离散数学课后答案(第1-2-4章)武汉大学出版社
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.1
1、(1)否
(2)否
(3)是,真值为0
(4)否
(5)是,真值为1
2、(1)P:天下雨 Q:我去教室┐P → Q
(2)P:你去教室 Q:我去图书馆 P → Q
(3)P,Q同(2) Q → P
(4)P:2是质数 Q:2是偶数 P∧Q
3、(1)0
(2)0
(3)1
4、(1)如果明天是晴天,那么我去教室或图书馆。
(2)如果我去教室,那么明天不是晴天,我也不去图书馆。
(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。
习题1.2
1、(1)是
(2)是
(3)否
(4)是
(5)是
(6)否
2、(1)(P → Q) →R,P → Q,R,P,Q
(2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P
(3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P →Q,(Q → P),P → Q,P,Q,Q,P,P,Q
3、(1)((P → Q) → (Q → P)) → (P → Q)
(2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R))
(3)(Q → P∧┐P) → (P∧┐P → Q)
4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)
习题1.3
1、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1
(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0
(3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0
(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 =
(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 1
2、(1)
P Q P→Q Q∧(P→Q) Q∧(P→Q)→P
0 0 1 0 1
0 1 1 1 0
1 0 0 0 1
1 1 1 1 1
(2)
P Q R Q∧R ┐(P∨(Q∧R)) P∨Q P∨R (P∨Q)∧(P∨R) 原式
0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0
0 1 1 1 0 1 1 1 0
1 0 0 0 0 1 1 1 0
1 0 1 0 0 1 1 1 0
1 1 0 0 0 1 1 1 0
1 1 1 1 0 1 1 1 0
(3)
P Q R P∨Q Q∧P P∨Q→Q∧P P∧┐R 原式
0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 0 1 0 0 0 1
0 1 1 1 0 0 0 1
1 0 0 1 0 0 1 1
1 0 1 1 0 0 0 1
1 1 0 1 1 1 1 1
1 1 1 1 1 1 0 0
3、(1)原式 <=> F→Q <=> T 原式为永真式
(2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)
<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式
(3)原式 <=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式
(4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式
(5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满足式
(6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式
(7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P
<=> T∧┐P <=> ┐P 原式为可满足式
(8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R) <=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)
<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R))
<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式
4、(1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右
(2)左 <=> ┐(┐P∨Q) <=> 右
(3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)
<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)
<=> (P∨Q)∧┐(P∧Q) <=> 右
(5)左 ( P Q) ( R Q) (P Q) Q 右
5.(1)左 Q P Q 右
(2)(P (Q R)) ((P Q) (P R))
( P Q R) ( P Q) ( P R)
(P Q R) (P Q) P R
(P Q R) ((P P) ( Q P)) R
(P Q R) ( Q P R)
(P Q R) (P Q R)
T
故P (Q R) (P Q) (P R)
(3).(P Q) (P P Q)
( P Q) P (P Q)
( P Q) ( P P) ( P Q)
( P Q) ( P Q)
T
故P Q P P Q
(4).((P Q) Q) P Q
( ( P Q) Q) P Q
(( P Q) Q) P Q
( P Q) (Q Q) P Q
(P Q) (P Q)
T
故(P Q) Q P Q
(5).((P P) Q) ((P P) R) (Q R)
(( T Q) ( T R)) Q R
(Q R) Q R
Q R Q R
Q T
T
故((P P) Q) ((P P) R) Q R
(6)左 (Q F) (R F)