子集、全集、补集PPT课件

合集下载

高一数学必修1-子集、全集、补集-课件

高一数学必修1-子集、全集、补集-课件

高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。

1.1子集、全集、补集ppt 苏教版

1.1子集、全集、补集ppt 苏教版

作业
1.完成课时训练二
2.预习提纲:
(1)交集与并集的含义是什么?能否说明? (2)求两个集合交集或并集时如何借助图形.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
读一本好书,就是和许多高尚的人谈话。 ---歌德 书籍是人类知识的总结。书籍是全世界的营养品。 ---莎士比亚 书籍是巨大的力量。 ---列宁 好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 ---法奇(法国科学家) 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 书犹药也,善读之可以医愚。 ---刘向 读书破万卷,胸中无适主,便如暴富儿,颇为用钱苦。 ---郑板桥 知古不知今,谓之落沉。知今不知古,谓之盲瞽。 ---王充 举一纲而万目张,解一卷而众篇明。 ---郑玄

苏教版高中数学必修一课件1.2 子集、全集、补集ppt版本

苏教版高中数学必修一课件1.2 子集、全集、补集ppt版本

定义
文字语言 符号语言
设A⊆S,由S中不属于A的所有元素组成的集合 称为S的子集A的补集 ∁SA={x|x∈S,且x∉A}
图形语言
(1)A⊆S,∁SA⊆S; (2)∁S(∁SA)=A; 性质 (3)∁SS=∅,∁S∅=S; (4)A∪(∁SA)=S; (5)A∩(∁SA)=∅
题型探究
类型一 判断集合间的关系
解答
(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集? 验证你的结论. 解 若一个集合有n(n∈N)个元素,则它有2n个子集,2n-1个真子集. 如∅,有一个子集,0个真子集.
解答
反思与感悟
为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到 100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的 等等.
本课结束
再见
2019/11/21
第1章 集合
1.2 子集、全集、补集
学习目标
1.理解子集、真子集、全集、补集的概念. 2.能用符号和Venn图,数轴表达集合间的关系. 3.掌握列举有限集的所有子集的方法,给定全集,会求补集.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 子集
思考
如果把“马”和“白马”视为两个集合,则这两个集合中的元 素有什么关系? 答案 所有的白马都是马,马不一定是白马.
12345
解析
答案
4.若A={x|x>a},B={x|x>6},且A⊆B,则实数a的取值范围是__[6_,__+__∞__).
12345
答案
5.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM等于_{_3_,_5_,6_}__.

全集与补集_PPT课件

全集与补集_PPT课件
集合
全集与补集
学习目标
学习导航
集合
重点难点 重点:集合的交、并、补的混合运算. 难点:集合交、并、补的区别及Venn图的 使用.
集合
新知初探·思维启动
1.全集 在研究某些集合的时候,这些集合往往是某 个给定集合的子集,这个给定的集合叫作 ___全__集___,常用字母___U___表示.全集含有 我们所要研究的这些集合的全部元素. 2.补集
集合
用好此图,在解题中能起到事半功倍的效果. 3.利用补集思想,采用“正难则反”的解题 策略.
集合
失误防范 区分“且”“或”与补集的关系,“且”求补 集变为“或”,“或”求补集变为“且”.如 如 A=a|a≤-1或a≥32,则 ∁RA=a|-1<a<32.
集合
(2)【解】把集合A、B在数轴上表示如下: 由图知,A∪B={x|2<x<10}, ∴∁R(A∪B)={x|x≤2或x≥10}. ∵∁RA={x|x<3或x≥7}, ∴(∁RA)∩B={x|2<x<3或7≤x<10}.
【思维升华】 求∁U(A∪B)时,可以化为 (∁UA)∩(∁UB).
集合
变式训练
{1,2,4},∴∁U(A∪B)={3,5}.
集合
题型三 由集合的交、并、补求字母 参数
例3 (本题满分12分)已知全集U={1,2,3,4,5}, A={x|x2-5x+m=0},B={x|x2+nx+12= 0},且(∁UA)∪B={1,3,4,5},求m+n的值. 【思路点拨】 入手点:由(∁UA)∪B= {1,3,4,5}可得2∈A.而A,B表示方程的解集, 由此可求m和n的值.
集合
【 解 】 ∵ U = {1,2,3,4,5} , ( ∁ UA) ∪ B = {1,3,4,5},∴2∈A, 2分 又A:{x|x2-5x+m=0}, ∴2是关于x的方程x2-5x+m=0的一个根, 得m=6且A={2,3}.…6分 而(∁UA)∪B={1,3,4,5}. ∴3∈B,又B={x|x2+nx+12=0}. ∴3是关于x的方程x2+nx+12=0的一个根,

高一数学:人教版高一数学上学期第一章) PPT课件 图文

高一数学:人教版高一数学上学期第一章) PPT课件 图文
其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元Байду номын сангаас有n个,那么这个集合的子
集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 .
解:由不等式x -3>2知x >5 所以原不等式解集是{ x | x >5}
例题讲解
例 3已{a 知 ,b}A {a, b, c, d, e}
写出所有满足条件的集 合A .
解:满足条件的集合A有
{a,b}, {a,b,c} , {a,b,d},
{a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d,e}共七.个
例题讲解
例 4、设A 集 {1, 合 3, a} B{1,a2a1},且 B A,求a的值.
解 B A
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.2节
子集、全集、补集(1)
主讲:特级教师 王新敞
教学目的:
(1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法
2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合).
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
(3)0{0}

1.2 子集、全集、补集ppt课件

1.2 子集、全集、补集ppt课件

栏 目 链 接
分析:主要考查两集合之间的关系的判断能力. 解析:A={(x,y)|y=x-1(x≠-1)}. 即集合A的元素是直线y=x-1上去掉了点(-1,-2)后剩余的 所有点,而集合B的元素是直线y=x-1(x∈R)图象上所有的点,显 然有A⊆B,而集合A≠B,故有A B,即A是B的真子集.
栏 目 链 (3)补集的几个特殊性质:A∪∁SA=S,∁SS=∅,∁S∅=S,∁S(∁SA) 接
90° 的菱形};当S={矩形}时,∁SA={邻边不相等的矩形}.
=A.
三、重要结论 (1)空集是任何集合的子集. (2)空集是任何非空集合的真子集. (3)任何一个集合都是它自身的子集.
栏 目 链 接
栏 目 链 接
5.若A是全集U的子集,由U中不属于A的元素构成的集 合 , 叫 做 A 在 U 中 的 补 集 , 记作 ∁ UA ,即 ∁ UA = {x|x∈U , 且 x∉A}. {1,3} 例1:若U={1,2,3,4,5},A={2,4,5},则∁UA=_________.
栏 目链 接
栏 目 链 接
(1)当a=0时,若A⊆B,此种情况不存在.
2>-1, a 2 当a<0时,若A⊆B,则 1 -a≤2
⇒a<-4.
栏 目 链 接
-1≥-1, a 2 当a>0时,若A⊆B,则 2 a≤2
⇒a≥2.
综上可知:此时a的取值范围是{a|a<-4或a≥2}.
(2)当a=0时,显然B⊆A.
1.如果集合 A中的每一个元素都是集合 B中的元素,那
么集合A叫做集合B的子集,记作A⊆B或B⊇A.
例 如 : A = {0,1,2} , B = {0,1,2,3} , 则 A 、 B 的 关 系 是

《集合的基本运算》PPT课件

《集合的基本运算》PPT课件

精选课件
5
名师点睛 1.补集及全集概念的理解 (1)理解补集概念时,应注意补集∁SA 是对给定的集合 A 和 S(A ⊆S)相对而言的一个概念,一个确定的集合 A,对于不同的集 合 S,补集不同.如:集合 A={正方形},当 S={菱形}时,∁SA ={一个内角不等于 90°的菱形};当 S={矩形}时,∁SA={邻边 不相等的矩形}. (2)全集是相对于研究的问题而言的,如我们只在整数范围内研 究问题,则 Z 为全集;而当问题扩展到实数集时,则 R 为全集, 这时 Z 就不是全集.
精选课件
6
(3)∁UA 表示 U 为全集时 A 的补集,如果全集换成其他集合(如 R)时,则记号中“U”也必须换成相应的集合(即∁RA). (4)求集合 A 的补集的前提是“A 是全集 U 的子集”.
精选课件
7
2.解决集合问题的方法 集合问题大都比较抽象,解题时要尽可能借助 Venn 图、数轴或 直角坐标系等工具将抽象问题直观化、形象化、明朗化,利于 将题设条件转化.
精选课件
14
【训练 2】 (1)设 U={x|x 是小于 9 的正整数},A={1,2,3},B ={3,4,5,6},求∁UA,∁UB,A∩U,U∩(A∪B). (2)设全集 U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形},求 A∩B,∁U(A∪B). 解 (1)易得 U={1,2,…,8},∴∁UA={4,5,6,7,8};∁UB= {1,2,7,8},A∩U={1,2,3},U∩(A∪B)={1,2,3,4,5,6}, (2)A∩B=∅; ∵A∪B={x|x 是锐角三角形或钝角三角形}, ∴∁U(A∪B)={x|x 是直角三角形}.
精选课件
8

子集、全集、补集

子集、全集、补集

您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
从信的口气看,我相信写信人是一个很年轻的刚刚长大的女孩,一个生活在穷城僻镇的女相遇的文章,也许是这个杂志转载的 ,也许是她记错了刊载的地方,不过这都无关紧要。令我感动的是她对我的文章的读法,不 是从中寻找思想,也不是作为散文欣赏,而是一个生命静静地倾听另一个生命。所以,我所 获得的不是一个作家的虚荣心的满足,而是一
4、 集合 U ={ (x,y ) |x∈ { 1,2} ,y∈ {1,2}} ,
A={(x,y)|x∈N*,y∈N*,x+y=3},求 CUA.
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
对一切加 以审视和消化。这另一个自我,如同罗曼·罗兰所说,是"一颗清明宁静而非常关切的灵魂 "。仿佛是它把我派遣到人世间活动,鼓励我拼命感受生命的一切欢乐和苦难,同时又始终 关切地把我置于它的视野之内,随时准备把我召回它的身边。即使我在世上遭受最悲惨的灾 难和失

数学:1.2《子集、全集、补集》课件(苏教版必修1)

数学:1.2《子集、全集、补集》课件(苏教版必修1)
4、如果集合A具有特征性质p(x),那么集合A {x︱x具有p(x)} 这种表示集合的 可表示为_____________, 性质描述法 方法叫做_____________
5、集合可根据它含有的元素的个数分为两类: 有 限 集和________ 无 限 集. ________
φ 空集 把不含任何元素的集合叫做______, 记作____
复习巩固
确定的、不同的 1、一般地,一定范围内某些___________ 对象的全体构成一个集合。 每个对象 叫做这个集合的元素。 构成集合的_______
2、集合中元素的确定性是指:给定一个集合A, 任何一个元素x,它和集合A只有两种关系, ∈ 要么x_____A, 要么x_____A,不存在第三种可能。
S≠ A
B={x︱x<0,x∈R}
地球人
中国人
预习2:
用适当的符号填空: (1) 0_____φ (2) N_____Q (3) {0}____φ
预习3:
{a,b,c,d}
写出集合{1,2,3}的所有子集。
Φ ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}
C )
预习4:
若U={1,2,3,4}, A={1,3} {2,4} 则CUA=_________________ 若U={1,3}, A={1,3} φ 则CUA=_________________ 若U=R, A={x︱x≤2,x∈R} {x︱x>2,x∈R} 则CUA=________________
自然数集 常用大写字母N表示____________ 正整数集 N*(或N+)表示____________ 整数集 Z表示____________ 有理数集 Q表示____________ 实数集 R表示____________

子集、全集、补集

子集、全集、补集
N的,关P系,是且(M=C)UN,N=CUP,则M与P
M(A)P,M=(CDUP),M(BP).M=P,(C)
四、练习
1、已知全集U={x|-1<x<9},A={x|1
< x < a } , 若 A ≠ , 则 a 的 取 值 范 围 是
()
(A)a<9 (B)a≤9 (C)a≥9 (D)1< a≤9
例3已知A={0,2,4}, CUA= {-1, 1}, CUB= {-1,0,2},求B 例3 已知全集U=R,集合A={x| 1≤2x+1<9},求CUA。
例4 已知S={x|-1≤x+2<8},A ={x|-2<1-x≤1},
B={x|5<2x-1<11},讨论A与 CSB的关系。
例5、设全集U(U Φ),已知集合M,
二、全集的定义
如果集合S含有我们所要研究的各个 集合的全部元素,这个集合就可以 看作一个全集,全集通常用U表示。
性质:CS(CSA)=A ,CSS=
CS =S

三、讲解范例
例1 (1)若S={1,2,3,4,5,6}, A={1,3,5},求CSA (2)若A={0},求证:CNA=N*
例2 S={三角形}, B={
A
A={班上所有参加铜管乐队的同学} B={班上所有参加铜管乐队的同学} S={全班同学} 那么S、A、B三集合的关系如何?
一、补集的定义
1、补集:一般地,设S是一个集合,A是S
的一个子集(即 AS )。由S中所有
不属于A的元素组成的集合,叫做S中子
集CAS 的A 补=集{ (x或|余x 集)S,,且 记x作 CA S } A ,即
2、已知全集U={2,4,1-a},A={2,a2
-a+2}。如果CUA=

第一章 第二节 子集、全集、补集 人教版名师课件

第一章 第二节 子集、全集、补集 人教版名师课件
由∵出满是质列∴为知即集A足有出x:依,A,=由由合=((题互限关BxyB中(①②x≠,x2的1义异集于y,1元))(得得∴,x值x有性,1则3素两,两)①故(。是故xByxxy的个个y111x中)注的这可互0集集=11xxxy21必意方类根xy120异(合合,y有1所程题据或性)舍y1的的或y1求组容相x可),所所0xxxy值,易等x知y或。根2有有=1是求忽的:Rx1②x据元元2,yx否解略 有元≠素素(从x1使即而限y素xx,之之舍而y2集可引集的x积和)分≠合。起的0互1相相别y,元错性异等等求素解性。;
用数学语言来表示就是:若x∈A,则 x∈B,我们就说A是B的子集。记作AB, 或BA。
AB可以用Venn图来表示:
当集合A不包含
于集合B,或集
合B不包含集合A
B
时,记作A B,
A
或B A。如
A={1,2,3}, 规定:空集是任何集合的
B={2,3,4},则 A B,当然,B
,都有Φ A。
一般地,若集合A中有n个元素,则集合A
2 2 有 n个子集,2n-1个非空子集, n-1个
真子集,2n -2个非空真子集。
例2、已知{a,b}A {a,b,c,d},求 所有满足条件的集合A。
解:∵{a,b}A,∴A中必有元素a,b。
分析又:∵本A题考{察a,的b是,子c,集d与},真子集的概 念然。后∴首考A先虑中要A的里弄元面清素含楚有有A2个其里或他面3哪必个些须。元含素有,a和按b规, 律去因找此。满足条件的集合A有:
例2:设U =Z,A ={X|X =2k,k Z},B ={X|X =2K +1, k Z},
求 Cu A
Cu B
练习题:
1.设集合A ={-1,1},B ={x| x 2 -2ax +b =0},

2023-2024学年新教材苏教版必修第一册 全集、补集 课件(31张)

2023-2024学年新教材苏教版必修第一册  全集、补集  课件(31张)
定存在元素在集合 A 的补集中,但不在集合 B 的补集中.
补集符号∁SA 有三层含义: (1)A 是 S 的一个子集,即 A⊆S; (2)∁SA 表示一个集合,且∁SA⊆S; (3)∁SA 是 S 中所有不属于 A 的元素构成的集合.
1.思考辨析(正确的画√,错误的画×) (1)全集一定含有任何元素.( ) (2)集合∁RA=∁QA.( ) (3)一个集合的补集一定含有元素.( ) (4)研究 A 在 S 中的补集时,A 可以不是 S 的子集.( ) [答案] (1)× (2)× (3)× (4)×
(3)图形表示:
(4)补集的性质 ①∁S∅=__S_,②∁SS=__∅_,③∁S(∁SA)=__A_.
知识点 2 全集 如果一个集合包含我们所研究问题中涉及的_所__有__元素,那么就称 这个集合为全集,全集通常记作 U.
两个不同的集合 A、B 在同一个全集 U 中的补集可能相等
吗? [提示] 不可能相等.因为集合 A、B 是两个不同的集合.所以必
(1){2,3,5,7} (2){x|x< - 3 或 x = 5} [(1)A = {1,3,5,7} , ∁ UA = {2,4,6},
∴U={1,2,3,4,5,6,7}.又∁UB={1,4,6}, ∴B={2,3,5,7}. (2)将集合 U 和集合 A 分别表示在数轴上,如图所示.
由补集定义可得∁UA={x|x<-3 或 x=5}.]
第1章 集合
1.2 子集、全集、补集 第2课时的意义,理解补集 1.通过补集的运算培养数学运算素
的含义.(重点)
养.
2.能在给定全集的基础上求已 2.借助集合思想对实际生活中的对象
知集合的补集.(难点)
进行判断归类,培养数学抽象素养.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本节课到此结束,请同学们 课后再做好复习。谢谢!
再见!
问题:集合与集合之间的关系如何建立?
引入: 观察、思考下面问题的特殊性,寻找其一般规律. (1)A={1,2,3},B={1,2,3,4,5} 集合A的元素1,2,3同时是集合B的元素 (2)A={x| x >3}, B={x| 3x-6 >3} 集合A中所在大于3的元素,也是集合 B元素 (3)A={正方形},B={四边形} 集合A中所有正方形都是集合 B元素 (4) A={直角三角形},B={三角形} 所有直角三角形都是三角形,即A是元素都是B中元素 (5) A={a,b},B={ a,b,c,d,e}
集合A的元素a,b都是集合B的元素
由上述特殊性可得其一般性,即集合A都是集合B的一部分.
新课讲授
子集定义: 一般地,对于两个集合A与B,如果集合A中 的任何一个元素都是集合B的元素,我们就说集 合A包含于集合B,或集合B包含集合A,记作A
B(B A),这时我们也说集合A是集合B的子
集 . 当集合 A不包含于集合B,或集合B不包含集合A, 则记作A B(B A) 如:A={2,4},B={2,5,7},则A B
《高中数学同步辅导课程》
人教版高一数学上学期 第一章第1.1节 子集、全集、补集(1)
教学目的: (1)使学生了解集合的包含、相等关系的意义; (2)使学生理解子集、真子集的概念.
知识回顾
1.集合的表示方法 列举法、描述法 2.集合的分类 有限集、无限集 由集合元素的多少对集合进行分类,由集 合元素的有限、无限选取表示集合的元素,进 而判断其多少.
新课讲授
真子集的定义: 如果A B,并且 A ≠B,则集合A是集合B 的真子集. 可这样理解:若A B,且存在bB,但bA, 称A是B的真子集. A是B的真子集,记作A B(B A) 真子集关系也具有传递性 若A B,B C,则A C 规定: 是任何非空集合的真子集.
B AA B C
b
新课讲授
新课讲授
规定:空集是任何集合子集. 即 A(A为任何集合). 规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31}, 那么有A A,B B. 例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律: AB,B C, A C 从上可以看到,包含关系具有“传递性”.
a 2 a 1 3 或a 2 a 1 a 2 由a a 1 3,解得a 1或a 2 , 检验适合; 2 由a a 1 a, 解得a 1,
检验知与集合 A中元素互异性矛盾; a 1 或 a 2 .
自我演练
1.判断下列关系是否正确
(1){a} {a}
(3) 0 {0} (4) {0} (5) {0} (6) {0}
(正确)
(2){1, 2, 3} {3, 2, 1}(正确)
(正确) (错误) (错误) (正确)
自我演练





课时小结
1.能判断存在子集关系的两个集合谁是谁的 子集,进一步确定其是否是真子集. 2.清楚两个集合包含关系的确定,主要靠 其元素与集合关系来说明.
新课讲授
如:{a,b,c,d}与{d,c,b,a}相等; {2,3,4}与{4,3,2}相等; 稍微复杂的式子特别是用描述法给出的要 认真分辨. 如:A={x| x =2m+1,mZ} B={ x| x =2n-1,nZ }

A=B ={……,-3,-1,1,3,……}
例题讲解
例1 写出{a,b}的所有子集,并指出其中哪些 是它的真子集. 解:依定义 {a,b}的所有子集是 、{a}、{b}、{a,b} 其中真子集有 、{a}、{b}.
从这个例题可以得到一般的结论:
如果一个集合的元素有n个,那么这个集合的子 集有2 n个,真子集有2n-1个. 例2 解不等式x -3>2,并把结果用集合表示 . 解:由不等式x;5}
例题讲解
{ a , b , c , d , e } 例3 已知{a, b } A 写出所有满足条件的集 合A .
解:满足条件的集合 A有
{a,b}, {a,b,c} , {a,b,d }, {a,b,c,d }, {a,b,e} , {a,b,c,e} , {a,b,d,e}共七个.
例题讲解
例4、设集合A {1, 3, a} 2 A ,求 a 的值 . B {1,a a 1},且 B 解 BA
两个集合相等,应满足如下关系: A={2,3,4,5},B={5,4,3,2},即集合A 的元素都是集合B的元素,集合B的元素都是集合 A的元素. 集合相等的定义: 一般地,对于两个集合A与B,如果集合A 的任何一个元素都是集合B的元素,集合B的任 何一个元素都是集合A的元素,我们就说集合A 等于集合B,记作A =B. 用式子表示:如果AB,同时AB,那么A=B.
相关文档
最新文档