第16讲 用组合法解工程问题
15--组合法工程问题
组合法解工程问题 F15 提示在解答工程问题时,如果对题目提供的条件孤立、分散、静止的看,则难以找到明确的解题途径。
若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
举例1加工一批零件,甲单独做要12个小时,乙单独做要10个小时,丙单独做要15个小时。
如果要求这一批零件要在8个小时以内完成,应该怎么办?请你设计一个方案,并说说需要几个小时?【创造力思维】这是一道开放题,方法有多种,如:(1)若由甲、乙合作,完成时间是:1÷(121+101)=1160(时) (2)若由甲、乙、丙合作,完成的时间是:1÷(121+101+151)=4(时) (3)若由甲先做2小时,再由乙、丙合作,完成的时间是:(1-121×2)÷(101+151)+2=7(时) 举例2一项工程,甲、乙两人合作10天完成,现由甲先单独做5天后,剩下的由乙单独做20天完成。
如果乙单独做这项工作,需要几天完成?【创造力思维】要求乙单独做这项工作需要几天完成,必须先求出乙的工作效率。
可以把“甲先单独做5天,剩下的由乙单独做20天完成”看成“甲、乙合作5天,然后乙单独做15天完成”,把工作总量看做单位“1”,甲、乙的工作效率和是101,用工作量减去甲乙合作5天的工作量得出乙单独做的15天的工作量,从而求出乙的工作效率。
1÷[(1-101×5)÷(20-5)]=30(天) 答:如果乙单独做这项工作,需要30天完成。
举例3一条公路,甲队独修24天完成,乙队独修需30天完成。
甲、乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成。
乙队修了多少天?【创造力思维】把这条公路的全长看作单位“1”,从单位“1”中减去甲6天修的工作量,剩下的就是甲、乙两队合修的工作量,用剩下的工作量除以甲、乙两队工效的和,等于甲、乙两队合修的天数,也就是乙队修的天数。
工程问题(总结)
工程问题例题精讲1.基本量关系运用工作效率、工作时间与工作总量三者之间的关系(工作效率×工作时间= 工作总量)解决问题。
将一切的工作总量都看作“1”,从而将问题解决。
【例1】甲、乙两队修一条1200米的公路,甲队单独修需要15天,乙队单独修需要10天,那么甲、乙两队合修需要多少天?【练1】甲、乙两队修一条公路,甲队单独修需要28天,乙队单独修需要21天,那么甲、乙两队合修需要多少天?,乙单独做需要【例2】一项工程,甲、乙合作12 天完成,甲 3 天完成全部工程的15多少天?【练2】某工程甲、乙合做4天还剩工程的1没有完成,若甲单独做此工程要10天完成,3那么乙单独做此工程要多少天完成?2.用“组合法”解工程问题【例1】一项工程,甲、乙合做需要20天完成,乙、丙合做需要15天,由乙单独做需要30天完成,那么如果甲、乙、丙合做,完成这项工程需要多少天?【练1】一项工程,甲、乙合做需要12天,乙、丙合做需要10天,甲、丙合做需要15天,现在需要甲、乙、丙三人合做完成这项工程,需要多少天?【例2】放满一个水池,打开1、2、3号阀门要20分钟,打开2、3、4号阀门要21分钟,打开1、3、4号阀门要28分钟,打开1、2、4号阀门要30分钟,如果打开1、2、3、4号阀门要几分钟?【练2】某工程由1、2、3小队合做要12天完成;由1、3、5小队合做要7天完成;由2、4、5小队合做要8天完成;由1、3、4小队合做要42天。
这五个小队合做要多少天完成?3.用时间的“拆分与合并的思想”解工程问题【例1】甲、乙两队合作挖一条水渠,30天完成;若甲先挖4天,再由乙挖16天,共,如果由乙队单独挖需要多少天完成?挖了水渠的25【练1】甲、乙两台抽水机共同工作10小时,可以把整池水抽完。
如果先由甲抽水机工作4小时,再由乙抽水机工作6小时,可以抽完整池水的7。
甲、乙两台抽水机单独工15作,各需几小时才能将整池水抽完?【例2】一蓄水池,甲、乙两管同时蓄水,5小时蓄满;乙、丙两管同时蓄水,4小时蓄满;现在先开乙管6小时,还需甲、丙两管同时开2小时才能蓄满;乙管单独开几小时可以蓄满?【练2】一项工作,甲、乙、丙3人合做6小时可以完成;如果甲工作6小时,乙、丙;如果甲、乙合做3小时,丙做6小时,也可以完合做2小时,可以完成这项工作的23。
小学解工程问题的方法归纳总结
解工程问题的方法工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。
这三者之间的关系是:工作效率×工作时间=工作量工作量÷工作时间=工作效率工作量÷工作效率=工作时间根据上面的数量关系,只要知道三者中的任意两种量,就可求出第三种量。
由于工作量的已知情况不同,工程问题可分为整数工程问题和分数工程问题两类。
在整数工程问题中,工作量是已知的具体数量。
解答这类问题时,只要按照上面介绍的数量关系计算就可解题,计算过程中一般不涉及分率。
在分数工程问题中,工作量是未知数量。
解这类题时,也要根据上面介绍的数量关系计算,但在计算过程中要涉及到分率。
一、工作总量是具体数量的工程问题例1 建筑工地需要1200吨水泥,用甲车队运需要15天,用乙车队运需要10天。
两队合运需要多少天?(适于四年级程度)解:这是一道整数工程问题,题中给出了总工作量是具体的数量1200吨,还给出了甲、乙两队完成总工作量的具体时间。
先根据“工作量÷工作时间=工作效率”,分别求出甲、乙两队的工作效率。
再根据两队工作效率的和及总工作量,利用公式“工作量÷工作效率=工作时间”,求出两队合运需用多少天。
甲车队每天运的吨数:(甲车队工作效率)1200÷15=80(吨)乙车队每天运的吨数:(乙车队工作效率)1200÷10=120(吨)两个车队一天共运的吨数:80+120=200(吨)两个车队合运需用的天数:1200÷200=6(天)综合算式:1200÷(1200÷15+1200÷10)=1200÷(80+120)=1200÷200=6(天)答略。
*例2 生产350个零件,李师傅14小时可以完成。
如果李师傅和他的徒弟小王合作,则10小时可以完成。
如果小王单独做这批零件,需多少小时?(适于四年级程度)解:题中工作总量是具体的数量,李师傅完成工作总量的时间也是具体的。
第16讲 用“组合法”解工程问题
小学奥数举一反三(六年级)第16讲 用“组合法”解工程问题
【王牌例题1】
加工一批零件,甲独做要12小时,乙独做要10小时, 丙独做要15小时。如果要求这批零件在8小时以内做完, 应该怎么办?请你设计一个方案,并说说需要几小时?
小学奥数举一反三(六年级)第16讲 用“组合法”解工程问题
举一反三1-1:
举一反三4-3:
一项工程,甲、乙两队合做10天完成,乙、丙两队合
做8天完成。现在甲、乙、丙三队合做4天后,余下的工 程由乙队独做 51 天完成。乙队单独做这项工程需多少天ቤተ መጻሕፍቲ ባይዱ
2
可以完成?
小学奥数举一反三(六年级)第16讲 用“组合法”解工程问题
举一反三4-4:
一件工作,甲、乙合做4小时完成,乙、丙合做5 小时完成。现在由甲、丙合做2小时后,余下的由 乙6小时完成。乙独做这件工作需几小时才能完成?
【王牌例题3】
单独完成一项工程,甲可比规定时间提前2天完成,乙 则要超过规定时间3天才能完成,如果甲乙两人一起做2 天后,剩下的由乙独做,那么刚好在规定时间完成。这项 工程如果甲、乙两人一起做需多少天完成?
小学奥数举一反三(六年级)第16讲 用“组合法”解工程问题
举一反三3-1:
一项工程,如果由甲单独做,正好在计划规定的时间 完成;如果由乙独做,要超过规定的时间5天才能完成, 如果先由甲乙一起做3天后,其余的再由乙独做,正好也 在计划规定的时间完成。完成这项工程计划用多少天?
小学奥数举一反三(六年级)第16讲 用“组合法”解工程问题
举一反三3-2:
一项任务,甲按规定时间可提前3天完成,乙则要超过 规定时间5天才能完成。现在甲、乙两人一起做3天后, 剩下的由乙继续做,则正好在规定日期里完成。若由甲单 独完成这项任务需要多少天?
小升初数学讲义之——工程问题
小升初——工程问题工程问题是小学的重点题型,也是初中数学的常见问题。
掌握工作时间、工作总量、工作效率之间的关系,并熟练转化工作方式,利用适合的解题方法如假设法、比例关系等解决工程问题是重点!一、组合工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
1.一件工作,甲独做要20天完成,乙独做要12天完成。
这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天。
这件工作由甲先做了几天?2.甲、乙两人合作加工一批零件,8天可以完成。
中途甲因事停工3天,因此,两人共用了10天才完成。
如果由甲单独加工这批零件,需要多少天才能完成?3.一项工程,甲先单独做2天,然后与乙合作7天,这样才完成全工程的一半,已知甲、乙工作效率的比是3:2,如果这件工作由乙单独做,需要多少天才能完成?4.甲、乙、丙三人承包一项工程,发给他们工资共1800元,三人完成这项工程的具,因为甲有事,由乙、丙合作2天体情况是:甲、乙两人合作6天完成了工程的13,以后三人合作5天完成了这项工程,按完成量的多少来付劳动完成余下工程的14报酬,甲、乙、丙各得多少元?5.有12头羊14天可以吃完12亩草,13头羊44天可以吃完22亩草,问多少头羊60天可以吃完50亩草?6.原计划18个人植树,按计划工作了2小时后,有3个人被抽走了,于是剩下的人每小时比原计划多种1棵树,还是按期完成了任务.原计划每人每小时植______棵树.7.一项工程,甲做10天乙做20天完成,甲做15天乙做12也能完成。
现乙先做4天,问甲还要多少天完成?8.一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成。
如果先由甲打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时,……两人如此交替工作。
小学奥数训练第16周工程问题(一)
第16周工程问题(一)专题简析在解答工程问题时,如果对题目提供的条件孤立、静止地看,则难以找到明确的解题途径。
如果把相互关联的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题的途径。
王牌例题1加工一批零件,甲独做要12小时,乙独做要10小时,丙独做要15小时。
如果要求这批零件在8小时以内做完,应该怎么办? 请你设计一个方輩并说说需要几小时?【思路导航】这是一道开放题,方法有多种,如:⑴若由甲、乙一起做,完成时间是:⑵若由甲、乙、丙一起做,完成时间是:(3)若由甲先做2小时,再由乙、丙一起做,完成时间是:举一反三11. 修一条水渠,甲工程队单独修需20天完成,乙工程队单独修需15天完成,丙工程队单独修需30天完成。
若要在13天内完成任务,应该怎么办?2. 修一条路,甲队单独修需8天完成,乙队单独修需10天完成,丙队单独修需12天完成。
若要在6天内完成,应该怎么办?3. 一项工程,甲队独做需60天完成,乙队独做需30天完成,丙队独做需20天完成。
若要在15天内完成,应该怎么办?王牌例题2一项工程,甲、乙两人一起做需36天完成,乙、丙两人一起做需45天完成,甲、丙两人一起做需60天完成。
甲、乙、丙独做,各需多少天完成?【思路导航】甲工效+乙工效=1/36乙工效+丙工效=1/45甲工效+丙工效=1/60(甲工效+乙工效+丙工效)×2=甲工效+乙工效+丙工效=丙: = 180(天)甲: =90天)乙: =60天)答:甲独做需90天完成,乙独做需60天完成,丙独做需180 天完成。
举一反三21. 一项工程,甲、乙两队一起做需12天完成,乙、丙两队一起做需15天完成,甲、丙两队一起做需20天完成。
如果甲、乙、丙三队一起做,需几天完成?2. 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。
组合法解工程问题
一项工程甲干3天,乙干5天可以完 成1/2,甲干5天,乙干3天可以完成 1/3,甲、做2天,乙做5天,共 完成全部工程的4/15;甲做5天,乙 做2天,共完成全部工程的19/60。 甲、乙合作完成这项工程共需要多 少天?
师徒二人合作一批零件,12天可 以完成,师傅先做3天,由徒弟 接独做1天,共完成任务的3/20, 如果让师傅独做,多少天可以完成?
练习:1、一项工程,甲、乙两队合作 12天完成,现在由甲乙两队合作4天 后,余下的工程先由甲独做10天,再 由乙独做5天,正好完成,求甲、乙 独做这项工程各需要几天?
1.修一条街道,甲队每天修8小是地, 5天可以修完;乙队每天修10小时, 6天完成。两队合作,每天6小时, 几天可以完成?
货场有一堆沙子,如果用3辆卡车4 天可运完,用4辆马车5天可以运完, 用20辆板车6天可以运完;现在用2 辆卡车、3辆马车和7辆板车运了两 天后,全用板车(15辆)运几天能 运完?
组合法解工程问题
例、一项工程,甲、乙合作要48天完成,如果由 甲独做60天,再由乙单独做32天,也能完成任务 ,问甲、乙两队各自独做,分别要多少天才能完 成?
练习1、一项工程,由甲、乙合作12天 完成,现在由甲、乙合作4天后下的工 程先由甲独做10天,再由乙独做5天, 正好完成,求甲、乙独做这项工程各需 要多少天?
?
一项工程,甲、乙两人合作,36天 完成,乙、丙合作,45天完成,甲 、丙两人合作,60天完成,甲、乙、 丙独做各需要多少天完成?
放满一个水池的水,若同时打开1、 2、3号阀门,则20分钟可以完成, 若同时打开2、3、4号阀门,则21分 钟可以完成,若同时打开1、3、4号 阀门则28分钟可以完成,若同时打 开1、2、4号阀门则30分钟可以完成 若同时打开1、2、3、4号阀门则多 少分钟可以完成?
第16讲 用“组合法”解工程问题
第16讲用“组合法”解工程问题一、知识要点在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
二、精讲精练【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是1/15,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量7/30-1/15×3=1/30,从而求出甲队的工作效率。
所以1÷【1/15-(7/30-1/15×3)÷(5-3)】=20(天)答:乙队单独完成全部工程需要20天。
练习1:1.师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的3/20。
如果这批零件由师傅单独做,多少天可以完成?2.某项工程,甲、乙合做1天完成全部工程的5/24。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的13/124。
甲、乙两队单独完成这项工程各需多少天?3.甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15。
甲、乙两队独做各需几天完成?【例题2】一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的1/2。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(1/2-1/12×3)÷2=1/8;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
完整第16周 用组合法解工程问题
第十六周用“组正当〞解工程咨询题专题简析:在解答工程咨询题时,假如对标题供给的前提孤破、疏散、运动地看,那么难以寻到明白的解题道路,假定用“组正当〞把存在相依关联的数学信息进展适当组合,使之成为一个新的根本单元,便会使荫蔽的数目关联破即阴暗化,从而顺遂寻到解题道路。
例题1。
一项工程,甲、乙两队协作15天实现,假定甲队做5天,乙队做3天,只能实现工程的,乙队独自完玉成部工程需求几多天?【思绪导航】此题曾经明白甲、乙两队的任务效力跟是,只需求出甲队货乙队的任务效力,那么咨询题可解,但是这恰是此题的难点,用“组正当〞将甲队独做5天,乙队独做3天,组分解甲、乙两队协作了3天后,甲队独做2天来思索,就能够求出甲队2天的任务量-×3=,从而求出甲队的任务效力。
因此1÷【-〔-×3〕÷〔5-3〕】=20〔天〕答:乙队独自完玉成部工程需求20天。
训练11、师、徒二人合做一批整机,12天能够实现。
徒弟先做了3天,因事外出,由徒弟接着做1天,共实现义务的。
假如这批整机由徒弟独自做,几多天能够实现?2、某项工程,甲、乙合做1天完玉成部工程的。
假如这项工程由甲队独做2天,再由乙队独做3天,能完玉成部工程的。
甲、乙两队独自实现这项工程各需几多天?3、甲、乙两队合做,20天可实现一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的。
甲、乙两队独做各需几多天实现?例题2。
一项工程,甲队独做12天能够实现。
甲队先做了3天,再由乙队做2天,那么能实现这项工程的。
如今甲、乙两队合做假定干天后,再由乙队独自做。
做完后发觉两段所用时刻相称。
求两段一共用了几多天?【思绪导航】此题非常轻易先求乙队的任务效力是:〔-×3〕÷2=;再由前提“做完后发觉两段所用时刻相称〞的题意,可组分解由两个乙队跟一个甲队合做需假定干天实现,即可求出相称的时刻。
(1)乙队天天实现这项工程的〔-×3〕÷2=(2)两段时刻一共是1÷〔×2+〕×2=6〔天〕答:两段时刻一共是6天。
冀教小学奥数工程问题题型大全及答案1
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间,在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。
工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。
五:类型及方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假: 1.分想:划分工作量。
2.假设法:假设不休息。
3.方程法四:周期工程休息及周期:已知条件的顺序:①先工效,再周期,②先周期,再天数。
1..天数:①近似天数,②准确天数。
2.列表确定工作天数。
交替及周期:估算周期,注意顺序!注水及周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
五:工效变化。
六:比例:1.分比及连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115 ,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
小学奥数工程问题题型大全及答案
奥数之工程问题在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间,在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”;工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想;五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化比例,4.假设法;二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假: 1.分想:划分工作量;2.假设法:假设不休息;3.方程法四:周期工程休息与周期:已知条件的顺序:①先工效,再周期,②先周期,再天数;1..天数:①近似天数,②准确天数;2.列表确定工作天数;交替与周期:估算周期,注意顺序注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出;五:工效变化;六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想周期;七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题;一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径;例题1;一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的错误!,乙队单独完成全部工程需要几天思路导航此题已知甲、乙两队的工作效率和是错误!,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量错误!-错误!×3=错误!,从而求出甲队的工作效率;所以1÷错误!-错误!-错误!×3÷5-3=20天答:乙队单独完成全部工程需要20天;边讲边练:1、师、徒二人合做一批零件,12天可以完成;师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的错误!;如果这批零件由师傅单独做,多少天可以完成2、某项工程,甲、乙合做1天完成全部工程的错误!;如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的错误!;甲、乙两队单独完成这项工程各需多少天3、甲、乙两队合做,20天可完成一项工程;先由甲队独做8天,再由乙队独做12天,还剩这项工程的错误!;甲、乙两队独做各需几天完成例题2:一项工程,甲队独做12天可以完成;甲队先做了3天,再由乙队做2天,则能完成这项工程的错误!;现在甲、乙两队合做若干天后,再由乙队单独做;做完后发现两段所用时间相等;求两段一共用了几天思路导航此题很容易先求乙队的工作效率是:错误!-错误!×3÷2=错误!;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间;(1)乙队每天完成这项工程的错误!-错误!×3÷2=错误!(2)两段时间一共是1÷错误!×2+错误!×2=6天答:两段时间一共是6天;边讲边练:1、一项工程,甲队独做15天完成;若甲队先做5天,乙队再做4天能完成这项工程的错误!;现由甲、乙两队合做若干天后,再由乙队单独做;做完后发现,两段时间相等;这两段时间一共是几天2、一项工程,甲、乙合做8天完成;如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天;乙独做这项工程要几天完成3、某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天;这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍;终于完成了这一工作;问总共用了多少天例题3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的错误!没有栽,已知哥哥每小时比弟弟每小时多栽7棵;共要移栽西红柿苗多少棵思路导航把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几;哥哥每小时栽总数的几分之几1-错误!-错误!×1÷3-1=错误!一共要移栽的西红柿苗多少棵7÷错误!-错误!-错误!=112棵答:共要移栽西红柿苗112棵;边讲边练:1、加工一批机器零件,师、徒合做12小时可以完成;先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的错误!;已知师傅每小时比徒弟多做10个零件;这批零件共有多少个2、修一条公路,甲、乙两队合做6天可以完成;先由甲队修5天,再由乙队修3天,还剩这条公路的错误!没有修;已知甲队每天比乙队多修20米;这条公路全长多少米3、修一段公路,甲队独修要40天,乙队独修要用24天;两队同时从两端开工,结果在距中点750米处相遇;这段公路全长多少米例题4:一项工作,甲、乙、丙3人合做6小时可以完成;如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的错误!;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的错误!;如果由甲、丙合做,需几小时完成思路导航将条件“甲工作6小时后,乙、丙合做2小时,可以完成这项工作的错误!”组合成“甲工作4小时,甲、乙、丙合做2小时可以完成这项工作的错误!”,则求出甲的工作效率;同理,运用“组合法”再求出丙的工作效率;甲每小时完成这项工程的几分之几错误!-错误!×2÷6-2=错误!丙每小时完成这项工程的几分之几错误!-错误!×3÷6-3=错误!甲、丙合做需完成的时间为:1÷错误!+错误!=7错误!小时答:甲、丙合做完成需要7错误!小时;边讲边练:1、一项工作,甲、乙、丙三人合做,4小时可以完成;如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的错误!;如果甲、乙合做2小时后,丙再做4小时,可以完成这项工作的错误!;这项工作如果由甲、丙合做需几小时完成2、一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成;现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成;乙独做这项工程要几天就可以完成3、一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成;现在甲、乙、丙三队合做4天后,余下的工程由乙队独做5错误!天完成;乙队单独做这项工程需多少天可以完成4、一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成;现在由甲、丙合做2小时后,余下的由乙6小时完成;乙独做这件工作需几小时才能完成例题5:一条公路,甲队独修24天可以完成,乙队独修30天可以完成;先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成;如果由甲、乙、丙三队同时开工修这条公路,几天可以完成思路导航将条件“先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成”组合成“甲、乙两队各修4+7=11天后,再由丙队单独修了7天才全部完成;”就可以求出丙队的工作效率;丙队每天修这条公路的1-错误!+错误!×4+7=错误!三队合修完成时间为1÷错误!+错误!+错误!=10天答:10天可以完成;边讲边练:1、一件工作,甲单独做12小时完成;现在甲、乙合做4小时后,乙又用6小时才完成;这件工作始终由甲、乙合做几小时可以完成2、一条水渠,甲队独挖120天完成,乙队独挖40天完成;现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完;这条水渠由丙队单独挖,多少天可以完成3、一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成;如果甲、丙合做3天后,由乙单独做,还要9天才能完成;如果全部工作由3人合做,需几天可以完成4、一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天;这时甲队调走,乙队又继续做了15天才完成;甲队独做这项工程需要多少天二、特殊工程问题专题简析:有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题; 例1:修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成;两队合作,每天工作6小时,几天可以完成把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”;则1÷错误!+错误!÷6=4天或1÷错误!+错误!×6=4天答:4天可以完成;边讲边练:1、修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成;现在让甲、乙两队合修,要求2天完成,每天应修几小时2、一项工作,甲组3人8天能完成,乙组4人7天也能完成;现在由甲组2人和乙组7人合作,多少天可以完成3、货场上有一堆沙子,如果用3辆卡车4天可以完成,用4辆马车5天可以运完,用20辆小板车6天可以运完;现在用2辆卡车、3辆马车和7辆小板车共同运两天后,全改用小板车运,必须在两天内运完;问:后两天需要多少辆小板车例2:有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时;甲和丙在A仓库,乙在B仓库,同时开始搬运;中途丙转向帮助乙搬运;最后,两个仓库同时搬完,丙帮助甲、乙各多少时间设搬运一个仓库的货物的工作量为“1”;总整体上看,相当于三人共同完成工作量“2”①三人同时搬运了2÷错误!+错误!+错误!=8小时②丙帮甲搬了1-错误!×8÷错误!=3小时③丙帮乙搬了8-3=5小时答:丙帮甲搬了3小时,帮乙搬了5小时;边讲边练:1、师、徒两人加工相同数量的零件,师傅每小时加工自己任务的错误!,徒弟每小时加工自己任务的错误!;师、徒同时开始加工;师傅完成任务后立即帮助徒弟加工,直至完成任务,师傅帮徒弟加工了几小时2、有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要18小时,乙需要12小时,丙需要9小时;甲、乙在A仓库,丙在B仓库,同时开始搬运;中途甲又转向帮助丙搬运;最后,两个仓库同时搬完;甲帮助乙、丙各多少小时3、甲、乙两人同时加工一批零件,完成任务时,甲做了全部零件的错误!,乙每小时加工12个零件,甲单独加工这批零件要12小时,这批零件有多少个例3:一件工作,甲独做要20天完成,乙独做要12天完成;这件工作先由甲做了若干天,然后由乙继续做完,从开始到完工共用了14天;这件工作由甲先做了几天解法一:根据两人做的工作量的和等于单位“1”列方程解答,很容易理解;解:设甲做了x天,则乙做了14-x天;错误! x+错误!×14-x=1X=5解法二:假设这14天都由乙来做,那么完成的工作量就是错误!×14,比总工作量多了错误!×14-1=错误!,乙每天的能够做量比甲每天的工作两哦了错误!-错误!=错误!,因此甲做了错误!÷错误!=5天练习3:1、一项工程,甲独做12天完成,乙独做4天完成;若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了几天2、一项工程,甲队单独做需30天完成,乙队单独做需40天完成;甲队单独做若干天后,由乙队接着做,共用35天完成了任务;甲、乙两队各做了多少天3、一项工程,甲独做要50天,乙独做要75天,现在由甲、乙合作,中间乙休息几天,这样共用40天完成;求乙休息的天数;例4:甲、乙两人合作加工一批零件,8天可以完成;中途甲因事停工3天,因此,两人共用了10天才完成;如果由甲单独加工这批零件,需要多少天才能完成解法一:先求出乙的工作效率,再求出甲的工作效率;最后求出甲单独做需要的天数;①甲、乙同时做的工作量为错误!×10-3=错误!②乙单独做的工作量为1-错误!=错误!③乙的工作效率为错误!÷3=错误!④甲的工作效率为错误!-错误!=错误!⑤甲单独做需要的天数为1÷错误!=12天解法二:从题中得知,由于甲停工3天,致使甲、乙两人多做了10-8=2天;由此可知,甲3天的工作量相当于这批零件的2÷8=1/43÷10-8÷8=12天或3×8÷10-8=12天答:甲单独做需要12天完成;练习4:1、甲、乙两人合作某项工程需要12天;在合作中,甲因输请假5天,因此共用15天才完工;如果全部工程由甲单独去干,需要多少天才能完成2、一段布,可以做30件上衣,也可做48条裤子;如果先做20件上衣后,还可以做多少条裤子3、一项工程,甲、乙合作6小时可以完成,同时开工,中途甲通工了小时,因此,经过小时才完工;如果这项工程由甲单独做需要多少小时4、一项工程,甲先单独做2天,然后与乙合作7天,这样才完成全工程的一半,已知甲、乙工作效率的比是3:2,如果这件工作由乙单独做,需要多少天才能完成例5:放满一个水池的水,如果同时开放①②③号阀门,15小时放满;如果同时开放①③⑤号阀门,12小时可以放满;如果同时开放②④⑤号阀门,8小时可以放满;问:同时开放这五个阀门几小时可以放满这个水池从整体入手,比较条件中各个阀门出现的次数可知,①③号阀门各出现3次,②④⑤号阀门各出现2次;如果错误!+错误!+错误!+错误!再加一个错误!,则是五个阀门各放3小时的总水量;1÷错误!+错误!+错误!+错误!+错误!÷3=1÷错误!÷3=6小时边讲边练:1、完成一件工作,甲、乙合作需15小时,乙、丙两人合作需12小时,甲、丙合作需10小时;甲、乙丙三人合作需几小时才能完成2、一项工程,甲干3天,乙干5天可以完成错误!,甲干5天、乙干3天可完成错误!;甲、乙合干需几天完成3、完成一件工作,甲、乙两人合作需20小时,乙、丙两人合作需28小时,丙、丁两人合作需30小时;甲、丁两人合作需几小时4、一项工程,由一、二、三小队合干需18天完成,由二、三、四小队合干需15天完成,由一、二、四小队合干需12天完成,由一、三、四小队合干需20天完成;由第一小队单独干需要多少天三、周期工程问题专题简析:周期工程问题中,工作时工作人员或物体是按一定顺序轮流交替工作的;解答时,首先要弄清一个循环周期的工作量,利用周期性规律,使貌似复杂的问题迅速地化难为易;其次要注意最后不满一个周期的部分所需的工作时间,这样才能正确解答;例1:一项工程,甲单独做需要12小时,乙单独做需要18小时;若甲做1小时后乙接替甲做1小时,再由甲接替乙做1小时……两人如此交替工作,问完成任务时需共用多少小时把2小时的工作量看做一个循环,先求出循环的次数;①需循环的次数为:1÷错误!+错误!=错误!>7次②7个循环后剩下的工作量是:1-错误!+错误!×7=错误!③余下的工作两还需甲做的时间为:错误!÷错误!=错误!小时④完成任务共用的时间为:2×7+错误!=14错误!小时答:完成任务时需共用14错误!小时;边讲边练:1、一项工程,甲单独做要6小时完成,乙单独做要10小时完成;如果按甲、乙;甲、乙……的顺序交替工作,每次1小时,需要多少小时才能完成2、一部书稿,甲单独打字要14小时,乙单独打字要20小时;如果先由甲打1小时,然后由乙接替甲打1小时;再由甲接替乙打1小时……两人如此交替工作,打完这部书稿共需用多少小时3、一项工作,甲单独完成要9小时,乙单独完成要12小时;如果按照甲、乙;甲、乙……的顺序轮流工作,每人每次工作1小时,完成这项工程的2/3共要多少时间例2:一项工程,甲、乙合作26错误!天完成;如果第一天甲做,第二天乙做,这样交替轮流做,恰好用整数天完成;如果第一天乙做,第二天甲做,这样交替轮流做,比上次轮流做要多半天才能完成;这项工程由甲单独做要多少天才能完成由题意可以推出“甲先”的轮流方式,完成时所用的天数为奇数,否则不论“甲先”还是“乙先”,两种轮流方式完成的天数必定相同;根据“甲先”的轮流方式为奇数,两种轮流方式的情况可表示如下:甲乙甲乙……甲乙甲乙甲乙甲……乙甲乙错误!甲竖线左边做的天数为偶数,谁先做没关系;竖线右边可以看出,乙做一天等于甲做半天,即甲的工作效率是乙的2倍;①甲每天能做这项工程的1÷26错误!×错误!=错误!②甲单独做完成的时间1÷错误!=40天答:这项工程由甲单独做需要40天才能完成;边讲边练:1、一项工程,乙单独做20天可以完成;如果第一天甲做,第二天乙做,这样轮流交替做,也恰好用整数天完成;如果第一天乙做,第二天甲做,这样轮流交替做,比上次轮流做要多半天才能完成;这项工程由甲独做几天可以完成2、一项工程,甲单独做6天可以完成;如果第一天甲做,第二天乙做,这样轮流交替做,恰好也用整数天完成;如果第一天乙做,第二天甲做,这样轮流交替做,比上次轮流做要多错误!天才能完成;这项工程由甲、乙合作合作几天可以完成3、一项工程,甲、乙合作12错误!小时可以完成;如果第一小时甲做,第二小时乙做,这样轮流交替做,也恰好用整数小时完成;如果第一小时乙做,第二小时甲做,这样轮流交替做,比上次轮流做要多错误!小时才能完成;这项工程由甲独做几小时可以完成4、蓄水池有一跟进水管和一跟排水管;单开进水管5小时灌满一池水,单开排水管3小时排完一池水;现在池内有半池水,如果按进水、排水;进水、排水……的顺序轮流依次各开1小时,多少小时后水池的水刚好排完例3:一批零件,如果第一天甲做,第二天乙做,这样交替轮流做,恰好用整数天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩60个不能完成;已知甲、乙工作效率的比是5:3;甲、乙每天各做多少个由题意可以推出“甲先”的轮流方式,完成时所用的天数为奇数,否则不论“甲先”还是“乙先”,两种轮流方式完成的天数必定相同;根据“甲先”的轮流方式为奇数,两种轮流方式的情况可表示如下:甲乙甲乙……甲乙甲乙甲乙甲……乙甲乙剩60个竖线左边做的天数为偶数,谁先做没关系;竖线右边可以看出,剩下的60个零件就是甲、乙工作效率的差;甲每天做的个数为:60÷5-3×5=150个乙每天做的个数为:60÷5-3×3=90个答:甲每天做150个,乙每天做90个;边讲边练:1、一批零件如果第一天师傅做,第二天徒弟做,这样交替轮流做,恰好用整数天完成;如果第一天徒弟做,第二天师傅做,这样交替轮流做,做到上次轮流完成时所用的天数后,还剩84个不能完成;已知师、徒工作效率的比是7:4;师、徒二人每天各做多少个2、一项工程,如果第一天甲做,第二天乙做,这样交替轮流恰好用整数天完成;如果死一天乙做,第二天甲做,这样交替轮流做要多错误!天才能完成;如果让甲、乙二人合作,只需2错误!天就可以完成;现在,由乙独做需要几天才能完成3、红星机械厂有1080个零件需要加工;如果第一小时让师傅做,第二小时让徒弟做,这样交替轮流,恰好整数小时可以完成;如果第一小时让徒弟做,第二小时让师傅做,这样交替轮流,做到上次轮流完成时所用的天数后,还剩60个不能完成;如果让师、徒二人合作,只需3小时36分就能完成;师、徒每小时各能完成多少个例4:打印一部稿件,甲单独打要12小时完成,乙单独打要15小时完成;现在,甲、乙两人轮流工作;甲工作1小时,乙工作2小时;甲工作2小时,乙工作1小时;甲工作1小时,乙工作2小时……如此这样交替下去,打印这部书稿共要多少小时根据已知条件,我们可以把6小时的工作时间看做一个循环;在每一个循环中,甲、乙都工作了3小时;①每循环一次,他们共完成全部工程的错误!+错误!×3=错误!②总工作量里包含几个9/20:1÷错误!=2错误!③甲、乙工作两个循环后,剩下全工程的1-错误!×2=错误!④由于错误!>错误!,所以,求甲工作1小时后剩下的工作由乙完成还需的时间为错误!-错误!÷错误!=错误!⑤打印这部稿件共需的时间为:6×2+1+错误!=13错误!小时答:打印这部稿件共需13错误!小时;边讲边练:1、一个水池安装了甲、乙两根进水管;单开甲管,24分钟能包空池灌满;单开乙管,18分钟能把空池灌满;现在,甲、乙两管轮流开放,按照甲1分钟,乙2分钟,甲2分钟,乙1分钟,甲1分钟,乙2分钟……如此交替下去,灌满一池水共需几分钟2、一件工作,甲单独做,需12小时完成;乙单独做需15小时完成;现在,甲、乙两人轮流工作,甲工作2小时,乙工作1小时;甲工作1小时,乙工作2小时;甲工作2小时,乙工作1小时……如此交替下去,完成这件工作共需多少小时3、一项工程,甲单独做要50天完工,乙单独做需60天完工;现在,自某年的3月2日两人一起开工,甲每工作3天则休息1天,乙每工作5天则休息一天,完成全部工程的错误!为几月几日4、一项工程,甲工程队单独做完要150天,乙工程队单独做完需180天;两队合作时,甲队做5天,休息2天,乙队做6天,休息1天;完成这项工程要多少天例5:有一项工程,由甲、乙、丙三个工程队每天轮做;原计划按甲、乙、丙次序轮做,恰好整数天完成呢感;如果按乙、丙、甲次序轮做;比原计划多用天;如果按丙、甲、乙次序做,比原计划多用错误!天;已知甲单独做13天完成;且3个工程队的工效各不相同;这项工程由甲、乙、丙合作要多少天完工由题意可以推出:按甲、乙、丙次序轮做,能够的天数必定是3的倍数余1或余2;如果是3的倍数,三种轮流方式完工的天数,必定相同;如果按甲、乙、丙的次序轮流做,用的天数是3的倍数余1;三种轮流方式做的情况可表示如下:甲乙丙,甲乙丙,……甲乙丙, 甲乙丙甲,乙丙甲,……乙丙甲, 乙错误!丙丙甲乙,丙甲乙,……丙甲乙, 丙错误!甲从中可以退出:丙=错误!甲;由于乙=甲-错误!丙=甲-错误!甲×错误!,又推出乙=错误!甲;与题中“三个工程队的工效各不相同”矛盾;所以,按甲、乙、丙的次序轮做,用的天数必定是3的倍数余2;三种轮流方式用的天数必定如下所示:甲乙丙,甲乙丙,……甲乙丙, 甲乙乙丙甲,乙丙甲,……乙丙甲, 乙丙错误!甲丙甲乙,丙甲乙,……丙甲乙, 丙甲错误!乙由此推出:丙=错误!甲,丙=错误!乙①丙队每天做这项工程的错误!×错误!=错误!②乙队每天做这项工程的错误!÷错误!=错误!③甲、乙、丙合作完工需要的时间为1÷错误!+错误!+错误!=5错误!天答:甲、乙、丙合作要5错误!天完工;边讲边练:1、有一项工程,由三个工程队每天轮做;原计划按甲、乙、丙次序轮做,恰好用整数天完成呢感;如果按乙、丙、甲次序轮做;比原计划多用错误!天;如果按丙、甲、乙次序做,比原计划多用错误!天;已知甲单独做7天完成;且3个工程队的工效各不相同;这项工程由甲、乙、丙合作要多少天完工2、有一项工程,由三个工程队每天轮做;原计划按甲、乙、丙次序轮做,恰好整数天完成呢感;如果按乙、丙、甲次序轮做;比原计划多用错误!天;如果按丙、甲、乙次序做,比原计划多用错误!天;已知甲单独做10天完成;且3个工程队的工效各不相同;这项工程由甲、乙、丙合作要多少天完工3、有一项工程,由甲、乙、丙三个工程队每天轮做;原计划按甲、乙、丙次序轮做,恰好整数天完成呢感;如果按乙、丙、甲次序轮做;比原计划多用错误!天;如。
六年级上册数学竞赛课件-第16周 用组合法解工程问题(共12张PPT)-人教新课标(2014秋)
3 .某工作,甲单独做要 12 天,乙单独做要 18 天,丙单独做要 24 天。 这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲 3 倍, 再由丙接着做,丙做的天数是乙的 2 倍。终于完成了这一工作。问 总共用了多少天?
第 16 周 用组合法解工程问题 疯狂操练三
【例题 3 】 移栽西红柿苗若干棵,如果哥、弟二人合栽 8 小时完成, 先由哥哥栽了 3 小时后,又由弟弟栽了 1 小时,还剩总棵数的 11/16 没有栽,已知哥哥每小时比弟弟每小时多栽 7 棵。共要移栽西红柿 苗多少棵?
【练习 1 】
1 .师、徒二人合做一批零件, 12 天可以完成。师傅先做了 3 天,因 事外出,由徒弟接着做 1 天,共完成任务的 3/20 。如果这批零件由 师傅单独做,多少天可以完成? 2 .某项工程,甲、乙合做 1 天完成全部工程的 5/24 。如果这项工程 由甲队独做 2 天,再由乙队独做 3 天,能完成全部工程的 13/124 。甲、 乙两队单独完成这项工程各需多少天?
【练习 3 】
1 .加工一批机器零件,师、徒合做 12 小时可以完成。先由师傅加
工 8 小时,接着再由徒弟加工 6 小时,共加工了这批零件的 3/5 。已 知师傅每小时比徒弟多做 10 个零件。这批零件共有多少个?
2 .修一条公路,甲、乙两队合做 6 天可以完成。先由甲队பைடு நூலகம் 5 天, 再由乙队修 3 天,还剩这条公路的 3/10 没有修。已知甲队每天比乙
六年级奥数分册第16周 用组合法解工程问题-精华版
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
六年级奥数分册第16周 用组合法解工程问题【经典】
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
六年级用组合法解工程问题
第十六周 用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
例题1。
一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730 -115 ×3=130,从而求出甲队的工作效率。
所以 1÷【115 -(730 -115×3)÷(5-3)】=20(天) 答:乙队单独完成全部工程需要20天。
练习11、 师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。
如果这批零件由师傅单独做,多少天可以完成? 2、 某项工程,甲、乙合做1天完成全部工程的524。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。
甲、乙两队单独完成这项工程各需多少天? 3、 甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。
甲、乙两队独做各需几天完成?例题2。
一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的12。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12 -112 ×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。
组合创造法
【例】笔的发明
第一步:定中心
【例11】笔的发明
第二步:划标线
第二步:划标线
第二步:划标线
第二步:划标线
第二步:划标线
第三步:注标点
第三步:注标点
第三步:注标点
第三步:注标点
第三步:注标点
第四步:相交和
【例】工艺笔架的制作
【例】“肠”类新产品开发图示
分解技法 分解的原意是,将一个整体分成若干部分或者分 出某部分。例如数学上因式的分解,物理学上力的分 解,化学上的分解反应,体操、美术和舞步动作分解 等。 创造学中的分解技法是指:将一个整体事物进行 分解后,使分解出来的那部分,经过改进完善,成为 一个单独的整体,形成一个新产品或新事物。例如, 普通的螺丝刀,刀把、刀头是固定的,遇到不同的规 格的螺钉就要准备几把螺丝刀。通过分解,把刀把、 刀头分开,分别做了改造后发明出多用活动螺丝刀。
发明案例:像湿巾一样方便的擦鞋巾
问题:人们在出差、旅游、娱乐、上班时都有可能把早已擦 干净的皮鞋弄脏,可这时身边没有带鞋油,因为不方便。想 擦鞋时附近又没有擦鞋店或擦鞋机。这时的人们多么希望有 一种可以随身携带,随时随地就能解决烦脑的擦鞋巾。
解决方案:本实发明使用时先揭开包装正面的不干胶粘帖签, 会漏出浸有鞋油的浸油层,将四只手指放入包装背面的手套 里,就可以很方便的擦鞋了,并可随意放入衣袋或包内,避 免了不卫生的问题,而且还能使鞋油不浪费,它具有结构简 单、易于实施的优点,应用前景非常广阔。
【例】瑞士军刀—— 最精彩的组合发明
“瑞士冠军” 大刀、小刀、木塞拔、开罐器、螺丝刀、开瓶 器、电线剥皮器、钻孔锥、剪刀、钩子、木锯、 鱼鳞刮、凿子、钳子、放大镜、圆珠笔等31种 工具组合而成。携刀一把等于带了一个工具箱, 但整件长只有9 厘米,重185克。 以苛求著称的美国现代艺术博物馆收藏。 美国前总统约翰逊、里根、 布什都特地订购瑞士军刀, 作为赠送国宾的礼品。
工程问题专题教案
工程问题专题一:组合法解工程问题例1:加工一批零件,甲单独做要12小时,乙单独做要10小时,丙单独做要15小时,如果要求这批零件在8小时以内完成,应该怎么办?思路分析1.甲、乙两人合做解:1÷(1/12+1/10)=60/11(小时)2.乙、丙两人合做解:1÷(1/10+1/15)=6(小时)3.甲、丙两人合做解:1÷(1/12+1/15)=3/20(小时)4.甲、乙、丙三人合做解:1÷(1/12+1/10+1/15)=4(小时)...练习:1.修一条水渠,甲单独修20天完成,乙单独修15天完成,丙单独修30天完成,若要在13天内完成,应该怎么办?例2:一项工程,甲乙两人合作,36天完成,乙丙两人合作,45天完成,甲丙两人合作,60天完成。
甲乙丙独做,各需多少天?思路分析每组一天的工作量:甲+乙=1/36 (i) 乙+丙=1/45 (ii) 甲+丙=1/60 (iii)(甲+乙+丙)×2=(1/36+1/45+1/60)甲+乙+丙=(1/36+1/45+1/60)÷2=1/30丙:1÷(1/30-1/36)=180天甲:1÷(1/30-1/45)=90天乙:1÷(1/30-1/60)=60天练习:1.一项工程,甲乙合作需12天完成,乙丙两队合作需15天完成,甲丙两队20天完成,三队合修需几天?2.放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成.若同时打开1,2,3,4号阀门,则多少分钟可以完成?3.某工程如果由一,二,三小队合干,需要8天完成;由二,三,四小队合干,需要10天完成;由一,四小队合干,需要15天完成。
如果按一,二,三,四,一,二,三,四......的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?思路分析一,二,三小队合干,每天干1/8 二,三,四小队合干,每天干1/10 一,四小队合干,每天干1/15所以,二三合干一天为(1/8+1/10-1/15)/2=19/240所以,一二三四合干一天为1/15+19/240=7/48所以,干6个循环后差1/8可以干完,即由第三小队完成例3:单独完成一项工程,甲可比规定时间提前2天完成,乙则要超过规定时间3天才能完成。
(完整版)小学解工程问题方法归纳总结
解工程问题的方法工程问题是研究工作量、工作效率和工作时间三者之间关系的问题。
这三者之间的关系是:工作效率×工作时间 =工作量工作量÷工作时间 =工作效率工作量÷工作效率 =工作时间依据上边的数目关系,只需知道三者中的随意两种量,便可求出第三种量。
因为工作量的已知状况不一样,工程问题可分为整数工程问题和分数工程问题两类。
在整数工程问题中,工作量是已知的详细数目。
解答这种问题时,只需按照上边介绍的数目关系计算便可解题,计算过程中一般不波及分率。
在分数工程问题中,工作量是未知数目。
解这种题时,也要依据上边介绍的数目关系计算,但在计算过程中要波及到分率。
一、工作总量是详细数目的工程问题例 1 建筑工地需要 1200 吨水泥,用甲车队运需要 15 天,用乙车队运需要 10 天。
两队合运需要多少天?(适于四年级程度)解:这是一道整数工程问题,题中给出了总工作量是详细的数目 1200 吨,还给出了甲、乙两队达成总工作量的详细时间。
先依据“工作量÷工作时间 =工作效率”,分别求出甲、乙两队的工作效率。
再依据两队工作效率的和及总工作量,利用公式“工作量÷工作效率 =工作时间”,求出两队合运需用多少天。
甲车队每日运的吨数:(甲车队工作效率)1200÷15=80 (吨)乙车队每日运的吨数:(乙车队工作效率)1200÷10=120 (吨)两个车队一天共运的吨数:80+120=200 (吨)两个车队合运需用的天数:1200÷200=6 (天)综合算式:1200÷(1200÷15+1200÷10)=1200÷( 80+120 )=1200÷200=6(天)答略。
*例 2 生产 350 个部件,李师傅 14 小时能够达成。
假如李师傅和他的徒弟小王合作,则 10 小时能够达成。
假如小王独自做这批部件,需多少小时?(适于四年级程度)解:题中工作总量是详细的数目,李师傅达成工作总量的时间也是详细的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16讲用“组合法”解工程问题
一、知识要点
在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。
二、精讲精练
【例题1】一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的7/30,乙队单独完成全部工程需要几天?
练习1:
1.师、徒二人合做一批零件,12天可以完成。
师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的3/20。
如果这批零件由师傅单独做,多少天可以完成?
2.某项工程,甲、乙合做1天完成全部工程的5/24。
如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的13/124。
甲、乙两队单独完成这项工程各需多少天?
3.甲、乙两队合做,20天可完成一项工程。
先由甲队独做8天,再由乙队独做12天,还剩这项工程的8/15。
甲、乙两队独做各需几天完成?
【例题2】一项工程,甲队独做12天可以完成。
甲队先做了3天,再由乙队做2天,则能完成这项工程的1/2。
现在甲、乙两队合做若干天后,再由乙队单独做。
做完后发现两段所用时间相等。
求两段一共用了几天?
1.一项工程,甲队独做15天完成。
若甲队先做5天,乙队再做4天能完成这项工程的8/15。
现由甲、乙两队合做若干天后,再由乙队单独做。
做完后发现,两段时间相等。
这两段时间一共是几天?
2.一项工程,甲、乙合做8天完成。
如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。
乙独做这项工程要几天完成?
3.某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。
这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。
终于完成了这一工作。
问总共用了多少天?
【例题3】移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的11/16没有栽,已知哥哥每小时比弟弟每小时多栽7棵。
共要移栽西红柿苗多少棵?
1.加工一批机器零件,师、徒合做12小时可以完成。
先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的3/5。
已知师傅每小时比徒弟多做10个零件。
这批零件共有多少个?
2.修一条公路,甲、乙两队合做6天可以完成。
先由甲队修5天,再由乙队修3天,还剩这条公路的3/10没有修。
已知甲队每天比乙队多修20米。
这条公路全长多少米?
3.修一段公路,甲队独修要40天,乙队独修要用24天。
两队同时从两端开工,结果在距中点750米处相遇。
这段公路全长多少米?
【例题4】一项工作,甲、乙、丙3人合做6小时可以完成。
如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的2/3;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的2/3。
如果由甲、丙合做,需几小时完成?
练习4:
1.一项工作,甲、乙、丙三人合做,4小时可以完成。
如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的13/18;如果甲、乙合做2小时后,丙再做4小时,可以完成这项工作的11/18。
这项工作如果由甲、丙合做需几小时完成?
2.一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成。
乙独做这项工程要几天就可以完成?
3.一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成。
现在甲、乙、丙三队合做4天后,余下的工程由乙队独做5又1/2天完成。
乙队单独做这项工程需多少天可以完成?
4.一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成。
现在由甲、丙合做2小时后,余下的由乙6小时完成。
乙独做这件工作需几小时才能完成?
【例题5】一条公路,甲队独修24天可以完成,乙队独修30天可以完成。
先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。
如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?
1.一件工作,甲单独做12小时完成。
现在甲、乙合做4小时后,乙又用6小时才完成。
这件工作始终由甲、乙合做几小时可以完成?
2.一条水渠,甲队独挖120天完成,乙队独挖40天完成。
现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。
这条水渠由丙队单独挖,多少天可以完成?
3.一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。
如果甲、丙合做3天后,由乙单独做,还要9天才能完成。
如果全部工作由3人合做,需几天可以完成?
4.一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天。
这时甲队调走,乙队又继续做了15天才完成。
甲队独做这项工程需要多少天?。