶角,边应为互为反向延长线,故错误;②有公共顶点,没有公共边的两个角是对顶角,边应为互为反向延长线,故错误; ③有一条公共边的两个角是邻补角,另一边应为互为反向延长线,故错误.④如果两个角是邻补角,那么它们一定互为补角,正确;⑤有一条公共边和公共顶点,且互为补角的两个角是邻补角,另一边应为互为反向延长线,故错误.故答案为:④.【点睛】本题主要考查了邻补角,对顶角的定义以及对顶角相等的性质,是基础题,熟记概念与性质是解题的关键.14. ∠BOF ∠EOC或∠DOF 160°【解析】①∠AOE的对顶角是∠BOF;②∠COF的邻补角是∠EOC或∠DOF;③设∠AOC=2x°,则∠AOE=3x°,则2x+3x+130=180,解得x=10,所以∠BOC=180°-∠AOC=180°-20°=160°.故答案为(1). ∠BOF;(2). ∠EOC或∠DOF;(3). 160°.15. 70°【分析】先根据对顶角相等求出∠1的度数,再根据平角等于180°列式求解即可.【详解】∵∠1+∠2=220°,∠1=∠2(对顶角相等),×220°=110°,∴∠1=12∴∠3=180°-∠1=180°-110°=70°.故答案为70°.【点睛】本题主要考查了对顶角相等的性质,根据对顶角相等求出∠1的度数是解题的关键.三、解答题16. ∠DOE=30°,∠AOF=135°.【分析】设∠BOE=x°,则∠AOD=4x°,由OE平分∠BOD得∠BOE=∠DOE=x°,根据∠AOD+∠BOD=180°列方程求得x,继而可得∠AOC、∠COE度数,根据OF平分∠COE得∠COF,由∠AOF=∠AOC+∠COF可得答案.【详解】解:设∠BOE=x°,则∠AOD=4x°,∵OE平分∠BOD,∴∠BOE=∠DOE=x°,∴∠AOC=∠BOD=2x°,∵∠AOD+∠BOD=180°,∴4x+2x=180,解得:x=30,∴∠AOC=∠BOD=60°,∠DOE=∠BOE=30°,∴∠COE=∠COD-∠DOE=180°-30°=150°,∵OF平分∠COE,∴∠COF=12∠COE=75°,∴∠AOF=∠AOC+∠COF=60°+75°=135°.【点睛】本题主要考查角了平分线定义、邻补角及对顶角性质,设出最小角根据邻补角定义求得最小角度数是解题的关键.17. ∠AOC=20°.【分析】由对顶角的性质可知,∠BOC=∠AOD,已知∠BOE=∠EOD,由角的和差关系得出∠COE=∠AOE,再求∠AOC.【详解】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD,又∵∠BOE=∠EOD,∴∠BOE-∠BOC=∠EOD-∠AOD,即∠COE=∠AOE,∴∠AOC=∠COE+∠AOE=20°.【点睛】本题考查了对顶角,正确得出∠COE=∠AOE是解题的关键.18. (1)40°;(2)54°【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.【详解】解:∵OE平分BOC∠,065BOE∠=,∴∠BOC=2∠BOE=130°,∴∠AOC=180°-130°=50°,又∠COF=90°,∴∠AOF=90°-50°=40°,(2)∵:1:2BOD BOE∠∠=,OE平分BOC∠,∴:EOC122BOD BOE∠∠∠=:::,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=90°,∴∠AOF=90°-36°=54°.【点睛】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.19. 155°【分析】注意到∠AOD与∠BOC为对顶角,OP平分∠BOC,则只要求得∠POC即可求∠DOP【详解】解:∵∠AOD=∠BOC,∠AOD=50°∴∠BOC=50°∵OP平分∠BOC∴∠POB=∠POC=1122BOC∠=×50°=25°∴∠DOP =180°﹣∠POC =180°﹣25°=155°【点睛】本题利用平角的定义,对顶角和互补的性质进行计算.20. 40°【分析】直接利用角平分线的定义结合对顶角的定义分析得出答案.【详解】解:∵直线AB 、CD 相交于点O ,OA 平分∠EOC ,∠EOC=80°,∴∠AOC=∠EOA 1402EOC =∠=︒,∴∠BOD=∠AOC=40°.【点睛】此题主要考查了角平分线的定义以及对顶角,正确把握相关定义是解题关键. 21. 90αβ︒-+ 【分析】由对顶角相等,则BOD AOC α∠=∠=,然后求出∠BOE ,即可求出BOF ∠.【详解】解:根据题意,∵直线,AB CD 相交于点O ,∴BOD ∠与AOC ∠是对顶角,∴BOD AOC α∠=∠=,∵DOE β∠=,∴BOE αβ∠=-,∵OE OF ⊥,∴90EOF ∠=︒,∴90()90BOF αβαβ∠=︒--=︒-+;【点睛】本题考查了对顶角相等,余角的定义,解题的关键是掌握所学的知识,正确的进行角的运算.22. 16; (2) 56; (3)(1)12n n +⎡⎤+⎢⎥⎣⎦部分【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分;(2)通过已知探究结果,写出一般规律,当直线为n条时,把平面最多分成1+1+2+3+…+n,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n时,把平面最多分成1+1+2+3+…+n=(1)12n n+⎡⎤+⎢⎥⎣⎦部分.【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
人教版七年级数学下册5-1-1 相交线 习题(含答案及解析)(4)
5.1.1 相交线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.在同一平面内,画出三条直线,使它们满足下列条件:①没有交点;②有一个交点;③有两个交点;④有三个交点.其中能画出图形的是()A.①②③④B.①②③C.①②④D.①③答案:A解析:根据直线的位置关系,确定每种情况下三直线的位置即可.①三条直线分别平行时,没有交点,故图形可以画出;②三条直线可以同时经过一个点,故图形可以画出;③其中两直线平行,第三条直线与平行的直线相交,故图形可以画出;④三条直线任意两条都相交时,有三个交点,故图形可以画出.故选A.2.互不重合的三条直线公共点的个数是()A.只可能是0个,1个或3个B.只可能是0个,1个或2个C.只可能是0个,2个或3个D.0个,1个,2个或3个都有可能答案:D解析:如下图,有4种情况.图1,三条直线平行时,无交点;图2,有一个交点;图3,当其中两条直线平行,与第三条直线不平行时,有两个交点;图4,有三个交点.故选D.3.如图1,其中∠1与∠2是同位角的是()A.②③B.②③④C.①②④D.③④答案:C解析:试题根据同位角定义可知①②④中∠1与∠2是同位角.故选C.4.如图,直线a,b相交于点O,若∠1=50°,则∠2和∠3的度数分别是( ) A.50°,40°B.50°,130°C.130°,50°D.50°,50°答案:B解析:由图示可得,∠1与∠2互为对顶角,∠1与∠3互为邻补角,根据两直线相交,对顶角相等,邻补角互补求解.详解:解:∵∠1与∠2是对顶角,∴∠2=∠1=50°,∵∠1+∠3=180°,∴∠3=130°.故选B.点睛:本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.5.如图,AB,CD,EF相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.150°D.180°答案:D解析:根据对顶角相等可得∠3=∠AOC,再根据∠1+∠2+∠AOC=180°即可得到答案.详解:∵∠1+∠2+∠AOC=180°,∠3=∠AOC(对顶角相等),∴∠1+∠2+∠3=180°.故选D.点睛:本题考点:对顶角的相等.6.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°答案:A详解:解:∵∠α和∠β是对顶角,∴∠α=∠β∵∠α=30°,∴∠β=30°故选:A点睛:本题考查对顶角的性质.7.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16 B.18 C.29 D.28答案:C解析:试题根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m=1;任意两直线相交都产生一个交点时交点最多,∵任意三条直线不过同一点,∴此时交点为:8×(8﹣1)÷2=28,即n=28;则故选C.8.下列图形中,∠1与∠2是对顶角的是( )A.(A)B.(B)C.(C)D.(D)答案:C解析:由对顶角的定义:“有公共顶点,且两边分别互为反向延长线的两个角互为对顶角”分析可知,A、B、D三幅图中的∠1、∠2都不是对顶角,只有C图中的∠1、∠2是对顶角. 故选C.二、填空题1.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.2.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.3.探究题:(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有_________对,邻补角有__________对.答案:(1)1,3;(2)1,6;(3)1,(1)2n n,n(n-1),2n(n-1)解析:试题分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数最多;根据对顶角与邻补角的定义找出即可.(1)三条直线相交,最少有1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;(2)四条直线相交,最少有1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;(3)n条直线相交,最少有1个交点,最多有(1)2n n-个交点,对顶角有n(n﹣1)对,邻补角有2n(n﹣1)对.故答案为(1)1,3;(2)1,6;(3)1,(1)2n n-,n(n﹣1),2n(n﹣1).4.在同一平面内,直线a,b相交于点P,若a⊥c,则b,c的位置关系是_____.答案:相交或平行解析:当a⊥b时,由于a⊥c,a⊥b,根据“同一平面内,垂直于同一条直线的两条直线平行”可得b∥c;当a、b相交(不垂直)时,由于a⊥c,a、b相交,可得b与c相交.故答案为:相交或平行.5.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠EOD=25°,则∠AOC=________°,∠BOC=________°;(2)若∠AOD=140°,则∠BOE=________°.答案:(1)50,130;(2)20.解析:(1) 利用角平分线的性质以及对顶角、邻补角的知识进行求解;(2)根据角平分线的性质和平角的定义解答即可.详解:(1)∵OE平分∠BOD,∠EOD=25°,∴∠BOD=2∠EOD=50°.根据对顶角相等,得:∠AOC=∠BOD=50°,∠BOC=180°-∠BOD=130°.(2) ∵∠AOD+∠BOD=180°, ∠AOD=140°, ∴∠BOD=180°-140°=40°,∵OE 平分∠BOD, ∴∠BOE=12∠BOD=12×40°=20°.故答案为(1)50,130;(2)20. 点睛:本题考查了角平分线性质及平角定义,关键是灵活运用这些性质.6.如图,直线AB 、CD 相交于点O ,∠DOE∶∠DOB=4∶5,OF 平分∠AOD,∠AOC=∠AOF-15°,则∠EOF 的度数为__________. 答案:105°分析:根据题目中∠DOE∶∠DOB=4∶5的关系设未知数,再由∠AOC=∠AOF-15°列出方程,求解未知数的值,最后可求得∠EOF 的度数. 详解:解:∵∠DOE∶∠DOB=4:5设∠DOE=4x ,则∠DOB=5x ∴∠AOC=∠BOD=5x∵∠AOC+∠AOD=180∴∠AOD=180°-∠AOC=180-5x∵OF 平分∠AOD∴∠AOF=∠FOD=18052x - ∵∠AOC=∠AOF -15 ∴5x =18052x --15 解的:x =10 ∴∠DOE=40,∠FOD=1805102-⨯=65 ∴∠EOF=∠FOD+∠DOE=105故答案是:105点睛:本题主要考察角度计算问题,合理的设未知数及方程的建立是解题的关键.7.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y +4)°,则∠AOD的度数为____.答案:110°解析:根据图示知,∠AOC=∠BOD,即2x°=(y+4)°,①∠AOC+∠BOC=180°,即2x°+(x+y+9)°=180°,②由①②解得,x°=35°,y°=66°,所以∠AOD=∠BOC=(x+y+9)°=110°,故答案是:110°.8.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.答案:134°解析:试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.9.猜谜语(打两个数学名词)从最后一个数起:________ 两牛相斗:________ .答案:倒数;对顶角解析:从最后一个数起即倒数,两牛相斗即对顶角.详解:从最后一个数起即倒数,两牛相斗即对顶角.故答案为倒数、对顶角.点睛:本题考查了倒数和对顶角的概念,趣味性较强.三、解答题1.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.2.如图,已知直线AB,CD,EF相交于点O,∠1=15°,∠2=95°,求∠3的度数.答案:70°.解析:根据平角等于180°求出∠EOB,再根据对顶角相等解答.详解:因为∠1=15°,∠2=95°,所以∠EOB=180°-∠1-∠2=180°-15°-95°=70°,所以∠3=∠EOB=70°.点睛:本题考查了的对顶角相等的性质,主要利用了平角的定义和性质,熟记性质并准确识图是解题的关键.3.如图,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.答案:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.解析:(1)根据邻补角的定义(两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角)可得,∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点)可得,∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB⊥EF,所以∠AOF=90°,由∠AOC=∠BOD可得:∠AOC =60°,由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;详解:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∵∠BOF=90°,∴AB⊥EF∴∠AOF=90°,又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°.4.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线5.1
相交线5.1.1
:30分钟测试时间
一、选择题
)
,互为对顶角的是( ,直线a、b相交形成四个角1.如图
:号考
D.∠2与∠4 C.∠3与∠4 与∠2 B.∠2与∠3 A.∠1
)
( 相交于点O,已知∠AOD=160°,则∠BOC的大小为2.如图所示,直线AB,CD
: D.160°C.70° B.60° A.20°名)
与∠2互为邻补角的是( 3.下列各图中,∠1姓
)
等于( 与ABCD相交于点O,若∠1+∠2=80°,则∠34.如图,直线
:级班 D.160° C.140° A.100° B.120°
) ( 平面内有三条直线,那么它们的交点有5.
个 B.0个或2A.0个或1个
3个1个或2个或 1C.0个或个或2个D.0个或
二、填空题
的度数236°,则∠AOC若∠AOD与∠BOC的和为O,CDAB,6.如图所示直线和相交于点:校 . 为
学.
度相交于点O,∠AOC∶∠BOC=7∶2,则∠BOD= . 直线7.如图,AB,CD
8.如图,AB、CD相交于点O,OE平分∠AOD,若∠BOC=60°,则∠COE的度数是 .
9.如图,直线AB,CD相交于点O,∠EOB=90°,∠COB=145°,则∠DOE= .
10.如图,如果有9条直线相交,那么最多有个交点.
三、解答题
11.如图,直线AB与CD相交于点O,OD平分∠BOE.
(1)图中∠AOD的补角是 (把符合条件的角都填出来);
(2)若∠AOC=28°,求∠BOE的度数.
12.如图,直线AB,CD相交于O,已知∠AOC=75°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.
13.如图,直线AB、CD相交于O,OD平分∠AOF,∠EOD=90°,∠1=50°,求∠COB、∠BOF的度数.
14.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°.
(1)若∠AOF=70°,求∠BOE的度数;
(2)若∠BOE∶∠BOD=3∶2,求∠AOF的度数.
15.如图,直线AB、CD相交于点O,∠AOD=2∠BOD+60°.
(1)求∠BOD的度数;
(2)以O为端点引射线OE、OF,射线OE平分∠BOD,且∠EOF=90°,求∠BOF的度数.
答案与解析.
一、选择题
1.答案 D 由题图可得,∠1与∠2,∠2与∠3,∠3与∠4都互为邻补角;∠2与∠4,∠3与∠1都互为对顶角,故选D.
2.答案 D ∵∠AOD=160°,∴∠BOC=∠AOD=160°.
3.答案 D 根据邻补角的定义可知,只有D中的∠1与∠2互为邻补角,其他选项均不符合题意.故选D.
4.答案 C 由对顶角相等得∠1=∠2,结合∠1+∠2=80°,得∠1=40°.由邻补角的定义得∠3=180°-∠1=180°-40°=140°.
5.答案 D 当三条直线平行时,交点个数为0;
当两条直线平行,第三条直线分别与它们相交时,交点个数为2;
当三条直线互相不平行时,交点个数为3或1.故选D.
二、填空题
6.答案62°
解析由对顶角相等得∠AOD=∠BOC,∵∠AOD+∠BOC=236°,∴∠AOD=∠BOC=118°,
由邻补角的定义得∠AOC=180°-∠AOD=62°.
7.答案140
解析∵∠AOC∶∠BOC=7∶2,
∴∠AOC=180°×=140°,
由对顶角的定义得∠BOD=∠AOC=140°.
8.答案150°
解析∵∠BOC=60°,
∴∠AOD=60°,∠AOC=120°,
∵OE平分∠AOD,
∴∠AOE=∠DOE=30°,
∴∠COE=∠AOC+∠AOE=120°+30°=150°.
9.答案55°
解析∵∠COB=145°,
∴∠DOB=35°,
∵∠EOB=90°,
∴∠DOE=90°-35°=55°.
10.答案36
解析∵2条直线相交有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交
×3×4,……,×2×3,6=1+2+3=3=1+2=点,……,
且.
-1)=n(n-1)个交点,最多有1+2+3+…+(n,
∴n条直线相交
n(n-1)=×9×8=36.时 ,∴当n=9三、解答题
11.解析(1)由题图可得∠AOD+∠AOC=180°,∠AOD+∠BOD=180°, ∵OD平分∠BOE,∴∠BOD=∠DOE,
∴∠AOD+∠DOE=180°,
故∠AOD的补角是∠AOC、∠BOD、∠EOD.
(2)∵直线AB与CD相交于点O,∠AOC=28°,
∴∠BOD=∠AOC=28°.
又∵OD平分∠BOE,
∴∠BOE=2∠BOD=56°.
12.解析易知∠BOD=∠AOC=75°(对顶角相等),
∵∠BOE∶∠EOD=2∶3,
∴∠BOE=75°×=30°,
∴∠AOE=180°-∠BOE=180°-30°=150°.
13.解析∵∠EOD=90°,∠1=50°,
∴∠AOD=90°-∠1=40°,
∵∠BOC与∠AOD互为对顶角,
∴∠BOC=∠AOD=40°.
∵OD平分∠AOF,
∴∠DOF=∠AOD=40°,
∴∠BOF=180°-∠BOC-∠DOF=180°-40°-40°=100°.
14.解析(1)∵∠COF=90°,∠AOF=70°,
∴∠AOC=90°-70°=20°,
∴∠BOC=180°-20°=160°,
∵OE平分∠BOC,
∴∠BOE=∠BOC=80°.
(2)∵∠BOE∶∠BOD=3∶2,OE平分∠BOC,
∴∠EOC∶∠BOE∶∠BOD=3∶3∶2,
∵∠EOC+∠BOE+∠
BOD=180°,.
∴∠BOD=180°×=45°,
∴∠AOC=∠BOD=45°,
又∵∠COF=90°,
∴∠AOF=90°-45°=45°.
15.解析(1)由邻补角的定义得∠AOD+∠BOD=180°,
∵∠AOD=2∠BOD+60°,
∴2∠BOD+60°+∠BOD=180°,
解得∠BOD=40°.
(2)射线OF的位置有两种情况,如图,
∠BOD=×40°=20°,OE由射线平分∠BOD 得∠BOE=由角的和差得∠BOF'=∠EOF'+∠BOE=90°+20°=110°,
∠BOF=∠EOF-∠BOE=90°-20°=70°.
∴∠BOF的度数为110°或70°.。