哈工大电路答案第12章

合集下载

电子电路第十二章习题及参考答案

电子电路第十二章习题及参考答案

习题十二12-1 写出题图12-1所示逻辑电路输出F 的逻辑表达式,并说明其逻辑功能。

解:由电路可直接写出输出的表达式为:301201101001301201101001D A A D A A D A A D A A D A A D A A D A A D A A F +++==∙∙∙由逻辑表达式可以看出: 当A 1A 0=00 F =D 0 A 1A 0=01 F =D 1A 1A 0=10 F =D 2 A 1A 0=11 F =D 3这个电路的逻辑功能是,给定地址A 1A 0以后,将该地址对应的数据传输到输出端F 。

12-2 组合逻辑电路如题图12-2所示。

(1)写出函数F 的表达式;(2)将函数F 化为最简“与或”式,并用“与非”门实现电路; (3)若改用“或非”门实现,试写出相应的表达式。

解:(1)逻辑表达式为:C A D B D C B A F += (2)化简逻辑式CA DB D BC A C AD B D C A D B C A D C B BC A C A D B A C A D B D C B A C A D B D C B A F +=+++++=++++++=++++=+=∙)1()1())(()(这是最简“与或”表达式,用“与非”门实现电路见题解图12-2-1,其表达式为: C A D B F ∙=(3)若用“或非”门实现电路见题解图12-2-2,其表达式为: C A D B C A D B C A D B C A D B F +++=+++=++=+=))((由图可见,对于同一逻辑函数采用不同的门电路实现,所使用的门电路的个数不同,组合电路的速度也有差异,因此,在设计组合逻辑电路时,应根据具体不同情况,选用不同的门电路可使电路的复杂程度不同。

A A3210题图12-1 习题12-1电路图12-3 组合逻辑电路如题图12-3分析的结果,列成真值表的形式。

解:对于图12-3电路可以写出逻辑函数表达式为:ABCC AB C B ABC C A C B ABC C A F +=++==∙∙ =(AB )⊙C真值表如右图所示,由真值表可以看出,该电路是实现AB 与C 的“同或”,及当AB 与C 的值相同时,电路输出为“1”,否则输出为“0”。

电路原理课后习题答案.

电路原理课后习题答案.
(a)(b)(c)
(d)(e)(f)
题1-4图
解(a)电阻元件,u、i为关联参考方向。
由欧姆定律u=Ri=104i
(b)电阻元件,u、i为非关联参考方向
由欧姆定律u=-Ri=-10i
(c)理想电压源与外部电路无关,故u=10V
(d)理想电压源与外部电路无关,故u=-5V
(e)理想电流源与外部电路无关,故i=10×10-3A=10-2A
电容电流
t=2 ms时
电容的储能为
7-20题7-20图所示电路,开关合在位置1时已达稳定状态,t=0时开关由位置1合向位置2,求t0时的电压 。
题7-20图
解:
用加压求流法求等效电阻
7-26题7-26图所示电路在开关S动作前已达稳态;t=0时S由1接至2,求t0时的 。
题7-26图
解:由图可知,t>0时
题4-5图
4-9求题4-9图所示电路的戴维宁或诺顿等效电路。
(a)
(b)
题4-9图
解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”求开路电压 。设 ,各支路电流如图示,计算得
故当 时,开路电压 为
将电路中的电压源短路,应用电阻串并联等效,求得等效内阻 为
4-17题4-17图所示电路的负载电阻 可变,试问 等于何值时可吸收最大功率?求此功率。
题2-1图
解:(1) 和 并联,其等效电阻 则总电流
分流有
(2)当
(3)
2-5用△—Y等效变换法求题2-5图中a、b端的等效电阻:(1)将结点①、②、③之间的三个9电阻构成的△形变换为Y形;(2)将结点①、③、④与作为内部公共结点的②之间的三个9电阻构成的Y形变换为△形。
题2-5图
解(1)变换后的电路如解题2-5图(a)所示。

电工与电子技术12章_陶桓齐_课后习题答案

电工与电子技术12章_陶桓齐_课后习题答案

第12章习题解答12-1 已知由与非门组成的基本RS触发器和输入端D R、D S的波形如题图12-1所示,试对应地画出Q和Q的波形,并说明状态“不定”的含义。

题图 12-1解:12.2 已知可控RS触发器CP、R和S的波形如题图12-2所示,试画出输出Q的波形。

设初始状态分别为0和1两种情况。

题图12-2解:12-3 在主从结构的JK触发器中,已知CP、J、K的波形如题图12-3所示,试画出Q端的波形。

设初始状态Q=0。

题图12-3解:12-4 维持阻塞型D触发器的输入D和时钟脉冲CP的波形如题图12-4所示,试画出Q端的波形。

设初始状态Q = 0。

题图12-4解:12-5 在T触发器中,已知T和CP的波形如题图12.5所示,试画出Q端的波形。

设初始状态Q= 0。

题图12-5解:12-6 写出题图12-6所示电路的逻辑关系式,说明其逻辑功能。

题图12-6解:逻辑关系为:Q D AQ BQ==+所以其功能为JK触发器。

12-7 如题图12-7所示的电路和波形,试画出D端和Q端的波形。

设初始状态Q= 0。

题图12-7解:12-8 将主从型JK触发器转换为T'触发器有几种方案?画出外部连线图。

解:12-9 电路如题图12-9所示。

画出Q0端和Q1端在六个时钟脉冲CP作用下的波形。

设初态Q=Q0= 0。

1题图12-9解:12-10 用题图12.10(a)所给器件构成电路,并在示波器上观察到如图12.10(b)所示波形。

试问电路是如何连接的?请画出逻辑电路图。

(a) (b)题图12-10解:12-11 已知如题图12.11(a)所示电路的各输入端信号如题图12-11(b)所示。

试画出触发器输出端Q0和Q1的波形。

设触发器的初态均为0。

(a) (b)题图12-11解:12-12 已知电路和时钟脉冲CP及输入端A的波形如题图12-12所示,试画出输出端Q、1Q 的波形。

假定各触发器初态为1。

(a) (b)题图12-12解:12-13 已知题图12-13(a)所示电路中输入A及CP的波形如题图12-13(b)所示。

哈工大微波技术12章答案

哈工大微波技术12章答案

题 解第 一 章1-1 微波是频率很高,波长很短的一种无线电波。

微波波段的频率范围为8103⨯Hz~12103⨯Hz ,对应的波长范围为1m~0.1mm 。

关于波段的划分可分为粗分和细分两种。

粗分为米波波段、分米波波段、厘米波波段、毫米波波段、亚毫米波段等。

细分为Ka K Ku X C S L UHF 、、、、、、、…等波段,详见表1-1-2。

1-2 简单地说,微波具有下列特点。

(1) 频率极高,振荡周期极短,必须考虑系统中的电子惯性、高频趋肤效应、辐射效应及延时效应;(2) 波长极短,“反射”是微波领域中最重要的物理现象之一,因此,匹配问题是微波系统中的一个突出问题。

同时,微波波长与实验设备的尺寸可以比拟,因而必须考虑传输系统的分布参数效应;(3) 微波可穿透电离层,成为“宇宙窗口”;(4) 量子特性显现出来,可用来研究物质的精细结构。

1-3 在国防工业方面:雷达、电子对抗、导航、通信、导弹控制、热核反应控制等都直接需要应用微波技术。

在工农业方面,广泛应用微波技术进行加热和测量。

在科学研究方面,微波技术的应用也很广泛。

例如,利用微波直线加速器对原子结构的研究,利用微波质谱仪对分子精细结构进行研究,机载微波折射仪和微波辐射计对大气参数进行测量等等。

第 二 章2-1 解 ∵01011Z Z Z Z +-=Γ ∴)(82.811Ω=Z2-2 解图(a )的输入阻抗021Z Z ab =; 图(b )的输入阻抗0Z Z ab =;图(c )的输入阻抗0Z Z ab =;图(d )的输入阻抗052Z Z ab =; 其等效电路自绘。

2-3 解 ∵01011Z Z Z Z +-=Γ ∵e j j 4121)1(21π=+=Γ 2-4 解(1) ∵e j Z Z Z Z 40101122π=+-=Γ ∴83.511ρ11=Γ-Γ+= (2) ∵π2 =l β∴e e j l -j l 4π) β2(11022=Γ=Γϕ 2-5 解 ∵ljZ Z l jZ Z Z Z tg βtg β10010++= ∴)(39.673.8Ω+=j Z in)(24.6009.2201Ω+=j Z)(1005003Ω+=j Z2-6 证明∵)(00ββe e lj l j U U Γ+=-+ )(00ββ0e e l j l j Z U I Γ-=-+ 而I Z E I Z E U g 0-=-=∴e U E l j 0β2-+= 故2EU =+2-7 证明lZ j l j Z l jZ Z l jZ Z Z in tg β1tg βtg βtg β111001++=++= 而 ρ11min =Z ,对应线长为1min l 故 1min 11min 1tg β1tg βρ1l Z j l j Z ++= 整理得 1min 1min 1tg βρρtgβ1l j l j Z --=2-8 解 ∵38.001011=+-=ΓZ Z Z Z而给定的1Z 是感性复阻抗,故第一个出现的是电压腹点,即λ/4线应接在此处。

哈工大电路理论基础课后习题答案(PDF精品)

哈工大电路理论基础课后习题答案(PDF精品)

答案2.1解:本题练习分流、分压公式。

设电压、电流参考方向如图所示。

(a) 由分流公式得:23A 2A 23I R Ω⨯==Ω+解得75R =Ω(b) 由分压公式得:3V 2V 23R U R ⨯==Ω+解得47R =Ω答案2.2解:电路等效如图(b)所示。

20k Ω1U +-20k Ω(b)+_U图中等效电阻(13)520(13)k //5k k k 1359R +⨯=+ΩΩ=Ω=Ω++由分流公式得:220mA 2mA 20k RI R =⨯=+Ω电压220k 40V U I =Ω⨯= 再对图(a)使用分压公式得:13==30V 1+3U U ⨯答案2.3解:设2R 与5k Ω的并联等效电阻为2325k 5k R R R ⨯Ω=+Ω(1) 由已知条件得如下联立方程:32113130.05(2) 40k (3)eqR U UR R R R R ⎧==⎪+⎨⎪=+=Ω⎩由方程(2)、(3)解得138k R =Ω 32k R =Ω 再将3R 代入(1)式得210k 3R =Ω答案2.4解:由并联电路分流公式,得1820mA 8mA (128)I Ω=⨯=+Ω2620mA 12mA (46)I Ω=⨯=+Ω由节点①的KCL 得128mA 12mA 4mA I I I =-=-=-答案2.5解:首先将电路化简成图(b)。

图 题2.5120Ω(a)图中1(140100)240R =+Ω=Ω2(200160)120270360(200160)120R ⎡⎤+⨯=+Ω=Ω⎢⎥++⎣⎦ 由并联电路分流公式得211210A 6A R I R R =⨯=+及21104A I I =-= 再由图(a)得321201A 360120I I =⨯=+由KVL 得,3131200100400V U U U I I =-=-=-答案2.6xRx(a-1)图2.6解:(a )设R 和r 为1级,则图题2.6(a)为2级再加x R 。

哈尔滨理工大学电路1-9章习题集答案解析

哈尔滨理工大学电路1-9章习题集答案解析

第一章(电路模型和定律)习题解答一、选择题1.KVL 和KCL 不适用于 D 。

A .集总参数线性电路;B .集总参数非线性电路;C .集总参数时变电路;D .分布参数电路2.图1—1所示电路中,外电路未知,则u 和i 分别为 D 。

A .0==i u uS ,; B .i u u S ,=未知;C .0=-=i u uS ,; D .i u u S ,-=未知3.图1—2所示电路中,外电路未知,则u 和i 分别为 D 。

A .S i i u =∞=, ;B .S i i u -=∞=, ;C .S i i u =未知, ; D .S i i u -=未知,4.在图1—3所示的电路中,按照“节点是三条或三条以上支路的联接点”的定义,该电路的总节点个数为 A 。

A .5个;B .8个;C .6个;D .7个5.在图1—4所示电路中,电流源发出的功率为 C 。

A .45W ;B .27W ;C .–27W ;D .–51W二、填空题1.答:在图1—5所示各段电路中,图A 中电流、电压的参考方向是 关联 参考方向;图B 中的电流、电压的参考方向是 非关联 参考方向;图C 中电流、电压的参考方向是 关联 参考方向;图D 中电流、电压的参考方向是 非关联 参考方向。

2.答:图1—6所示电路中的u 和i 对元件A 而言是 非关联 参考方向;对元件B 而言是 关联 参考方向。

3.答:在图1—7所示的四段电路中,A 、B 中的电压和电流为关联参考方向,C 、D中的电压和电流为非关联参考方向。

4.答:电路如图1—8所示。

如果10=R Ω,则10=U V ,9-=I A ;如果1=R Ω,则 10=U V ,0=I A 。

5.答:在图1—9 (a)所示的电路中,当10=R Ω时,=2u 50V ,=2i 5A ;当5=R Ω时,=2u 50V , =2i 10A 。

在图1—9 (b)所示的电路中,当R =10Ω时,2002=u V ,202=i A ;当5=R Ω时,1002=u V, 202=i A 。

【电工学期末考试习题】第12章 集成运算放大器 习题参考答案

【电工学期末考试习题】第12章  集成运算放大器 习题参考答案

第12章 集成运算放大器 习题参考答案一、填空题:1. 理想运放同相输入端和反相输入端的“虚短”指的是 同相输入端与反相输入端两点电位相等,在没有短接的情况下出现相当于短接时的现象。

2. 将放大器 输出信号 的全部或部分通过某种方式回送到输入端,这部分信号叫做 反馈 信号。

使放大器净输入信号减小,放大倍数也减小的反馈,称为 负 反馈;使放大器净输入信号增加,放大倍数也增加的反馈,称为 正 反馈。

放大电路中常用的负反馈类型有 并联电压 负反馈、 串联电压 负反馈、 并联电流 负反馈和 串联电流 负反馈。

3. 若要集成运放工作在线性区,则必须在电路中引入 负 反馈;若要集成运放工作在非线性区,则必须在电路中引入 开环 或者 正 反馈。

集成运放工作在线性区的特点是 输入电流 等于零和 输出电阻 等于零;工作在非线性区的特点:一是输出电压只具有 高电平、低电平两种稳定 状态和净输入电流等于 零 ;在运算放大器电路中,集成运放工作在 线性 区,电压比较器集成运放工作在 非线性 区。

4. 集成运放有两个输入端,称为 同相 输入端和 反相 输入端,相应有 同相输入 、 反相输入 和 双端输入 三种输入方式。

5. 放大电路为稳定静态工作点,应该引入 直流 负反馈;为提高电路的输入电阻,应该引入 串联 负反馈;为了稳定输出电压,应该引入 电压 负反馈。

6. 理想运算放大器工作在线性区时有两个重要特点是“虚短”和 “虚断” 。

三、选择题:(每小题2分,共16分)1.集成运算放大器能处理( C )。

A 、直流信号;B 、交流信号;C 、交流信号和直流信号。

2. 为使电路输入电阻高、输出电阻低,应引入( A )。

A 、电压串联负反馈;B 、电压并联负反馈;C 、电流串联负反馈;D 电流并联负反馈。

3. 在由运放组成的电路中,运放工作在非线性状态的电路是( D )。

A 、反相放大器;B 、差值放大器;C 、有源滤波器;D 、电压比较器。

哈工大电路原理基础课后习题

哈工大电路原理基础课后习题

第一章习题1.1 图示元件当时间t<2s时电流为2A,从a流向b;当t>2s时为3A,从b流向a。

根据图示参考方向,写出电流的数学表达式。

1.2图示元件电压u=(5-9e-t/τ)V,τ>0。

分别求出t=0 和t→∞时电压u的代数值及其真实方向。

图题1.1 图题1.21.3 图示电路。

设元件A消耗功率为10W,求;设元件B消耗功率为-10W,求;设元件C发出功率为-10W,求。

图题1.31.4求图示电路电流。

若只求,能否一步求得?1.5 图示电路,已知部分电流值和部分电压值。

(1) 试求其余未知电流。

若少已知一个电流,能否求出全部未知电流?(2) 试求其余未知电压u14、u15、u52、u53。

若少已知一个电压,能否求出全部未知电压?1.6 图示电路,已知,,,。

求各元件消耗的功率。

1.7 图示电路,已知,。

求(a)、(b)两电路各电源发出的功率和电阻吸收的功率。

1.8 求图示电路电压。

1.9 求图示电路两个独立电源各自发出的功率。

1.10 求网络N吸收的功率和电流源发出的功率。

1.11 求图示电路两个独立电源各自发出的功率。

1.12 求图示电路两个受控源各自发出的功率。

1.13 图示电路,已知电流源发出的功率是12W,求r的值。

1.14 求图示电路受控源和独立源各自发出的功率。

1.15图示电路为独立源、受控源和电阻组成的一端口。

试求出其端口特性,即关系。

1.16 讨论图示电路中开关S开闭对电路中各元件的电压、电流和功率的影响,加深对独立源特性的理解。

第二章习题2.1 图(a)电路,若使电流A,,求电阻;图(b)电路,若使电压U=(2/3)V,求电阻R。

2.2 求图示电路的电压及电流。

2.3 图示电路中要求,等效电阻。

求和的值。

2.4求图示电路的电流I。

2.5 求图示电路的电压U。

2.6 求图示电路的等效电阻。

2.7 求图示电路的最简等效电源。

图题2.72.8 利用等效变换求图示电路的电流I。

电路原理 第十二章

电路原理 第十二章
例 12 — 2 图 解:(1) f(t) 的傅里叶级数中只包含正弦分量,说明 f(t) 为奇函数,对原点 对称,可用下图波形表示。
(2) f(t) 的傅里叶级数中只包含余弦分量,说明 f(t) 为偶函数,对坐标纵 轴对称,可用下图波形表示。
(3) f(t) 的傅里叶级数中只包含正弦偶次分量,可用下图波形表示。
代入电压、电流表示式并利用三角函数的性质,得:
式中 由此得出结论:
非正弦周期电流电路的平均功率=直流分量的功率+各次谐波的平均功率。
§12.4 பைடு நூலகம்正弦周期交流电路的计算
根据以上讨论可得非正弦周期电流电路的计算步骤如下: (1) 把给定电源的非正弦周期电流或电压作傅里叶级数分解,将非正弦周
期量展开成若干频率的谐波信号; (2) 利用直流和正弦交流电路的计算方法,对直流和各次谐波激励分别计
(1)由例 12-1 知方波信号的展开式为:
(b)
代入已知数据
得直流分量 基波最大值 三次谐波最大值 五次谐波最大值 角频率为 :
因此,电流源各频率的谐波分量表示式为:
(2) 对各次频率的谐波分量单独计算 (a) 直流分量 IS0 单独作用时:
把电容断路,电感短路,电路如图(c)所示,
计算得:
(b) 基波单独作用时, 抗和感抗为:
注意: (1) 测量非正弦周期电流或电压的有效值要用电磁系或电动系仪表,测量非
正弦周期量的平均值要用磁电系仪表。 (2) 非正弦周期量的有效值和平均值没有固定的比例关系,它们随着波形不
同而不同。 4. 非正弦周期交流电路的平均功率
设任意一端口电路的非正弦周期电流和电压可以分解为傅里叶级数:
则一端口的平均功率为:
四、学时安排

哈工大电力电子习题2 有答案

哈工大电力电子习题2 有答案

12三相逆变器,若输出线电压基波有效值(V LL )1 = 220 V ,频率为52Hz ,负载为三相对称的Y 型接法,解答下述问题:1)若逆变器工作于方波控制方式,计算直流电源电压V d 和负载相电压基波有效值(V An )1。

2)若逆变器工作于双极性SPWM 控制方式,m f =39 且 m a = 0.8,计算直流电源电压V d 和负载相电压基波有效值(V An )1。

解:1)若逆变器工作于方波控制方式,则 直流电源电压有效值 1282.10.78LL d V V V == 负载相电压有效值1()127An V V == 2)若逆变器工作于双极性SPWM 控制方式,则直流电源电压有效值 1220449.30.6120.6120.8LL d a V V V m ===×负载相电压有效值1()127An V V == 13. 三相桥式逆变器如图6-3所示,方波控制方式。

负载为三相平衡的纯阻性负载,Y 形连接,中性点为n 。

时间轴对应地画出稳态时下列两组电压和电流的波形,波形上应标注幅值(用V d 和一相负载电阻R 来表示): 1),,,,,AN BN CN AB nN An v v v v v v 2),,,,,,A A An A B C T D d v i i i i i i ++图6-3解:(1),,,,,AN BN CN AB nN An v v v v v v 的波形如下:(2),,,,,,A A An A B C T D d v i i i i i i ++的波形如下:14.图6-4(a)所示的单相全桥逆变电路工作于双极性SPWM模式。

设载波比N=9要求:在图6-4(b)中画出1个调制信号波周期内的开关控制信号波形和输出电压u o的波形。

图6-4(a)解:1个调制信号波周期内的开关控制信号波形和输出电压u o的波形如下15桥式DC-DC变换电路如图7-6所示,负载为直流电动机,采用双极型PWM控制方式时,将电机处于正向电动状态时的电压、电流方向定义为正方向。

电路理论基础课后答案(哈工大陈希有)第12章

电路理论基础课后答案(哈工大陈希有)第12章

题 12.1图示电路,设f 1(^),i^ f 2(u R )。

以q 及^为状态变量列出状态方程,并讨论所得方程是i c =q c = -i R -L U L =申=Uc =q/C将各元件方程代入上式得非线性状态方程:q = -f 1(屮)-f 2(q/C) 屮・=q/C方程中不明显含有时间变量 t ,因此是自治的。

题 12.2图示电路,设u^ = f 1(q 1), u^ = f 2(q 2),列出状态方程。

图题12.2解:分别对节点①、②列 KCL 方程:节点①: h =5 =i s-(U 1 -U 2)/R 3节点②:=q 2 =(U 1 -U 2)/ R 3 -U 2 / R 4代入上述方程,整理得状态方程:q^-f 1(q 1)/R 3 +f 2(q 2)/R 3 +i sq ; = f 1(q 1)/R 3 - f 2(q 2)(R 3 +R 4)/(R 3R 4)题 12.3①R 3②30R 4i2将U 1 =f 1(q 1), U 2 = f 2(q 2)KCL 与KVL 方程:i sU3为非状态变量,须消去。

由节点①的KCL方程得:在图示电路中电容的电荷与电压关系为比=f1(q1),电感的磁链电流关系为= f2(2)。

试列出电路的状态方程。

+ R4 i4 U s()+ #U1 q -图题12.3解:分别对节点①列KCL方程和图示回路列KVL方程得:q1 = i 2 — U3 / R3 屮;=Us —U3 (1) ⑵解得-i^i^i^-i2 +■R^ + U R U1=0R3R4 U3 将屮= (U i +R4i2)R3/(R3 中尺)=[f l(q i)+R4f2(2)]R3/(R3+R4) =f1(q1)、i2 = f2(叽)及U3代入式(1)、(2)整理得:日;Af'qJ/R 椀)卄2(巴)R s/R 示4)胆"(qJR s/R +引—f2(巴)明/(艮+农)+u sU i题12.4图示电路,设i = a勺仃,U s = P sin(«t),试分别写出用前向欧拉法、后向欧拉法和梯形法计算响应叽t)的迭代公式,步长为h。

《集成电路设计(第2版)》习题答案10-12章

《集成电路设计(第2版)》习题答案10-12章
尝试编写一个时钟发生器程序。 时钟发生器 CLKGEN 利用外来时钟信号 clk 生成一系列时钟信号 clk1,alu_ena,fench,并送 往 CPU 的其他部件。其中,fetch 是控制信号,clk 的 8 分频信号。当 fetch 高电平时,使 clk 能触发 CPU 控制开始执行一条指令;同时 fetch 信号还将 CLK1 CLKGEN 控制地址多路器输出指令地址和数据地址。Clk 信号用作 CLK ALU_CLK 指令寄存器、累加器、状态控制器的时钟信号。Alu_ena RESET FETCH 则用于控制算术逻辑运算单元的操作。 图是时钟发生器的 原理图。 ‘timescale 1ns/1ns module clk_gen(clk,reset,fetch,alu_ena); input clk,reset; output fetch,aluena; wire clk,reset; reg[7:0] state; parameter S1=8’b00000001; S2=8’b00000010; S3=8’b00000100; S4=8’b00001000; S5=8’b00010000; S6=8’b00100000; S7=8’b01000000; S8=8’b10000000; always @(posedge clk) if(reset) begin fetch<=0; alu_ena<=0; state<=idle; end else begin case(state) S1: begin alu_ena<=1; state<=S2; end S2: begin alu_ena<=0; state<=S3;
图10.40 反相器链驱动结构 4.列出CMOS存储器的分类和各自的特点。 分类: 半导体存储器按数据存取方式的不同可分为随机存储器 (RAM) 和只读存储器 (ROM) . 基 于单个数据存储单元的工作原理,RAM 主要分为两大类:动态存储器(DRAM)和静态存储器 (SRAM)。 而在ROM中根据数据存储(写入数据)方式的不同, 可分为掩膜ROM 和可编ROM(PROM)。 可编程ROM 又可进一步分为熔丝型ROM、 可擦除PROM(EPROM)、 电可擦除PROM(EEPROM)和闪存 (Flash),下图概括了存储器的分类。

电路理论基础课后答案(哈工大陈希有)第12章

电路理论基础课后答案(哈工大陈希有)第12章

题 12.1图示电路,设i L f1 (ψ), i R f2 (u R ) 。

以q及ψ为状态变量列出状态方程,并讨论所得方程是自治的还是非自治的。

1i R i L i Cqu L Cu R图题 12.1解:分别对节点①和右边回路列KCL 与 KVL 方程:i C q C i R i Lu L u C q / C将各元件方程代入上式得非线性状态方程:q f1 ( ) f 2 (q/C )q/C方程中不明显含有时间变量t ,因此是自治的。

题 12.2图示电路,设u1 f 1 ( q1 ), u2f 2 (q2 ) ,列出状态方程。

①R3②i q112i2S iu1q u2 R4图题12.2解:分别对节点①、②列KCL方程:节点①:i1q1i S(u1u2 ) / R3节点②:i 2q2(u1u2 ) / R3u2 / R4将u1 f 1 ( q1 ), u2f 2 (q2 )代入上述方程,整理得状态方程:q1f1 (q1 ) / R3 f 2 ( q2 ) / R3i Sq2f1 (q1 ) / R3 f 2 (q2 )( R3R4 ) /(R3R4 )题 12.3在图示电路中电容的电荷与电压关系为u1 f1 (q1 ) ,电感的磁链电流关系为 i 2 f 2 (ψ2 ) 。

试列出电路的状态方程。

①2i2R4i4u S R3 u3u1i 3q1图题 12.3解:分别对节点①列KCL方程和图示回路列KVL 方程得:q1i 2u3 / R3(1)2u S u3(2)u3 为非状态变量,须消去。

由节点①的KCL方程得:i 2i3i 4i2u3u3u10 R3R4解得u3(u1R4i 2 ) R3 /( R3R4 ) [ f1 ( q1 ) R4 f 2 ( 2 )] R3 /( R3 R4 )将u1 f 1 ( q1 ) 、 i 2 f 2 (ψ2 )及 u3代入式(1)、(2)整理得:q1f1 (q1 )/(R3 R4) f2( 2 )R3 /(R3R4 )2f 1(q1)R3 /( R3R4 ) f2 ( 2)R3R4 /(R3 R4) u S题 12.4图示电路,设i a3ψ,u S sin(t) ,试分别写出用前向欧拉法、后向欧拉法和梯形法计算响应ψ(t)的迭代公式,步长为h。

电工学第三版第12章答案

电工学第三版第12章答案
返回练习题题集
(c)
下一页 下一题
【解】 根据二极管的钳位作用可求得图 (a) 电路的真 值表如表 1 所示,为或门电路。图 (b) 电路的真值表如表 2 所示,为与门电路。根据晶体管在输入为低电平时处于截止 状态,输入为高电平时处于饱和状态,可知图 (c) 电路的真 值表如表 3 所示,为非门电路。
( 3 ) A B A B B C BC A B B C A B (C C ) BC ( A A ) A B B C A BC A B C B CA B C A ( A B A B C ) ( B C A B C ) ( A B C A BC ) AB BC C A
逻辑电路见图,真值表见表。
A
0 0 1 1
B
0 1 0 1
F
0 0
1
A B
& 1
F
0
返回练习题题集
上一页
上一题
下一题
12.3.6 试分析如图所示电路的逻辑功能。
A
1
A
&
&
AB
≥1
B
1
B
F
BA
AB B A
【解】
逐级推导各门电路的输出,最后求得
F AB B A
可见该电路为异或门。
返回练习题题集
A B A
&
1
F
【解】 波形。 A
B
控制信号波形如图中 B 所示。图中 F 为输出
F
返回练习题题集 上一题 下一题
12.2.4 如图 (a) 所示是由三态与非门组成的总线换向 开关,A,B 为信号输入端,分别加有如图 (b) 所示的两个 频率不同的信号;E 为使能端,它的电位变化如图 (b) 所示。 试画出两个输出端 F1 和 F2 的波形。

(完整版)电路原理课后习题答案

(完整版)电路原理课后习题答案
行列式解方程组为
所以
3-11用回路电流法求解题3—11图所示电路中电流I。
题3—11图
解由题已知,
其余两回路方程为
代人整理得
所以
3—12用回路电流法求解题3-12图所示电路中电流 及电压 .
题3—12图
3-15列出题3—15图(a)、(b)所示电路的结点电压方程。
(a)(b)
题3-15图
解:图(a)以④为参考结点,则结点电压方程为:
题4—5图
4-9求题4—9图所示电路的戴维宁或诺顿等效电路。
(a)
(b)
题4—9图
解:(b)题电路为梯形电路,根据齐性定理,应用“倒退法”求开路电压 。设 ,各支路电流如图示,计算得
故当 时,开路电压 为
将电路中的电压源短路,应用电阻串并联等效,求得等效内阻 为
4—17题4-17图所示电路的负载电阻 可变,试问 等于何值时可吸收最大功率?求此功率。
题2-1图
解:(1) 和 并联,其等效电阻 则总电流
分流有
(2)当
(3)
2-5用△-Y等效变换法求题2—5图中a、b端的等效电阻:(1)将结点①、②、③之间的三个9电阻构成的△形变换为Y形;(2)将结点①、③、④与作为内部公共结点的②之间的三个9电阻构成的Y形变换为△形。
题2-5图
解(1)变换后的电路如解题2—5图(a)所示。
题4—2图
解:画出电源分别作用的分电路图
对(a)图应用结点电压法有
解得:
对(b)图,应用电阻串并联化简方法,可得:
所以,由叠加定理得原电路的 为
4—5应用叠加定理,按下列步骤求解题4—5图中 。(1)将受控源参与叠加,画出三个分电路,第三分电路中受控源电压为 , 并非分响应,而为未知总响应;(2)求出三个分电路的分响应 、 、 , 中包含未知量 ;(3)利用 解出 。

电工学 少学时第12章改附部分习题解

电工学 少学时第12章改附部分习题解

(3) 触发方式 ● CP = 1(或 0)时主触发器
接收信号,从触发器关闭; ● CP = 0(或 1)时主触发器
关闭,从触发器接收主触发 器的信号;
—— 主从触发。
● 后沿主从触发 ● 前沿主从触发
返回
上一节
下一节 上一页 下一页
第 12 章 时序逻辑电路
CP
后发沿器处接后发Q,收沿器从信处接触号,收Q主信触号前发沿器处接,收主信触号
Q’
Q’
主触发器 SCR
10
J CP K
返回
上一节
下一节 上一页 下一页
第 12 章 时序逻辑电路
(2) 逻辑功能
01Q Q10
J K Qn+1
从触发器
00 01
Qn 0
SD
SCR
RD
10
Q’ 0 1 Q’
11
主触发器
0 S C R01
10
0
01
J CP K
返回
上一节
下一节 上一页 下一页
第 12 章 时序逻辑电路
[补充例题 1] 根据输入波形 画出输出波形。
1 0 11 0 110 0 1
R
1 1 10 0 011 0 1
S
1
Q
不定
Q0
初始状态
不定 不定状态不定状态
翻转 不定状态
返回
下一节 上一页 下一页
第 12 章 时序逻辑电路
12.2 钟控双稳态触发器
(一) 钟控R-S 触发器 Q
(1) 电路结构:
&1 S
10Q→1
&1 0 01
S
Q 01 →10
2& 110 1

电路作业第12章

电路作业第12章

第十二章(非正弦周期电流电路)习题一、选择题1. 在图12—1所示电路中,已知)]cos(2512[1t u s ω+=V ,)240cos(2502+ω=t u s V 。

设电压表指示有效值,则电压表的读数为 V 。

A .12;B .13; C.13.932.在图12—2所示的电路中,已知)100cos(2t u s =V ,)]60100cos(243[0-+=t is A ,则s u 发出的平均功率为 W 。

A .2;B .4;C .53.欲测一周期性非正弦量的有效值,应用 仪表。

A .电磁系;B .整流系;C .磁电系4.在图12—3所示的电路中,Ω=20R ,Ω=ω5L ,Ω=ω451C,)]3cos(100)cos(276100[t t u s ω+ω+=V ,现欲使电流i 中含有尽可大的基波分量,Z 应是 元件。

A .电阻;B .电感;C .电容二、填空题1.图12—4所示电路处于稳态。

已知Ω=50R ,Ω=ω5L ,Ω=ω451C ,)]3cos(100200[t us ω+=V ,则电压表的读数为 V ,电流表的读数为 A 。

2. 图12—5所示电路中,当)cos(2200ϕ+ω=t u V 时,测得10=I A ;当)]3cos(2)cos(2[2211ϕ+ω+ϕ+ω=t U t U u V 时, 测得200=U V ,6=I A 。

则1U = V ,2U = V 。

3. 图12—6所示电路为一滤波器,其输入电压为)3cos()cos(31t U t U u m m s ω+ω=,rad/s 314=ω。

现要使输出电压)cos(12t U u m ω=,则1C = ,2C = 。

4. 图12—7所示电路中,)]cos(2010[t u s ω+=V ,Ω=ω=10L R ,该电路吸收的平均功率为 W 。

三、计算题 1. 图12—8所示电路中,已知)]903cos(215)cos(22020[0+ω+ω+=t t u V ,Ω=11R ,Ω=42R ,Ω=ω51L ,Ω=ω4511C ,Ω=ω402L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案12.1解:分别对节点①和右边回路列KCL 与KVL 方程:Cq u u i i qi C L L R C C /===--==ψ将各元件方程代入上式得非线性状态方程:C q C q f f q/)/()(21=--=ψψ方程中不明显含有时间变量t ,因此是自治的。

答案12.2解:分别对节点①、②列KCL 方程: 节点①:=1i 321S 1/)(R u u i q--= 节点②:=2i 423212//)(R u R u u q--= 将)(),(222111q f u q f u == 代入上述方程,整理得状态方程:⎩⎨⎧+-=++-=)/())((/)(/)(/)(4343223112S 3223111R R R R q f R q f q i R q f R q f q答案12.3解:分别对节点①列KCL 方程和图示回路列KVL 方程得:⎩⎨⎧-=-=(2)(1) /323321u u R u i qS ψ 3u 为非状态变量,须消去。

由节点①的KCL 方程得:0413332432=-++-=++-R u u R u i i i i 解得)/()]()([)/()(433224114332413R R R f R q f R R R i R u u ++=++=ψ 将)(111q f u =、)(222ψf i = 及3u 代入式(1)、(2)整理得:⎩⎨⎧++-+-=+++-=Su R R R R f R R R q f R R R f R R q f q)/()()/()()/()()/()(4343224331124332243111ψψψ 答案12.4解:由KVL 列出电路的微分方程:=L u )(sin )(d d 3t R u Ri tS ωβψαψ+-=+-= 前向欧拉法迭代公式:)](sin )([31k k k k t R h ωβψαψψ+-+=+后向欧拉法迭代公式:)](sin )([1311++++-+=k k k k t R h ωβψαψψ梯形法迭代公式:)](sin )()(sin )([5.013131++++-+-+=k k k k k k t R t R h ωβψαωβψαψψ答案12.5解:由图(a)得:tu C u U t C t u Ci R R C R d d )(d dd d S -=-== (1) 由式(1)可知,当0>R i 时,0d d <t u R ,R u 单调减小;当0<R i 时,0d d >tuR ,R u 单调增加。

由此画出动态路径如图(b)所示。

V 3)0()0(S =-=++C R u U u响应的初始点对应P 。

根据动态轨迹,分段计算如下。

(1) AB 段直线方程为: 4+-=R R i u 。

由此得AB 段线性等效电路,如图(c)。

SU (c)U -+R u (d)由一阶电路的三要素公式得:V 4p =R u ,s 1-=τV )e 4(e )](0)(0[/p p t t R R R R u u u u -=-+=-++τ )0(1t t <<设1t t =时,动态点运动到A 点,即2e 41=-t ,求得s 693.02ln 1≈=t 。

(2) OA 段. 1t t >时,R u 将位于OA 段,对应直线方程R R i u =。

线性等效电路如图(d)。

由图(d)求得:)(1e 2t t R u --= V )(1t t >答案12.6解:0>t 时,由图(a)得R R i Ct u 1d d -=,0>R i R u 只能下降。

画出动态路径如图(b)所示。

响应的起始位置可以是A 或B 点。

(1) 设起始位置是A 点,响应的动态轨迹可以是A-O 或A-C-D-O ,其中C-D过程对应电流跳变。

(1.1) 设动态轨迹为A-O 。

非线性电阻在此段等效成Ω2 的线性电阻,响应电压为:t C t u 0.5e 2)(-= V )0(>t (1) (1.2) 设动态路径为A-C-D-O 。

(c) AC段等效电路(d) BC段等效电路AC 段的等效电路如图(c)所示。

由图(c)求得:V 2)0(=+C u ,V 3)(p =t u C ,s 1-=τ 由三要素公式得:)e 3(t C u -= V )0(t t << (2) 设1t 时刻到达C 点,即 1e 31=-t 解得 693.0≈t s 。

t t >时,动态轨迹位于DO 段,非线性电阻变成线性Ω2电阻,响应为)0.5(1e )(t t C t u --= V )(t t > (3) (2) 设起始位置为B 点,则设动态路径为B-C-D-O 。

位于BC 段时,线性等效电路如图(d)所示。

由图(d)求得V 1)(p -=t u C ,s 1=τt C t u -+-=e 31)(V )1'(0t t << (4)设1t '时刻到达C 点,即1e 311=t -+- 解得 405.05.1ln 1≈='t s 。

CD 段对应电流跳变,瞬间完成。

1t t '>后动态轨迹进入DO 段,非线性电阻变成Ω2线性电阻。

响应为)'0.5(1)(t t C t u --=e V )'(t t > (5)上述式(1)、(2)与(3)、(4)与(5)是本题的三组解答。

答案12.7解:0t t ≤≤时,工作于OA 段,对应线性电感:iL ψ=。

初始值0)0(=+ψ,特解R EL t p ⨯=1)(ψ,时间常数RL 1=τ 由三要素法,电路的零状态响应为:)e 1(e)]0()0([)()(111p p t L Rt L R L REt t --++-=-+=ψψψψ (1) 设1t 时刻到达A 点,即)e 1(1111t L RL RE--=ψ,解得111111111ln//ln ψψ-=-=∞∞i L i L R L R E L R E L R L t (2) 当t t >时, ψψ+=i L ,其中电感ii L --=∞∞ψψ。

对应上式的时间常数与强制分量分别是RL=τ,∞=∞=ψψψ)()(t p 故当t t >时的响应为21e))(1τψψψψt t t --∞∞-+=(答案12.8解:由图(a)电路得:V 3V 5.4636)0(=⨯+=-u当0>t 时,将除非线性电容以外的电路用戴维南电路等效,如图(c)所示。

其中等效电阻Ω==12//)6//3(i R 开路电压V 5.1OC =U 。

(1)10t t ≤≤时,电路工作在AB 段内,1112+=+=q C q u ,对应的线性等效电路如图(d)所示。

(c)(d)5.1-+u u(e)图 12.8V 3)0()0(==-+u u ,s 1=RC =τ,V 5.1)(p =t u 电路响应)V 1.5e 1.5(e )]0()0([)()(/p p t t u u t u t u --+++=-+=τ )(10t t ≤≤ 随着时间的延续,电压u 单调减小,设1t 时刻电压u 下降至A 点,即21.5e 1.51=+-t解得s 10.11≈t 。

(2) t t >时,工作在AO 段,u q 5.0=,此时电容等效为F 5.0的线性电容,如图(e)所示。

由图(e )得时间常数及强制分量分别为:s 5.0'==RC τ,V 5.1)()(p ==∞=O C U u t u 电路响应:V ]e 5.05.1[e )]()([)()()(2')/(1p 1p 11t t t t t u t u t u t u ----+=--=τ答案12.9解:应用小信号分析法。

V 10S='u 单独作用时,电路的直流解为: A 01.0S0='=Ru I 。

(1) 动态电感H 06.06d d 00d ====I I i i L ψ。

小信号线性等效电路如图(b)所示。

0)0(=∆+i ,A 10)(3-=∞∆i ,s 106/5d -⨯==R L τ 根据三要素法求得:)(ε)e1(10)e1)((510613t i i t t L R d⨯----=-∞=∆∆ A (2)式(1)与式(2)相加得本题解答:A )](ε)e1(1001.0[)()(5106130t t i I t i t ⨯---+=∆+=答案12.10解:用小信号分析法求解。

(1)直流工作点V 4V 122120=⨯+=R R R U(2)动态电容F 104|d d 6d 0-=⨯==U u uq C(3)小信号电路如图(a )所示,利用三要素公式求u ∆。

0)0(=∆+u ,V 3/1p =∆us 016.01041061261263d =⨯⨯⨯+⨯==-RC τ V )()e 1(31e )]0()0([5.62/p p t u u u u t t ετ--++-=∆-∆+∆=∆电路完全解答为)()e 1(3145.620t u U u t ε--+=∆+= V答案12.11解:用小信号分析法求解。

(1) 计算直流工作点。

直流电流源单独作用时,电容视为开路,如图(b)所示。

列KVL 方程得:05.0)(10000=++-U U I I S (1) 其中203010U I -=,代入式(1)得:010********=-+U U 解得:⎩⎨⎧-=)(V 39.1566.39V0舍去U (2) 动态电导S 10278.139.6102|d d 23d 0--=⨯=⨯⨯==U u uiG (2) 用复频域分析法计算阶跃响应。

复频域电路模型如图(c)所示。

-∆+)(s U /1.0(c)对图(c)列节点电压方程得:10/)](5.0/1.0[)()101(s U s s U G sC d ∆-=∆++解得42141063.1)1063.1(1000)(⨯++=⨯+=∆s A s A s s s U其中0614.021=-=A AV )()e 1(0614.0)(41063.1t t u t ε⨯--=∆ (3)式(2)与(3)相加得: V )]()e 1(0614.039.6[41063.1t u t ε⨯--+=答案12.12解:用小信号分析法求解。

(1) 计算直流工作点。

在S i 的直流分量作用时,电感视为短路,电容视为开路,如图(b)。

2I IdR 图题12.12(b)(c)0)2(1=+-⨯R L U I将2R R I U =代入上式得02=-+L L I I 20解得:⎩⎨⎧-=)舍去(A 2A10L I (1) A 1==L R I I , V 1==R C U U(2) 小信号等效电路为二阶动态电路,可用复频域分析法计算阶跃响应。

相关文档
最新文档