初高中数学衔接教案(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 数与式
1.1 数与式的运算
1.1.1.绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即
,0,||0,0,,0.a a a a a a >⎧⎪
==⎨⎪-<⎩
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.
解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1
②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,
∴不存在满足条件的x ;
③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.
综上所述,原不等式的解为 x <0,或x >4.
解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.
所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知
点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.
x <0,或x >4. 练 习 1.填空:
(1)若5=x ,则x =_________;若4-=x ,则
x =_________.
(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:
下列叙述正确的是 ( )
(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).
1
A 0 C |x -1|
|x -3|
图1.1-1
1.1.
2. 乘法公式
我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 2
2
()()a b a b a b +-=-; (2)完全平方公式 2
2
2
()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式 2
2
3
3
()()a b a ab b a b +-+=+; (2)立方差公式 2
2
3
3
()()a b a ab b a b -++=-;
(3)三数和平方公式 2
2
2
2
()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 3
3
2
2
3
()33a b a a b ab b +=+++; (5)两数差立方公式 3
3
2
2
3
()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:2
2(1)(1)(1)(1)x x x x x x +--+++.
解法一:原式=2222
(1)(1)x x x ⎡⎤-+-⎣⎦
=2
4
2(1)(1)x x x -++ =6
1x -.
解法二:原式=2
2
(1)(1)(1)(1)x x x x x x +-+-++ =3
3(1)(1)x x +- =6
1x -.
例2 已知4a b c ++=,4ab bc ac ++=,求222
a b c ++的值. 解: 2
2
2
2
()2()8a b c a b c ab bc ac ++=++-++=.
练 习 1.填空:
(1)221111
()9423
a b b a -=+( )
; (2)(4m + 22
)164(m m =++ );
(3 ) 2222
(2)4(a b c a b c +-=+++ ).
2.选择题:
(1)若2
1
2
x mx k +
+是一个完全平方式,则k 等于 ( ) (A )2
m (B )214m (C )213m (D )2116m
(2)不论a ,b 为何实数,22
248a b a b +--+的值 ( )
(A )总是正数 (B )总是负数
(C )可以是零 (D )可以是正数也可以是负数
1.1.3.二次根式
一般地,形如0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为
无理式. 例如 32a b 2
12
x ++,22x y ++是有理式.
1.分母(子)有理化
把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化