全国名校高考数学一轮复习优质专题汇编(知识点详解附专题训练) 数列求和之裂项相消法
2022届高考数学一轮复习专题提能透视数列高考热点探求应对策略学案理含解析北师大版202107072
透视数列高考热点,探求应对策略授课提示:对应学生用书第116页数列是一种特殊的函数,其考查的重点是数列的通项、数列的前n 项和、参数的取值X 围的探求、数列不等式的证明等,研究的数列主要是等比数列与等差数列.数列的最值、周期性、单调性的探究,以及递推数列的相关综合题目,也是历年高考考查的热点. (一)数列单调性及应用1.与等差数列的单调性有关的问题[例1] 已知数列{a n }的前n 项和为S n ,且满足:a 1=1,a n >0,a 2n +1=4S n +4n +1(n ∈N +),若不等式4n 2-8n +3<(5-m )2n ·a n 对任意的n ∈N +恒成立,则整数m 的最大值为( ) A .3 B .4 C .5D .6[解析] 当n ≥2时,⎩⎪⎨⎪⎧a 2n +1=4S n +4n +1,a 2n =4S n -1+4(n -1)+1,两式相减得a 2n +1-a 2n =4a n +4,即a 2n +1=a 2n +4a n +4=(a n +2)2,又a n >0,所以a n +1=a n+2(n ≥2).对a 2n +1=4S n +4n +1,令n =1,可得a 22=4a 1+4+1=9,所以a 2=3,则a 2-a 1=2,所以数列{a n }是以1为首项,2为公差的等差数列,故a n =2n -1.因为4n 2-8n +3=(2n -1)(2n -3),n ∈N +,2n -1>0,所以不等式4n 2-8n +3<(5-m )2n ·a n 等价于5-m >2n -32n .记b n =2n -32n ,则b n +1b n =2n -12n +12n -32n=2n -14n -6,当n ≥3时,b n +1b n <1,又b 1=-12,b 2=14,b 3=38,所以(b n )max =b 3=38.故5-m >38,得m <378,所以整数m 的最大值为4. [答案] B将a n 的表达式代入不等式4n 2-8n +3<(5-m )·2n ·a n ,约去公因式,从而简化了运算.在求解b n =2n -32n 的最大值时,通过作商与“1”比较大小判断数列的单调性,从而求得最大值.2.与等比数列的单调性有关的问题[例2] 已知数列{a n }满足:a 1=1,a n +1=a na n +2(n ∈N +),若b n +1=(n -λ)⎝⎛⎭⎫1a n +1,b 1=-λ,且数列{b n }是递增数列,则实数λ的取值X 围是( ) A .(2,+∞) B .(3,+∞) C .(-∞,2)D .(-∞,3)[解析] 由a n +1=a n a n +2知,1a n +1=2a n +1,即1a n +1+1=2⎝⎛⎭⎫1a n +1,所以数列⎩⎨⎧⎭⎬⎫1a n +1是首项为1a 1+1=2,公比为2的等比数列,所以1a n +1=2n ,所以b n +1=(n -λ)·2n ,因为数列{b n }是递增数列,所以b n +1-b n =(n -λ)2n -(n -1-λ)2n -1=(n +1-λ)2n -1>0对一切正整数n 恒成立,所以λ<n +1,因为n ∈N +,所以λ<2. [答案] C判断数列的单调性的方法函数法:构造函数,通过判断所构造函数的单调性,即可得出相应数列的单调性. 定义法:利用单调函数的定义判断数列的单调性.作差法:对于数列中任意相邻的两项a n +1,a n ,通过作差a n +1-a n ,判断其与0的大小,即可判断数列的单调性.作商法:数列的各项非零且同号(同正或同负),对于数列中任意相邻的两项a n +1,a n ,通过作商a n +1a n,判断其与1的大小,即可判断数列的单调性.[题组突破]1.已知数列{a n }的首项为a 1,{b n }是公比为23的等比数列,且b n =a n -2a n -1(n ∈N +),若不等式a n >a n +1对任意的n ∈N +恒成立,则a 1的取值X 围是( ) A .(-2,2)B .(-2,0)C .(0,2)D .(2,+∞)解析:∵b n =a n -2a n -1(n ∈N+),∴a n =b n -2b n -1,∴a n+1-a n =b n +1-2b n +1-1-b n -2b n -1=b n +1-b n(1-b n +1)(1-b n )=-13b n⎝⎛⎭⎫1-23b n (1-b n )<0,解得b n >32或0<b n <1.若b n >32,则b 1⎝⎛⎭⎫23n -1>32对任意的n ∈N +恒成立,显然不可能;若0<b n <1,则0<b 1⎝⎛⎭⎫23n -1<1对任意的n ∈N +恒成立,只需0<b 1<1,即0<a 1-2a 1-1<1,解得a 1>2.答案:D2.已知在等差数列{a n }中,a 1=120,公差d =-4,若S n ≤a n (n ≥2),其中S n 为该数列的前n 项和,则n 的最小值为( ) A .60 B .62 C .70D .72解析:由题意得a n =120-4(n -1)=124-4n ,S n =120n +n (n -1)2×(-4)=122n -2n 2.由S n ≤a n ,得122n -2n 2≤124-4n ,即n 2-63n +62≥0,解得n ≥62或n ≤1(舍去).所以n 的最小值为62. 答案:B3.(2021·某某高三监测)在数列{a n }中,a 1+a 22+a 33+…+a n n =2n -1(n ∈N +),且a 1=1,若存在n ∈N +使得a n ≤n (n +1)λ成立,即实数λ的最小值为________.解析:依题意得,数列⎩⎨⎧⎭⎬⎫a n n 的前n 项和为2n -1,当n ≥2时,a nn =(2n -1)-(2n -1-1)=2n -1,且a 11=21-1=1=21-1,因此a n n =2n -1(n ∈N +),a nn (n +1)=2n -1n +1.记b n =2n -1n +1,则b n >0,b n +1b n=2(n +1)n +2=(n +2)+n n +2>n +2n +2=1,b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N +使得λ≥a n n (n +1)=b n 成立,即有λ≥b 1=12,λ的最小值是12.答案:12(二)数列中的新情境问题[例3] 已知{a n }是各项均为正数的等比数列,且a 1+a 2=3,a 3-a 2=2,等差数列{b n }的前n 项和为S n ,且b 3=5,S 4=16. (1)求数列{a n },{b n }的通项公式;(2)如图,在平面直角坐标系中,有点P 1(a 1,0),P 2(a 2,0),…,P n (a n ,0),P n +1(a n+1,0),Q 1(a 1,b 1),Q 2(a 2,b 2),…,Q n (a n ,b n ),若记△P n Q n P n +1的面积为,求数列{}的前n 项和T n .[解析] (1)设数列{a n }的公比为q ,因为a 1+a 2=3,a 3-a 2=2,所以⎩⎪⎨⎪⎧a 1+a 1q =3,a 1q 2-a 1q =2,得3q 2-5q -2=0,又q >0, 所以q =2,a 1=1,则a n =2n -1. 设数列{b n }的公差为d ,因为b 3=5,S 4=16,所以⎩⎪⎨⎪⎧b 1+2d =5,4b 1+6d =16,解得⎩⎪⎨⎪⎧b 1=1,d =2,则b n =2n -1.(2)由(1)得P n P n +1=a n +1-a n =2n -2n -1=2n -1, P n Q n =b n =2n -1,故=S △P n Q n P n +1=2n -1(2n -1)2=(2n -1)2n -2,则T n =c 1+c 2+c 3+…+=12×1+1×3+2×5+…+(2n -1)2n -2, ①2T n =1×1+2×3+4×5+…+(2n -1)2n -1, ②由①-②得,-T n =12+2(1+2+…+2n -2)-(2n -1)·2n -1=12+2(1-2n -1)1-2-(2n -1)2n -1=(3-2n )2n -1-32,故T n =(2n -3)2n -1+32(n ∈N +).数列中新情境问题的求解关键:一是观察新情境的特征,如本题中的各个直角三角形的两直角边长的特征;二是会转化,如本题,把数列{}的通项公式的探求转化为直角三角形的两直角边长的探求;三是活用数列求和的方法,如本题,活用错位相减法,即可得数列{}的前n 项和. [例4] 设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“幸福数列”.(1)等差数列{b n }的首项为1,公差不为零,若{b n }为“幸福数列”,求{b n }的通项公式;(2)数列{}的各项都是正数,其前n 项和为S n ,若c 31+c 32+c 33+…+c 3n =S 2n 对任意的n ∈N +都成立,试推断数列{}是否为“幸福数列”?并说明理由.[解析] (1)设等差数列{b n }的公差为d (d ≠0),前n 项和为T n ,则T nT 2n=k ,因为b 1=1, 所以n +12n (n -1)d =k [2n +12·2n (2n -1)d ],即2+(n -1)d =4k +2k (2n -1)d , 整理得(4k -1)dn +(2k -1)(2-d )=0. 因为对任意正整数n 上式恒成立,则⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,解得⎩⎪⎨⎪⎧d =2,k =14.故数列{b n }的通项公式是b n =2n -1. (2)数列{}不是“幸福数列”.理由如下:由已知,当n =1时,c 31=S 21=c 21.因为c 1>0,所以c 1=1.当n ≥2时,c 31+c 32+c 33+…+c 3n =S 2n ,c 31+c 32+c 33+…+c 3n -1=S 2n -1. 两式相减,得c 3n =S 2n -S 2n -1=(S n -S n -1)(S n +S n -1)=·(S n +S n -1). 因为>0,所以c 2n =S n +S n -1=2S n -.显然c 1=1适合上式,所以当n ≥2时,c 2n -1=2S n -1--1.于是c 2n -c 2n -1=2(S n -S n -1)-+-1=2-+-1=+-1.因为+-1>0,所以--1=1,所以数列{}是首项为1,公差为1的等差数列,所以=n ,S n =n (n +1)2. 所以S nS 2n =n (n +1)2n (2n +1)=n +14n +2不为常数,故数列{}不是“幸福数列”.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使问题得以解决.[对点训练]“泥居壳屋细莫详,红螺行沙夜生光.”是宋代诗人欧阳修对鹦鹉螺的描述.假设一条螺旋线是用以下方法画成(如图):△ABC 是边长为1的正三角形,曲线CA 1,A 1A 2,A 2A 3分别是以A ,B ,C 为圆心,AC ,BA 1,CA 2为半径画的弧,曲线CA 1A 2A 3称为螺旋线,再以A 为圆心,AA 3为半径画弧……如此画下去,则所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为( )A .310πB .1103πC .58πD .110π解析:根据弧长公式知,弧CA 1,A 1A 2,A 2A 3,…,A n -2A n -1,A n -1A n 的长度分别为23π,2×23π,3×23π,…,(n -1)×23π,n ×23π,该数列是首项为23π,公差为23π的等差数列,所以该数列的前n 项和S n =π3n (n +1),所以所得弧CA 1,A 1A 2,A 2A 3,…,A 28A 29,A 29A 30的总长度为S 30=π3×30×(30+1)=310π.答案:A(三)数列与其他知识交汇应用数列在中学教材中既有相对独立性,又有较强的综合性,数列常与函数、向量、三角函数、解析几何、充分必要条件等知识相交汇,考查数列的基本运算与应用.[例5](2021·某某月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 020OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 020等于( ) A .1 008B .1 010C .2 017D .2 019[解析] ∵A ,B ,C 三点共线,∴a 1+a 2 020=1, ∴S 2 020=2 020(a 1+a 2 020)2=1 010.[答案] B本题巧妙地将三点共线条件(P A →=xPB →+yPC →且A ,B ,C 三点共线⇔x +y =1)与等差数列的求和公式结合,解决的关键是抓住整体思想求值.[题组突破]1.等差数列{a n }中的a 4,a 2 016是函数f (x )=x 3-6x 2+4x -1的极值点,则log 14a 1 010=( )A .12B .2C .-2D .-12解析:因为f ′(x )=3x 2-12x +4,而a 4和a 2 016为函数f (x )=x 3-6x 2+4x -1的极值点,所以a 4和a 2 016为3x 2-12x +4=0的根,所以a 4+a 2 016=4,又a 4,a 1 010,a 2 016成等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以log 14a 1 010=-12.答案:D2.已知数列{a n }为等差数列,数列{b n }为等比数列,且满足a 2 016+a 2 017=π,b 20b 21=4,则tan a 1+a 4 0322+b 19b 22=( )A .33B . 3C .1D .-1解析:依题意得a 1+a 4 032=a 2 016+a 2 017=π,b 19b 22=b 20b 21=4,所以tan a 1+a 4 0322+b 19b 22=tan π6=33.答案:A3.(2021·某某一中月考)已知函数f (x )=a x +b (a >0,a ≠1)的图像经过点P (1,3),Q (2,5).当n ∈N +时,a n =f (n )-1f (n )·f (n +1),记数列{a n }的前n 项和为S n ,当S n =1033时n 的值为( ) A .4 B .5 C .6D .7解析:∵f (x )的图像过点P (1,3),Q (2,5),∴易知f (x )=2x+1,∴a n =2n(2n+1)(2n +1+1)=(2n +1+1)-(2n +1)(2n +1)(2n +1+1)=12n +1-12n +1+1,∴S n =12+1-122+1+122+1-123+1+…+12n +1-12n +1+1=13-12n +1+1,∴13-12n +1+1=1033,∴12n +1+1=133,解得n =4. 答案:A4.(2021·某某一中月考)已知点A (1,0),B (0,1)和互不相同的点P 1,P 2,P 3,…,P n ,…满足OP n →=a n OA →+b n OB →(n ∈N +),其中{a n },{b n }分别为等差数列和等比数列,O 为坐标原点,若AP 1→=2P 1B →. (1)求P 1的坐标;(2)试判断点P 1,P 2,P 3,…,P n ,…能否共线?并证明你的结论. 解析:(1)设P 1(x ,y ),则AP 1→=(x -1,y ),P 1B →=(-x ,1-y ), 由AP 1→=2P 1B →得x -1=-2x ,y =2-2y ,得x =13,y =23,所以P 1⎝⎛⎭⎫13,23. (2)由OP n →=a n OA →+b n OB →,得OP n →=(a n ,b n ).设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,由题意知d =0,q =1不会同时成立.若d =0且q ≠1,则a n =a 1=13,则P 1,P 2,P 3,…,P n ,…都在直线x =13上;若q =1且d ≠0,则b n =b 1=23,则P 1,P 2,P 3,…,P n ,…都在直线y =23上;若d ≠0且q ≠1,假设P 1,P 2,P 3,…,P n ,…共线. 则=(a n -a n -1,b n -b n -1)与=(a n +1-a n ,b n +1-b n )共线(n >1,n ∈N+), 即⎩⎪⎨⎪⎧a n -a n -1=λ(a n +1-a n ),b n -b n -1=λ(b n +1-b n )(λ∈R ),则b n +1-b n =b n -b n -1,得q =1,与q ≠1矛盾, 故当d ≠0且q ≠1时,P 1,P 2,P 3,…,P n ,…不共线.。
高考数学一轮复习考点知识专题讲解41---数列求和
113
n
3.Sn=2+2+8+…+2n等于(
2n-n-1 A. 2n
2n-n+1 C. 2n
)
2n+1-n-2 B. 2n
2n+1-n+2 D. 2n
12 3
n
B [由 Sn=2+22+23+…+2n,①
1 12
n-1 n
得2Sn=22+23+…+ 2n +2n+1,②
1 11 1
1n
①-②得,2Sn=2+22+23+…+2n-2n+1,
记数列{an}的前 n 项和为 Sn,则 S2 019=( )
A. 2 018-1
B. 2 019-1
C. 2 020-1
D. 2 020+1
- 7 - / 17
C [由 f(4)=2 得 4a=2,
1 解得 a=2,则 f(x)= x.
1
1
∴an=f(n+1)+f(n)=
n+1+
= n
n+1-
n,
高考数学一轮复习考点知识专题讲解 41---数列求和
[考点要求] 1.掌握等差、等比数列的前 n 项和公式.2.掌握特殊的非等差、等比数 列的几种常见的求和方法.
1.公式法 (1)等差数列的前 n 项和公式: Sn=n(a12+an)=na1+n(n-2 1)d; (2)等比数列的前 n 项和公式:
na1,q=1, Sn= a11--aqnq=a1(11--qqn),q≠1.
2.几种数列求和的常用方法 (1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成
的,则求和时可用分组求和法,分别求和而后相加减.
(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵
- 1 - / 17
高三数学第一轮复习—数列(知识点很全)(K12教育文档)
高三数学第一轮复习—数列(知识点很全)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高三数学第一轮复习—数列(知识点很全)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高三数学第一轮复习—数列(知识点很全)(word版可编辑修改)的全部内容。
高三数学第一轮复习—-数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项。
2。
通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.3。
递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式.4。
数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n n n .5. 数列的表示方法:解析法、图像法、列举法、递推法.6。
数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1。
2023年新高考数学一轮复习7-4 数列求和(知识点讲解)解析版
专题7.4 数列求和(知识点讲解)【知识框架】【核心素养】1.结合具体问题的计算,考查等差、等比数列的通项公式与前n 项和公式,凸显数学运算的核心素养. 2.与实际应用问题、数学文化相结合,考查数列的应用,凸显数学建模的核心素养. 3.考查各种数列的求和,凸显逻辑推理、数学运算及数学应用等核心素养.【知识点展示】(一)数列的求和公式1. 等差数列的前和的求和公式:. 2.等比数列前n 项和公式 一般地,设等比数列的前项和是,当时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法). 3. 常见数列前项和①重要公式:(1)123n ++++=(2)()13521n ++++-=n 11()(1)22n n n a a n n S na d +-==+123,,,,,n a a a a n =n S 123n a a a a ++++1≠q n 1nk k ==∑2)1(+n n 1(21)nk k =-=∑2n(3)(4) ②等差数列中,m n m n S S S mnd +=++;③等比数列中,n mm n n m m n S S q S S q S +=+=+.(二)几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n 项和.裂项时常用的三种变形: ①111(1)1n n n n =-++;②1111()(21)(21)22121n n n n =--+-+;=(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.(5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.【常考题型剖析】题型一:公式法求和例1.(2021·全国高二单元测试)数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”.小明对螺旋线有着浓厚的兴趣,用以下方法画出了如图所示的螺旋线.具体作法是:先作边长为1的正三角形ABC ,分别记射线AC ,BA ,CB 为1l ,2l ,3l ,以C 为圆心、CB 为半径作劣弧1BC 交1l 于点1C ;以A 为圆心、1AC 为半径作劣弧11C A 交2l 于点1A ;以B 为31nk k ==∑2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n 21nk k ==∑)12)(1(613212222++=++++n n n n圆心、1BA 为半径作劣弧11A B 交3l 于点1B ,依此规律,就得到了一系列圆弧形成的螺旋线.记劣弧1BC 的长,劣弧11C A 的长,劣弧11A B 的长,…依次为1a ,2a ,3a ,…,则129a a a +++=______.【答案】30π 【分析】根据给定条件,确定这些劣弧的半径从小到大排成一列得等差数列,再利用前n 项和公式计算即得. 【详解】依题意,这些劣弧的半径从小到大排成一列得等差数列,首项为1,公差为1,则第n 个劣弧的半径长为n , 因每个劣弧的圆心角均为2π3,于是得第n 个劣弧的弧长2π2π33n n a n =⋅=,所以()1292π2π91012930π332a a a ⨯+++=+++=⨯=. 故答案为:30π例2.(2017·北京·高考真题(文))已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求和:13521n b b b b -++++….【答案】(1)an =2n −1.(2)312n - 【解析】 【详解】试题分析:(Ⅰ)设等差数列的公差为d ,代入建立方程进行求解;(Ⅱ)由{}n b 是等比数列,知{}21n b -依然是等比数列,并且公比是2q ,再利用等比数列求和公式求解. 试题解析:(Ⅰ)设等差数列{an }的公差为d . 因为a 2+a 4=10,所以2a 1+4d =10. 解得d =2. 所以an =2n −1.(Ⅱ)设等比数列的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9.解得q 2=3. 所以2212113n n n b b q---==.从而21135213113332n n n b b b b ---++++=++++=. 【总结提升】关键是明确数列类型,正确计算公式所需元素,选用公式加以计算. 题型二:分组求和与并项求和例3.(2022·四川省内江市第六中学模拟预测(理))已知数列{}n a 满足12a =,24a =,2(1)3+-=-+nn n a a ,则数列{}n a 的前20项和为___________. 【答案】330 【解析】 【分析】分别讨论n 为奇数时,数列{}21n a -的通项公式与n 为偶数时,数列{}2n a 的通项公式,再利用分组求和法代入求和即可. 【详解】由题意,当n 为奇数时,2(1)32n n a a +-=-+=, 所以数列{}21n a -是公差为2,首项为2的等差数列, 所以2122(1)2n n a n -=+-=, 当n 为偶数时,2134n n a a +-=+=,所以数列{}2n a 是公差为4,首项为4的等差数列, 所以244(1)4n n n a =+-=,()()20122013192420......S a a a a a a a a a =+++=+++++++10(220)10(440)(2420)(4840)33022++=+++++++=+=, 故答案为:330例4.(2016·天津·高考真题(文))已知{}n a 是等比数列,前n 项和为()n S n N *∈,且6123112,63S a a a -==.(Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,n n N b *∈是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.【答案】(Ⅰ)(Ⅱ)22n【解析】 【详解】试题分析:(Ⅰ)先由,解得,分别代入616(1)631a q S q-==-,得,;(Ⅱ)先根据等差中项得,再利用分组求和法求和:.试题解析:(Ⅰ)解:设数列的公比为,由已知,有,解得2,1q q ==-或.又由6611631q S a q-=⋅=-,知,所以61126312a -⋅=-,得,所以.(Ⅱ)解:由题意,得,即是首项为,公差为的等差数列. 设数列的前项和为,则例5.(2018·天津高考真题(文))设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(Ⅰ)()12n n n S +=,21nn T =-;(Ⅱ)4. 【解析】(I )设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q,故12n n b -=.所以,122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =,所以,(1)2n n n S +=. (II )由(I ),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---由12()4n n n n S T T T a b ++++=+,可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =.所以n 的值为4. 【总结提升】分组转化法求和的常见类型(1)若n n n a b c ±=,且{}{}n n b c ,为等差或等比数列,则可采用分组求和法求{n a }的前n 项和. (2)通项公式为,n n n b n a c n ⎧⎨⎩为奇数=,为偶数的数列,其中数列{}{}n n b c ,是等比数列或等差数列,可采用分组求和法求和.主要有分段型(如,2,n nn n a n ⎧=⎨⎩为奇数为偶数),符号型(如2(1)n n a n =-),周期型(如πsin 3n n a =). 提醒:注意在含有字母的数列中要对字母进行分类讨论. 题型三:裂项相消法求和例6.(2017·全国·高考真题(理))等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑____________. 【答案】21nn + 【解析】 【详解】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=,裂项可得12112()(1)1kS k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk k n S n n n n ==-+-++-=-=+++∑. 例7.(2023·全国·高三专题练习)数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*N n ∈,总有n a ,n S ,2n a 成等差数列,又记21231n n n b a a ++=⋅,数列{}n b 的前n 项和n T =______.【答案】69nn + 【解析】 【分析】先根据等差中项可得22n n n S a a =+,再利用n a 和n S 的关系可得11n n a a --=,进而求得n a n =,所以212311111()(21)(23)22123n n n b a a n n n n ++===-⋅++++,利用裂项相消求和即可.【详解】由对于任意的*N n ∈,总有n a ,n S ,2n a 成等差数列可得:22n n n S a a =+,当2n ≥时可得21112n n n S a a ---=+,所以22111222n n n n n n n a S S a a a a ---=-=+--,所以22110n n n n a a a a -----=,所以11()(1)0n n n n a a a a --+--=, 由数列{}n a 的各项均为正数, 所以11n n a a --=,又1n =时20n n a a -=,所以11a =,所以n a n =, 212311111()(21)(23)22123n n n b a a n n n n ++===-⋅++++,1111111111()()235572123232369n nT n n n n =-+-+-=-=++++. 故答案为:69n n +.例8. (2018·天津·高考真题(理))设{}n a 是等比数列,公比大于0,其前n 项和为()*n S n N ∈,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+.(I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为()*n T n N ∈,(i )求n T ;(ii )证明()()()()22*122122n nk k k k T b b n N k k n ++=+=-∈+++∑. 【答案】(Ⅰ)12n n a -=,n b n =;(Ⅱ)(i )122n n T n +=--.(ii )证明见解析.【解析】【详解】分析:(I )由题意得到关于q 的方程,解方程可得2q =,则12n n a -=.结合等差数列通项公式可得.n b n =(II )(i )由(I ),有21nn S =-,则()112122nk n n k T n +==-=--∑.(ii )因为()()()212221221k k k k k T b b k k k k ++++=-++++,裂项求和可得()()()22122122n nk k k k T b b k k n ++=+=-+++∑. 详解:(I )设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d += 由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(II )(i )由(I ),有122112nn n S -==--,故()()1112122122212nnnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )因为()()()()()()()()1121222222212121221k k k k k k k k k k T b b k k k k k k k k k +++++--+++⋅===-++++++++, 所以()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭∑. 【总结提升】1.裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 题型四:错位相减法求和例9. (2020·天津·高考真题)已知{}n a 为等差数列,{}n b 为等比数列,()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;(Ⅲ)对任意的正整数n ,设()21132,,,.n nn n n n n a b n a a c a n b +-+⎧-⎪⎪=⎨⎪⎪⎩为奇数为偶数求数列{}n c 的前2n 项和.【答案】(Ⅰ)n a n =,12n n b -=;(Ⅱ)证明见解析;(Ⅲ)465421949n n n n +--+⨯. 【解析】 【分析】(Ⅰ)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果; (Ⅱ)利用(Ⅰ)的结论首先求得数列{}n a 前n 项和,然后利用作差法证明即可;(Ⅲ)分类讨论n 为奇数和偶数时数列的通项公式,然后分别利用指数型裂项求和和错位相减求和计算211nk k c -=∑和21nk k c =∑的值,据此进一步计算数列{}n c 的前2n 项和即可.【详解】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q . 由11a =,()5435a a a =-,可得d =1.从而{}n a 的通项公式为n a n =.由()15431,4b b b b ==-, 又q ≠0,可得2440q q -+=,解得q =2,从而{}n b 的通项公式为12n n b -=.(Ⅱ)证明:由(Ⅰ)可得(1)2n n n S +=, 故21(1)(2)(3)4n n S S n n n n +=+++,()()22211124n S n n +=++, 从而2211(1)(2)02n n n S S S n n ++-=-++<,所以221n n n S S S ++<.(Ⅲ)当n 为奇数时,()111232(32)222(2)2n n n n n n n n a b n c a a n n n n-+-+--===-++,当n 为偶数时,1112n n n n a n c b -+-==,对任意的正整数n ,有222221112221212121k k nnnk k k c k k n --==⎛⎫=-=- ⎪+-+⎝⎭∑∑, 和223111211352321444444nnk kn n k k k n n c -==---==+++++∑∑① 由①得22314111352321444444n k n n k n n c +=--=+++++∑ ② 由①②得22111211312221121441444444414n nk n n n k n n c ++=⎛⎫- ⎪--⎝⎭=+++-=---∑, 由于11211121221121156544144334444123414n n n n n n n n ++⎛⎫- ⎪--+⎝⎭--=-⨯--⨯=-⨯-, 从而得:21565994nk nk n c =+=-⨯∑. 因此,2212111465421949n nnnk k k nk k k n c c c n -===+=+=--+⨯∑∑∑. 所以,数列{}n c 的前2n 项和为465421949n nn n +--+⨯. 例10.(2017·天津·高考真题(文))已知{}n a 为等差数列,前n 项和为*()n S n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n N ∈.【答案】(Ⅰ)32n a n =-. 2n n b =.(Ⅱ)2(34)216n n +-+.【解析】 【详解】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.试题解析:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =.所以,2n n b =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2n n b =.(Ⅱ)解:设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有()2342102162622n n T n =⨯+⨯+⨯++-⨯, ()()2341242102162682622n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得()23142626262622n n n T n +-=⨯+⨯+⨯++⨯--⨯ ()()()12121246223421612nn n n n ++⨯-=---⨯=----.得()234216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为()234216n n +-+.例11.(2018·浙江·高考真题)已知等比数列{an }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{bn }满足b 1=1,数列{(bn +1−bn )an }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{bn }的通项公式.【答案】(Ⅰ)2q;(Ⅱ)2115(43)()2n n b n -=-+⋅. 【解析】【分析】分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列1{()}n n n b b a +-前n 项和求通项,解得1n n b b +-,再通过叠加法以及错位相减法求n b .【详解】详解:(Ⅰ)由42a +是35,a a 的等差中项得35424a a a +=+,所以34543428a a a a ++=+=,解得48a =. 由3520a a +=得1820q q ⎛⎫+= ⎪⎝⎭, 因为1q >,所以2q .(Ⅱ)设()1n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n nn S n c S S n -=⎧=⎨-≥⎩解得41n c n =-. 由(Ⅰ)可知12n n a ,所以()111412n n n b b n -+⎛⎫-=-⋅ ⎪⎝⎭, 故()21145,22n n n b b n n --⎛⎫-=-⋅≥ ⎪⎝⎭,()()()()11123221n n n n n b b b b b b b b b b ----=-+-++-+- ()()23111454973222n n n n --⎛⎫⎛⎫=-⋅+-⋅++⋅+ ⎪ ⎪⎝⎭⎝⎭. 设()22111371145,2222n n T n n -⎛⎫⎛⎫=+⋅+⋅++-⋅≥ ⎪ ⎪⎝⎭⎝⎭,()()2211111137494522222n n n T n n --⎛⎫⎛⎫⎛⎫=⋅+⋅++-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以()2211111134444522222n n n T n --⎛⎫⎛⎫⎛⎫=+⋅+⋅++⋅--⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此()211443,22n n T n n -⎛⎫=-+⋅≥ ⎪⎝⎭,又11b =,所以()2115432n n b n -⎛⎫=-+⋅ ⎪⎝⎭.【温馨提醒】1.使用“错位相减法”的方法步骤:2.特别提醒:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.3.在历年高考命题中,“错位相减法”为高频考查内容.题型五:倒序相加法求和例12.(2022·湖南岳阳·二模)德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天赋,10岁时,他在进行123100++++的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知某数列通项21002101n n a n -=-,则12100...a a a +++=( ) A .98B .99C .100D .101 【答案】C 【解析】【分析】观察要求解的式子,根据给的数列的通项公式,计算101n n a a -+是否为定值,然后利用倒序相加的方法求解即可.【详解】 由已知,数列通项21002101n n a n -=-,所以10121002(101)100210010224202221012(101)101210110122101n n n n n n n a a n n n n n -------+=+=+==------, 所以91110029398012n n a a a a a a a a -+=+=+==+,所以12100...502100a a a +++=⨯=.故选:C.例13.(2022·黑龙江齐齐哈尔·三模(文))已知数列{}n a 的前n 项和为n S ,且1211121n n S S S n ++⋅⋅⋅+=+,设函数()1cos π2f x x =+,则32021122022202220222022a a a a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭______. 【答案】20212##1010.5 【解析】【分析】 根据1211121n n S S S n ++⋅⋅⋅+=+可求n S ,从而可求n a .易验证()()11f x f x +-=,故可采用倒序相加法求题设式子的值.【详解】 ∵1211121n n S S S n ++⋅⋅⋅+=+①, ∴当2n ≥时,()12121111n n S S S n--++⋅⋅⋅+=②, ①-②得()121n S n n =+,∴()()122n n n S n +=≥; 当1n =时,111S =,∴11S =,此时()12n n n S +=仍然成立, ∴()()*12n n n S n +=∈N . ∴当n =1时,111a S ==;当2n ≥时,()()11122n n n n n n n a S S n -+-=-=-=, 当n =1时,上式也成立,故n a n =()*n ∈N . 由于()()()111cos πcos ππ122f x f x x x +-=++-+=, 设32021122022202220222022a a a a S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭则1202122020202112202220222022202220222022S f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦2021=, ∴20212S =. 故答案为:20212. 【总结提升】注意观察数列(函数)特征:如果一个数列{a n}与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.。
高中数学一轮专题讲义
高中数学一轮专题讲义
一、集合与函数
1. 集合的基本概念和性质
2. 集合的运算
3. 函数的定义和性质
4. 函数的图像和变换
5. 函数的导数和极值
二、三角函数与解三角形
1. 三角函数的定义和性质
2. 三角函数的图像和变换
3. 三角函数的解法和应用
4. 三角形的解法和平行四边形的性质
三、数列与不等式
1. 数列的定义和性质
2. 等差数列和等比数列的通项公式和求和公式
3. 数列的极限和数学归纳法
4. 不等式的性质和证明方法
5. 不等式的求解和应用
四、平面几何与立体几何
1. 点、直线、平面的性质和关系
2. 平面图形的性质和证明方法
3. 立体几何的基本概念和性质
4. 空间几何体的表面积和体积计算
5. 空间几何体的位置关系和证明方法
五、解析几何与向量
1. 直线的方程和性质
2. 圆的方程和性质
3. 圆锥曲线的方程和性质
4. 向量的基本概念和运算规则
5. 向量的应用和证明方法。
高考数学一轮复习 专题讲座3 数列在高考中的常见题型
2n1+1-2n1+3
=3(2nn+3).
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
(1)求数列的通项公式时,通常用累加、累乘、构造法求解. (2)根据数列的特点选择合适的求和方法,本题选用的裂项相 消法,常用的还有分组转化求和,错位相减求和等.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
(2)由
an= 2n+ 1
可知
bn=ana1n+
= 1(
2n+
1 1)(
2n+
3)=12
1 2n+
1-2n1+
3.
设数列{bn}的前 n 项和为 Tn,则
Tn= b1+ b2+…+ bn
=1213-
1 5
+15-17
+…+
解决等差数列与等比数列的综合问题,关键是理清两个数 列的关系.如果同一数列中部分项成等差数列,部分项成 等比数 列,要把成等差数列或等比数列的项抽出来单独研究;如 果两个数列通过运算综合在一起,要从分析运算入手,把 两个数列分割开弄清两个数列各自的特征,再进行求解.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
专题二 数列的通项与求和
(2015·高考全国卷Ⅰ)Sn 为数列{an}的前 n 项和.已 知 an>0,a2n+2an=4Sn+3.
(1)求{an}的通项公式;
(2)设
bn=ana1n+
,求数列
1
{
bn}的前
n
项和.
栏目 导引
专题讲座三 数列在高考中的常见题型与求解策略
2022版高考数学一轮复习 第五章 数列 第四讲 数列求和学案(含解析)新人教版
学习资料2022版高考数学一轮复习第五章数列第四讲数列求和学案(含解析)新人教版班级:科目:第四讲数列求和知识梳理·双基自测错误!错误!错误!错误!知识点一公式法求和(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.(2)等差数列的前n项和公式:S n=错误!=__na1+错误!d__=__错误!n2+错误!n__。
(3)等比数列的前n项和公式:S n=错误!注意等比数列公比q的取值情况,要分q=1,q≠1。
知识点二分组求和法一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.如若一个数列的奇数项成等差数列,偶数项成等比数列,则可用分组求和法求其前n项和.知识点三倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等且等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.知识点四错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.知识点五裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.知识点六并项求和法在一个数列的前n项和中,可两两合并求解,则称之为并项求和.如{a n}是等差数列,求数列{(-1)n a n}的前n项和,可用并项求和法求解.形如a n=(-1)n f(n)类型,可考虑采用两项合并求解.错误!错误!错误!错误!1.常见的裂项公式(1)错误!=错误!-错误!;(2)错误!=错误!错误!; (3)错误!=错误!错误!; (4)1(2n -1)(2n +1)=错误!错误!; (5)错误!=错误!-错误!;错误!=错误!(错误!-错误!); (6)1n (n +1)(n +2)=错误!错误!.双错误!错误!错误!题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×")(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和为S n =错误!。
高三数学一轮复习数列知识点突破训练含答案解析
第六章⎪⎪⎪数 列 第一节数列的概念与简单表示突破点(一) 数列的通项公式基础联通 抓主干知识的“源”与“流” 1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.考点贯通 抓高考命题的“形”与“神”由数列的前几项求数列的通项公式[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…;本节主要包括2个知识点: 1.数列的通项公式;2.数列的单调性.(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+(-1)nn .也可写为a n=⎩⎨⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n-1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] 已知下面数列{a n }的前n 项和S n ,求{a n }的通项公式: (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2×3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2. [方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=12,a n +1=a n +1n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=n n +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.[解析] (1)由条件知a n +1-a n =1n 2+n =1n (n +1)=1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=n n +1a n (a n ≠0),得a n +1a n=nn +1,故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n -1n ·n -2n -1·…·12·23 =23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. (4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n .(3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通 抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+(-1)n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④ C .②③④ D .①③④解析:选A 检验知①②③都是所给数列的通项公式. 2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧ 1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n 2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n ,求数列{a n }的通项公式.解:由题意知a n +1-a n =2n ,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n-2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n -1.突破点(二) 数列的单调性基础联通 抓主干知识的“源”与“流” 数列的分类分类标准 类型 满足条件 按项数分类 有穷数列 项数有限 无穷数列 项数无限按项与项间的大小关系分类 递增数列 a n +1>a n 其中n ∈N *递减数列 a n +1<a n 常数列 a n +1=a n按其他标准分类有界数列 存在正数M ,使|a n |≤M摆动数列从第二项起,有些项大于它的前一项,有些项小于它的前一项考点贯通 抓高考命题的“形”与“神”利用数列的单调性研究最值问题[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1,即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2n λ.综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法①当a n >0时,a n +1a n>1⇔数列{a n }是单调递增数列;a n +1a n<1⇔数列{a n }是单调递减数列;a n +1an=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n>1⇔数列{a n }是单调递减数列;a n +1a n<1⇔数列{a n }是单调递增数列;a n +1an=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎡⎭⎫83,3 C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎡⎭⎫83,3.[答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9. 结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a2的单调性,知5<2-a2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1, ∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n .答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n 2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10 解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n (n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n ,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32. 4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B.158C.34D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________. 解析:令5n =t >0,考虑函数y =t +1t ,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x ,当0<x ≤1时,t ∈(1,5],则可知a n =5n +⎝⎛⎭⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值. 答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ·⎝⎛⎭⎫453-23k <0,∴452<k <472,∴k =23,故选C. 5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.1210B.129C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n ,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝⎛⎭⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n +1,则1a n +1+1=21a n+1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n +1是等比数列,所以1a n +1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0,∴(a n +1+a n )[(n +1)a n +1-na n ]=0,又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n=nn +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n .答案:1n 三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得 a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2; 同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②,整理得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算基础联通 抓主干知识的“源”与“流” 1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通 抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2本节主要包括3个知识点:1.等差数列的性质及基本量的计算;2.等差数列前n 项和及性质的应用;3.等差数列的判定与证明.C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3(a 1+a 3)2=6, 且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)在等差数列{a n }中,a 3+a 9=27-a 6,S n 表示数列{a n }的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通 抓应用体验的“得”与“失” 1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n=( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用基础联通 抓主干知识的“源”与“流” 等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.考点贯通 抓高考命题的“形”与“神”等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9, 又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p=S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n+1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干知识的“源”与“流” 等差数列的判定与证明方法 方法解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法验证S n =An 2+Bn (A ,B是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯通 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列. 能力练通 抓应用体验的“得”与“失” 1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列C .公差为6的等差数列D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n , ∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0,∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m=3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. (2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37. 3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212。
高考数学专题复习《等比数列求和,裂项相消思想》知识梳理及典型例题讲解课件(含答案)
等比数列求和
——裂项相消思想
高考分析
纵观近几年高考命题,数列求和是高考中每年必考的内容之一.
全国卷经常以等差数列、等比数列为基础考查程序化计算类的数
列求和,近几年侧重于新的情境,考查内容更加灵活多变.
2020年全 2020年
2021年新 2021年全 2022年全国甲 2022年新高
卷
考Ⅰ卷
国Ⅰ卷
∙ = ∙
前面学习了等差数列的前n项和,那么
如何求等比数列的前n项和呢?
忆一忆
等比数列的前n项和公式的推导
采用了什么方法?
等比数列前n项和:Sn=a1+a2+a3+ ···+an
即:Sn=a1+a1q+a1q2+······+a1qn-2+a1qn-1
qSn= a1q+a1q2+a1q3+······+ a1qn-1+a1qn
例:数列{an }的通项公式an n2,数列{bn }的通项公式bn 2n
求数列{anbn }的前n项和
解:anbn n2.2n cn
Sn c1 c2 c3 cn
Sn 1.21 4.22 9.23 n2.2n
2S n
1.22 4.23 (n 1)2 2n n2.2n1
S n bn 1
1 qn
b1 a1 (
)
1 q
例:数列{an }的通项公式an n,数列{b n }的通项公式b n 2 n
求数列{an bn }的前n项和
解:设anbn n.2 bn 1 bn
n
高三数学一轮复习讲义 专题16 数列的通项与求和
专题16 数列的通项与求和考纲导读:考纲要求: 了解数列通项公式的意义,会根据条件求解某些简单数列的通项公式;掌握一些简单的数列的求和方法,并能应用求和解决简单的实际问题.考纲解读: 本节的考查重点是等差、等比数列的通项公式与前n 项和公式的灵活运用.但也同样要重视其它非等差、等比数列的通项求解与数列求和问题,这此类题的常常依赖于等差与等比数列为载体,故仍可看成是两个数列的性质的应用及推广.考点精析:考点1、数列的通项这类题型的考查方式,方法灵活多样,常见的有①根据数列前n 项观察、猜测出来;②由递推公式整理、变形求得;③由n a a 与n S 的关系求得,等等.其中重点是第二种形式,在考试中选择题,填空题,解答题均有可能考查,试题难度多以低、中档题为主.【考例1】(·海淀区期中)已知函数f (x )=x 2-5x +10.当x ∈(,1]n n + ( n =1,2,3,…)时,函数f (x )的值域为D n ,将D n 中整数的个数记为a n ,则1a 的值等于 ;数列{ a n }的通项公式为a n = .解题思路:分别取n 的值,由起始的1,2,3开始,可以通过由特殊到一般的方法求得该通项公式.正确答案:当1n =时,定义域为(1,2],其值域为[4,6),其中整数个数为2,即得12a =a ; 当2n =时,定义域为(2,3],其值域为15[,4]4,其中整数个数为1,即得21a =a ; 当3n ≥时,定义域为(,1]n n +,其值域为((),(1)]f n f n +,其整数个数为22(1)()(1)5(1)1051024na f n f n n n n n n =+-=+-++-+-=-a . ∴2, 1,1, 2,24, 3.n n a n n n =⎧⎪==⎨⎪-≥⎩a回顾与反思:本题以开放题形式出现,以函数的生成数列的通项公式的求解为题源,抽象地考查了函数与数列的生成关系及其通项公式的探究技巧.知识链接:数列通项公式求解方法一, ①观察法:观察法就是观察数列特征,找出各项共同的构成规律,横向看各项之间的关系结构,纵向看各项与项数n 的关系,从而确定出数列的通项;③构造等差、等比数列法:构造法就是根据所给数列的递推公式以及其他有关关系式,进行变形整理,构出一个新的等差或等比数列,利用等差或等比数列的通项公式求解.③猜归法:猜归法就是由已知条件先求出数列的前n 项,一般是1234,,,a a a a 等,由此归纳猜想出n a ,然后用数学归纳法证明.【考例2】(·湖北八校一联)数列}{n a 中,S n 是前n 项和,若)1(31,111≥==+n S a a n n ,则n a = .解题思路:本题考查数列的递推关系式⎩⎨⎧≥-==-2,1,11n S S n S a n n n 的运用,利用条件式先得出1n a +与n a a 的关系,再通过定义求通项.正确答案:由题意:)1(311≥=+n Sn a n (1), 推得131-=n n S a (2),相减得n n n a a a 311=-+ 即,341=+n n a a 又由.3131,1121===a a a所以数列{}n a 从第2项后是从31为首项,以34为公比的等比数列, 则21,1,14(), 2.33n n n a n -=⎧⎪=⎨⋅≥⎪⎩回顾与反思:由n S 求n a 方法比较单一,需要注意的是在利用1n n n a S S -=-时不要忘记条件2n ≥,此时需要对“1n =”单独求解,然后再考查能否与2n ≥ 时合并起来.知识链接:数列通项公式求解方法二,①累加法:如果已知数列{n a }的相邻两项1n a +与n a 的差的一个关系式,我们可依次写出前n 项中所有相邻两项差的关系,然后把这n-1个式子相加,整理求出通项;②累积法:如果已知数列{n a }的相邻两项1n a +与n a 的商的关系,我们可依次写出前n 项中所有相邻两项的商的关系式,然后把这n-1个式子相乘,整理求出数列的通项;③待定系数法:如果已知数列{n a }的通项公式的结构形式,我们可以先设出通项公式,然后再由已知条件求出待定系数.考点2、数列的求和该题型在高考中是一个非常重要的题型,在选择、填空题中以技巧性求解为主,在解答题中多以推理性为主,同时还经常同函数,不等式等知识相结合,综合进行考查.【考例1】(·盐城二模)已知正数数列{}n a 中,21=a .若关于x 的方程0412)(12=++-+n n a x a x )(+∈N n 有相等的实根. (Ⅰ)求3,2a a 的值;(Ⅱ)求证3211111111321<++++++++n a a a a )(+∈N n . 解题思路:本题是函数与数列综合运用问题.第一问由方程的判别式等于0,得出数列的递推关系式,从而推得32,a a 的值;第二问由递推关系推导出数列{}n a 的通项关系式,则得出数列的和,利用等比数列的求和公式列出关于n 的关系式,利用放缩法或极限的思想,证得不等关系式.正确答案:(Ⅰ)由题意得0121=--=∆+n n a a 得121+=+n n a a得52=a ,113=a(Ⅱ)由于121+=+n n a a =1)12(21++-n a =12212++-n a =12)12(222+++-n a =1222223+++-n a=12222211+++++-- n n na =212121--++n n =123-⋅n ∴1231-⋅=+n n a .则n a a a a ++++++++11111111321 =)21212121(31120-+++n =211)21(131--n =))21(1(32n -32<. 所以3211111111321<++++++++n a a a a回顾与反思:由方程的根的存在性,推理得出数列的通项间的关系式121+=+n n a a ,该关系式也可以变形为112(1)n n a a ++=+,再通过数列{1}n a +a 是等比数列加以求解与推理证明.知识链接:数列求和方法一, ①公式法:直接应用等差数列,等比数列的求和公式,以及正整数的平方和公式,立方和公式等公式求解;②倒序相加(乘)法:如果一个数列{n a },与首末两项等距离的两项之和(积)等于首末两项之和(积),可采用把正着写和倒着写的两个式子相加( 乘),就得到一个常数列的和( 积),进而求出数列前n 项和(积);③错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项乘积组成,此时可把式子两边同乘以公比,两式错位相减整理即可求出n S .【考例2】 (·海淀区期中)设数列{}n a 的前n 项和为n S ,且满足S n =2-a n n =1,2,3,··· (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足11,b =且1 +=+n n n b b a ,求数列{}n b 的通项公式; (Ⅲ)设(3) =-n n c n b ,求数列{}n c 的前n 项和n T .解题思路:先分别求出数列{}n a 与{}n b 的通项公式,再根据{}n c 的特征,利用错位相减法求其前n 项和n T .正确答案:(Ⅰ)1n = 时,11112a S a a +=+=, ∴11a =. ∵2n n S a =- 即2n n a S += , ∴112n n a S +++=, 两式相减:110n n n n a a S S ++-+-= 即 110n n n a a a ++-+= 故有 12n n a a +=, ∵a n ≠0∴112n n a a += ()n N *∈. ∴数列{}n a 为首项11a =,公比12的等比数列.11()2n n a -= ()n N *∈. (Ⅱ)∵ 1 (1,2,3)+=+=⋅⋅⋅n n n b b a n ∴111()2n n n b b -+-=,得 211b b -=3212b b -=2431()2b b -=… …211()2n n n b b ---= (n 2,3,)=⋅⋅⋅将这n -1个等式相加,得 12321111()1111121()()()22()12222212-----=+++++==-- n n n n b b 又 11,b =∴1132()2n n b -=- (1,2,3)=⋅⋅⋅n(Ⅲ) (3)n n c n b =-112()2n n -= .∴0221111112[()2()3()(1)()()]22222--=++++-+ n n n T n n ①而2311111112[()2()3()(1)()()]222222-=++++-+ n nn T n n ②①-② 得:01211111112[()()()()]2()222222n n n T n -=++++-11()1244()1212nn n T n -=-⋅-81184()8(84)222n n n n n =--=-+ . 回顾与反思:解数列问题,往往需要运用相关的性质、定理和公式,如果忽视这些性质、定理和公式成立的条件就会出现错误,有的错误还不易察觉,如错位相减求和时,化简的结果非常重要,因此要强化结论的化简意识能有效防止错误,提高解题的正确率.知识链接:数列求和二, ①裂项相消法:把数列的通项拆成两项之差,在求和时一些正负项相互抵消,于是前n 项和变成首尾若干少数项之和. 见的拆项公式有:111=n(n+1)n n -+1, 1111=(2n 1)(2n+1)22n-12n (-)-+1,1111=[]n(n+1)(n+2)2n(n+1)(n )(n+2)-+1,1a b=-;②分组转化法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解;③归纳法:先用不完全归纳法猜想出前n 项和,然后再用数学归纳法证明.创新探究:【探究1】将正偶数排列如下表:2 4 6 8 10 12 14 16 18 20……其中第i 行第j 个数表示为a ij (i ∈N +,j ∈N +),例如a 32=10,若a ij =2006,则i =_______________,j =______________.创新思路:根据数据特点,可以发现每一行所包含的数据个数成等差数列,而且每一行的数据个数等于其行数.先算出2006是哪一行的,再计算是第几个.主要考查学生的分析能力、判断能力、解决问题的能力..解析: 45,13i j ==, 2006为第1003个数据,若ij a =2006表示2006是第i 行第j 个数据,这里Z j i ∈,且i j ≤,即[]j i +-++++=)1(3211003 所以()[][]i i i +-+++≤<-+++)1(211003121所以i ii i ⋅+<<-⋅-+211003)1(2)1(1,所以13,45==j i . 【探究2】设等比数列{a n }的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lg a n }的前多少项和最大?(lg2=0.3,lg3=0.4)创新思路:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.解法一:设公比为q ,项数为2m ,m ∈N *,依题意有⎪⎩⎪⎨⎧+=⋅--⋅=--⋅)(9)()(1)1(1)1(312131122121q a q a q a q a q q q a q q a m m 化简得⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+==+10831 ),1(9114121a q q q a q q 解得. 设数列{lg a n }前n 项和为S n ,则S n =lg a 1+lg a 1q 2+…+lg a 1q n -1=lg a 1n ·q 1+2+…+(n -1)=n lg a 1+21n (n -1)·lg q =n (2lg2+3lg3)-21n (n -1)lg3 =(-23lg )·n 2+(2lg2+27lg3)·n可见,当n =3lg 3lg 272lg 2+时,S n 最大. 而4.024.073.043lg 3lg 272lg 2⨯⨯+⨯=+=5,故{lg a n }的前5项和最大. 解法二:接前,⎪⎩⎪⎨⎧==311081q a ,于是lg a n =lg [108(31)n -1]=lg108+(n -1)lg 31,∴数列{lg a n }是以lg108为首项,以lg31为公差的等差数列, 令lg a n ≥0,得2lg2-(n -4)lg3≥0,∴n ≤4.04.043.023lg 3lg 42lg 2⨯+⨯=+=5.5.由于n ∈N *,可见数列{lg a n }的前5项和最大.方法归纳:1.如果数列的通项公式可转化为(1)()f n f n +-的形式,常采用裂项求和法.如果数列前n 项相加不易直接求解时,可以考虑分组,重新组合,构成新的特殊数列求和.2.分组法求数列前n 项和时,要注意分解后特殊数列的适用前提条件,例如对公比的讨论;对数列项数奇偶性的讨论等等.3.处理存在性问题的一般思路是:假定存在———推理计算———作出判断.在求数列{n a }的通项公式及前n 项和公式时,如果项中含有参数,则需要对参数讨论,注意讨论要全面,不重复也不遗漏.过关必练: 一、选择题:1. (·湖南)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .232. (·辽宁理)在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 ( )A. 122n +- B. 3n C. 2n D. 31n -3. (·北京理)设4710310()22222()n f n n N +=+++++∈ ,则()f n 等于A.2(81)7n- B.12(81)7n +- C. 32(81)7n +-D. 42(81)7n +-4. (·江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( )A.2-B.0C.1D.25. (·连云港二模)等差数列}{n a 的公差为d ,前n 项和为n S ,当1a 与d 变化时,1662a a a ++是一个定值,则下列各个量中也为定值的是 ( )A .17SB . 10SC .18SD .15S 二、填空题:6. (·江西九校模)数列{}n a 满足11200613,,,1nn na a a n N a a *++==∈-则= . 7. (·东北四校二模)正奇数集合{1,3,5,…},现在由小到大按第n 组有(2n -1)个奇数进行分组:{1} , {3,5,7}, {9,11,13,15,17},… (第一组) (第二组) (第三组)则2005位于第 组中.8. (·海淀期末)已知数列12, (),{},21,(),n n n n a a n n -⎧=⎨-⎩为正奇数中为正偶数 则9a = (用数字作答),设数列{n a }的前n 项和为S n ,则S 9= (用数字作答).9. (·扬州二模)定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一常数,那么这个数列叫做“等积数列”,这个常数叫做该数列的公积.已知数列{n a a }是等积数列,且a 1=2,公积为5,这个数列的前n 项和n S 的计算公式为____________;10. (·苏、锡、常、镇二模)若数列{}n a 的通项公式为8111()3()()3842n n n n a =⨯-⨯+(其中n ∈N *),且该数列中最大的项为m a ,则m =_________. 三、 解答题:11. (·陕西理20文20)已知正项数列{}n a ,其前n 项和n S 满足21056,n n n S a a =++且1315,,a a a 成等比数列,求数列{}n a 的通项.n a12. (·南京模)已知数列{}n a 是等差数列,{}n b 是等比数列,且112,a b ==454b =,12323a a a b b ++=+,(I)求数列{}n b 的通项公式;(II )求数列{}n a 的前10项和10S .13. (·扬州调研)数列{}n a 的前项n 和记为n S ,数列{}nS n是首项为2,公比也为2的等比数列. (Ⅰ)求n a ; (Ⅱ)若数列{}2nna 的前n 项和不小于100,问此数列最少有多少项?14. (·湖南文) 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列4321的逆序数63=a .(Ⅰ)求a 4、a 5,并写出a n 的表达式; (Ⅱ)令nn n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….过关必练参考答案: 1. B 解析:由a 1=0,).(1331++∈+-=N n a a a n n n 得a 2=-⋅⋅⋅⋅⋅⋅==,0,3,343a a由此可知: 数列{n a a }是周期变化的,且三个一循环,所以可得:a 20=a 2=-.3故选B. 2. C 解析:若数列{}1n a +也是等比数列,则111(1)n n n a q a a q +++=+=+, 即得1q =, ∴12n a a ==, 12n S na n ==, 故应选C.3. D 解析:据题意可知()f n 表示首项为2,公比为8的等比数列前n+1项的和,利用等比数列求和公式得()f n =31042282(81)187n n ++-⨯=--. 故应选D. 4. A 解析:由已知可得2112n n n n a a a a +-=+=, ∴2n a =或0n a =(合去).∴214(21)242n S n n n --=-⨯-=-, 故应选A. 5. D 解析:由2616183213a a a a d a ++=+=1151531()25a a S =+=,故应选D. 6. -2解析: 由,31=a 111nn na a a ++=-推知:,22-=a ⋅⋅⋅==-=3,21,31543a a a ,综上知{}n a 中四个一循环,而245012006+⨯=,所以222006-==a a . 7. 32解析:令200521n =- , 可得1003n = . 由分组可得前n 组共有2(121)135(21)2n n n n +-+++⋅⋅⋅+-==个数, 而2005是其中的第1003个数, 由2321024= , 231961= , 可得2005中位于第32组 . 8. 256, 377解析: 918922256a -=== ,9135792468()()S a a a a a a a a a =++++++++2468(12222)(371115)377=++++++++=.9. n S =9,2*491,21*44n n k k N n n k k N ⎧=∈⎪⎪⎨⎪-=-∈⎪⎩且且 解析:由已知条件可得该数列的奇数项均为2,偶数项均为52, 由此可得n S =9,2*491,21*44n n k k N n n k k N ⎧=∈⎪⎪⎨⎪-=-∈⎪⎩且且 . 10. 2解析:本题考查了数列的单调性.考查利用导数来研究数列的最值问题. 令11,(0,]22n x x =∈,由8111()3()()3842n n n n a =⨯-⨯+可构造函数 328()33f x x x x =-+, 1(0,]2x ∈ , 则2()861f x x x '=-+, 由1(0,]4x ∈时2()8610f x x x '=-+≥,11(,]42x ∈时2()8610f x x x '=-+<,可得函数328()33f x x x x =-+,在1(0,]4x ∈单调递增, 在11(,]42x ∈单调递减. 所在当1142n x ==即2n =时,此函数取得最大值,故最大项为2,2a m =. 提示:本题也可以通过不等式组11,,m m m m a a a a -+≥⎧⎨≥⎩来求得字母m 的取值范围而得解.11. 解析: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.12. 解析:(I ){}n b 是等比数列,且54,241==b b , 27143==b b q , ,3=q 11132--⋅=⋅=∴n n n q b b . (II ) 数列{}n a 是等差数列,12323a a a b b ++=+,又 ,2418632=+=+b b 2432321==++∴a a a a∴82=a , 从而62812=-=-=a a d .∴56692)110(110=⨯+=-+=d a a ∴290210)562(210)(10110=⨯+=⨯+=a a S . 13. 解析:(Ⅰ)由题意n n n n S 2221=⋅=-,∴n n n S 2⋅=.当2≥n 时,1--=n n n S S a =()()1121212--+=--⋅n n n n n n ,又当1=n 时,211==S a ,适合上式,∴()121-+=n n n a . (Ⅱ)∵212+=n a n n ,∴ 数列1{}2n +是首项为1,公差为12的等差数列, 其前n 项和为()114n n n +-,故()111004n n n +-≥, 24400n n +≥,得2(2)404n +≥,满足它的最小整数是19,即此数列最少有19项.14. 解析:(Ⅰ)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n . (Ⅱ)因为 ,2,1,22222211==+⋅+>+++=+=++n nn n n n n n n a a a a b n n n n n , 所以n b b b n 221>+++ . 又因为 ,2,1,222222=+-+=+++=n n n n n n n b n , 所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n =32221232+<+-+-+n n n n . 综上, ,2,1,32221=+<++<n n b b b n n .。
高考数学一轮复习(知识回扣+热点突破+能力提升)数列求
第四节 数 列 求 和1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法.1.公式法与分组求和法 (1)公式法直接利用等差数列、等比数列的前n 项和公式求和. ①等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -12d .②等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 11-q n1-q ,q ≠1.(2)分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.2.倒序相加法与并项求和法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法在一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.3.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.1.求S n =a +2a 2+3a 3+…+na n之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.你认为该说法正确吗?为什么?提示:不正确.当a ≠0,且a ≠1时,可用错位相减法求解.2.如果数列{a n }是周期为k (k 为大于1的正整数)的周期数列,那么S km =mS k .你认为该说法正确吗?提示:正确.3.如果数列{a n }是公差为d (d ≠0)的等差数列,则1a n a n +1与1d ⎝ ⎛⎭⎪⎫1a n -1a n +1相等吗?提示:相等.1.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n =( )A .9B .99C .10D .100解析:选B ∵a n =1n +n +1=n +1-n .∴S n =a 1+a 2+a 3+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1. ∴n +1-1=9,即n +1=10,∴n =99.2.若数列{a n }的通项公式为a n =2n+2n -1,则数列{a n }的前n 项和为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n -2 解析:选C S n =a 1+a 2+a 3+…+a n=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n -1)=(2+22+ (2))+2(1+2+3+…+n )-n=21-2n1-2+2×n n +12-n =2(2n -1)+n 2+n -n =2n +1+n 2-2.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解析:选A ∵a n =(-1)n(3n -2).∴a 1+a 2+…+a 10=-1+4-7+10-13+16-19+22-25+28=(-1+4)+(-7+10)+(-13+16)+(-19+22)+(-25+28)=3×5=15. 4.一个数列{a n },当n 是奇数时,a n =5n +1;当n 为偶数时,a n =2n2,则这个数列的前2m 项的和是________.解析:当n 为奇数时,{a n }是以6为首项,以10为公差的等差数列;当n 为偶数时,{a n }是以2为首项,以2为公比的等比数列.所以,S 2m =S 奇+S 偶=ma 1+m m -12×10+a 21-2m1-2=6m +5m (m -1)+2(2m-1)=6m +5m 2-5m +2m +1-2=2m +1+5m 2+m -2.答案:2m +1+5m 2+m -25.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________.解析:∵a n =n ·2n ,∴S n =1·21+2·22+3·23+…+n ·2n.①∴2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1=21-2n1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )2n +1-2.∴S n =(n -1)2n +1+2.答案:(n -1)2n +1+2考点一公式法求和[例1] (2013·浙江高考)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.[自主解答] (1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n|=⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.【方法规律】三类可以使用公式求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或者等比数列的,可以分项数为奇数和偶数时使用等差数列或等比数列的求和公式求解.(3)等差数列各项加上绝对值,等差数列的通项公式乘以(-1)n已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .解:S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.考点二 错位相减法求和[例2] 已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n ≥2).[自主解答] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *.(2)证明:由(1),得T n =2×2+5×22+8×23+…+(3n -1)×2n ,①2T n =2×22+5×23+…+(3n -4)×2n +(3n -1)×2n +1.② 由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n -1)×2n +1=6×1-2n1-2-(3n -1)×2n +1-2=-(3n -4)×2n +1-8,即T n -8=(3n -4)×2n +1.而当n ≥2时,a n -1b n +1=(3n -4)×2n +1,所以T n -8=a n -1b n +1,n ∈N *,n ≥2. 【互动探究】在本例(2)中,若T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,求证:T n +12=-2a n +10b n (n ∈N *). 证明:由(1),得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n =22a n +23a n -1+…+2n a 2+2n +1a 1.②②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n -6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.【方法规律】用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知函数f (x )=x 2+bx 为偶函数,数列{a n }满足a n +1=2f (a n -1)+1,且a 1=3,a n >1. (1)设b n =log 2(a n -1),求证:数列{b n +1}为等比数列; (2)设c n =nb n ,求数列{c n }的前n 项和S n .解:(1)证明:∵函数f (x )=x 2+bx 为偶函数,∴b =0,∴f (x )=x 2,∴a n +1=2f (a n -1)+1=2(a n -1)2+1,∴a n +1-1=2(a n -1)2. 又a 1=3,a n >1,b n =log 2(a n -1),∴b 1=log 2(a 1-1)=1,∴b n +1+1b n +1=log 2a n +1-1+1log 2a n -1+1=log 2[2a n -12]+1log 2a n -1+1=2+2log 2a n -1log 2a n -1+1=2, ∴数列{b n +1}是首项为2,公比为2的等比数列.(2)由(1),得b n +1=2n ,∴b n =2n -1,∴c n =nb n =n 2n-n ,设A n =1×2+2×22+3×23+…+n ×2n,则2A n =1×22+2×23+3×24+…+n ×2n +1,∴-A n =2+22+23+…+2n -n ×2n +1=21-2n1-2-n ×2n +1=2n +1-n ×2n +1-2,∴A n =(n -1)2n +1+2.设B n =1+2+3+4+…+n ,则B n =n n +12,∴S n =A n -B n =(n -1)2n +1+2-n n +12.高频考点 考点三 裂项相消法求和1.裂项相消法求和是每年高考的热点,题型多为解答题,难度适中,属中档题. 2.高考对裂项相消法的考查常有以下两个命题角度: (1)直接考查裂项相消法求和;(2)与不等式相结合考查裂项相消法求和.[例3] (2013·广东高考)设数列{a n }的前n 项和为S n .已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *.(1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.[自主解答] (1)依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4.(2)当n ≥2时,2S n =na n +1-13n 3-n 2-23n ,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),两式相减,得2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23,整理得(n +1)a n =na n +1-n (n +1),即a n +1n +1-a nn=1, 又a 22-a 11=1,故数列⎩⎨⎧⎭⎬⎫a n n 是首项为1,公差为1的等差数列, 所以a nn=1+(n -1)×1=n ,所以a n =n 2.(3)证明:当n =1时,1a 1=1<74;当n =2时,1a 1+1a 2=1+14=54<74;当n ≥3时,1a n =1n 2<1n -1n =1n -1-1n,此时1a 1+1a 2+...+1a n =1+122+132+142+ (1)2<1+14+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n =1+14+12-1n =74-1n <74.综上,对一切正整数n,有1a1+1a2+…+1a n<74.裂项相消法求和问题的常见类型及解题策略(1)直接考查裂项相消法求和.解决此类问题常用的裂项有:1n n+1=1n-1n+1;12n-12n+1=12⎝⎛12n-1-⎭⎪⎫12n+1;1n+n+1=n+1-n.(2)与不等式相结合考查裂项相消法求和.解决此类问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.1.正项数列{a n}满足:a2n-(2n-1)a n-2n=0.(1)求数列{a n}的通项公式a n;(2)令b n=1n+1a n,求数列{b n}的前n项和T n.解:(1)由a2n-(2n-1)a n-2n=0,得(a n-2n)(a n+1)=0. 由于{a n}是正项数列,所以a n=2n.(2)已知a n=2n,b n=1n+1a n,则b n=12n n+1=12⎝⎛⎭⎪⎫1n-1n+1.T n =12⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n +1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2n +1. 2.设数列{a n }满足a 1+2a 2+22a 3+…+2n -1a n =n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =1log 12a n ,c n =b n b n +1n +1+n ,记S n =c 1+c 2+…+c n ,证明:S n <1.解:(1)由题意a 1+2a 2+22a 3+…+2n -2a n -1+2n -1a n =n2,n ∈N *,当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=n -12.两式相减,得2n -1a n =n 2-n -12=12.所以,当n ≥2时,a n =12n .当n =1时,a 1=12也满足上式,所求通项公式a n =12n (n ∈N *).(2)证明:b n =1log 12a n =1log 12⎝ ⎛⎭⎪⎫12n =1n ,c n =n +1-nn n +1=1n-1n +1,S n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1.——————————[课堂归纳——通法领悟]———————————————— 2种思路——解决非等差、等比数列求和问题的两种思路(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相减来完成.(2)不能转化为等差或等比数列的,往往通过裂项相消法、倒序相加法等来求和. 3个注意点——应用“裂项相消法”和“错位相减法”应注 意的问题 (1)裂项相消法,分裂通项是否恰好等于相应的两项之差.(2)在正负项抵消后,是否只剩下第一项和最后一项,或有时前面剩下两项,后面也剩下两项,未消去的项有前后对称的特点.(3)在应用错位相减法求和时,若等比数列的公比含有参数,应分q =1和q ≠1两种情况求解.答题模板(四)利用错位相减法解决数列求和[典例] (2013·山东高考)(12分)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .[快速规范审题] 第(1)问1.审结论,明解题方向观察所求结论:求{a n }的通项公式――→由于{a n }为等差数列应求a 1和d . 2.审条件,挖解题信息观察条件:{a n }为等差数列,S 4=4S 2,a 2n =2a n +1――→建立关于a 1和d 的方程组⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+2n -1d =2a 1+2n -1d +1. 3.建联系,找解题突破口由S 4=4S 2,a 2n =2a n +1建立关于a 1和d 的方程组――→可求a 1和d a 1=1,d =2――→利用公式a n =2n -1.第(2)问1.审结论,明解题方向观察所求结论:求{b n }的前n 项和T n ―→应求{b n }的通项公式b n . 2.审条件,挖解题信息观察条件:b 1a 1+b 2a 2+…+b n a n=1-12n即⎭⎬⎫⎩⎨⎧n n a b 的前n 项和为nn A 211-=利用b n a n =A n -A n -1可求b n a n――→由1知a n可求b n .3.建联系,找解题突破口 由b 1a 1+b 2a 2+…+b n a n =1-12n 求b n a n bn an =An -An -1b n a n =12n ――→由1知a n =2n -1可求b n =2n -12n――→利用错位相减法求T n ., [准确规范答题](1)设等差数列{a n }的首项为a 1,公差为d . 由S 4=4S 2,a 2n =2a n +1,得 ⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+2n -1d =2a 1+2n -1d +1, ⇨2分 解得a 1=1,d =2 ⇨4分因此a n =2n -1,n ∈N *. ⇨5分(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,此处易忽视对n =1的讨论当n =1时,b 1a 1=12; ⇨6分当n ≥2时,b n a n =1-12n -⎝ ⎛⎭⎪⎫1-12n -1=12n ,⇨7分所以b n a n =12n ,n ∈N *. ⇨8分由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n ,n ∈N *. ⇨9分又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1,⇨10分 两式相减,得此处易搞错作差后的第1项和最后项而致误12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1, ⇨11分 所以T n =3-2n +32n . ⇨12分[答题模板速成]用错位相减法解决数列求和的步骤: 第一步 判断结构若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和第二步 乘公比设{a n ·b n }的前n 项和为T n ,然后两边同乘以q第四步 求和将作差后的结果求和,从而表示出T n 第三步 错位相减乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差[全盘巩固]1.(2014·西安模拟)设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N *,且m ≥2),则必定有( )A .S m >0,且S m +1<0B .S m <0,且S m +1>0C .S m >0,且S m +1>0D .S m <0,且S m +1<0解析:选A ∵-a m < a 1<-a m +1,∴a 1+a m >0,a 1+a m +1<0,∴S m >0,且S m +1<0.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得91-q 31-q =1-q 61-q,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.3.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n解析:选A 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+⎝ ⎛⎭⎪⎫12+122+…+12n =n 2+1-12n. 4.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛⎭⎪⎫1-12n解析:选C a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+b 3+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=23⎝ ⎛⎭⎪⎫1-14n . 5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),设S n 是数列{a n }的前n 项和,则S 2 014=( )A .22 014-1B .3×21 007-3C .3×21 007-1D .3×21 007-2解析:选B 由a n +2a n +1a n +1a n =a n +2a n =2n +12n =2,且a 2=2,得数列{a n }的奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,故S 2 014=(a 1+a 3+a 5+…+a 2 013)+(a 2+a 4+a 6+…+a 2 014)=1-21 0071-2+21-21 0071-2=3×21 007-3.6.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1fn (n ∈N *)的前n 项和是( )A.nn +1 B.n +2n +1 C.n n -1 D.n +1n解析:选A ∵f ′(x )=mx m -1+a ,∴m =2,a =1.∴f (x )=x 2+x ,f (n )=n 2+n .∴1f n =1n 2+n =1n n +1=1n -1n +1, 令S n =1f 1+1f 2+1f 3+…+1f n -1+1f n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12.答案:-2 2n -1-128.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,{a n }的“差数列”的通项公式为2n,则数列{a n }的前n 项和S n =________.解析:∵a n +1-a n =2n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n1-2+2=2n -2+2=2n.∴S n =2-2n +11-2=2n +1-2.答案:2n +1-29.(2013·湖南高考)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.解析:(1)当n =1时,S 1=(-1)a 1-12,得a 1=-14.当n ≥2时,S n =(-1)n(S n -S n -1)-12n .当n 为偶数时,S n -1=-12n ,从而S 1=-14,S 3=-116,当n 为奇数时,S n =12S n -1-12n +1,所以S 3=12S 2-124=-116,得S 2=0,则S 3=S 2+a 3=a 3=-116.(2)由(1)得S 1+S 3+S 5+…+S 99=-122-124-126-…-12100,S 101=-12102,又S 2+S 4+S 6+…+S 100=2S 3+123+2S 5+125+2S 7+127+…+2S 101+12101=0,故S 1+S 2+…+S 100=13⎝ ⎛⎭⎪⎫12100-1. 答案:-116 13⎝ ⎛⎭⎪⎫12100-1 10.设数列{a n }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝ ⎛⎭⎪⎫π2=0. (1)求数列{a n }的通项公式;(2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n . 解:(1)由题设可得,f ′(x )=a n -a n +1+a n +2-a n +1sin x -a n +2cos x .对任意n ∈N *,f ′⎝ ⎛⎭⎪⎫π2=a n -a n +1+a n +2-a n +1=0,即a n +1-a n =a n +2-a n +1,故{a n }为等差数列.由a 1=2,a 2+a 4=8,解得{a n }的公差d =1, 所以a n =2+1·(n -1)=n +1.(2)由b n =2⎝⎛⎭⎪⎫a n +12a n =2⎝ ⎛⎭⎪⎫n +1+12n +1=2n +12n +2知, S n =b 1+b 2+…+b n =2n +2·n n +12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n 2+3n +1-12n .11.已知数列{a n }的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a 1,a 2,a 4,a 7,…构成等差数列{S 5=15.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 …(1)若数阵中从第3且公比相等,已知a 9=16,求a 50的值;(2)设T n =1S n +1+1S n +2+…+1S 2n,求T n .解:(1)设等差数列{b n }的公差为d .∵b 1=1,S 5=15,∴S 5=5+10d =15,d =1, ∴b n =1+(n -1)×1=n .设从第3行起,每行的公比都是q ,且q >0,则a 9=b 4q 2,即4q 2=16,q =2,又1+2+3+…+9=45,故a 50是数阵中第10行的第5个数,a 50=b 10q 4=10×24=160.(2)∵S n =1+2+…+n =n n +12, ∴T n =1S n +1+1S n +2+…+1S 2n =2n +1n +2+2n +2n +3+…+22n 2n +1=2⎝ ⎛⎭⎪⎫1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=2⎝ ⎛⎭⎪⎫1n +1-12n +1=2nn +12n +1.12.已知数列{a n }的前n 项和为S n =n 2.设数列{b n }的前n 项和为T n ,且T n +a n +12n=λ(λ为常数).令c n =b 2n (n ∈N *),求数列{c n }的前n 项和R n .解:当n =1时,a 1=S 1=1.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1.当n =1时,a 1=1满足上式.∴a n =2n -1(n ∈N *).故T n =λ-n2n -1,所以n ≥2时,b n =T n -T n -1=-n2n -1+n -12n -2=n -22n -1. 故c n =b 2n =2n -222n -1=(n -1)⎝ ⎛⎭⎪⎫14n -1,n ∈N *,所以R n =0×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+3×⎝ ⎛⎭⎪⎫143+…+(n -1)×⎝ ⎛⎭⎪⎫14n -1,则14R n =0×⎝ ⎛⎭⎪⎫141+1×⎝ ⎛⎭⎪⎫142+2×⎝ ⎛⎭⎪⎫143+…+(n -2)×⎝ ⎛⎭⎪⎫14n -1+(n -1)×⎝ ⎛⎭⎪⎫14n, 两式相减,得34R n =⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫142+⎝ ⎛⎭⎪⎫143+…+⎝ ⎛⎭⎪⎫14n -1-(n -1)×⎝ ⎛⎭⎪⎫14n=14-⎝ ⎛⎭⎪⎫14n 1-14-(n -1)×⎝ ⎛⎭⎪⎫14n =13-1+3n 3⎝ ⎛⎭⎪⎫14n , 整理,得R n =19⎝ ⎛⎭⎪⎫4-3n +14n -1.所以数列{c n }的前n 项和R n =19⎝⎛⎭⎪⎫4-3n +14n -1.[冲击名校]1.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 830解析:选D 当n =2k 时,a 2k +1+a 2k =4k -1,当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2,∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(2×60-1)=30×3+1192=30×61=1 830.2.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0.证明:由题设,S n =na +n n -12d .(1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,所以d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差是d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c=b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+⎝⎛⎭⎪⎫b 1-d 1-a +12d n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D .(*)在(*)式中分别取n =1,2,3,4,得 A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1, 从而有⎩⎪⎨⎪⎧ 7A +3B +cd 1=0,19A +5B +cd 1=0,21A +5B +cd 1=0,①②③由②③,得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,所以d 1≠0.又cd 1=0,所以c =0. [高频滚动]1.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析:选C 设数列{a n }的公比为q ,则由等比数列的性质知,a 2·a 3=a 1·a 4=2a 1,即a 4=2.由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54,∴a 7=12⎝ ⎛⎭⎪⎫2×54-a 4=14.∴q 3=a 7a 4=18,即q =12.∴a 4=a 1q 3=a 1×18=2,∴a 1=16,∴S 5=16⎝ ⎛⎭⎪⎫1-1251-12=31.2.已知数列{a n }是等比数列,若a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n) C.323(1-4-n ) D.323(1-2-n )解析:选C 设等比数列{a n }的公比为q .∵a 2=2,a 5=14,∴q 3=a 5a 2=18,∴a 1=4,q =12,∴a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3,∴a n a n +1=⎝ ⎛⎭⎪⎫122n -5=8×⎝ ⎛⎭⎪⎫14n -1,a 1a 2+a 2a 3+…+a n a n +1=8⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n 1-14=323(1-4-n).。
高考数学一轮复习数列多选题知识归纳总结附解析
高考数学一轮复习数列多选题知识归纳总结附解析一、数列多选题1.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列. 并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列结论正确的是( ) A .20192g = B .()()()()222123222022210f f f f f f -+-=C .12320192688g g g g ++++=D .22221232019201820202f f f f f f ++++=【答案】AB 【分析】由+2+1+n n n f f f =可得()2+112121n n n n n n n n f f f f f f f f +++++=-=-,可判断B 、D 选项;先计算数列{}n g 前几项可发现规律,使用归纳法得出结论:数列{}n g 是以6为最小正周期的数列,可判断A 、C 选项. 【详解】 对于A 选项:12345678910111211,2,3,1,0,1,12310g g g g g g g g g g g g ============,,,,,,,所以数列{}n g 是以6为最小正周期的数列,又20196336+3=⨯,所以20192g =,故A 选项正确;对于C 选项:()()12320193361+1+2+3+1+0+1+1+22692g g g g ++++=⨯=,故C 选项错误;对于B 选项:斐波那契数列总有:+2+1+n n n f f f =,所以()()22222232122232221f f f f f f f f =-=-,()()22121222021222120f f f f f f f f =-=-, 所以()()()()222123222022210f f f f f f -+-=,故B 正确; 对于D 选项:()212+2+1112+n n n f f f f f f f f ==∴=,,,()222312321f f f f f f f f =-=-, ()233423432f f f f f f f f =-=-,,()2+112121n n n n n n n n f f f f f f f f +++++=-=-。
2021高三数学高考压轴题第一轮复习培优汇编【5】——数列求通项与求和
①-②得 (1
1 2
)S
n
2 2
2 22
2 23
2 24
2 2n
2n 2 n1
(错位相减)
2
1 2 n1
2n 2 n1
∴
Sn
4
n2 2 n1
;
【例
15—倒序相加法】求证:
C
0 n
3C
1 n
5C
2 n
(2n
1)C
n n
(n 1)2n
【解答】:设 Sn
C
0 n
3C
1 n
5C
2 n
(2n
1)C
n n
…………………………..
n
n
1
an
a2
1 2
a1
a3
2 3
a2
a4
3 4
a3
L
全部相乘,可得 an
a1
1 2
2 3
3L 4
n 2 n 1 1 ; n 1 n n
an1
n n
2 1
an2
an
n
n
1an
1
【例 4—公式法】已知下列两数列{an} 的前 n 项和 Sn 的公式,求{an} 的通项公式。
(1) Sn 3n2 n
之积的数学期望为 E ,则 E ________.
【解答】:任取两个数的概率都为
1 Cn2
,∴
E
1 Cn2
(1 2)
1 Cn2
(1 3) ...
1 Cn2
[ n ( n1)]
E
1 Cn2
[(1 2) (13) ...
n (n 1)]
2022年高考数学一轮复习专题专题47数列基础知识与典型例题解析版.docx
专题47:数列基础知识与典型例题(解析版)一、基本概念1、 数列:按照一定次序排列的一列数.2、 数列的项:数列中的每一个数.3、 数列分类:有穷数列:项数有限的数列.无穷数列:项数无限的数列.递增数列:从第2项起,每一项都不小于它的前一项的数列.a n+l -a n >0 递减数列:从第2项起,每一项都不大于它的前一项的数列.a n+l -a n <0 常数列:各项相等的数列. 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的 数列.4、 数列的通项公式:表示数列{%}的第〃项与序号"之间的关系的公式.5、 数列的递推公式:表示任一项弓与它的前一项a# (或前几项)间的关系的公式.【分析】 依次计算出%,,。
4的值■ 【详解】故选:A【答案]A 【分析】 依次计算前几项可知数列的周期性. 【详解】。
] = 2 , a n = 1 ---- (n> 2),an-l% = 1 — 2 = —1 , % =1 - (一1) = 2 ,,都有*+ 2^—7,那么。
4为( 知+21 A.- 7 【答案】AB. 71 10D. 10la1化简可得。
则。
2=厂2 111a4=-2.已知数列{%}中,%=2, a n, 1=1------- (n>2),则 %18 等于(an-\ 1 A. 一21 B.——2C. -1D.21.已知数列{%}满足且对任意neN数列{%}是以3为周期的周期数列,•.•2018 = 3x672+2,, •。
2018 = % = §,故选:A.3,已知数列{a.}, a n-i=ma…+l(n>l),且ai=3>, 03=5,则实数m等于()2A. 0B. -C. 2D. 55【答案】B【分析】直接由<22=3, 473=5代入求解即可.【详解】2 由题意,得。
2=伽?3+1,即3=5m+l,解得m=y.故选:B.4.已知数列囱}, ai=l, a n+\=^~ a…+—,则该数列的第3项等于()2 2【答案】C【分析】根据递推关系先求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6节 数列求和之裂项相消法
【基础知识】
1.裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前错误!未找到引用源。
项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.适用于类似错误!未找到引用源。
(其中错误!未找到引用源。
是各项不为零的等差数列,错误!未找到引用源。
为常数)的数列、部分无理数列等.用裂项相消法求和,需要掌握一些常见的裂项方法:
(1)错误!未找到引用源。
,特别地当错误!未找到引用源。
时,错误!未找到引用源。
;
(21
k
=
,特别地当错误!未找到引用源。
时,
=;
(3)()()
221111212122121n n a n n n n ⎛⎫
==+- ⎪-+-+⎝⎭ (4)()()(
)()()1111
122112n a n n n n n n n ⎛⎫==- ⎪ ⎪+++++⎝⎭ (5)
)()1
1(11q p q p p q pq <--=
一般裂项模型:
(1))()1(n f n f a n -+= (2)
n n n n tan )1tan()
1cos(cos 1sin -+=+ (3)
1
1
1)1(1+-
=+=
n n n n a n (4)
)1
21121(211)12)(12()2(2+--+=+-=n n n n n a n
(5)])
2)(1(1
)1(1[21)2)(1(1++-+=+-=n n n n n n n a n
(6)
n
n n n n n n n S n n n n n n n n n a 2
)1(1
1,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=
-则 (7))1
1(1))((1C
An B An B C C An B An a n +-+-=++=
(8)
n a ==
【规律技巧】
1. 在利用裂项相消法求和时应注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.
对于不能由等差数列、等比数列的前n 项和公式直接求和的问题,一般需要将数列通项的结构进行合理的拆分,转化成若干个等差数列、等比数列的求和.
应用公式法求和时,要保证公式使用的正确性,尤其要区分好等差数列、等比数列的通项公式及前n 项和公式.
使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.
用错位相减法求和时,应注意(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特
别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.
2. 利用裂项相消法解决数列求和问题,容易出现的错误有两个方面:
(1)裂项过程中易忽视常数,如)211(21)2(1+-=+n n n n 容易误裂为11
2
n n -
+,漏掉前面的系数12
;
(2)裂项之后相消的过程中容易出现丢项或添项的问题,导致计算结果错误.
【典例讲解】
【例1】 正项数列{a n }的前n 项和S n 满足:S 2
n -(n 2+n -1)S n -
(n 2+n )=0.
(1)求数列{a n }的通项公式a n ;
(2)令b n =n +1
(n +2)2a 2n
,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *
,都有T n <564.
【解析】(1)解 由S 2n -(n 2+n -1)S n -(n 2
+n )=0,
得[S n -(n 2+n )](S n +1)=0.
由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,
当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项a n =2n .
规律方法 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.
【变式探究】 (2014·山东卷)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.
(1)求数列{a n }的通项公式; (2)令b n =(-1)
n -1
4n
a n a n +1
,求数列{b n }的前n 项和T n . 【解析】(1)因为S 1=a 1,S 2=2a 1+2×1
2×2=2a 1+2, S 4=4a 1+4×32×2=4a 1+12, 由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1, 所以a n =2n -1.
(2)b n =(-1)n -14n a n a n +1=(-1)n -14n (2n -1)(2n +1)
=(-1)
n -1
⎝ ⎛⎭
⎪⎫12n -1+12n +1. 当n 为偶数时,
T n =⎝ ⎛
⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭
⎪⎫12n -1+12n +1=1
-12n +1=2n
2n +1
.
当n 为奇数时,
T n =⎝ ⎛
⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭
⎪⎫12n -1+12n +1=1
+1
2n +1=2n +22n +1
. 所以T n =⎩
⎨⎧2n +2
2n +1
,n 为奇数,2n
2n +1
,n 为偶数.
⎝ ⎛⎭
⎪⎫或T n =2n +1+(-1)n -12n +1
【例2】求数列
⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
2
11n n 的前n 项和.
解
:设
n n n n a n -+=++=
11
1
(裂项)
则
1
13
212
11+++
⋅⋅⋅+++
+=
n n S n
(裂项求和)
=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n 【例3】 在数列{a n }中,11211++
⋅⋅⋅++++=n n n n a n ,又1
2
+⋅=n n n a a b ,求数列{b n }的前n 项的和.
解: ∵ 2
11211n
n n n n a n =++⋅⋅⋅++++=
∴
)11
1(82
122+-=+⋅=
n n n n b n
(裂项)
∴ 数列{b n }的前n 项和
)]1
1
1()4
13
1()3
12
1()2
1
1[(8+-
+⋅⋅⋅+-+-+-=n n
S n (裂项求和)
=)111(8+-
n =
1
8+n n
【例4】求证:
1
sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设
89
cos 88cos 1
2cos 1cos 11cos 0cos 1+⋅⋅⋅++=
S ∵
n n n n tan )1tan()
1cos(cos 1sin -+=+ (裂项)
∴
89
cos 88cos 1
2cos 1cos 11cos 0cos 1+⋅⋅⋅++=
S (裂项求和)
=
]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1
sin 1
-+-+-+- =)0tan 89(tan 1sin 1 -=
1cot 1
sin 1⋅= 1sin 1cos 2 ∴ 原等式成立
【针对训练】 1、求数列1357,,,,24816⋅⋅⋅,21
2
n n -的前n 项和.。