8、菱形、矩形存在性问题

合集下载

202X年中考数学复习存在性问题系列菱形的存在性问题专题探究

202X年中考数学复习存在性问题系列菱形的存在性问题专题探究

千里之行,始于足下。

202X年中考数学复习存在性问题系列菱形的存在性问题专题探究202X年中考数学复习存在性问题系列——菱形的存在性问题专题探究一、引言菱形是中学数学中常见的一种图形,是四边形的一种特殊状况。

在几何学中,我们通常将具有相等对角线长度的四边形称为菱形。

然而,在菱形的定义和性质方面,中同学往往存在一些常见的错误和迷思。

本文将通过对菱形的存在性问题进行专题探究,分析常见的错误观念,并提出正确的解决方法,以挂念同学正确生疏菱形的存在性问题。

二、错误观念分析1. 菱形必需是正方形这是一个常见的错误观念。

很多同学认为只有四边形的四个内角都是直角时,才能称之为菱形。

然而,这种理解是不正确的。

事实上,菱形只需要满足对角线相等即可,对角线之间的夹角并没有限制。

2. 任意平行四边形都可以称为菱形这也是一个常见的错误观念。

很多同学认为只要四边形的对边平行且对角线相等,就可以称其为菱形。

然而,这种理解也是不正确的。

事实上,菱形是一种特殊的四边形,除了要满足对角线相等外,还必需满足两对相邻边相等。

三、正确解决方法第1页/共3页锲而不舍,金石可镂。

1. 基本定义菱形的定义是:两对对角线相等的四边形称为菱形。

这是菱形存在的基本条件,也是区分菱形和其他四边形的关键特征。

2. 避开混淆同学在解决菱形存在性问题时,需要避开将菱形和其他外形混淆。

例如,正方形和菱形是两个不同的概念,虽然正方形也是一种菱形,但并不是全部的菱形都必需是正方形。

3. 留意推断在推断一个四边形是否为菱形时,可以通过测量四条边的长度和对角线的长度来进行推断。

假如对角线的长度相等,并且两对相邻边的长度也相等,那么这个四边形就是一个菱形。

否则,它就不是菱形。

四、进一步探究1. 菱形的性质菱形具有一些特殊的性质,同学可以通过进一步的探究来加深对菱形的生疏。

例如,菱形的内角和为360度,对角线的交点可以将菱形划分为四个全等的三角形等等。

2. 利用菱形解决问题千里之行,始于足下。

一次函数背景下的图形存在性问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

一次函数背景下的图形存在性问题(原卷版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲考点一:一次函数中等腰三角形存在性问题【例1】.如果一次函数y=﹣x+6的图象与x轴、y轴分别交于A、B两点,M点在x轴上,并且使得以点A、B、M为定点的三角形是等腰三角形,则M点的坐标为.变式训练【变1-1】.如图,在平面直角坐标系中,直线MN的函数解析式为y=﹣x+3,点A在线段MN上且满足AN=2AM,B点是x轴上一点,当△AOB是以OA为腰的等腰三角形时,则B点的坐标为.【变1-2】.如图,在平面直角坐标系中,直线y=﹣2x+12与x轴交于点A,与y轴交于点B,与直线y=x交于点C.(1)求点C的坐标.(2)若P是x轴上的一个动点,直接写出当△OPC是等腰三角形时P的坐标.考点二:一次函数中直角三角形存在性问题【例2】.已知点A、B的坐标分别为(2,2)、(5,1),试在x轴上找一点C,使△ABC为直角三角形.【变2-1】.如图,一次函数y=kx+1的图象过点A(1,2),且与x轴相交于点B.若点P 是x轴上的一点,且满足△ABP是直角三角形,则点P的坐标是.【变2-2】.如图,已知一次函数y=x﹣2的图象与y轴交于点A,一次函数y=4x+b的图象与y轴交于点B,且与x轴以及一次函数y=x﹣2的图象分别交于点C、D,点D的坐标为(﹣2,﹣4).(1)关于x、y的方程组的解为.(2)求△ABD的面积;(3)在x轴上是否存在点E,使得以点C,D,E为顶点的三角形是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.考点三:一次函数中平行四边形存在性问题【例3】.如图,已知一次函数y=kx+b的图象经过A(1,3),B(﹣2,﹣1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)求△AOB的面积;(3)平面内是否存在一点M,使以点M、C、O、B为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标,若不存在,请说明理由.变式训练【变3-1】.如图1,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当B'C'经过点D时,求△BCD平移的距离及点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的P点的坐标;若不存在,请说明理由.考点四:一次函数中矩形存在性问题【例4】.如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,且OA、OB的长满足|OA﹣8|+(OB﹣6)2=0,∠ABO的平分线交x轴于点C过点C作AB的垂线,垂足为点D,交y轴于点E.(1)求线段AB的长;(2)求直线CE的解析式;(3)若M是射线BC上的一个动点,在坐标平面内是否存在点P,使以A、B、M、P为顶点的四边形是矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.变式训练【变4-1】.如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是方程x2﹣4x+3=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求点H到x轴的距离;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.考点五:一次函数中菱形存在性问题【例5】.如图1,直线y=x+6与x,y轴分别交于A,B两点,∠ABO的角平分线与x轴相交于点C.(1)求点C的坐标;(2)在直线BC上有两点M,N,△AMN是等腰直角三角形,∠MAN=90°,求点M 的坐标;(3)点P在y轴上,在平面上是否存在点Q,使以点A、B、P、Q为顶点的四边形为菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.变式训练【变5-1】.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣2),与直线CD交于点A(m,2).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F,若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.1.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点C,使△ABC为等腰三角形,则这样的点C的坐标为.2.如图,在平面直角坐标系中,点A坐标为(2,1),连接OA,点P是x轴上的一动点,如果△OAP是等腰三角形,请你写出符合条件的点P坐标.3.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.4.如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(3,4),且OA=OB.(1)分别求出这两个函数的解析式;(2)求△AOB的面积;(3)点P在x轴上,且△POA是等腰三角形,请直接写出点P的坐标.5.直线l1交x轴于点A(6,0),交y轴于B(0,6).(1)如图,折叠△AOB,使BA落在y轴上,折痕所在直线为l2,直线l2与x轴交于C 点,求C点坐标及l2的解析式;(2)在直线l1上找点M,使得以M、A、C为顶点的三角形是等腰三角形,求出所有满足条件的M点的坐标.6.在平面直角坐标系中,直线y=kx+8k(k是常数,k≠0)与坐标轴分别交于点A,点B,且点B的坐标为(0,6).(1)求点A的坐标;(2)如图1,将直线AB绕点B逆时针旋转45°交x轴于点C,求直线BC的解析式;(3)在(2)的条件下,直线BC上有一点M,坐标平面内有一点P,若以A、B、M、P 为顶点的四边形是菱形,请直接写出点P的坐标.7.如图,在平面直角坐标系中,一次函数的图象与x轴交于点A(﹣4,0),与y轴交于点B,且与正比例函数y=x的图象交于点C(m,6).(1)求一次函数的解析式;(2)求△BOC的面积;(3)在x轴上是否存在一点P,使得△ABP是等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.8.如图,已知一次函数y=x+m的图象与x轴交于点A(﹣6,0),交y轴于点B.(1)求m的值与点B的坐标(2)问在x轴上是否存在点C,使得△ABC的面积为16?若存在,求出点C的坐标;若不存在,说明理由.(3)问在x轴是否存在点P,使得△ABP为等腰三角形,求出点P坐标.(4)一条经过点D(0,2)和直线AB上的一点的直线将△AOB分成面积相等的两部分,请求出这条直线的函数表达式.9.在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴、y轴分别于A、B两点,交直线y=kx于P(2,a).(1)求点A、B的坐标;(2)若Q为x轴上一动点,△APQ为等腰三角形,直接写出Q点坐标;(3)点C在直线AB上,过C作CE⊥x轴于E,交直线OP于D,我们规定若C,D,E 中恰好有一点是其他两点所连线段的中点,则称C,D,E三点为“和谐点”,求出C,D,E三点为“和谐点”时C点的坐标.10.如图所示,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4).(1)求△AOB的面积;(2)动点M从A点以每秒1个单位的速度沿x轴向左移动,求△COM的面积S与M的移动时间t之间的函数关系式;(3)当动点M在x轴上移动的过程中,在平面直角坐标系中是否存在点N,使以点A,C,N,M为顶点的四边形为菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.11.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,直线BC与x轴、y轴分别交于C、B两点,连接BC,且OC=OB.(1)求点A的坐标及直线BC的函数关系式;(2)点M在x轴上,连接MB,当∠MBA+∠CBO=45°时,求点M的坐标;(3)若点P在x轴上,平面内是否存在点Q,使点B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.12.已知,一次函数y=的图象与x轴、y轴分别交于点A、点B,与直线y=相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)求点C到直线l的距离.=S△BCP,求点P的坐标.(3)若S△AOC(4)若点E是直线y=上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,请直接写出点E的坐标.13.如图,在平面直角坐标系xOy中,直线y=﹣x+与y=x相交于点A,与x轴交于点B.(1)求点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C的坐标;如果不存在,请说明理由;(3)在直线OA上,是否存在一点D,使得△DOB是等腰三角形?如果存在,试求出所有符合条件的点D的坐标,如果不存在,请说明理由.14.如图,经过点B(0,2)的直线y=kx+b与x轴交于点C,与正比例函数y=ax的图象交于点A(﹣1,3)(1)求直线AB的函数的表达式;(2)直接写出不等式(kx+b)﹣ax<0的解集;(3)求△AOC的面积;(4)点P是直线AB上的一点,且知△OCP是等腰三角形,写出所有符合条件的点P 的坐标.15.如图1,已知直线l1:y=kx+4交x轴于A(4,0),交y轴于B.(1)直接写出k的值为;(2)如图2,C为x轴负半轴上一点,过C点的直线l2:经过AB的中点P,点Q(t,0)为x轴上一动点,过Q作QM⊥x轴分别交直线l1、l2于M、N,且MN=2MQ,求t的值;(3)如图3,已知点M(﹣1,0),点N(5m,3m+2)为直线AB右侧一点,且满足∠OBM=∠ABN,求点N坐标.16.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标系中.直线与x轴、y轴相交于A、B两点,动点C 在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B'C'D',当直线B′C′经过点D时,求点D的坐标;(3)若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,直线AB:y=﹣x+4与x轴、y轴分别交于点A、B,点C在y轴的负半轴上,若将△CAB沿直线AC折叠,点B恰好落在x轴正半轴上的点D 处.(1)点A的坐标是,点B的坐标是,AB的长为;(2)求点C的坐标;=S△OCD,直接写出点M的坐标.(3)点M是y轴上一动点,若S△MAB(4)在第一象限内是否存在点P,使△PAB为等腰直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.19.如图,直角坐标系中,直线y=kx+b分别与x轴、y轴交于点A(3,0),点B(0,﹣4),过D(0,8)作平行x轴的直线CD,交AB于点C,点E(0,m)在线段OD上,延长CE交x轴于点F,点G在x轴正半轴上,且AG=AF.(1)求直线AB的函数表达式.(2)当点E恰好是OD中点时,求△ACG的面积.(3)是否存在m,使得△FCG是直角三角形?若存在,直接写出m的值;若不存在,请说明理由.20.如图直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3,求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,O为坐标原点,直线l:y=﹣x+m与x、y轴的正半轴分别相交于点A、B,过点C(﹣4,﹣4)画平行于y轴的直线交直线AB于点D,CD=10(1)求点D的坐标和直线l的解析式;(2)求证:△ABC是等腰直角三角形;(3)如图2,将直线l沿y轴负方向平移,当平移适当的距离时,直线l与x、y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形.请直接写出所有符合条件的点P的坐标.(不必书写解题过程)22.直线y=kx﹣4与x轴、y轴分别交于B、C两点,且=.(1)求点B的坐标和k的值;(2)若点A时第一象限内的直线y=kx﹣4上的一动点,则当点A运动到什么位置时,△AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在点P,使△POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.24.如图,在平面直角坐标系中,一次函数y=kx+b的图象与y轴交于点A(0,4),与直线y=﹣x﹣1在第四象限相交于点B,连接OB,△AOB的面积为6.(1)求点B的坐标及直线AB的解析式;(2)已知点M在直线AB右侧,且△MAB是以AB为直角边的等腰直角三角形,请求出符合条件的点M的坐标.25.综合与探究:如图,直线l1:y=x+3与过点A(3,0)的直线l2:y=kx+b(k≠0)交于点C(1,m)与x轴交于点B.(1)求直线l2对应的函数解析式;(2)请直接写出不等式kx+b<x+3的解集;(3)若点N在平面直角坐标系内,则在直线l1上是否存在点F使以A,B,F,N为顶点的四边形为菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26.一次函数y=kx+(k≠0)的图象与x轴、y轴分别交于A(1,0)、B(0,m)两点.(1)求一次函数解析式和m的值;(2)将线段AB绕着点A旋转,点B落在x轴负半轴上的点C处.点P在直线AB上,直线CP把△ABC分成面积之比为2:1的两部分.求直线CP的解析式;(3)在第二象限是否存在点D,使△BCD是以BC为腰的等腰直角三角形?若存在,请直接写出点D的坐标;若不存在,请说明理由.27.如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=k2x的图象交点为C(3,4).(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在y轴上是否存在一点P使△POC为等腰三角形,若存在,求出所有符合条件的点P的坐标.28.在学习一元一次不等式与一次函数的过程中,小新在同一个坐标系中发现直线l1:y1=﹣x+3与坐标轴相交于A,B两点,直线l2:y2=kx+b(k≠0)与坐标轴相交于C,D两点,两直线相交于点E,且点E的横坐标为2.已知OC=,点P是直线l2上的动点.(1)求直线l2的函数表达式;(2)过点P作x轴的垂线与直线l1和x轴分别相交于M,N两点,当点N是线段PM的三等分点时,求P点的坐标;(3)若点Q是x轴上的动点,是否存在以A,E,P,Q为顶点的四边形是平行四边形?若存在,请求出所有满足条件的P点坐标;若不存在,请说明理由.29.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ是正方形,请直接写出所有符合条件的点D的坐标.30.如图,四边形OABC为矩形,其中O为原点,A、C两点分别在x轴和y轴上,点B的坐标是(4,6),将矩形沿直线DE折叠,使点C落在AB边上点F处,折痕分别交OC、BC于点E、D,且点D的坐标是(,6).(1)求BF的长度;(2)如图2,点P在第二象限,且△PDE≌△CED,求直线PE的解析式;(3)若点M为直线DE上一动点,在x轴上是否存在点N,使以M、N、D、F为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.。

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。

第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。

第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。

平行四边形的这四个点有可能是定序的,也有可能没有定序。

在解决这些问题时,容易出现遗漏或方法不当或错解的情况。

因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。

可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。

对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。

这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。

对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。

如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。

如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。

此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。

平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。

最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。

除了平行四边形,矩形、菱形和正方形也有存在性问题。

对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。

对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。

中考数学压轴题分析:矩形存在性问题

中考数学压轴题分析:矩形存在性问题

中考数学压轴题分析:矩形存在性问题矩形的存在性问题每年出现的概率相对较少。

本文内容选自2020年鸡西中考数学压轴题。

难度中等,涉及折叠与矩形的存在性问题,值得学习。

【中考真题】(2020·鸡西)如图,在平面直角坐标系中,四边形的边在轴上,在轴上.为坐标原点,,线段,的长分别是方程的两个根,.(1)求点,的坐标;(2)为上一点,为上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以,,,为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.【分析】题(1)求坐标,先解方程可得到,。

已知三角函数值,作垂线构建直角三角形得线段长即可。

题(2)因为点Q的位置固定,易得四边形是矩形。

遇到翻折问题常常设未知数,利用勾股定理建立等量关系求解。

题(3)表面上是矩形的存在性问题,实际上是直角三角形的存在性问题。

可以先以O′Q为边构造直角三角形。

那么这个问题就转化为了“两线一圆”型的直角三角形存在性问题。

发现坐标轴中有4个点符合要求。

利用直角三角形的相关性质进行求解即可。

【答案】解:(1)解方程:,,得,,,,,如图1,过点作于点,,,,,,点的坐标为,点的坐标为;(2)如图2,,,,四边形为矩形.,由翻折,得,,,;(3)存在.分四种情况:①如图3,在轴的正半轴上,四边形是矩形,过轴于,过作轴于,四边形,设,则,,在的解析式为:,则,解得:,是矩形,由②知:,是矩形,过轴于,,,即,,,<span role="presentation" data-formula="\because O" (2,4)'="" data-formula-type="inline-equation">,,,综上,点的坐标为:或,或或.【总结】矩形的存在性问题,直接转化为直角三角形的存在性问题即可。

平行四边形菱形矩形正方形的易错点

平行四边形菱形矩形正方形的易错点

平行四边形菱形矩形正方形的易错点平行四边形、菱形、矩形、正方形这些几何概念在初中数学中是非常重要的基础知识点。

然而,由于其相似的外观和特性,学生们常常容易混淆它们之间的区别和性质。

在这篇文章中,我们将介绍这些图形的易错点,以帮助学生们更好地理解它们。

首先,我们来看平行四边形。

平行四边形是一个具有两对平行边的四边形。

它的特点是对边平行且长度相等,相邻角的和为180°。

学生们常常容易将平行四边形和其他四边形混淆,例如矩形和菱形。

其次,菱形是一个特殊的平行四边形,具有以下特点:所有边都相等,对角线相互垂直且相等,对角线的交点称为菱心。

很多学生容易错误地认为菱形必定是矩形或正方形,这是一个常见的误解。

接下来,我们谈谈矩形。

矩形是一个具有四个直角的平行四边形,它的特点是所有角都是90°。

同样,学生们常常错把矩形当作正方形,因为它们都具备直角。

最后,我们来讨论正方形。

正方形是一个特殊的矩形,它具有以下特点:所有边相等,所有角都是90°,对角线相等且相互垂直。

尽管正方形的定义相对简单,但学生们在判断平行四边形、矩形和正方形时仍然容易出现困惑。

为了帮助学生们更好地区分这些图形,这里提供一些指导意义。

首先,要注意图形的边长和角度特征。

学生们可以通过测量边长和角度来判断一个图形到底是平行四边形、菱形、矩形还是正方形。

其次,要以图形的特征为准,而不是只凭直觉。

例如,如果一个图形具有所有边和角都相等的特点,那它就是一个正方形,而不是矩形或其他形状。

最后,多加练习和思考。

通过做一些练习题,学生们可以更好地理解和记忆这些图形的特性,避免出现混淆的情况。

总之,平行四边形、菱形、矩形和正方形是初中数学中非常基础的几何图形。

要正确理解和应用它们,学生们需要仔细观察它们的特点,并加以思考和实践。

希望这篇文章能帮助学生们更好地理解这些图形,并避免常见的易错点。

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。

平行四边形,矩形,菱形的存在性问题(有答案)

平行四边形,矩形,菱形的存在性问题(有答案)

平行四边形,矩形,菱形的存在性问题一、平行四边形存在性问题1.在平面直角坐标系中,点A,B,C的坐标分别是A(﹣1,3),B(﹣5,﹣3),C(1,﹣3),在平面内找一点D,使四边形ABCD是平行四边形,则点D的坐标是.2.已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B(1,2),则点C,D的坐标分别为.3.在直角坐标系中,点A、B的坐标分别为(﹣2,4)、(﹣5,2),点M在x轴上,点N 在y轴上.如果以点A、B、M、N为顶点的四边形是平行四边形,那么符合条件的点M 有个.4.如图,在平面直角坐标系中,AD∥BC,AD=5,B(﹣3,0),C(9,0),E是BC的中点,P是线段BC上一动点,当PB=时,以点P、A、D、E为顶点的四边形是平行四边形.第4题第5题第6题5.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y 的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.6.如图,已知A(1,0)、C(0,1)、B(m,0)且m>1,在平面内求一点P,使得以A、B、C、P为顶点的四边形是平行四边形,则点P的坐标为.7.已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为.8.(1)在图1,2,3中,给出平行四边形ABCD的顶点A,B,D的坐标(如图),图1,2,3中的顶点C的坐标分别是,,;(2)在图4中,若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为;(3)在图4中,平行四边形ABCD顶点坐标分别为A(a,b)、B(c,d)、C(m,n)、D(e,f),则其横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为.9.如图,矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),将矩形OABC沿直线BD折叠,使得点C恰好落在对角线OB上的点E处,折痕所在直线与y 轴、x轴分别交于点D、F.(1)请直接写出线段BO的长;(2)求折痕所在直线BD的解析式;(3)若点M在直线y=﹣x上,则在直线BD上是否存在点P,使以C、D、M、P为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点P的坐标;否则,请说明理由.二、矩形存在性问题10.在平面直角坐标系中,已知点A(0,0),B(2,﹣2),C(4,0),D(2,2),则以这四个点为顶点的四边形ABCD是()A.矩形B.菱形C.梯形D.正方形11.如图1,在四边形ABCD中,AB∥CD,∥BCD=90°,AB=AD=10cm,BC=8cm.点P 从点A出发,以每秒3cm的速度沿线段AB方向向B运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时出发,当点P运动到点B 时,P、Q同时运动停止,设运动时间为t秒.(1)求CD的长;(2)当t为何值时,四边形PBQD为平行四边形?(3)在运动过程中,是否存在四边形BCQP是矩形?若存在,请求出t的值;若不存在,请说明理由.12.平行四边形AOBC在平面直角坐标系中的位置如图(1).(1)写出点C的坐标;(2)在图(1)中,连接AB,OC得到图(2),求AB与OC的交点M点的坐标;(3)将图(2)中的线段BC向两方延长得到图(3),若点D,E为直线BC上不与B,C重合的动点,是否存在这样的D,E点,使得四边形OADE为矩形?若存在,请在图中画出矩形,并求出矩形OADE的面积和点D,E的坐标,若不存在,请说明理由.三、菱形存在性问题13.在直角坐标系中,A,B,C,D四个点的坐标依次为(﹣1,0),(x,y),(﹣1,5),(﹣5,z),若这四个点构成的四边形是菱形,则满足条件的z的值有()A.1个B.3个C.4个D.5个14.如图1,直线l1:y=﹣x+3与坐标轴分别交于点A,B,与直线l2:y=x交于点C.(1)求A,B两点的坐标;(2)求∥BOC的面积;(3)如图2,若有一条垂直于x轴的直线l以每秒1个单位的速度从点A出发沿射线AO 方向作匀速滑动,分别交直线l1,l2及x轴于点M,N和Q.设运动时间为t(s),连接CQ.∥当OA=3MN时,求t的值;∥试探究在坐标平面内是否存在点P,使得以O、Q、C、P为顶点的四边形构成菱形?若存在,请直接写出t的值;若不存在,请说明理由.参考答案1.根据题意得:D点的纵坐标一定是3;又由C点相对于B点横坐标移动了1﹣(﹣5)=6,故可得点D横坐标为﹣1+6=5,即顶点D的坐标为(5,3).2.由题意知:点A与点C、点B与点D关于原点对称,∥点A,B的坐标分别为(﹣1,3),(1,2),∥点C,D的坐标分别是(1,﹣3),(﹣1,﹣2),3.有3个点.4.解:∥B(﹣3,0),C(9,0),∥OB=3,OC=9,∥BC=OB+OC=12,∥E是BC的中点,∥BE=CE=BC=6,分为两种情况:∥当P在E的左边时,∥AD=PE=5,CE=6,∥BP=12﹣6﹣5=1;∥当P在E的右边时,∥AD=EP=5,∥BP=BE+EP=6+5=11;即当BP为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;故答案为:1或11.5.如图,∥当BC为对角线时,易求M1(3,2);∥当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);∥当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).6.根据题意得:OA=OC=1,OB=m,∥AB=m﹣1,分三种情况:如图所示,∥以BC为对角线时,点P的坐标为(m﹣1,1);∥以AC为对角线时,点P的坐标为(1﹣m,1);∥以AB为对角线时,点P的坐标为(m+1,1);综上所述:点P的坐标为(m﹣1,1)或(1﹣m,1)或(m+1,﹣1);故答案为:(m﹣1,1)或(1﹣m,1)或(m+1,﹣1).7.如图,由题意得:点C在直线y=x上,∥如果AB、CD为对角线,AB与CD交于点F,当FC∥直线y=x时,CD最小,易知直线AB为y=x﹣2,∥AF=FB,∥点F坐标为(2,﹣1),∥CF∥直线y=x,设直线CF为y=﹣x+b′,F(2,﹣1)代入得b′=1,∥直线CF为y=﹣x+1,由,解得:,∥点C坐标(,).∥CD=2CF=2×=3.∥如果CD是平行四边形的边,则CD=AB==2>3,∥CD的最小值为3.故答案为:3.8.(1)利用平行四边形的性质:对边平行且相等,得出图1,2,3中顶点C的坐标分别是:(5,2)、(e+c,d),(c+e﹣a,d).故答案为:(5,2)(e+c,d),(c+e﹣a,d).(2)若平行四边形ABCD的顶点A,B,D的坐标分别为(4,1)、(3,4)、(6,4),则顶点C的坐标为(5,7);故答案为:(5,7);(3)如图4中,分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE∥BB1于E,DF∥CC1于点F.在平行四边形ABCD中,CD=BA,又∥BB1∥CC1,∥∥EBA+∥ABC+∥BCF=∥ABC+∥BCF+∥FCD=180°.∥∥EBA=∥FCD.在∥BEA∥∥CFD中,,∥∥BEA∥∥CFD(AAS),∥AE=DF=a﹣c,BE=CF=d﹣b.设C(x,y).由e﹣x=a﹣c,得x=e+c﹣a.由y﹣f=d﹣b,得y=f+d﹣b.∥C(e+c﹣a,f+d﹣b),∥m=e+c﹣a,n=f+d﹣b,∥m+a=e+c,n+b=d+f.故答案为:m+a=e+c,n+b=d+f.9.解:(1)∥矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是(6,8),∥OA=6,AB=8,∥OAB=90°,∥OB==10,即线段BO的长是10;(2)设点D的坐标为(0,d),则OD=d,CD=8﹣d,∥BC=6,CD=DE,OB=10,,∥,得d=5,即点D的坐标为(0,5),设折痕所在直线BD的解析式为y=kx+b,∥点D(0,5),点B(6,8)在直线BD上,∥,得,即折痕所在直线BD的解析式是y=0.5x+5;(3)在直线BD上存在点P,使以C、D、M、P为顶点的四边形是平行四边形,点P的坐标为(﹣2,4)或(﹣8,1);理由:∥点C(0,8),点D(0,5),∥OC=8,OD=5,∥CD=3,∥以C、D、M、P为顶点的四边形是平行四边形,点M在直线y=﹣x上,点P在直线BD上,∥CD=MP,CD∥MP,或CD为平行四边形的对角线,当CD=MP,CD∥MP时,设点M的坐标为(m,﹣0.5m),则P的坐标为(m,0.5m+5),则|(0.5m+5)﹣(﹣0.5m)|=3,解得,m1=﹣2,m2=﹣8,当m=﹣2时,点P的坐标为(﹣2,4),当m=﹣8时,点P的坐标为(﹣8,1),当CD为平行四边形的对角线时,则点C和点D中点的坐标为(0,6.5),设点M的坐标为(m,﹣0.5m),则点P的坐标为(﹣m,13+0.5m),∥点P在直线BD上,直线BD的解析式是y=0.5x+5,∥13+0.5m=﹣0.5m+5,得m=﹣8,∥点P的坐标为(8,9),由上可得,点P的坐标为(﹣2,4)、(﹣8,1)或(8,9).10.D11.解:(1)过点A作AM∥CD于M,根据勾股定理,AD=10,AM=BC=8,∥DM==6,∥CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图1,由题知:BP=10﹣3t,DQ=2t ∥10﹣3t=2t,解得t=2;(3)在运动过程中,不存在四边形BCQP是矩形,理由如下:∥AB∥CD,∥BCD=90°,∥∥C=90°,若要四边形BCQP是矩形,则当PB=CQ时即10﹣3t=16﹣2t,解得:t=﹣6<0,∥不存在.12.解:(1)∥四边形OACB是平行四边形,∥AC=OB,∥A(1,3)、B(4,0),∥C(5,3);(2)如图(2),设AB所在的直线的解析式为y=kx+b,∥直线AB经过点A(1,3)、B(4,0),∥,∥AB所在直线的解析式为y=﹣4x+4,由于OC所在直线的表达式为y=x,联立方程解得:即M的坐标是(2.5,1.5);(3)存在这样的D、E,使得四边形AOED是矩形.分别过点A、O作AD∥BC于点D,OE∥BC于点E,过E、D分别作x轴的垂线,垂足分别为F、G,∥四边形AOBC是平行四边形,∥AO∥BC,∥AD∥AO,∥四边形AOED是矩形,且与平行四边形AOBC面积相等,∥平行四边形AOBC的面积为12,∥矩形AOED的面积为12,由勾股定理知AO=,∥OE=,EB=,∥EF===1.2,OF===3.6,∥点E的坐标为(3.6,﹣1.2),∥点D的坐标为(4.6,1.8).13.如图,∥A(﹣1,0),C(﹣1,5),∥AC∥x轴,且AC=5﹣0=5,过点D(﹣5,z)作作x轴的垂线,则z的数值就在直线x=﹣5上,;∥A、B、C、D四个点构成的四边形是菱形,∥当DC=DA,z有1个值,当DC=AC,则42+(5﹣z)2=52,z有两个值,当AD=AC,则42+z2=52,则z有两个值,综上所知,符合条件的z的值有5个.故选:D.14.解:(1)对于直线y=﹣x+3,令x=0得到y=3,令y=0,得到x=6,A(6,0)B(0,3).(2)由,解得,∥C(2,2),∥S∥OBC=×3×2=3(3)∥∥M(6﹣t,﹣(6﹣t)+3),N(6﹣t,6﹣t),∥MN=|﹣(6﹣t)+3﹣(6﹣t)|=|t﹣6|,∥OA=3MN,∥6=3|t﹣6|,解得t=或∥如图3中,由题意OC=2,当OC为菱形的边时,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);当OC为菱形的对角线时,Q3(2,0),∥t=(6+2)s或(6﹣2)s或2s或4s时,以O、Q、C、P为顶点的四边形构成菱形.。

(完整版)矩形存在性问题

(完整版)矩形存在性问题

(完整版)矩形存在性问题
矩形是一种常见的几何形状,但在某些情况下,其存在性可能
会受到一些问题的影响。

本文将探讨与矩形存在性相关的一些问题。

1. 不存在完美的矩形
在现实世界中,找到一个完美的矩形是很困难的。

尽管矩形的
定义是具有四个直角的四边形,但在实际情况中,我们很难找到具
备完美直角、边长相等的矩形。

这是因为制造或绘制矩形时可能会
出现一些误差或不完美的情况。

2. 变形矩形
矩形的存在性还受到其变形程度的影响。

当一个矩形的四个角
不再是直角或者它的四边不是等长时,我们称之为变形矩形。

变形
矩形可能会在某些情况下具备特定的性质,但根据定义,它已经脱
离了严格的矩形形状。

3. 特殊情况下的矩形存在性
在一些特殊情况下,矩形的存在性可能会受到限制。

例如,当
四个顶点被限制在一个平面上或者在一条直线上时,将无法构成一
个矩形。

这些限制可能是由具体问题的条件而引发的,所以在解决
问题时需要特别注意。

4. 结论
总的来说,矩形存在性问题是一个常见但也是复杂的几何问题。

由于现实世界的限制以及矩形的特性定义,我们可能无法找到完美
的矩形。

变形矩形和特殊情况下的限制也进一步增加了找到一个合
适的矩形的难度。

在解决矩形存在性问题时,我们应该考虑到以上
因素,并根据具体情况采取相应的措施。

中考数学复习指导:矩形与菱形中的新型问题

中考数学复习指导:矩形与菱形中的新型问题

矩形与菱形中的新型问题新课程倡导“主动参于、乐于探究、勤于动手”的学习方式,培养收集和处理信息的能力,获取新知识能力,分析和解决问题的能力以及合作交流的能力.因此在平时学习中要加强探究、归纳、猜想等能力的培养.以矩形与菱形问题举例说明如下,应予以关注.1.开放型问题例1 如图,在△ABC 中,D 为BC 边的中点,过D 点分别作DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F .(1)证明:△BDF ≌△DCE ;(2)如果给△ABC 添加一个条件,使四边形AFDE 成为菱形,则该条是 ; 如果给△ABC 添加一个条件,使四边形AFDE 成为矩形,则该条件是 .(均不再增添辅助线) 请选择一个结论进行证明.【解】(1)证明: ∵AB DE ∥ ∴ FBD EDC ∠=∠)∵AC DF ∥ ∴ECD FDB ∠=∠ 又∵DC BD =∴BDF ∆≌DCE ∆(2)AC AB =或AC BC =或BC BA =;90=∠A °或90=∠B °或90=∠C ° ① 证明:∵AB DE ∥ AC DF ∥ ∴四边形AFDE 为平行四边形 又∵AC AB = ∴ C B ∠=∠ ∴C EDC ∠=∠ ∴EC ED = 由BDF ∆≌DCE ∆可得:EC FD = ∴FD ED =∴四边形AFDE 为菱形② 证明:同理可证四边形AFDE 为平行四边形 ∵90=∠A ∴四边形AFDE 为矩形【评注】本题一道探索条件、补充条件的开放型几何试题,它考查了矩形及菱形的判定及三角形全等的判定知识,解决这类问题的方法是假设结论成立,逐步探索其成立的条件。

2.操作性问题例2 将两张宽度相等的矩形纸片叠放在一起得到如图1所示的四边形ABCD .AB DFEC(1)求证:四边形ABCD 是菱形;(2)如果两张矩形纸片的长都是8,宽都是2.那么菱形ABCD 的周长是否存在最大【解】(1)如图答2,因为AD BC AB DC ,∥∥. 所以四边形ABCD 为平行四边形.分别过点B D ,作BF AD ⊥,DE AB ⊥,垂足分别为点F E ,, 则BF DE =.因为DAB BAF =∠∠,所以Rt Rt DAB BAF △≌△. 所以AD AB =,所以四边形ABCD 为菱形. (2)存在最小值和最大值.(判断不准确,不得分)①当90DAB =∠时,菱形ABCD 为正方形,周长最小值为8.②当AC 为矩形纸片的对角线时,设AB x =,如图答3,在Rt BCG △中,222(8)2x x =-=,174x =.所以周长最大值为17.【评注】这是一道探索结论试题.解决这类问题的方法是根据条件,结合已学的知识、数学思想方法,通过分析、归纳逐步得出结论,或通过观察、实验、猜想、论证的方法求解.3.方案设计型例3 如图甲,李叔叔想要检测雕塑底座正面四边形ABCD 是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD 是否为矩形(图乙供设计备用).解:方案如下:①用卷尺分别比较AB 与CD AD ,与BC 的长度,当AB CD =,且AD BC =时,四边形ABCD 为平行四边形;否则四边形ABCD 不是平行四边形,从而不是矩形.(图1) (图答2)(图答3)CGD A C BBCAD(图甲)(图乙)②当四边形ABCD 是平行四边形时,用卷尺比较对角线AC 与BD 的长度.当AC BD =时,四边形ABCD 是矩形;否则四边形ABCD 不是矩形.也可设计以下方案.方案一:先用勾股定理逆定理测量一个角是否为直角,然后用同样的方法再测量另外两个角是否也为直角,并给出判断;方案二:先测量四边形ABCD 是否为平行四边形,再用勾股定理逆定理测量其中一个角是否为直角,并给出判断.【评注】这是一道几何型的方案设计题,解答此类题应善于联想相关图形性质,进行充分发散思维,经筛选比较,可找出较合适方案来.4.综合探究型例4 如图7,矩形纸片ABCD 的边长分别为()a b a b <,.将纸片任意翻折(如图8),折痕为PQ .(P 在BC 上),使顶点C 落在四边形APCD 内一点C ',PC '的延长线交直线AD 于M ,再将纸片的另一部分翻折,使A 落在直线PM 上一点A ',且A M '所在直线与PM 所在直线重合(如图9)折痕为MN .(1)猜想两折痕PQ MN ,之间的位置关系,并加以证明.(2)若Q P C ∠的角度在每次翻折的过程中保持不变,则每次翻折后,两折痕PQ MN,间的距离有何变化?请说明理由.(3)若QPC ∠的角度在每次翻折的过程中都为45(如图10),每次翻折后,非重叠部分的四边形MC QD ',及四边形BPA N '的周长与a b ,有何关系,为什么?A DCBab图7 图8图9图10【解】(1)PN MN ∥因为四边形ABCD 是矩形,所以AD BC ∥,且M 在AD 直线上,则有AM BC ∥ 所以AMP MPC ∠=∠,由翻折可得:12MPQ CPQ MPC ∠=∠=∠, 12NMP AMN AMP ∠=∠=∠,所以MPQ NMP ∠=∠,故PQ MN ∥.(2)两折痕PQ MN ,间的距离不变过P 作PH MN ⊥,则sin PH PM PMH =∠, 因为QPC ∠的角度不变,所以C PC '∠的角度也不变,则所有的PM 都是平行的 又因为AD BC ∥,所以所有的PM 都是相等的 又因为PMH QPC ∠=∠,故PH 的长不变. (3)当45QPC ∠= 时,四边形PCQC '是正方形,四边形C QDM '是矩形.因为C Q CD '=,C Q QD a '+=, 所以矩形C QDM '的周长为2a .同理可得矩形BPA N '的周长为2a ,所以两个四边形的周长都为2a ,与b 无关. 【评注】随着新课程改革的全面推广,以探究为出发点的集几何设计和计算,并综合运用代数知识进行求解的新题开始崭露头角,它的出现对培养及考察学生学会自主探究起到了非常重要的作用.并用能充分考查学生主观创造性思维.。

[数学]-专题11 二次函数与矩形、菱形的存在性问题(知识解读)(原版)

[数学]-专题11 二次函数与矩形、菱形的存在性问题(知识解读)(原版)
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及△PBC的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
【变式2-1】如图,在直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A(﹣1,0)和点B(3,0),与y轴交于点C.
无论是“2定1半1全”还是“1定3半”,对于我们列方程来解都没什么区别,能得到的都是三元一次方程组.
考点2 菱形存在性问题
1.菱形的判定:有一组邻边相等的平行四边形是菱形.
2.坐标系中的菱形:
有 3 个等式,故菱形存在性问题点坐标最多可以有 3 个未知量,与矩形相同.
3.解题思路:
(1)思路 1:先角形是直角三角形,构造“两线一圆”可得满足条件的 点C有
在点C的基础上,借助点的平移思路,可迅速得到点D的坐标.
思路2:先平行,再矩形
当AC为对角线时,A、B、C、D满足以下3个等式,则为矩形:
其中第1、2个式子是平行四边形的要求,再加上式3可为矩形.表示出点坐标后,代入点坐标解方程即可.
在构成菱形的 4 个点中任取 3 个点,必构成等腰三角形,根据等腰存在性方法可先确
定第 3 个点,再确定第 4 个点.
(2)思路 2:先平行,再菱形
设点坐标,根据平行四边形的存在性要求列出“”(AC、BD为对角线),再结合一组邻
边相等,得到方程组.
方法总结:
菱形有一个非常明显的特点:任意三个顶点所构成的三角形必然是等腰三角形。
【变式1-1】(2022•随州)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.

平面直角坐标系中特殊四边形存在性问题——专题回顾

平面直角坐标系中特殊四边形存在性问题——专题回顾

平面直角坐标系中特殊四边形存在性问题——专题回顾
展开全文
专题回顾
亲爱的同学们!
平行四边形、矩形、菱形、正方形作为我们熟悉的特殊四边形,是初中数学的核心内容之一,也是中考试题考查的热点之一。

解决平面直角坐标系中特殊四边形存在性问题,往往结合函数知识背景,在知识层面考查特殊四边形的判定与性质,在能力层面考查识图作图、数学运算等能力,渗透数形结合、分类讨论、函数与方程等数学思想。

学生在处理这类问题时既要考虑多种平移情况,又要作图分析,往往不能正确分类出现漏解的情况。

那如何才能引导学生有序的进行分类、有效地进行计算呢?归一数学刘生根工作室师徒共同策划推出如下四讲《平面直角坐标系中特殊四边形存在性问题系列微课》,以期帮助同学们更好地理解此类问题:
问题①:平行四边形的存在性问题;
问题②:矩形的存在性问题;
问题③:菱形的存在性问题;
问题④:正方形的存在性问题;
专题回顾(点击标题即可开始学习):
归来一听:平行四边形的存在性问题;归来一听:矩形的存在性问题;归来一听:菱形的存在性问题;归来一听:正方形的存在性问题;我们相信:坚持努力,你一定会越来越强大!归一数学工作室全体老师祝大家努力奔向美好的未来!
来吧,让我们一起爱数学!
编辑:归一数学刘生根工作室包科维
审核:潘小梅。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

九年级数学菱形存在性(含答案)

九年级数学菱形存在性(含答案)

学生做题前请先回答以下问题
问题1:存在性问题的处理思路是什么?
问题2:菱形、矩形、正方形的存在性问题,通常借助转化探究思想来分析,将复杂、陌生问题转化为简单、熟悉问题解决.如:
①菱形存在性问题(两定两动)
转化为____________存在性问题;
以定线段作为_________确定分类标准,利用________确定一动点的位置,然后通过平移确定另一动点坐标.
②菱形存在性问题(一定点)
分析定点、定角、定线及不变特征,结合图形形成因素(判定等)考虑分类,通常需要转化为一定两动夹角固定等腰三角形存在性问题,按照顶角分类
菱形存在性
一、单选题(共3道,每道33分)
1.如图,已知抛物线经过原点O和x轴上的一点A,抛物线的顶点为E,对称轴与x轴交于点D.N是坐标平面内任一点,M是对称轴上的一点,使得以N,A,E,M为顶点的四边形是菱形,则点N的坐标为( )
A.
B.
C.
D.
答案:D
解题思路:
试题难度:三颗星知识点:菱形的存在性
2.如图,直线与抛物线交于A,B两点,且点A在x轴上,点B在y轴上,抛物线的对称轴为直线x=-1,则抛物线的解析式为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:二次函数与几何综合
3.(上接第2题)若点C是y轴上的一动点,点D是y轴左侧直线AB上一动点,在抛物线上存在点P,使得以P,B,C,D为顶点的四边形是菱形,则该菱形的周长为( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:菱形的存在性。

中考培优竞赛专题经典讲义第29讲存在性问题之特殊四边形

中考培优竞赛专题经典讲义第29讲存在性问题之特殊四边形

第29讲 存在性问题之特殊四边形菱形存在性问题,抓住邻边相等(即等腰三角形)和对角线垂直; 矩形存在性问题,抓住内角90°与对角线相等; 正方形存在性问题,抓住等腰直角三角形的性质即可 • 【例题讲解】例题1•如图,在Rt △ABC 中,/C=90° AC=6cm,BC=8cm,点P 从点B 出发,沿BA 方向以2cm/s 的速度向终点 A 运动侗时,动点Q 从点C 出发沿CB 方向以1cm/s 的速度向终点 B 运动,将ABPQ 沿BC 翻折,点P 的对应点 为点P',设Q 点运动的时间t 秒若四边形QPB P'为菱形,求t 的值•解:若四边形QPBP 为菱形,t=2秒理由如下:•••/ C=90° AC=BC,AA ABC 是等腰直角三角形,•••/ABC=45°,•••点P 的速度是每秒 2 cm,点Q 的速度是每秒1cm,• BP= 2tcm,BQ=(6 — t)cm, •••四边形QPBP'为菱形, • 2t X2 3 4= 6 上,解得:t=2;2 2即若四边形QPBP'为菱形的值为2秒.例题2•如图,已知0(0,0),A(4,0),B(4,3).动点P 从0点出发,以每秒3个单位的速度,沿 A OAB 的边0A 、AB 作 匀速运动;动直线I 从AB 位置出发,以每秒1个单位的速度向x 轴负方向作匀速平移运动•若它们同时出发, 运动的时间为t 秒,当直线I 运动到0时,它们都停止运动•当P 在线段AB 上运动时,设直线I 分别与0A 、0B 交于C 、D,试问:四边形CPBD 是否可能为菱形?若能,求出此时t 的值;若不能,请说明理由,并说明如何改变 直线I 的出发时间,使得四边形CPBD 会是菱形•--------- 22 16 2 4 220CP =7AC 2AP 2 J (6) (§)6,因为CP M BP,所以四边形CPBD 不可能为菱形若要使四边形 CPBD 为菱形,设直线比 P 点迟x 秒出发贝UAC=t -x,AP=3t — 4,BP=CP=7 — 3t,因为四边形AC AP CPCPBD 为菱形,则 CP // OB,所以△ ACPAOB,则一 一 一,OA AB OB3t 4 t xt 41则t x 3t 4 7 3t,3 4,解得:24,解:四边形CPBD 不可能为菱形•如图所示,根据题意可得,AC = t,AP=3t — 4,BP=3 — AP=7 — 3t,0C=4 — t, 因为 CD // AB,所以 A 0CD s^OAB,所以 °C CD ,即 CD 土」,解得:CD = - (4— t), 因为CD=BP,所以-(4 —1)=7 — 3t,解得:t= 一,所以BP=5,在厶ACP 中,由勾股定理得4 930A AB 3 44AP'4 35 3t 4 7 3t 5------- ---------- x -----------------3 5 245即直线比P点迟5秒出发时可使四边形CPBD为菱形.243例题3•如图,直线y= -x+3与y轴交于点A,与x轴交于点B,点P从点B出发以每秒1个单位长度的速度沿BA边向终点A运动,同时点Q以相同的速度从坐标原点O出发沿OB边向终点B运动,设点P运动的时间为t秒.(1) 求点A,B的坐标;⑵在点P,Q运动的过程中,是否存在点N,使得以点A,P,Q,N为顶点的四边形是矩形?若存在,求t的值并直接写出点N的坐标;若不存在,请说明理由.3解:(1)对于直线y= - x+3,令x=0,得到y=3,令y=0 得到x=4,二A(0,3), B(4,0);4(2) 存在以点APQN为顶点的四边形是矩形,①如图 2 所示,当/ APQ=90°时,/ BPQ= / AOB=9O°BP t 4 16 4 29由⑵得:cos/ PBQ= BP,即t 4,解得:t=16此时N坐标为(4,29)BQ 4 t 5 9 5 15②如果/ PAQ=90°/OAB 为锐角,/ PAQ</OAB,•••不成立,/ PAQ M90°③如果/ AQP=90°当Q与O重合时,t=0,此时N坐标为(4,3),4 当0<t W5寸如图3所示过P作PM丄x轴于点M.由①得:MB = t,59--QM=OB —OQ —BM =4 —— t,5•// AOQ= / QMP = / AQP=90°• / OAQ=/ MQP , • Rt△AOQ s Rt△QMP 5 6.AOMQ PM,即4 9t 3t,解得F此时N坐标为(9,打5 5 5 11综上所述:当t的值为0,孑丁时,4 299 56以点APQN 为顶点的四边形是矩形,点N 的坐标分别为(4,3) (, 29), ( 9,) 5 15 5 15例题4•如图,抛物线y=/+bx+c 与x 轴交于A( — 1,0),B(3,0)两点,顶点M 关于x 轴的对称点是 M'. (1) 求抛物线的解析式;(2) 是否存在过A,B 两点的抛物线,其顶点P 关于x 轴的对称点为Q,使得四边形APBQ 为正方形?若存在,求出 此抛物线的解析式;若不存在,请说明理由•的表达式为y = x 6 7— 2x — 3.⑵存在•如图所示,四边形APBQ 是正方形•因为四边形APBQ 是正方形,所以该抛物线顶点肯定在 AB 的中垂 线上,且 AB=PQ,AB 与PQ 相互垂直平分,则点P 的坐标为P(1,2)或P(1, — 2).①当点P 坐标为P(1,2)时,设抛物 线解析式为y=a(x — 1)2+2•因为抛物线过 A 、B 两点,所以将点A 坐标代入函数解析式得 a(— 1 —1)2+2=0,解得1a= 2,1故抛物线的解析式为:y=(x — 1)2+2。

二次函数中的菱形、长方形存在性问题 学生版

二次函数中的菱形、长方形存在性问题 学生版

二次函数中的菱形、长方形存在性问题
学生版
引言
本文将研究二次函数中的菱形和长方形的存在性问题。

菱形和长方形是数学中常见的图形,我们将分析二次函数中是否存在菱形和长方形,并探讨它们的特征和性质。

二次函数及其图像特征
二次函数是形如 y = ax^2 + bx + c 的函数,其中 a、b、c 是常数。

在平面直角坐标系中,二次函数的图像为一条平滑的曲线,我们将研究这个曲线是否可能生成菱形和长方形。

菱形的存在性问题
菱形是一个四边形,其特点是所有边的长度相等,且对角线相互垂直。

我们将尝试找出二次函数图像上是否存在满足这些条件的四边形。

通过研究二次函数的性质和方程,我们可以得出结论,二次函数曲线上不存在满足菱形条件的四边形。

长方形的存在性问题
长方形是一个四边形,其特点是相邻边相等且对角线相等。

我们将探讨二次函数图像上是否存在满足这些条件的四边形。

通过进一步分析二次函数的方程和性质,我们可以发现二次函数曲线上也不存在满足长方形条件的四边形。

结论
通过研究二次函数的图像特征和方程性质,我们认为二次函数曲线上不存在满足菱形和长方形条件的四边形。

这一结论对于理解二次函数的性质和图像特征具有重要意义。

参考文献
- [参考文献 1]
- [参考文献 2]
- [参考文献 3]。

2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版)

2024年中考数学二次函数压轴题专题12菱形的存在性问题(学生版)

专题12菱形的存在性问题_、知识导航作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形:(1)有一组邻边相等的平行四边形菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直"或“邻边相等”,但这两者其实是等价的,故若四边形ABCQ是菱形,则其4个点坐标需满足:工人++X D<Zi+%=%+为W a-乌尸+(为-%尸=j(Xc-乌尸+(%-无尸考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等.即才艮据菱形的图形性质,我们可以列出关于点坐标的3个等式,故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点(2)1个定点+3个半动点解决问题的方法也可有如下两种:思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A+O8+Q”(AC、BQ为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A点坐标(1,1),B点坐标为(5,4),点。

在尤轴上,点。

在平面中,求。

点坐标,使得以A、B、C>。

为顶点的四边形是菱形.2BA思路1:先平四,再菱形设。

点坐标为(秫,0),。

点坐标为(p,q).(1)当AB为对角线时,由题意得:(AB和CQ互相平分及AC=BC)l+5=m+p<1+4=0+q,解得: (m-1)2+(0-1)2=(m-5)2+(0-4)239 m=一89 p=-8 g=5(2)当AC对角线时,由题意得:(AC和BD互相平分及BA=BC)1+秫=5+p m=2fm=8l+0=4+g,解得:<Q=-2或<p=4(1-5)2+(1—4)2=(秫—5)2+(0—4)2q=—3q=—3(3)当AD为对角线时,由题意得:1+p=5+m m=1+2^/^m=1-2^6 l+q=4+0,解得:L=5+2#<L=5-2^ (1-5)2+(1—4)2=(1—弑+(1—0)2q=3q—3思路2:先等腰,再菱形先求点G点C满足由A、B、。

最新一次函数--菱形存在性问题

最新一次函数--菱形存在性问题

最新一次函数--菱形存在性问题菱形存在性问题(Diamond Problem)是指在多继承结构中,如果两个父类具有相同的方法名,并且子类没有重写该方法,就会导致菱形存在性问题。

问题描述考虑以下多继承结构:A/ \B C\ /D假设父类 A、B 和 C 中都有一个名为 `foo` 的方法。

如果子类D 没有重写 `foo` 方法,那么当 D 调用 `foo` 方法时,会发生菱形存在性问题。

问题的原因和影响菱形存在性问题的产生是由于多继承的特性所致。

当子类继承多个父类时,如果这些父类中的某些方法名相同且未被子类重写,那么就无法确定该方法应该调用哪个父类中的实现。

这可能导致代码出现意料之外的行为或错误。

解决方案为了解决菱形存在性问题,可以采用以下策略:1. 使用虚拟继承:虚拟继承是一种特殊的继承方式,在多继承中使用它可以解决菱形存在性问题。

通过虚拟继承,可以确保父类的实例在子类中只有一个实例,从而避免了重复继承导致的问题。

2. 明确指定调用的父类方法:如果虚拟继承不适用或无法使用,可以通过在调用父类方法时明确指定调用的父类来解决问题。

如`B::foo()` 表示调用父类 B 的 `foo` 方法。

这些解决方案可以根据具体情况选择使用,以避免菱形存在性问题的发生。

结论菱形存在性问题是多继承中的一个常见问题,但可以通过适当的解决方案来避免或解决。

在设计和实现多继承结构时,需要注意方法名的冲突,并采取相应的措施来确保代码的正确性和可维护性。

文章字数:XXX(根据具体内容进行修改)。

【存在性系列】菱形存在性问题

【存在性系列】菱形存在性问题

【存在性系列】菱形存在性问题
菱形是一种特殊的平行四边形,和平行四边形相比较而言多了邻边相等,或者对角线互相垂直等特点。

因此,我们根据这些特点来处理菱形的存在性问题
01理论准备
菱形在平面直角坐标系中需要满足以下条件:
注意:2中两点距离公式可以利用勾股定理推导
根据以上的等量关系我们知道,菱形的存在性问题最多存在3个变量。

因此,在处理的时候关键是建立变量之间的等量关系02引例
如图,在坐标系中,A点坐标(-1,1),B点坐标为(3,4),点C 在x轴上,点D在平面中,求D点坐标,使得以A、B、C、D为顶点的四边形是菱形.
【解题策略一】等腰+对角坐标等量关系
设D的坐标为(m,n),C的坐标为(a,0)
【解题策略二】平行四边形+领边相等
【点评】此方法可以实现“盲解”,即不用画图,即可实现求解。

但是,我们算出的点需要进行一定的验证,看看是否满足实际的条件才行.
03例题精讲
1.如图,抛物线y=x2-2x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是直线y=x+1上一动点,点Q在平面内,是否存在以点P,Q,A,C为顶点的四边形是菱形?若存在,求出点P的坐标,若不存在,说明理由
【两定两动】坐标轴动点+平面动点
【两定两动】对称轴动点+平面动点
【两定两动】斜线动点+平面动点
3°当P为顶点时
此时F与B重合,不符合题意
04小结
通过上面的例题我们可以发现,无论动点在什么位置。

菱形存在性问题,一般的处理思路是先构造等腰三角形,然后根据对角顶点等关系求解。

一次函数背景下的菱形存在性问题(例题精讲)

一次函数背景下的菱形存在性问题(例题精讲)

一次函数背景下的菱形存在性问题(例题精讲)在解决一次函数背景下的菱形的存在性问题,我们需要先厘清菱形的判定:(1)一组邻边相等的平行四边形是菱形;(2)四条边都相等的四边是菱形;(3)对角线互相垂足平分的四边形是菱形。

在目前的问题中,涉及的是:两个定点+一个半动点+一个全动点问题或一个定点,三个半动点的问题。

解题思路:思路1:先平四,再菱形先根据平行四边形的存在性,利用中点坐标公式确定一组方程,再利用邻边相等,即利用距离公式列出一个方程,联立求解。

思路2:先菱形,再平四在构成菱形的4个点中取2个定点和1个半动点,构成等腰三角形,利用距离公式求出半动点的坐标。

再根据平行四边形的存在性,利用中点坐标公式求出另一个全动点的坐标。

分析:根据题意,先标出四个点的坐标,A(1,1),B(5,4),C(m,0),D(x,y),再依据思路1和思路2分析解答。

以思路1为例:先平四,再等腰以AB为对角线为例,先计算AB、CD中点,再利用AC=BC,可以得到C、D坐标。

以此类推,得出另外两种情况,即以AC、AD为对角线,解关于m,x,y的三元一次方程组,进而得到点的坐标。

以思路2为例:先等腰,再平四先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰三角形的存在性问题确定点C,在确定点D。

以AB=AC为例,利用距离公式求出点C坐标,然后再利用平行四边形的存在性,计算BC、AD的中点,求出点D坐标。

以此类推,得到另外两种情况,即AC=BC,AB=BC。

先求出m 的值,再解关于x,y的二元一次方程组。

但是针对具体的问题要具体分析,画出图形,看能否简便运算。

解法分析:两个定点+一个半动点+一个全动点。

根据题意,可知A(2,0),B(0,2√3),P(0,y),Q(m,n)。

由于点P在y轴上,则根据“先等腰,再平四”的法则,根据图形特征求出点Q坐标。

①AB=AP,以A为圆心,AB为半径画弧,得到P,再以AB、AP 为邻边画出菱形ABPQ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档