江苏省南京市建邺区2017年中考一模数学试题(含答案)
2017年江苏省南京市中考数学试卷(含解析版)
2017年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是( )A .7B .8C .21D .362.(2分)计算106×(102)3÷104的结果是( )A .103B .107C .108D .1093.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥4.(2分)若√3<a <√10,则下列结论中正确的是( )A .1<a <3B .1<a <4C .2<a <3D .2<a <45.(2分)若方程(x ﹣5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a ﹣5是19的算术平方根D .b+5是19的平方根 6.(2分)过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176) B .(4,3) C .(5,176) D .(5,3)二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算:|﹣3|= ;√(−3)2= .8.(2分)2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .9.(2分)分式2x−1在实数范围内有意义,则x 的取值范围是 . 10.(2分)计算:√12+√8×√6= . 11.(2分)方程2x+2﹣1x=0的解是 . 12.(2分)已知关于x 的方程x 2+px+q=0的两根为﹣3和﹣1,则p= ,q= .13.(2分)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.14.(2分)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= °.15.(2分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC= °.16.(2分)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分)17.(7分)计算(a+2+1a )÷(a ﹣1a).18.(7分)解不等式组{−2x ≤6①x >−2②3(x −1)<x +1③请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是: .(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19.(7分)如图,在▱ABCD 中,点E ,F 分别在AD ,BC 上,且AE=CF ,EF ,BD 相交于点O ,求证:OE=OF .20.(8分)某公司共25名员工,下表是他们月收入的资料.月收入/元45000 18000 10000 5500 4800 3400 3000 2200 人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8分)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)①当减少购买1个甲种文具时,x= ,y= ;②求y与x之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?24.(8分)如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.25.(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(8分)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.27.(11分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)(2017•南京)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.36【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=12+3+6=21,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(2分)(2017•南京)计算106×(102)3÷104的结果是()A.103B.107C.108D.109【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】先算幂的乘方,再根据同底数幂的乘除法运算法则计算即可求解.【解答】解:106×(102)3÷104=106×106÷104=106+6﹣4=108.故选:C.【点评】考查了幂的乘方,同底数幂的乘除法,关键是熟练掌握计算法则正确进行计算.3.(2分)(2017•南京)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【考点】I1:认识立体图形.【分析】根据四棱锥的特点,可得答案.【解答】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有4条棱,故选:D.【点评】本题考查了认识立体图形,熟记常见几何体的特征是解题关键.4.(2分)(2017•南京)若√3<a<√10,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【考点】2B:估算无理数的大小.【分析】首先估算√3和√10的大小,再做选择.【解答】解:∵1<√3<2,3<√10<4,又∵√3<a<√10,∴1<a<4,【点评】本题主要考查了估算无理数的大小,首先估算√3和√10的大小是解答此题的关键.5.(2分)(2017•南京)若方程(x ﹣5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a ﹣5是19的算术平方根D .b+5是19的平方根【考点】22:算术平方根;21:平方根.【分析】结合平方根和算术平方根的定义可做选择.【解答】解:∵方程(x ﹣5)2=19的两根为a 和b ,∴a ﹣5和b ﹣5是19的两个平方根,且互为相反数,∵a >b ,∴a ﹣5是19的算术平方根,故选C .【点评】本题主要考查了平方根和算术平方根的定义,熟记定义是解答此题的关键.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记为根号a .6.(2分)(2017•南京)过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3)C .(5,176)D .(5,3)【考点】D5:坐标与图形性质.【分析】已知A (2,2),B (6,2),C (4,5),则过A 、B 、C 三点的圆的圆心,就是弦的垂直平分线的交点,故求得AB 的垂直平分线和BC 的垂直平分线的交点即可.【解答】解:已知A (2,2),B (6,2),C (4,5),∴AB 的垂直平分线是x=2+62=4,设直线BC 的解析式为y=kx+b ,把B (6,2),C (4,5)代入上式得{6k +b =24k +b =5, 解得{k =−32b =11, ∴y=﹣32x+11,设BC 的垂直平分线为y=23x+m , 把线段BC 的中点坐标(5,72)代入得m=16, ∴BC 的垂直平分线是y=23x+16,当x=4时,y=176,∴过A 、B 、C 三点的圆的圆心坐标为(4,176).【点评】本题主要考查了待定系数法求一次函数的解析式,求两直线的交点,圆心是弦的垂直平分线的交点,理解圆心的作法是解决本题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2017•南京)计算:|﹣3|= 3 ;√(−3)2= 3 .【考点】73:二次根式的性质与化简;15:绝对值.【分析】根据绝对值的性质,二次根式的性质,可得答案.【解答】解:|﹣3|=3,√(−3)2=√32=3,故答案为:3,3.【点评】本题考查了二次根式的性质与化简,利用二次根式的性质是解题关键.8.(2分)(2017•南京)2016年南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 1.05×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于10500有5位,所以可以确定n=5﹣1=4.【解答】解:10500=1.05×104.故答案为:1.05×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.在实数范围内有意义,则x的取值范围是x≠1 .9.(2分)(2017•南京)分式2x−1【考点】62:分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.(2分)(2017•南京)计算:√12+√8×√6= 6√3.【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先根据二次根式的乘法法则得到原式=2√3+√8×6,然后化简后合并即可.【解答】解:原式=2√3+√8×6=2√3+4√3=6√3.故答案为6√3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(2分)(2017•南京)方程2x+2﹣1x=0的解是 x=2 .【考点】B3:解分式方程.【分析】先把分式方程转化成整式方程,求出方程的解,最后进行检验即可. 【解答】解:2x+2﹣1x =0,方程两边都乘以x (x+2)得:2x ﹣(x+2)=0, 解得:x=2,检验:当x=2时,x (x+2)≠0, 所以x=2是原方程的解, 故答案为:x=2.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键,注意:解分式方程一定要进行检验.12.(2分)(2017•南京)已知关于x 的方程x 2+px+q=0的两根为﹣3和﹣1,则p= 4 ,q= 3 .【考点】AB :根与系数的关系.【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【解答】解:∵关于x 的方程x 2+px+q=0的两根为﹣3和﹣1, ∴﹣3+(﹣1)=﹣p ,(﹣3)×(﹣1)=q , ∴p=4,q=3. 故答案为:4;3.【点评】本题考查了根与系数的关系,根据根与系数的关系找出﹣3+(﹣1)=﹣p 、(﹣3)×(﹣1)=q 是解题的关键. 13.(2分)(2017•南京)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 2016 年,私人汽车拥有量年增长率最大的是 2015 年.【考点】VD :折线统计图;VC :条形统计图. 【分析】直接利用条形统计图以及折线统计图分别分析得出答案.【解答】解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183﹣150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年. 故答案为:2016,2015.【点评】此题主要考查了折线统计图以及条形统计图的应用,正确利用图形获取信息是解题关键. 14.(2分)(2017•南京)如图,∠1是五边形ABCDE 的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D= 425 °.【考点】L3:多边形内角与外角.【分析】根据补角 的定义得到∠AED=115°,根据五边形的内角和即可得到结论. 【解答】解:∵∠1=65°, ∴∠AED=115°,∴∠A+∠B+∠C+∠D=540°﹣∠AED=425°, 故答案为:425.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键. 15.(2分)(2017•南京)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若∠D=78°,则∠EAC= 27 °.【考点】M5:圆周角定理;L8:菱形的性质.【分析】根据菱形的性质得到∠ACB=12∠DCB=12(180°﹣∠D )=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论. 【解答】解:∵四边形ABCD 是菱形,∠D=78°, ∴∠ACB=12∠DCB=12(180°﹣∠D )=51°,∵四边形AECD 是圆内接四边形, ∴∠AEB=∠D=78°,∴∠EAC=∠AEB ﹣∠ACE=27°, 故答案为:27.【点评】本题考查了菱形的性质,三角形的外角的性质,圆内接四边形的性质,熟练掌握菱形的性质是解题的关键.16.(2分)(2017•南京)函数y 1=x 与y 2=4x 的图象如图所示,下列关于函数y=y 1+y 2的结论:①函数的图象关于原点中心对称;②当x <2时,y 随x 的增大而减小;③当x >0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 ①③ .【考点】G4:反比例函数的性质;F6:正比例函数的性质;R7:坐标与图形变化﹣旋转.【分析】结合图形判断各个选项是否正确即可.【解答】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误; ③结合图象的2个分支可以看出,在第一象限内,最低点的坐标为(2,4),故正确; ∴正确的有①③. 故答案为:①③.【点评】考查根据函数图象判断相应取值;理解图意是解决本题的关键.三、解答题(本大题共11小题,共88分)17.(7分)(2017•南京)计算(a+2+1a )÷(a ﹣1a ). 【考点】6C :分式的混合运算. 【分析】根据分式的加减法和除法可以解答本题. 【解答】解:(a+2+1a )÷(a ﹣1a ) =a 2+2a+1a ÷a 2−1a=(a+1)2a ⋅a(a+1)(a−1)=a+1a−1.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.18.(7分)(2017•南京)解不等式组{−2x ≤6①x >−2②3(x −1)<x +1③请结合题意,完成本题的解答.(1)解不等式①,得 x ≥﹣3 ,依据是: 不等式的性质3 . (2)解不等式③,得 x <2 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集﹣2<x<2 .【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据各不等式解集在数轴上的表示,确定不等式组的解集.【解答】解:(1)解不等式①,得x≥﹣3,依据是:不等式的性质3.(2)解不等式③,得x<2.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集为:﹣2<x<2,故答案为:(1)x≥﹣3、不等式的性质3;(2)x<2;(3)﹣2<x<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(7分)(2017•南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】连接BE、DF,由已知证出四边形BEDF是平行四边形,即可得出结论.【解答】证明:连接BE、DF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OF=OE.【点评】本题考查了平行四边形的判定与性质;通过作辅助线证明四边形BEDF是平行四边形是解决问题的关键.20.(8分)(2017•南京)某公司共25名员工,下表是他们月收入的资料.月收入/元45000 18000 10000 5500 4800 3400 3000 2200人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是3400 元,众数是3000 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【考点】W5:众数;W2:加权平均数;W4:中位数.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数,则中位数是3400元;3000出现了11次,出现的次数最多,则众数是3000.故答案为3400;3000;(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6276元,不恰当;【点评】此题考查了中位数、众数、平均数,掌握中位数、众数、平均数的定义是解题的关键,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,平均数=总数÷个数,众数是出现次数最多的数据.21.(8分)(2017•南京)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:;(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是12(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【考点】X6:列表法与树状图法;X4:概率公式.【专题】11 :计算题.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【解答】解:(1)第二个孩子是女孩的概率=1;2;故答案为12(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,.所以至少有一个孩子是女孩的概率=34【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(8分)(2017•南京)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).【考点】N3:作图—复杂作图;KS:勾股定理的逆定理;M5:圆周角定理.【分析】(1)根据勾股定理的逆定理,可得答案;(2)根据圆周角定理,可得答案.【解答】解:(1)如图1,在OA,OB上分别,截取OC=4,OD=3,若CD的长为5,则∠AOB=90°(2)如图2,在OA,OB上分别取点C,D,以CD为直径画圆,若点O在圆上,则∠AOB=90°.【点评】本题考查了作图,利用勾股定理的逆定理、圆周角是解题关键.23.(8分)(2017•南京)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)①当减少购买1个甲种文具时,x= 99 ,y= 2 ;②求y与x之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?【考点】FH :一次函数的应用. 【分析】(1)①由题意可知x=99,y=2. ②由题意y=2(100﹣x )=﹣2x+200.(2)列出方程组,解方程组即可解决问题. 【解答】解:(1)①∵100﹣1=99, ∴x=99,y=2, 故答案为99,2.②由题意y=2(100﹣x )=﹣2x+200,∴y 与x 之间的函数表达式为y=﹣2x+200.(2)由题意{y =−2x +2005x +3y =540,解得{x =60y =80,答:甲、乙两种文具各购买了60个和80个.【点评】本题考查一次函数的应用、二元一次方程组等知识,解题的关键是理解题意,学会构建一次函数以及方程组解决问题,属于中考常考题型. 24.(8分)(2017•南京)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D . (1)求证:PO 平分∠APC ;(2)连接DB ,若∠C=30°,求证:DB ∥AC .【考点】MC :切线的性质. 【分析】(1)连接OB ,根据角平分线性质定理的逆定理,即可解答;(2)先证明△ODB 是等边三角形,得到∠OBD=60°,再由∠DBP=∠C ,即可得到DB ∥AC . 【解答】解:(1)如图,连接OB ,∵PA ,PB 是⊙O 的切线, ∴OA ⊥AP ,OB ⊥BP , 又OA=OB ,∴PO 平分∠APC ;(2)∵OA ⊥AP ,OB ⊥BP , ∴∠CAP=∠OBP=90°, ∵∠C=30°,∴∠APC=90°﹣∠C=90°﹣30°=60°, ∵PO 平分∠APC ,∴∠OPC=12∠APC=12×60°=30°,∴∠POB=90°﹣∠OPC=90°﹣30°=60°, 又OD=OB ,∴△ODB 是等边三角形, ∴∠OBD=60°,∴∠DBP=∠OBP ﹣∠OBD=90°﹣60°=30°, ∴∠DBP=∠C , ∴DB ∥AC .【点评】本题考查了切线的性质,角平分线的判定,等边三角形的判定和性质,解本题的关键是判断出△ODB 是等边三角形. 25.(8分)(2017•南京)如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】TB :解直角三角形的应用﹣方向角问题. 【分析】如图作CH ⊥AD 于H .设CH=xkm ,在Rt △ACH 中,可得AH=CHtan37°=xtan37°,在Rt △CEH 中,可得CH=EH=x ,由CH ∥BD ,推出AH HD =ACCB,由AC=CB ,推出AH=HD ,可得xtan37°=x+5,求出x 即可解决问题.【解答】解:如图作CH ⊥AD 于H .设CH=xkm , 在Rt △ACH 中,∠A=37°,∵tan37°=CHAH , ∴AH=CHtan37°=xtan37°,在Rt △CEH 中,∵∠CEH=45°, ∴CH=EH=x ,∵CH ⊥AD ,BD ⊥AD , ∴CH ∥BD , ∴AH HD =AC CB,∵AC=CB , ∴AH=HD , ∴x tan37°=x+5,∴x=5⋅tan37°1−tan37°≈15,∴AE=AH+HE=15tan37°+15≈35km ,∴E 处距离港口A 有35km .【点评】本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.(8分)(2017•南京)已知函数y=﹣x 2+(m ﹣1)x+m (m 为常数). (1)该函数的图象与x 轴公共点的个数是 D . A.0 B.1 C.2 D.1或2(2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上. (3)当﹣2≤m ≤3时,求该函数的图象的顶点纵坐标的取值范围.【考点】HA :抛物线与x 轴的交点;H3:二次函数的性质. 【专题】11 :计算题;535:二次函数图象及其性质. 【分析】(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可; (3)根据m 的范围确定出顶点纵坐标范围即可.【解答】解:(1)∵函数y=﹣x 2+(m ﹣1)x+m (m 为常数),∴△=(m ﹣1)2+4m=(m+1)2≥0,则该函数图象与x 轴的公共点的个数是1或2, 故选D ;(2)y=﹣x 2+(m ﹣1)x+m=﹣(x ﹣m−12)2+(m+1)24, 把x=m−12代入y=(x+1)2得:y=(m−12+1)2=(m+1)24,则不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=(m+1)24,当m=﹣1时,z 有最小值为0;当m <﹣1时,z 随m 的增大而减小; 当m >﹣1时,z 随m 的增大而增大, 当m=﹣2时,z=14;当m=3时,z=4,则当﹣2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.【点评】此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键. 27.(11分)(2017•南京)折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD (AB >BC )(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出PB ,PC ,得到△PBC . (1)说明△PBC 是等边三角形. 【数学思考】(2)如图④,小明画出了图③的矩形ABCD 和等边三角形PBC ,他发现,在矩形ABCD 中把△PBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程. (3)已知矩形一边长为3cm ,另一边长为a cm ,对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围. 【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为165cm .【考点】RB :几何变换综合题. 【分析】(1)由折叠的性质和垂直平分线的性质得出PB=PC ,PB=CB ,得出PB=PC=CB 即可; (2)由旋转的性质和位似的性质即可得出答案;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可; (4)证明△AEF ∽△DCE ,得出AEDC =EF CE =14,设AE=x ,则AD=CD=4x ,DE=AD ﹣AE=3x ,在Rt △CDE 中,由勾股定理得出方程,解方程即可. 【解答】(1)证明:由折叠的性质得:EF 是BC 的垂直平分线,BG 是PC 的垂直平分线,∴PB=PC ,PB=CB ,∴PB=PC=CB ,∴△PBC 是等边三角形.(2)解:以3√32点B 为中心,在矩形ABCD 中把△PBC 逆时针方向旋转适当的角度,得到△P 1BC 1; 再以点B 为位似中心,将△△P 1BC 1放大,使点C 1的对称点C 2落在CD 上,得到△P 2BC 2; 如图⑤所示;(3)解:本题答案不唯一,举例如图⑥所示;(4)解:如图⑦所示:△CEF 是直角三角形,∠CEF=90°,CE=4,EF=1,∴∠AEF+∠CED=90°,∵四边形ABCD 是正方形,∴∠A=∠D=90°,AD=CD ,∴∠DCE+∠CED=90°,∴∠AEF=∠DCE ,∴△AEF ∽△DCE ,∴AE DC =EF CE =14,设AE=x ,则AD=CD=4x ,∴DE=AD ﹣AE=3x ,在Rt △CDE 中,由勾股定理得:(3x )2+(4x )2=42,解得:x=45,∴AD=4×45=165; 故答案为:165.【点评】本题是几何变换综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、相似三角形的判定与性质、位似的性质等知识;本题综合性强,难度较大.祝福语祝你考试成功!。
2017年江苏省南京市建邺区中考数学一模试卷及答案详解
2017年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共计12分)1.(2分)下列实数中,无理数是()A.2B.﹣C.3.14D.2.(2分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a4÷a2=a2D.(a2)4=a6 3.(2分)不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别,某同学从布袋里任意摸出一个球,则他摸出红球的概率是()A.B.C.D.4.(2分)某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.5,7B.6,7C.8,6D.8,75.(2分)如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为()A.30°B.45°C.60°D.75°6.(2分)如图,△ABC中,点C在y=的图象上,点A、B在y=的图象上,若∠C=90°,AC∥y轴,BC∥x轴,S△ABC=8,则k的值为()A.3B.4C.5D.6二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)若在实数范围内有意义,则x的取值范围是.8.(2分)2017南京国际马拉松于4月16日在本市正式开跑,本次参赛选手共12629人,将12629用科学记数法表示为.9.(2分)分解因式:a3﹣2a2+a=.10.(2分)计算:﹣=.11.(2分)设x1,x2是方程x2﹣4x+3=0的两根,则x1+x2=.12.(2分)将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位得到点A′,则点A′的坐标是.13.(2分)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针旋转到△COD的位置,则旋转角为.14.(2分)如图,在平行四边形ABCD中,点E为AB边上一点,将△AED沿直线DE翻折,点A落在点P处,且DP⊥BC,则∠EDP=°.15.(2分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.16.(2分)如图,在等腰△ABC中,AB=AC=5,BC=6,半径为1的⊙O分别与AB、AC相切于E、F两点,BG是⊙O的切线,切点为G,则BG的长为.三、解答题(本大题共11小题,共88分)17.(6分)先化简,再求代数式的值:,其中m=1.18.(7分)解不等式组,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图.(1)C等级所占的圆心角为°;(2)请直接在图2中补全条形统计图;(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.20.(8分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,DE∥AC交BC的延长线于点E.(1)求证:△ABC≌△DCE;(2)若CD=CE,求证:AC⊥BD.21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛,若三个人手势相同,则重新决定,那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P为∠ABC内一点,利用直尺和圆规确定一条过点P的直线,分别交AB,BC于点E,F,使得BE=BF,(不写作法,保留作图痕迹)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克,经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2﹣4mx+4m2+2m﹣4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围;(2)设抛物线y=x2﹣4mx+4m2+2m﹣4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3小时,如图所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.(1)AB两地的距离为km;(2)求飞机飞行的平均速度;(3)若两人同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图象,并求出y1与x的函数关系式.27.(12分)定义:当点P在射线OA上时,把的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA 上的射影值,例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P 和点B在射线OA上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形;其中真命题有A.①②B.②③C.①③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA为半径画圆,点B是⊙O上任意点.①如图2,若点B在射线OA上的射影值为,求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.2017年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共计12分)1.(2分)下列实数中,无理数是()A.2B.﹣C.3.14D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、2是整数,是有理数,选项不符合题意;B、﹣是分数,是有理数,选项不符合题意;C、3.14是有限小数,是有理数,选项不符合题意;D、是无理数,选项符合题意.故选:D.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:开方开不尽的数,如等;无限不循环小数,如0.1010010001…等;字母表示的无理数,如π等.2.(2分)下列运算正确的是()A.a2+a3=a5B.a2•a3=a6C.a4÷a2=a2D.(a2)4=a6【分析】根据同底数幂的除法、乘法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【解答】解:∵a2+a3≠a5,∴选项A不符合题意;∵a2•a3=a5,∴选项B不符合题意;∵a4÷a2=a2,∴选项C符合题意;∵(a2)4=a8,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的除法、乘法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握.3.(2分)不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别,某同学从布袋里任意摸出一个球,则他摸出红球的概率是()A.B.C.D.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵布袋中装有2个红球和3个白球,共5个球,从袋中任意摸出一个球共有5种结果,其中出现红球的情况有2种可能,∴是红球的概率是,故选:B.【点评】本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.(2分)某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.5,7B.6,7C.8,6D.8,7【分析】找出7位同学投中最多的个数即为众数,将个数按照从小到大的顺序排列,找出中位数即可.【解答】解:这组数据中出现次数最多的是8个,出现了3次,∴众数为8个,这组数据重新排列为5、5、6、7、8、8、8,∴其中位数为7个,故选:D.【点评】此题考查了众数与中位数,熟练掌握各自的定义是解本题的关键.5.(2分)如图,AB是⊙O的弦,半径OC⊥AB,AC∥OB,则∠BOC的度数为()A.30°B.45°C.60°D.75°【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC=∠OCA=∠AOC,得出△OAC是等边三角形,得出∠BOC=∠AOC=60°即可.【解答】解:连接OA,∵OC⊥AB,∴,∴∠AOC=∠BOC,∵OA=OC,AC∥OB,∴∠OAC=∠OCA,BOC=∠OCA,∴∠OAC=∠OCA=∠AOC,∴△OAC是等边三角形,∴∠BOC=∠AOC=60°;故选:C.【点评】本题考查了垂径定理、等腰三角形的性质、平行线的性质、圆心角性质、等边三角形的判定与性质,熟练掌握垂径定理和等腰三角形的性质,证明△AOC是等边三角形是解题的关键.6.(2分)如图,△ABC中,点C在y=的图象上,点A、B在y=的图象上,若∠C=90°,AC∥y轴,BC∥x轴,S△ABC=8,则k的值为()A.3B.4C.5D.6【分析】设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),由此即可得出AC、BC的长度,再根据三角形的面积结合S△ABC=8,即可求出k值,取其正值即可.【解答】解:设点C的坐标为(m,),则点A的坐标为(m,),点B的坐标为(km,),∴AC=﹣=,BC=km﹣m=(k﹣1)m,∵S△ABC=AC•BC=(k﹣1)2=8,∴k=5或k=﹣3.∵反比例函数y=在第一象限有图象,∴k=5.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征以及三角形的面积,设出点C的坐标,表示出点A、B的坐标是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)若在实数范围内有意义,则x的取值范围是x≥2.【分析】二次根式的被开方数是非负数,即x﹣2≥0.【解答】解:依题意得:x﹣2≥0.解得x≥2.故答案是:x≥2.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.(2分)2017南京国际马拉松于4月16日在本市正式开跑,本次参赛选手共12629人,将12629用科学记数法表示为 1.2629×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将12629用科学记数法表示为1.2629×104,故答案为:1.2629×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2分)分解因式:a3﹣2a2+a=a(a﹣1)2.【分析】此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.(2分)计算:﹣=0.【分析】先把各二次根式化简为最简二次根式,然后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.11.(2分)设x1,x2是方程x2﹣4x+3=0的两根,则x1+x2=4.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1+x2=4.故答案为4.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.12.(2分)将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位得到点A′,则点A′的坐标是(﹣1,3).【分析】根据平移的性质,向左平移a,则横坐标减a;向上平移a,则纵坐标加a.【解答】解:∵A(2,﹣1)先向左平移3个单位长度,再向上平移4个单位长度得到点A′,∴2﹣3=﹣1,﹣1+4=3.故答案为:(﹣1,3).【点评】本题考查了坐标与图形的变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.13.(2分)如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针旋转到△COD的位置,则旋转角为90°.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角,问题得解.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.(2分)如图,在平行四边形ABCD中,点E为AB边上一点,将△AED沿直线DE翻折,点A落在点P处,且DP⊥BC,则∠EDP=45°.【分析】根据平行线的性质得到∠ADC+∠C=180°,根据垂直的定义得到∠C+∠CDP =90°,根据折叠的性质得到∠ADE=∠PDE,于是得到结论.【解答】解:∵在平行四边形ABCD中,AD∥BC,∴∠ADC+∠C=180°,∵DP⊥BC,∴∠C+∠CDP=90°,∴∠ADE+∠PDE=90°,∵将△AED沿直线DE翻折,点A落在点P处,∴∠ADE=∠PDE,∴∠PDE=45°,故答案为:45.【点评】本题考查了平行四边形的性质,翻折变换(折叠问题),熟练掌握折叠的性质是解题的关键.15.(2分)如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为π.【分析】连接CF,DF,得到△CFD是等边三角形,得到∠FCD=60°,根据正五边形的内角和得到∠BCD=108°,求得∠BCF=48°,根据弧长公式即可得到结论.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.【点评】本题考查了正多边形与圆,弧长的计算,等边三角形的判定和性质,正确的作出辅助线是解题的关键.16.(2分)如图,在等腰△ABC中,AB=AC=5,BC=6,半径为1的⊙O分别与AB、AC 相切于E、F两点,BG是⊙O的切线,切点为G,则BG的长为.【分析】延长AO交BC于H.连接OE、OF.首先证明BH=CH=3,AH⊥BC,由△AOE ∽△ABH,得到=,易知AH==4,求出AE即可解决问题.【解答】解:延长AO交BC于H.连接OE、OF.∵AE、AF是切线,∴OA平分∠EAF,OF⊥AC,∵AB=AC=5,∴AH⊥BC,BH=CH=3,由△AOE∽△ABH,得到=,易知AH==4,∴=,∴AE=,BE=AB﹣AE=,∵BE,BG是⊙O切线,∴BG=BE=.故答案为.【点评】本题考查切线的性质、切线长定理、等腰三角形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.三、解答题(本大题共11小题,共88分)17.(6分)先化简,再求代数式的值:,其中m=1.【分析】先根据分式混合运算的法则把原式进行化简,再把m的值代入进行计算即可.【解答】解:原式=•=,当m=1时,原式==﹣.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.(7分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.【解答】解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:【点评】此题考查的是解一元一次方程组的方法,解一元一次方程组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.同时考查了在数轴上表示不等式的解集.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图.(1)C等级所占的圆心角为126°;(2)请直接在图2中补全条形统计图;(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.【分析】(1)用360°乘以C等级百分比可得;(2)根据A等级人数及其百分比求得总人数,由各等级人数之和等于总人数求得C等级人数即可补全统计图;(3)用总人数1000乘以样本中C等级所占百分比可得.【解答】解:(1)C等级所占的圆心角为360°×(1﹣10%﹣23%﹣32%)=126°,故答案为:126;(2)∵本次调查的总人数为20÷10%=200(人),∴C等级的人数为:200﹣(20+46+64)=70(人),补全统计图如下:(3)1000×=350(人),答:估计“比较喜欢”的学生人数为350人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,DE∥AC交BC的延长线于点E.(1)求证:△ABC≌△DCE;(2)若CD=CE,求证:AC⊥BD.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,由平行线证出∠ABC=∠DCE,∠BAC=∠ACD,∠ACB=∠DEC,由AAS证明△ABC≌△DCE即可;(2)由(1)得:△ABC≌△DCE,得出AC=DE,证出四边形ACED是平行四边形,得出AD=CE,证出AD=CD,因此四边形ABCD是菱形,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABC=∠DCE,∠BAC=∠ACD,∵DE∥AC,∴∠ACB=∠DEC,在△ABC和△DCE中,,∴△ABC≌△DCE(AAS);(2)证明:由(1)得:△ABC≌△DCE;∴AC=DE,∵AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∵CD=CE,∴AD=CD,∴四边形ABCD是菱形,∴AC⊥BD.【点评】本题考查的是菱形的性质、全等三角形的判定与性质及平行四边形的判定与性质,证明三角形全等是解决问题的关键.21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛,若三个人手势相同,则重新决定,那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?【分析】画树状图得出所有等可能的情况数,找出甲同学先跳绳的情况数,即可求出所求.【解答】解:设用A表示手心,B表示手背,画树状图如下:所有等可能的情况有8种,其中(甲A,乙B,丙B)和(甲B,乙A,丙A)满足题意,则P==,则甲同学先跳绳的概率是.【点评】此题考查了列表法与树状图法,用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.22.(6分)如图,已知点P为∠ABC内一点,利用直尺和圆规确定一条过点P的直线,分别交AB,BC于点E,F,使得BE=BF,(不写作法,保留作图痕迹)【分析】①截取BM=BN,②作平行四边形PMNG.直线EF即为所求.(也可以作∠B 的平分线,过P作角平分线的垂线即可)【解答】解:①截取BM=BN,②作平行四边形PMNG.直线EF即为所求.(也可以作∠B的平分线,过P作角平分线的垂线即可)【点评】本题考查基本作图,解题的关键是理解题意,灵活应用基本作图解决问题,属于中考常考题型.23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB的长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)【分析】设细线OB的长度为xcm,作AD⊥OB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x﹣9,在Rt△AOD中,由三角函数得出方程,解方程即可.【解答】解:设细线OB的长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.【点评】本题考查解直角三角形的应用,解此题关键是把实际问题转化为数学问题,本题只要把实际问题抽象到三角形中,根据线段之间的转换列方程即可.注意实际问题要入进.24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克,经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?【分析】设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设每千克樱桃应降价x元,则每天销售量为(100+10x)千克,根据题意得:(60﹣40﹣x)(100+10x)=2240,整理得:x2﹣10x+24=0,解得:x1=4,x2=6.答:每千克樱桃应降价4元或6元.【点评】本题考查了一元二次方程的应用,根据总利润=每千克利润×销售数量,列出关于x的一元二次方程是解题的关键.25.(9分)已知一元二次方程x2﹣4mx+4m2+2m﹣4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围;(2)设抛物线y=x2﹣4mx+4m2+2m﹣4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.【分析】(1)由题意可知:△≥0,列出不等式即可求出m的范围;(2)求出用m表示M的坐标,然后可知M的坐标在直线y=x﹣4的图象上,由集合性质即可求出OM的最小长度.【解答】解:(1)由题意可知:△=(﹣4m)2﹣4(4m2+2m﹣4)=﹣8m+16≥0,∴m≤2(2)y=(x﹣2m)2+2m﹣4∴顶点M的坐标为:(2m,2m﹣4),∴点M在直线l:y=x﹣4的图象上,当OM⊥l时,此时OM的长度最小,设直线l与x轴交于点A,与y轴点B,令x=0和y=0代入y=x﹣4,∴A(4,0),B(0,﹣4)∴△AOB是等腰直角三角形,∵OM⊥l∴OM的最小值为:2【点评】本题考查二次函数的最值,解题的关键是熟练运用二次函数的性质,本题属于中等题型.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3小时,如图所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.(1)AB两地的距离为3000km;(2)求飞机飞行的平均速度;(3)若两人同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图象,并求出y1与x的函数关系式.【分析】解:(1)由图象即可得到结论;(2)设飞机飞行的平均速度是vkm/h,则飞机飞行的时间为h,于是得到汽车的速度为km/h,时间为(+3)h,列方程即可得到结论;(3)根据题意即可得到结论.【解答】解:(1)由图象知,AB两地的距离为3000km;故答案为:3000;(2)∵AC=2400km.BC=3000﹣2400=600km,设飞机飞行的平均速度是vkm/h,则飞机飞行的时间为h,∴汽车的速度为km/h,时间为(+3)h,∴(+3)=600,∴v=800,经检验v=800是原方程的解,答:飞机飞行的平均速度是800km/h;(3)如图,当0≤x≤3,y1=800x,当3<x≤9时,设y1=kx+b,代入点(3,2400),(9,3000)得,,∴,∴y1=100x+2100,综上所述,y1=.【点评】本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.27.(12分)定义:当点P在射线OA上时,把的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA 上的射影值,例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P 和点B在射线OA上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形;其中真命题有BA.①②B.②③C.①③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以O为圆心,OA为半径画圆,点B 是⊙O上任意点.①如图2,若点B在射线OA上的射影值为,求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式.【分析】(1)根据射影值的定义一一判断即可解决问题.(2)①根据两边成比例夹角相等的两个三角形相似,可得△BOH∽△COB,推出∠BHO =∠CBO=90°,由此即可证明;②图形是上下对称的,只考虑B在直线OC上以及OC上方部分的情形.分两种情形考虑:当∠DOB<90°时,当∠DOB≥90°时.【解答】解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB不一定是锐角三角形.②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△ABC是直角三角形.③正确.B在射线OA上的射影值大于1时,∠OAB是钝角,△ABC是钝角三角形.故答案为B.(2)①如图2中,作BH⊥OC于H.∵=,=,OA=OB=OC=1,∴=,∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴BC是⊙O的切线.②图形是上下对称的,只考虑B在直线OC上以及OC上方部分的情形.当∠DOB<90°时,设DM=h,∵BD=DC,∴S△OBD=S△ODC,∴•OB•DN=•OC•DM,∴DN=2h∵OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去y得到y=2x﹣.如图,当∠BOD=90°时,在Rt△ODM中,易知OD=2DM(AD是△BOC的中位线,AD=OB=OA,由此推出sin∠DOA=)∴∠DOM=30°,设DM=h,则OD=2h.OM=h,∴h2+(2﹣h)2=12+4h2,∴h=,∴OM=,当点B在OC上时,OD=或综上所述,当≤x≤时,y=0,当<x时,y=2x﹣.【点评】本题考查圆综合题、相似三角形的判定和性质、勾股定理、射影值的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.。
(含参考答案) 2017年江苏省南京市中考数学试卷
2017年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.(2分)计算106×(102)3÷104的结果是()A.103B.107C.108D.1093.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学:它有8条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2分)若<a<,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<45.(2分)若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根6.(2分)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3) C.(5,)D.(5,3)二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)计算:|﹣3|=;=.8.(2分)2016年南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.9.(2分)分式在实数范围内有意义,则x的取值范围是.10.(2分)计算+×的结果是.11.(2分)方程﹣=0的解是.12.(2分)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=,q=.13.(2分)如图是某市2013﹣2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.(2分)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D=°.15.(2分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=°.16.(2分)函数y1=x与y2=的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分)17.(7分)计算(a+2+)÷(a﹣).18.(7分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7分)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD 相交于点O,求证:OE=OF.20.(8分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8分)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x个甲种文具时,需购买y个乙种文具.(1)①当减少购买1个甲种文具时,x=,y=;②求y与x之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?24.(8分)如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB 的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.25.(8分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.(8分)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.27.(11分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分。
2017年江苏省南京市建邺区中考数学一模试卷
≈2.25)
24.(7 分)某水果店销售樱桃,其进价为 40 元/千克,按 60 元/千克出售,平均
AB、AC 相切于 E、F 两点,BG 是⊙O 的切线,切点为 G,则 BG 的长为
.
三、解答题(本大题共 11 小题,共 88 分) 17.(6 分)先化简,再求代数式的值:
,其中 m=1.
18.(7 分)解不等式组
,并把解集在数轴上表示出来.
19.(7 分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,
每天可售出 100 千克,经调查发现,这种樱桃每降价 1 元/千克,每天可多售出
10 千克,若该水果店销售这种樱桃要想每天获利 2240 元,每千克樱桃应降价多
少元?
25.(9 分)已知一元二次方程 x2﹣4mx+4m2+2m﹣4=0,其中 m 为常数.
(1)若该一元二次方程有实数根,求 m 的取值范围; (2)设抛物线 y=x2﹣4mx+4m2+2m﹣4 的顶点为 M,点 O 为坐标原点,当 m 变
调查的结果分为 A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等
级,图 1、图 2 是根据采集的数据绘制的两幅不完整的统计图.
(1)C 等级所占的圆心角为
°;
(2)请直接在图 2 中补全条形统计图;
(3)若该校有学生 1000 人,请根据调查结果,估计“比较喜欢”的学生人数为多
2017学年南京市区一模数学模拟练习卷与答案
2017年中考数学模拟练习卷 2017.4(全卷120分,时间120分钟)一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上) 1.-a 表示( ▲ )A .一个负数B .a 的倒数C .a 的绝对值D .a 的相反数2.经测算,南京地铁2017年3月日客流总量的平均数为2780000人,用科学记数法表示2780000是( ▲ ) A .0.278×107B . 2.78×107C .2.78×106D .278×1043.下列算式中正确的是( ▲ )A .236a a a ⋅=B .235()a a = C .235a a a += D .624a a a ÷=4.下列说法属于不可能事件的是( ▲ )A .存在实数x 满足x 2+1=0 B .内错角相等C .对角线相等的菱形是正方形D .四边形的内角和为360°5.如图,△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( ▲ )A .B .C .D .6.如图,在平面直角坐标系中,点P 为x 轴上一点,点B 为反比例函数25y x=图像上一点,且PA =PB ,已知A 点坐标为(0,2),B 点的纵坐标为5,则OP 的长度为( ▲ ) A .3B .4C .5D .4.6二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题..纸相应位置.....上) 7.02= ▲ ;22-= ▲ .81x 有意义的x 的取值范围是 ▲ .91222--+的结果是 ▲ . (第6题)10.分解因式:()()134x x-++=▲.11.分式方程211x x=+的根是▲.12.设m,n是方程x2+x+2017=0的两个不相等的实数根,则mn m n--=▲.13.小明根据去年4~10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是▲人.14.如图,在⊙O中,点A为弧BC的中点,若∠BAC=150°,则∠OBA= ▲°.15.如图,已知菱形ABOC的两个顶点O(0,0),A(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2017秒时,菱形两条对角线交点的坐标为▲.16.已知二次函数y=ax2+bx+c中x与y的部分对应值如下表:x ﹣3 ﹣2 0 2 3 5 6y 7 0 ﹣8 m ﹣5 7 16把此函数的图像沿着x轴向右平移1个单位长度后,函数值y=m所对应的x的值为▲.三.解答题(本大题共有12小题,共88分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算2111122aa a a⎛⎫-÷⎪-+-⎝⎭.(第13题)(第15题)(第14题)x≤21x+12x-<3x19.(7分)某区在一次九年级数学检测中,有一道满分8分的解答题,按评分标准,得分情况只有四种:0分,3分,5分,8分.老师为了了解学生得分情况与题目难易情况,从全区4500名考生试卷中随机抽取一部分,通过分析与整理,绘制了如下统计图.(1)填空:a= ▲,b= ▲,并把条形统计图补充完整;(2)请估计该区此题得满分的学生人数;(3)已知难度系数的计算公式为XPW,其中P为难度系数,X为样本平均分,W为试题满分值.一般来说分三类:当0<P≤0.4时,此题为难题;当0.4<P≤0.7时,此题为中等难度试题;当0.7<P<1时,此题为容易题.试问此题对于该区九年级学生来说属于哪一类?20.(8分)如图,将平行四边形ABCD沿CE翻折,使点D落在BC边上的F处,点E在AD上.(1)求证:四边形ABFE为平行四边形;(2)若AB=4,求四边形CDEF的周长.(第20题)21.(7分)数学复习课上,老师出示4张背面完全相同的卡片,卡片正面分别写有方程如下.若把这4张卡片背面朝上且打乱顺序,求下列事件的概率:(1)随机抽取一张,恰好卡片上是一元一次方程;(2)随机抽取两张,恰好卡片上都是只有一个根的方程.22.(8分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:证明:连接AP、AQ、BP、BQ,∵▲,▲,∴点A、点B在线段PQ的▲线上,即PQ⊥l.请把上面证明过程补充完整,并用不同的方法作图并证明(只需要画一种,不写作法,保留作图痕迹).23.(8分)如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20cm,DC=50cm,∠AED=58°,∠ADE=76°.求椅子两脚B、C之间的距离(精确到1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97,cos76°≈0.24,tan76°≈4.00).24.(8分)如图,把一张长12cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的小正方形,再折成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为x cm.(1)当剪去的小正方形的边长为多少时,其底面积是60cm2?(2)试判断折成的长方体盒子的侧面积是否有最大值?若有,求出最大值和此时剪去的小正方形的边长;若没有,请说明理由.25.(9分)如图,Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,以点O为圆心,2cm长度为半径的⊙O以1cm/s 的速度从点A出发,沿着边AB-BC-CA运动,当圆心O回到点A时停止运动,设运动时间为t s.(1)⊙O在运动的过程中有▲次与△ABC三边所在的直线相切;(2)求⊙O在运动的过程中与线段..AB只有一个公共点时t的值或取值范围.(第24题)(第23题)(O)26.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图像解决下列问题:(1)慢车的速度为▲ km/h,快车的速度为▲ km/h;(2)求线段CD所表示的y与x之间的函数表达式;(3)当x取何值时,两车之间的距离为200 km?(第26题)27.(11分)【问题提出】探索图形问题一般需要经历操作、观察、猜想、验证等活动过程.在学习了圆周角的所有内容后,我们继续研究一个有关圆的内接四边形的新命题:“两条对角线互相垂直的圆的内接四边形对边的平方和是定值”.【初步思考】如果这个命题是真命题,那么它的证明要解决两个问题:一是满足已知条件的圆的内接四边形对边的平方和相等;二是对边的平方和的定值.【深入探究】(1)我们不妨先对图1或图2进行研究(如图1,当圆的内接四边形两条互相垂直的对角线都是直径时;如图2,当圆的内接四边形两条互相垂直的对角线中有一条是直径时).这样解决问题的方法用到的数学思想是(▲)A.数形结合 B.模型思想 C.分类讨论 D.特殊到一般(2)通过对图1或图2的研究,若⊙O的半径是r,则我们可以获得猜想:两条对角线互相垂直的圆的内接四边形对边平方和的定值是▲.(用含r的代数式表示)(3)如图3,四边形ABCD是⊙O的内接四边形,且AC⊥BD,垂足为E,求证:AB2+CD2=AD2+BC2.(4)在(3)的条件下,若⊙O的半径是r,则(2)中关于定值的猜想也成立吗?如果成立,请证明;如果不成立,请说明理由.2017年中考数学模拟练习卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共12分)二、填空题(每小题2分,共20分)7.1,14 8.x ≥0 9.2 10.2(1)x + 11.2x =-12.201813.33 14.7515.(0,2) 16.1或3三、解答题(本大题共11小题,共88分)17.解:解不等式①得x ≥-1,………………………………………………………………………2分 解不等式②得x <3,…………………………………………………………………………4分 ∴不等式组的解集为-1≤x <3. …………………………………………………………6分 ∴整数解有:-1,0,1,2 …………………………………………………………7分18.解:原式=()()()()()221111111a a a a a a a a -⎛⎫+--⋅ ⎪ ⎪+-+-⎝⎭ ………………………………………2分=()()()()2111111a a a a a a a +-+-+⋅+- ………………………………………………………4分=4a -………………………………………………………………………………………7分19.解:(1)25,20;………………2分补全的条形统计图如右图所示,………………3分 (2)4500×20%=900人,………………4分即该地区此题得满分(即8分)的学生数900人; (3)由题意可得,P=010%325%545%820% 4.6100%0.57588X W ⨯+⨯+⨯+⨯===,………………………………………5分∵0.4<0.575≤0.7,…………………………………………………………………………………………6分 ∴此题属于中等难度试题.………………………………………………………………………………7分 20.(1)证明:由折叠得EF=ED ,∠CFE=∠D , ∵四边形ABCD 是平行四边形,题号 1 2 3 4 5 6 答案 D C D A B D∴AD ∥BC ,∠B=∠D , ∴AE ∥BF ,∠B=∠CFE , ∴AB ∥EF ,∴四边形ABFE 为平行四边形;………………………………………………………………………………4分 (2)解:∵四边形ABFE 为平行四边形, ∴EF=AB=4,EF ∥AB ∵AB=CD ,AB ∥CD , ∴EF=CD ,EF ∥CD ,∴四边形CDEF 为平行四边形 ∵EF=ED ,∴四边形CDEF 为菱形,∴四边形CDEF 的周长=4 EF=16.……………………………………………………………………………8分21.解:(1)随机抽取一张,可能出现的结果有4种,即①、②、③、④,并且它们出现的可能性相等。
江苏省南京市建邺区年中考一模数学试题(含答案)
2017年中考第一次模拟测试卷数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰.有一项...是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是A .2B.-1 2 C .3.14 D .错误!2.下列运算正确的是A .a 2+a 3=a 5B.a2 a 3=a6C.a4÷a2=a 2D.(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A. 3 5 B .2 5 C.错误!D. 1 2 4.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7 B .6,7C .8,5 D.8,7 5.如图,AB是⊙O 的弦,半径OC ⊥A B,AC ∥OB ,则∠BOC 的度数为A .30°B .45°C .60°D.75°6.如图,△ABC 三个顶点分别在反比例函数y =错误!,y =错误!的图像上,若∠C =90°, AC ∥y 轴,BC ∥x 轴,S△ABC =8,则k 的值为A.3 B.4 C .5 D.6(第5题)Cy二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子错误!在实数范围内有意义,则x 的取值范围是 ▲ .8. 2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ .9. 因式分解:a3-2a 2+a = ▲ . 10.计算:错误! - 错误! = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x1 + x 2= ▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A′,则点A ′的坐标是▲ .13.如图,点A、B 、C 、D 都在方格纸的格点上,若△AO B绕点O按逆时针方向旋转到△COD的位置,则旋转角为 ▲ °.14.如图,在平行四边形ABC D中,点E 为AB 边上一点,将△AED 沿直线D E翻折,点A 落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则错误!的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O 分别与AB 、A C相切于E、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ \F (m 2+2m+1,m 2-4) ,其中m=1. ABCDEP(第14题)A(第16题) BC D EF(第15题)AABCD O (第13题)18.(7分)解不等式组错误!并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:(1)C 等级所占的圆心角为 ▲°; (2)请直接在图2中补全条形统计图;(3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图 某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABC D中,对角线AC 、B D交于点O ,DE∥AC 交BC的延长线于点E .(1)求证:△AB C≌△DC E;(2)若CD =C E,求证:AC ⊥B D.ﻬ21.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?0 1 -4 -3 -2 -1 2 3 4 (第20题)A B CDE O (第19题) 等级 图2C 10% A BD 23% 32% 图1 80 6040 20 204664 A B C D人数(人)22.(6分)如图,已知点P 为∠AB C内一点,利用直尺和圆规确定一条过点P 的直线,分别交AB 、B C于点E 、F ,使得B E=BF .(不写作法,保留作图痕迹)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN =14cm,小球在最低点B 时,与地面距离BM=5cm,∠AOB =66°,求细线OB 的长度.(参考数据:si n66°≈0.91,cos 66°≈0.40,tan66°≈2.25)ﻬ24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x 2-4mx +4m 2+2m -4=0,其中m 为常数.(1)若该一元二次方程有实数根,求m 的取值范围.(2)设抛物线y =x 2-4m x+4m 2+2m -4的顶点为M,点O 为坐标原点,当m 变化时,求线段M O长度的最小值.A(第22题)M N O (第23题)26.(12分)今年暑假,小勇、小红打算从城市A 到城市B 旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C ,再从城市C 坐汽车到城市B ,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A 、B、C 在一条直线上,且A 、C 两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B ,其离城市A 的距离y 2(km)与出发时间x (h)之间的函数关系如图2所示.(1)AB 两地的距离为 ▲ km; (2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A的距离y 1与x 之间的函数图像,并求出y1与x的函数关系式.ﻬ27.(12分)定义:当点P 在射线O A上时,把\F(OP ,O A)的值叫做点P 在射线OA上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P在射线O A上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为错误!=错误!.ABC图1h )3 4 5 6 7 图2(第26题)图2 BCDOA图3图1 (第27题)(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△O AB 是锐角三角形; ②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形; ③点B 在射线OA 上的射影值大于1时,则△OA B是钝角三角形. 其中真命题有A.①② B .②③ C.①③ D .①②③(2)已知:点C 是射线O A上一点,CA =OA=1,以O为圆心,OA 为半径画圆,点B是⊙O上任意点.①如图2,若点B 在射线OA 上的射影值为 12.求证:直线B C是⊙O的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D在射线OB 上的射影值为y,直接写出y与x 之间的函数关系式.ﻬ2017年中考第一次模拟测试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)210.0 11.4 12.(-1,3) 13.90° 14.45° 15.\F (8,15)π 16.\F(11,3)三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=错误! 错误! ··················································································· 2分=m -2m+1ﻩ4分 当m =1时,原式=错误! =-错误!. ···················································· 6分18.(本题7分)解:解不等式①,得x ≤1. ·············································································· 2分解不等式②,得x >-2. ·············································································· 4分 所以,不等式组的解集是-2<x ≤1. ·························································· 5分画图正确(略).ﻩ7分19.(本题7分) (1)126;ﻩ2分 (2)图略;ﻩ4分(3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%, ········································································ 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ······························ 7分20.(本小题满分8分)证明:(1)∵ 四边形A BC D是平行四边形,∴ A B//CD ,AB =DC .∴ ∠ABC =∠D CE . ∵ AC //DE,∴ ∠A CB=∠DEC . ···························································· 3分在△A BC 和△DCE 中,∠ABC =∠DCE ,∠ACB =∠DEC ,AB =D C.∴△ABC ≌△DC E(AAS ). ··································································· 4分 (2)由(1)知△ABC ≌△DCE ,则有BC =CE . ∵ CD =CE , ∴ BC =C D.∴四边形ABCD 为菱形. ············································································ 7分 ∴AC ⊥BD . ·························································································· 8分 21.(本题7分)列表或树状图表示正确; ············································································· 3分 ∵共有8种等可能的结果,通过一次“手心手背”游戏, 小明先跳绳的有2种情况····································· 5分22.(方法1: 方法2:ﻩ6分23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥M N,OB ⊥MN ,A D⊥OB ,∴四边形A NMD 是矩形,∴DM =AN ,ﻩ2分设OB=OA =x cm,在R t∆OAD 中,∠ODAc os∠AOD =错误! = 错误!≈0.6. ··········分解得x=15cm.经检验,x=15为原方程的解.答:细线OB的长度是15cm.ﻩ7分24.(本小题满分7分)解:设每千克樱桃应降价x元,根据题意,得 ···························································1分(60-x-40)(100+10x)=2240. ·······················································4分解得:x1=4,x2=6. ················································································6分答:每千克樱桃应降价4元或6元.ﻩ7分25.(本小题满分9分)(1)解法一:∵关于x的一元二次方程x2-4mx+4m2+2m-4=0有实数根,∴△=(-4m)2-4(4m2+2m-4)=-8m+16≥0,3ﻩ分∴m≤2.ﻩ4分解法二:∵x2-4mx+4m2+2m-4=0,∴(x-2m)2=4-2m.ﻩ3分∴m≤2. ································································································4分(2)解法一:y=x2-4mx+4m2+2m-4的顶点为M为(2m,2m-4), ····················6分∴MO2=(2m)2+(2m-4)2=8(m-1)2+8.7ﻩ分∴MO长度的最小值为2\r(,2). ································································9分解法二:y=x2-4mx+4m2+2m-4的顶点为M为(2m,2m-4),6ﻩ分∴点M在直线l:y=x-4上, ·······································································7分∴点O到l的距离即为MO长度的最小值2\r(,2). ········································9分26.(本小题满分12分)解:(1)3000;ﻩ2分(2)设汽车的速度为xkm/h,则飞机的速度为8x km/h,根据题意得:错误!-错误!=3,ﻩ4分解之得:x=100.经检验,x=100为原方程的解.则飞机的速度为8×100=800 km/h.答:飞机的速度为800 km/h. ··································································6分(3)图略.ﻩ8分当0≤x≤3,y1=800x.当3<x≤9,,设函数关系式为y1=kx+b,代入点(3,2400),(9,3000)得:错误!解得错误!∴函数关系式为:y 1=100x +2100 1ﻩ2分 27.(本题10分)解:(1)B.······································································································· 2分 (2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为错误!,∴错误!=错误!,∵OB =OA∵CA =O A,∴OB OC=12,∴\F (O H,OB )=\F(OB ,O C).又∵∠∴△OHB ∽△OBC . ····························································∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O的切线. ·············································································· 8分 解法二:连接AB ,过点B 作B H垂直OC ,垂足为H .∵B 在射线OA 上的射影值为错误!,∴错误!=错误!,∵OB =OA ,∴错误!=错误!=cos ∠O, ∴∠O =60°.∵OB =OA ,∴△O BA 是等边三角形,∴∠OAB =60°.ﻩ4分 ∵AC =OA ,∴AB =A C,∴∠A BC =∠C ,∴∠C=30°.ﻩ6分 ∴∠OB C=90°.∴OB ⊥BC ,∵点B 是圆O上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 (3)y =0 (\f (1,2)≤x<\f (3,4)); ····················································· 10分 y =2x -\f (3,2)(\f (3,4)≤x ≤错误!) ················································· 12分。
【全国区级联考】南京市建邺区2017-2018学年第二学期九年级数学一模试卷(解析版)
2018年中考第一次模拟调研九年级数学学科一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列计算结果为负数的是()A. (-3)+(-4)B. (-3)-(-4)C. (-3)⨯(-4)D. (-3)-4【答案】A【解析】分析:根据有理数的运算法则依次计算后比较即可.详解:选项A,(-3)+(-4)=-7;选项B,(-3)-(-4)=-3+4=1;选项C,(-3)⨯(-4)=12;选项D,(-3)-4=81.由此可得,只有选项A的计算结果为负数,故选A............................2. 计算a6×(a2)3÷a4的结果是()A. a3B. a7C. a8D. a9【答案】C【解析】分析:根据幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则依次计算即可.详解:a6×(a2)3÷a4= a6×a6÷a4= a12÷a4= a8.故选C.点睛:本题主要考查了幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则,熟记运算法则是解题的关键.3. 若锐角三角函数tan55°=a,则a的范围是()A. 0<a<1B. 1<a<2C. 2<a<3D. 3<a<4【答案】B【解析】分析:首先明确tan45°=1,tan60°=,再根据正切值随着角的增大而增大,进行分析解答即可.详解:∵tan45°=1,tan60°=,∴1<tan55°<,∴1<tan55°<2.故选B.点睛:本题考查了锐角三角函数的增减性,利用特殊角的三角函数值和锐角三角函数的增减性是解决这类题目的基本思路.4. 下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A. 0B. 1C. 0和1D. 1和-1【答案】A【解析】分析:由相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,即可求得答案.详解:∵相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,∴相反数、平方根、立方根都等于它本身的数是0.故选A.点睛:本题考查了相反数、平方根与立方根的定义.此题比较简单,注意熟记定义是解此题的关键.5. 把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A. 2cmB. 2.5cmC. 3cmD. 4cm【答案】B【解析】分析:首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=4-r,然后在Rt△OFH中,r2-(4-r)2=22,解此方程即可求得答案.详解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧EF于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=2,设求半径为r,则OH=4-r,在Rt△OFH中,r2-(4-r)2=22,解得r=2.5,∴这个球的半径是2.5厘米.故选B.点睛:本题考查了切线的性质、垂径定理以及勾股定理,难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.6. 如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是()A. 12条B. 9条C. 6条D. 5条【答案】B【解析】分析:观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,由此即可解答.详解:观察三棱锥的三视图,可得主视图中有3条长度为a的线段,左视图中有3条长度为a的线段,俯视图中有3条长度为a的线段,所以在这三种视图的所有线段中,长度为a的线段条数是3+3+3=9条.故选B.点睛:本题考查了简单几何体的三视图,解决本题的难点是判断出三棱锥的三视图是三个全等的等边三角形.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 函数y=中,自变量x的取值范围是________.【答案】x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为:x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.8. 分解因式a3-a的结果是________.【答案】a(a+1)(a-1)【解析】分析:先提取公因式a后再利用平方差公式因式分解即可.详解:a3-a=a(=2(a+1)(a-1).故答案为:2(a+1)(a-1).点睛:本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.9. 若关于x的一元二次方程x2-kx-2=0有一个根是1,则另一个根是________.【答案】-2【解析】试题分析:由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.试题解析:设方程的另一根为x1,由根据根与系数的关系可得:x1•1=-2,∴x1=-2.考点:根与系数的关系.10. 辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是________.【答案】6.75×104【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67 500有5位,所以可以确定n=5-1=4.详解:67500=6.75×104.故答案为: 6.75×104.点睛:本题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.11. 一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12______S22(填“>”、“=”或“<”).【答案】=【解析】分析:根据方差公式分别计算出这两组数据的方差,比较即可解答.详解:数据1、2、3、4、5的平均数为3,方差S12=;数据6、7、8、9、10的平均数为8,方差S22=;∴S12=S22.故答案为:=.点睛::本题考查了方差、平均数等知识,解题的关键是利用方差公式计算出这两组数据的方差.12. 在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图像与一次函数y2=-x+a(a为常数,a≠0)的图像相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为________.【答案】(n,m)【解析】分析:根据反比例函数y1=(k为常数,k≠0)的图像与一次函数y2=-x+a(a为常数,a≠0)的图像两个交点关于直线y=x对称,由此即可解答.详解:∵反比例函数y1=(k为常数,k≠0)的图像与一次函数y2=-x+a(a为常数,a≠0)的图像两个交点关于直线y=x对称,点A的坐标为(m,n),∴点B的坐标为(n,m).故答案为:(n,m).点睛:本题主要考查了反比例函数图象与一次函数图象的交点问题,熟知直线y=x对称的两个点的坐标就是x和y互换是解题的关键.13. 如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为________cm.【答案】【解析】试题分析:连接OB.OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.试题解析:连接OB.OD,∵∠A=110°,∴∠C=70°,∴∠BOD=140°,则劣弧=.考点:1.弧长的计算;2.圆周角定理;3.圆内接四边形的性质.14. 如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=________°.【答案】108°【解析】分析:根据正多边形的性质及已知条件可证得△BCF≌△CDG,根据全等三角形的性质可得∠CBF=∠GCD,由三角形的外角的性质可得∠BHG=∠CBF+∠BCH=∠DCG+∠BCH=∠BCD,即可求得∠BHG的度数.详解:∵五边形ABCDE是正五边形,∴BC=CD,∠BCF=∠CDG=108°,在△BCF和△CDG中,,∴△BCF≌△CDG,∴∠CBF=∠GCD,∴∠BHG=∠CBF+∠BCH=∠DCG+∠BCH=∠BCD=108°.故答案为:108.点睛:本题主要考查了正五边形的性质,证明△BCF≌△CDG是解决本题的关键.15. 如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).【答案】【解析】分析:过点A作AM⊥IL于点M,过点H作HN⊥IL与点N,可得四边形AMNH为矩形,根据正八边形的性质可得∠BAH=135°,由此可得∠BAM=45°,在等腰直角三角形AIM中,AI=,可求得AM=IM=,同理求得HN=LN=,所以IL=IM+MN+LN=IM+AH+LN=+a+=.详解:过点A作AM⊥IL于点M,过点H作HN⊥IL与点N,可得四边形AMNH为矩形,∵八边形ABCDEFGH为正八边形,∴∠BAH=135°,∵∠HAM=90°,∴∠BAM=45°,在等腰直角三角形AIM中,AI=∴AM=IM=;同理求得HN=LN=,∴IL=IM+MN+LN=IM+AH+LN=+a+=.故答案为: .点睛:本题考查了正多边形的知识,作出辅助线求得IM、NL的长是解题的关键.16. 如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°.【答案】18°【解析】分析:由折叠的性质可得∠ABC=∠CBD,根据在同圆和等圆中,相等的圆周角所对的弧相等可得,再由和半圆的弧度为180°可得的度数×5=180°,即可求得的度数为36°,再由同弧所对的圆周角的度数为其弧度的一半可得∠B=18°.详解:由折叠的性质可得∠ABC=∠CBD,∴,∵,∴的度数+ 的度数+ 的度数=180°,即的度数×5=180°,∴的度数为36°,∴∠B=18°.故答案为:18.点睛:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.还考查了圆弧的度数与圆周角之间的关系.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 计算:(a+2+)÷(a-).【答案】【解析】分析:把括号内的分式通分相加,然后把除法转化成乘法,然后进行乘法运算即可求解.详解:原式=÷=·=·=.点睛:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18. 解不等式组并把它的解集在数轴上表示出来.【答案】-1≤x<2【解析】试题分析:分别求两个不等式的解集,然后求公共解集,最后在数轴上表示出来即可.试题解析:解:解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:19. 如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是(直接写出这个条件的序号).【答案】(1)证明见解析(2)②【解析】分析:(1)根据平行四边形的性质可得AE∥CF,根据平行线的性质可得∠DAC=∠BCA,然后再加上条件AO=CO,对顶角∠AOE=∠FOC,可利用ASA证明△AOE≌△COF,根据全等三角形的性质可得AE=CF,根据一组对边平行且相等的四边形是平行四边形即可得四边形AFCE是平行四边形;(2)根据(1)的证明可得EF⊥AC多余.详解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠DAC=∠BCA ,在△AOE和△COF中,,∴△AOE≌△COF(ASA)∴AE=CF∴四边形AFCE是平行四边形(2)由(1)的证明可得EF⊥AC多余.故答案为:②.点睛:本题主要考查了平行四边形的判定及性质,解题的关键是熟知平行四边形的判定方法和性质.20. 某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?【答案】卖完这些西红柿和豆角能赚111.6元【解析】分析:设批发了西红柿x千克,豆角y千克,利用本题中的两个等量关系“①西红柿的千克数+豆角的千克数=40千克,②西红柿的斤数×西红柿的批发价+豆角的斤数×豆角的批发价=180元”,列出方程组,解方程组求得x、y的值,再利用“当天赚的钱=(西红柿的零售价-批发价)×西红柿的重量+(豆角的零售价-批发价)×豆角重量”,计算出当天赚的钱数即可.详解:设批发了西红柿x千克,豆角y千克由题意得:解得:(5.4-3.6)× 4+(7.5-4.6)×36=111.6(元)答:卖完这些西红柿和豆角能赚111.6元.点睛:本题考查了二元一次方程组的=应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.21. 超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?【答案】(1)(2)详解:(1);(2)共有6种等可能出现的结果,分别为①(100,110);②(100,120);③(100,125);④(110,120);⑤(110,125);⑥(120,125);总重量超过232g的结果有2种,即(110,125),(120,125).因此,总重量超过232g的概率是 .点睛:本题考查了简单事件的概率计算,熟知概率公式是解题的关键.22. 河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.整理数据(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为°、°;②估计九年级A、B类学生一共有名.分析数据(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:你认为哪所学校本次测试成绩较好,请说明理由.【答案】(1)①(2)① 60°,30°② 225(3)两所学校都可以选择只要理由正确皆可得分【解析】分析:(1)抽取得学生必须有代表性,能反映全年级学生的情况,可以采取随机抽样或随机分层抽样,据此即可确定;(2)①利用每类的频率乘以360°,即可求得对应的圆心角的度数;②根据频率=,即可求得频数;(3)本题答案不唯一,根据方差,极差或平均数等不同的标准进行分析,得到不同的结果.详解:(1)①;(2)① 60°,30°;② 225 ;(3)两所学校都可以选择只要理由正确皆可得分.选择河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.选择复兴中学,理由是平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多.点睛:本题考查了频数(率)分布表、扇形统计图、算术平均数、极差、方差等知识,熟知频率、频数与总数及整体与样本之间的关系是解题的关键.23. 下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1 m).(参考数据:tan15°≈0.27,tan30°≈0.58)【答案】1.4m【解析】分析:过点A作AP⊥EF,垂足为P,可证明四边形ADEP为矩形,再求得∠BAP=15°,AP=CP,在Rt△APB中,根据锐角三件函数可得BP=0.27AP=0.27CP,再由BC=CP—BP求得CP的长,即可求得CF的长.详解:过点A作AP⊥EF,垂足为P,∵AD⊥DE,∴∠ADE=90°,∵AD∥EF,∴∠DEP=90°,∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°,∴四边形ADEP为矩形,∴EP=AD=0.5m ,∠APC=90°,∠ACB=45°,∴∠CAP=45°=∠ACB,∠BAP=∠CAP—∠CAB=45°—30°=15°∴AP=CP在Rt△APB中,tan∠BAP==tan15°=0.27 ,∴BP=0.27AP=0.27CP,∴BC=CP—BP=CP—0.27CP=0.73CP=1.2m,∴CP=1.64m,∴CF=EF—EP—CP=3.5—0.5—1.64=1.36≈1.4m点睛:本题主要考查了解直角三角形的应用,正确作出辅助线,构造直角三角形是解题的关键.24. 一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1 km与货车行驶时间x h的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x轴交点坐标并解释其实际意义.【答案】(1)y1 =—80x+360(2)轿车比货车晚出发0.9h【解析】分析:(1)根据题意,设出y1与x之间的函数表达式,用待定系数法求一次函数的解析式即可;(2)根据轿车和货车同时到达,可得终点坐标为(4.5,360),设出一次函数的解析式为y2 =k2 x+b2 ,,用待定系数法求出函数的解析式,画出函数图象,求得图象与x轴的交点坐标,并结合实际情况写出该点的实际意义即可.详解:(1)由条件可得k1=—80 ,设y1=—80x+b1,过点(2.5,160),可得方程160=—80×2.5+b1,解得b1=360 ,∴y1 =—80x+360;(2)当y1 =0时,可得x=4.5,轿车和货车同时到达,终点坐标为(4.5,360),设y2 =k2 x+b2 ,过点(2.5,160)和(4.5,360),解得k2 =100,b2 =—90,∴y2 =100x—90 图像如下图:与x轴交点坐标为(0.9,0) ,说明轿车比货车晚出发0.9h .点睛:本题考查了一次函数的应用,解题的关键是根据函数图象经过的点的坐标求的一次函数的解析式,题目中还渗透了数形结合的数学思想.25. 某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=-3x+90.(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;(2)当x为多少元时,销售利润最大?最大利润是多少?【答案】(1)y=—3x²+150x—1800 (2)当售价为25元时,有最大利润75元【解析】分析:(1)由每天的销售利润﹦销售件数×(售价-购进价)即可求出每天的销售利润y(元)与x 之间的函数表达式;(2)根据二次函数的最大值的性质解决即可.详解:(1)表达式为y=(—3x+90)(x—20),化简为y=—3x²+150x—1800 ;(2)把表达式化为顶点式y=—3(x—25)² +75 ,当x=25时,y有最大值75 .答:当售价为25元时,有最大利润75元点睛:本题是二次函数应用——利润问题,常用公式有:(1)利润=售价-进价,(2)总利润=单个商品的利润×销售量,解决这类问题的基本思路为:先建立函数模型,把利润问题转化为函数的最值问题,从而使问题得到解决26. Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.【答案】(1)证明见解析(2)【解析】分析:(1)连结OD,由∠ACB=90°,可得∠OED+∠EGC=90°,再由OD=OE,根据等腰三角形的性质可得∠ODE=∠OED,再因AG=AD,根据等腰三角形的性质可得∠ADG=∠AGD ,由∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,可得OD⊥AB ,所以AB是⊙O的切线;(2)连接OF,由EF∥AB,AC:BC=4:3,可得CF:CE=4:3.在Rt△ECF中,EF=5,求得CF=4,CE=3.设半径=r,则OF=r,CF=4,CO=r-3.在Rt△OCF中,由勾股定理求得r=,再证得△CEF∽△DBO,根据相似三角形的性质可得,由此求得BD=.详解:(1)证明:连结OD∵∠ACB=90°,∴∠OED+∠EGC=90°,∴OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD ,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB ,∵OD为半径,∴AB是⊙O的切线;(2)连接OF.∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3.又∵EF=5,∴CF=4,CE=3.设半径=r,则OF=r,CF=4,CO=r-3.在Rt△OCF中,由勾股定理,可得r=.∵EF∥AB,∴∠CEF=∠B,∴△CEF∽△DBO,∴=,∴BD=.点睛:本题主要考查了切线的判定方法、勾股定理以及相似三角形的判定和性质,证明切线的常用的方法是切线的判定定理.27. 图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB 沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.【答案】(1)2;见解析(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ【解析】分析:(1)①证明四边形,即可得OQ=OP=2cm;②分点C、P在BQ同侧和异侧两种情况作图即可;(3)当折叠后重叠部分为等腰三角形时,符合条件的点Q共有5个;点C在∠AOB的内部或一边上时,由折叠的性质、三角形内角和定理以及解直角三角形即可求出OQ的长;点C在∠AOB的外部时,同理求出OQ的长即可.详解:(1)①当PC∥QB时,∠O=∠CPA,由折叠的性质得:∠C=∠O,OP=CP,∴∠CPA=∠C,∴OP∥QC,∴四边形OPCQ是平行四边形,∴四边形OPCQ是菱形,∴OQ=OP=2cm;故答案为:2cm;②分点C、P在BQ同侧和异侧两种情况,画对一种就给全分;(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ.因为△CPQ是由△OPQ折叠得到,所以当△OPQ为等腰三角形时,重叠部分必为等腰三角形.如图1、2、3三种情况:当点C在∠AOB的外部时,当点C在射线OB的上方时(如图4),当点C在射线OA的下方时(如图5),OQ=-(cm)OQ=+(cm)点睛:本题是三角形综合题目,考查了折叠的性质、等腰直角三角形的判定与性质、平行线的性质、等腰三角形的判定与性质、菱形的判定与性质、解直角三角形等知识;本题综合性强,有一定难度,熟练掌握折叠的性质,证明三角形是等腰直角三角形是解决问题的关键,注意分类讨论.。
南京2017初中中考数学试卷习题包括答案.docx
精品文档南京市 2017 年初中毕业生学业考试第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1.计算 12 18 63 2 的结果是() A . 7B . 8C . 21D .362.计算 106 10 2 3104 的结果是( )A . 103B . 107C . 104D . 1093.不透明袋子中装有一个几何体模型, 两位同学摸该模型并描述它的特征 .甲同学:它有 4 个面是三角形;乙间学:它有 8 条棱 .该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥4.若 3a10 ,则下列结论中正确的是()A . 1 a 3B . 1 a 4 C. 2 a 3D . 2 a 4 若方程 x 5219 的两根为 a 和 b ,且 a b ,则下列结论中正确的是 ( )5.A . a 是 19 的算术平方根B . b 是 19 的平方根C. a 5 是 19 的算术平方根D . b 5 是19 的平方根6.过三点 A (2,2), B (6,2), C (4,5)的圆的圆心坐标为( )A .(4,17)B .(4,3)C.(5,17)D .(5, 3)66第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)7.计算:332;.8.2016 年南京实现 GDP 约 10500 亿元,成为全国第 11 个经济总量超过万亿的城市,用科学记数法表示 10500 是 .9.若式子x 2 在实数范围内有意义,则 x 的取值范围是.110.计算 12 8 6 的结果是 .11.方程 21 0 的解是.2 xx12.已知关于x的方程x2px q 0 的两根为-3和-1,则 p;q.13.下面是某市 2013~2016 年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是年,私人汽车拥有量年增长率最大的是年.14.如图, 1 是五边形ABCDE的一个外角,若 1 65 ,则A B C D.15.如图,四边形 ABCD 是菱形,⊙ O 经过点A,C , D,与 BC 相交于点 E ,连接AC , AE,若D 78 ,则EAC.16.函数y1x 与 y24的图像如图所示,下列关于函数y y1y2的结论:①函数的图像关于x原点中心对称;②当 x 2 时,随的增大而减小;③当 x 0 时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算 a 21a1.a a2x6, ①18. 解不等式组x2, ②3 x 1 x 1.③请结合题意,完成本题的解答.( 1)解不等式①,得.( 2)解不等式③,得.( 3)把不等式①,②和③的解集在数轴上表示出来.( 4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19. 如图,在ABCD 中,点E, F分别在AD, BC上,且AE CF , EF , BD 相交于点O .求证OE OF .20.某公司共 25 名员工,下标是他们月收入的资料 .月收入 /元45000180001000055004800340050002200人数111361111( 1)该公司员工月收入的中位数是元,众数是元.( 2)根据上表,可以算得该公司员工月收入的平均数为6276 元 .你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.全面两孩政策实施后,甲,乙两个家庭有了各自的规划 .假定生男生女的概率相同,回答下列问题:( 1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;( 2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.“直角”在初中几何学习中无处不在 .如图,已知 AOB ,请仿照小丽的方式,再用两种不同的方法判断 AOB 是否为直角(仅限用直尺和圆规) .小丽的方法如图,在 OA, OB 上分别取点 C , D ,以C为圆心,CD长为半径画弧,交OB 的反向延长线于点E ,若OE OD,则AOB 90 ..文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具 .设购买x个甲种文具时,需购买 y 个乙种文具 .( 1)①当减少购买一个甲种文具时,x▲,y▲;②求 y 与x之间的函数表达式 .(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去 540 元 .甲,乙两种文具各购买了多少个?24.如图,PA, PB是⊙ O 的切线,A, B为切点 .连接 AO 并延长,交 PB 的延长线于点 C ,连接 PO ,交⊙ O 于点D .(1)求证: PO 平分 APC .()连结 DB ,若C30 ,求证 DB / / AC.225.如图,港口B位于港口A的南偏东 37 方向,灯塔 C 恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行 5 km ,到达E处,测得灯塔 C 在北偏东 45 方向上 .这时,E处距离港口A有多远?(参考数据: sin370.60,cos370.80, tan370.75 )26.已知函数 y x2m 1 x m (m为常数)( 1)该函数的图像与x 轴公共点的个数是()A.0B.1 C.2 D.1 或 2( 2)求证:不论m为何值,该函数的图像的顶点都在函数y x12的图像上 .( 3)当 2 m 3 时,求该函数的图像的顶点纵坐标的取值范围 .27.折纸的思考 .用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD AB BC (图①),使 AB 与 DC 重合,得到折痕EF ,把纸片展平(图②) .第二步,如图③,再一次折叠纸片,使点 C 落在EF上的P处,并使折痕经过点 B ,得到折痕BG ,折出PB, PC,得到PBC .( 1)说明PBC 是等边三角形 .【数学思考】( 2)如图④ .小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC 经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程 .(3)已知矩形一边长为 3 cm,另一边长为acm .对于每一个确定的a的值,在矩形中都能画出最大的等边三角形 .请画出不同情形的示意图,并写出对应的a的取值范围 .【问题解决】(4)用一张正方形铁片剪一个直角边长分别为 4 cm和 1 cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm .精品文档试卷答案一、选择题1-5:CCDBC 6:A二、填空题7.3,3. 8.1.05 104 .9. x 1.10.6.11. x 2 .12.4,313.2016,2015.14.425.15.27.16.①③ .三、解答题17.解: a21 1aaaa 22a 1 a 2 1aaa 22a 1 aaa 2 1a2a1a a 1 a 1a 1 . a118.(1) x3 .不等式两边乘(或除以)同一个负数,不等号的方向改变 .( 2) x 2 . ( 3)( 4) 2 x 2 .19.证明:∵四边形 ABCD 是平行四边形,∴ AD / /BC , ADBC .∴ EDOFBO , DEO BFO .∵ AE CF ,精品文档∴DOE≌ BOF .∴OE OF .20.解( 1) 3400, 3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大 .该公司员工月收入的中位数是 3400 元,这说明除去收入为 3400 元的员工,一半员工收入高于 3400 元,另一半员工收入低于 3400 元 .因此,利用中位数可以更好地反映这组数据的集中趋势 .21.解:(1)1 . 2(2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有 4 种,它们出现的可能性相同 .所有的结果中,满足“至少有一个是女孩”(记为事件 A )的结果有三种,所以P A 3 .422.本题答案不惟一,下列解法供参考,例如,方法 1:如图①,在OA, OB上分别截取OC4, OD 3 .若CD 5 ,则 AOB 90 .方法 2:如图②,在OA, OB上分别取点C , D,以 CD 为直径画圆 .若点 O 在圆上,则AOB 90 .23.解:(1)① 99,2.②根据题意,得 y 2 100 x 2 x200.所以 y 与x之间的函数表达式为y2x 200 .y2x200,( 2)根据题意,得解得5x 3y540.x 60,y80.答:甲、乙两种文具各购买了60 个和 80 个.24.证明:( 1)如图,连接 OB .∵ PA, PB 是⊙O的切线,∴OA AP,OB BP ,又OA OB ,∴PO 平分 APC .( 2)∵AO AP, OB BP ,∴CAPOBP 90 .∵ C 30 ,∴APC 90 C 90 30 60 .∵PO 平分 APC ,∴116030 ,OPC APC22∴POB 90OPC9030 60 .又OD OB ,∴ODB 是等边三角形 .∴OBD 60 .∴DBPOPB OBD 90 60 30 .∴ DBP C .∴ DB / / AC .25.解:如图,过点 C 作 CH AD ,垂足为 H .设 CH xkm . 在 Rt ACH 中, A 37,∵ tan 37CH ,AH∴ AHCH x .tan 37tan37在 Rt CEH 中, CEH45 ,∵ tan 45CH ,EH∴ EHCH x .tan 45∵ CHAD , BDAD ,∴ AHCADB 90 .∴ HC / / DB .∴AH AC .HD CB又 C 为 AB 的中点, ∴ AC CB .∴ AH HD .∴xx5.tan 37∴ x5 tan 375 0.751 tan 37 1 15 .0.75∴ AEAH HE15 35 km .15tan 37因此, E 处距离港口 A 大约为 35 km .26.解:(1) D .2 2( ) yx 2m 1 x mx m 1 m 1,224m 1 m 2所以该函数的图像的顶点坐标为1.,422m2把 xm 1代入 y2m 1 11x 1 ,得 y.因此,不论 m 为何值,该函数的图像的顶点都在函数y x 12的图像上 .m21( 3)设函数z.4当 m1时,z有最小值 0.当 m1时,z随m的增大而减小;当 m1时,z随m的增大而增大 .2232又当 m 2 时, z11;当 m 3 时, z144.44因此,当 2 m 3时,该函数的的图像的顶点纵坐标的取值范围是0 z 4 .27.解:(1)由折叠,PB PC, BP BC,因此,PBC 是等边三角形 .( 2)本题答案不惟一,下列解法供参考.例如,如图,以点 B 为中心,在矩形ABCD 中把PBC 逆时针方向旋转适当的角度,得到PBC ;11再以点 B 为位似中心,将1 1 放大,使点 1 的对应点C 2落在CD上,得到 2 2.PBC C P BC ( 3)本题答案不惟一,下列解法供参考,例如,3 33 3a 2 30 a2a 2 32( 4)16.5。
2017年江苏省南京市中考数学模拟试卷1附答案
南京市中考数学模拟试卷1姓名:__________班级:__________考号:__________一、选择题(本大题共6小题,每小题2分,共12分)1.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( )A.15×106B. 1.5×107C.1.5×108D.0.15×1082.﹣4的绝对值是()A.B.C. 4 D.﹣43.下列计算结果正确的是()A.(﹣2x2)3=﹣6x6 B.x2•x3=x6 C.6x4÷3x3=2x D.x2+x3=2x54.下列长度的各种线段,可以组成三角形的是()A. 1,2,3 B. 1,5,5 C. 3,3,6 D. 3,5,15.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°6.下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是( )A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9二、填空题(本大题共10小题,每小题2分,共20分)7.的算术平方根为.8.代数式有意义时,实数x的取值范围是__________.9.分解因式:x2﹣y2﹣3x﹣3y=__________.10.比较大小:25(填“>,<,=”).11.化简:﹣=12.若一元二次方程x2+4x+c=0有两个不相等的实数根,则c的值可以是(写出一个即可).13.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_____________________.14.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=______度.15.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.16.如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法.三、解答题(本大题共11小题,共88分)17.解不等式组:.18..19.在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图,求这四个小组回答正确题数的平均数.20.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?21.如果,在△ABC中,AD是高,AE是∠BAC的平分线,∠BAC=54°,∠C=70°.求∠EAD的度数.22.城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A、A2、A3表示)和2名女生(以B1、1B2表示)中选取3人组队参赛.(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.23.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?24.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.25.如图,AB切⊙O于点B,OA=5,tanA=,弦BC∥OA(1)求AB的长(2)求四边形AOCB的面积.26.如图,二次函数y=﹣mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.27.旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)南京市中考数学模拟试卷1答案解析一、选择题1.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将15 000 000用科学记数法表示为:1.5×107.故选:B.2.分析:根据一个负数的绝对值是它的相反数即可求解.解答:解:﹣4的绝对值是4.故选C.3.分析:分别利用合并同类项法则以及单项式除以单项式运算法则和积的乘方运算法则、同底数幂的乘法运算法则化简,进而判断得出答案.解:A.(﹣2x2)3=﹣8x6,故此选项错误;B、x2•x3=x5,故此选项错误;C、6x4÷3x3=2x,故此选项正确;D、x2+x3,无法计算,故此选项错误;故选:C.4.分析:看哪个选项中两条较小的边的和大于最大的边即可.解:A.2+1=3,不能构成三角形;B、5+1>5,能构成三角形;C、3+3=6,不能构成三角形;D、1+3<5,不能构成三角形.故选B.5.解:如图,连接OC,∵∠OBC=∠OCB=40°,∴∠BOC=100°,在优弧BPC上取点P,连接BD,CD,则∠BDC=50°,由内接四边形的对角互补可得∠A=130°,故选D.6.分析:根据平均数、众数与方差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.极差就是这组数中最大值与最小值的差.解:平均数为(6+9+8+4+0+3)÷6=5,排列为9,8,6,4,3,0中位数为(6+4)÷2=5,极差为9﹣0=9.故选D.二、填空题7.分析:首先根据算术平方根的定义计算先=2,再求2的算术平方根即可.解:∵=2,∴的算术平方根为.故答案为:.8.分析:根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.9.分析:根据观察可知,此题有4项且前2项适合平方差公式,后2项可提公因式,分解后也有公因式(x+y),直接提取即可.解:x2﹣y2﹣3x﹣3y,=(x2﹣y2)﹣(3x+3y),=(x+y)(x﹣y)﹣3(x+y),=(x+y)(x﹣y﹣3).10.分析:首先分别求出两个数的平方各是多少;然后判断出两个数的平方的大小关系,即可判断出两个数的大小关系.解:,52=25,因为28>25,所以2>5.故答案为:>.11.分析:原式利用同底数幂的减法法则计算即可得到结果.解答:解:原式==1.故答案为:1.12.分析:直接利用根的判别式,得出△>0,进而求出c的值.解:∵一元二次方程x2+4x+c=0有两个不相等的实数根,∴△=16﹣4c>0,解得:c<4,故c的值可以是1.故答案为:113.解:由题意可知,∠AOC+∠BOD=180°—120°=60°,图中阴影部分的面积等于.14. 分析:在△ABC中,根据三角形的内角和定理即可求得∠ACB,利用HL定理即可判断△ABC≌△ADC,根据全等三角形的对应边相等,即可求解.解:在直角△ABC与直角△ADC中,BC=DC,AC=AC∴△ABC≌△ADC∴∠2=∠ACB在△ABC中∠ACB=180°﹣∠B﹣∠1=50°∴∠2=50°.15.分析:利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.16.分析:(1)根据平行四边形的面积公式:底×高计算即可;(2)根据剪拼前后的图形的面积相等进行剪拼即可.解:(1)平行四边形ABCD的面积是:4×6=24;(2)如图①→1,②→2,③→3,则矩形EFGC即为所求.故答案为:(1)24;(2)①→1,②→2,③→3.三、解答题17.分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解:,解①得x<2,解②得x≥﹣1,则不等式组的解集是﹣1≤x<2.18.解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x2﹣2x﹣x2﹣x+6,化简得,9x=﹣12x=,解得x=.19.分析:平均数的计算方法是求出所有数据的和,然后除以数据的总个数.解:(6+12+16+10)÷4=44÷4=11∴这四个小组回答正确题数的平均数是11.20.第2张,是中心对称图形21.分析:先根据三角形内角和定理求出∠DAC,根据角平分线定义求出∠EAC,代入∠DAE=∠EAC﹣∠DAC求出即可.解:∵AD是搞,∴∠ADC=90°,∵∠C=70°,∴∠DAC=20°,∵AE是∠BAC的平分线,∠BAC=54°,∴∠EAC=∠BAC=27°,∴∠EAD=∠EAC﹣∠DAC=27°﹣20°=7°.22. 分析:(1)直接根据概率公式求解;(2)先画出树状图展示所有12种等可能的结果数,找出选取的两队员恰好是1男1女的结果数,然后根据概率公式求解.解:(1)从5位备选学生中随机选取1人担任队长,选取到男生的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中选取的两队员恰好是1男1女的结果数为8,所以选取的两队员恰好是1男1女的概率==.23.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.24.分析:(1)作AB的垂直平分线交BC于P点,则PA=PB;(2)设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后在Rt△ACP中根据勾股定理得到(8﹣x)2+42=x2,再解方程即可.解:(1)如图,点P为所作;(2)设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.25. 分析:(1)连接OB,由∠A的正切值可设OB=x,则AB=2x,再利用勾股定理计算即可;(2)过点O作OD⊥BC于点D,易证∠A=∠BOD,则tan∠BOD=tan∠A= ,进而可求出OD,BC的值,再利用梯形的面积公式计算即可.解:(1)连接OB,∵AB切⊙O于点B,∴∠ABO=90°,设OB=x,在Rt△ABO中,tanA= = ,设OB=x,则AB=2x,∵OA= = x,∴ x=5 ,解得:x=5,∴AB=10;(2)过点O作OD⊥BC于点D,∵BC∥OA,∴∠AOB=∠DBO,∵∠A+∠AOB=90°,∠BOD+∠AOB=90°,∴∠A=∠BOD,∴tan∠BOD=tan∠A= ,∴BD= ,OD=2 ,∵OD⊥BC,∴BC=2 ,∴四边形AOCB的面积= (OA+BC)OD=35.26. 分析:(1)由顶点坐标(0,2)可直接代入y=﹣mx2+4m,求得m=,即可求得抛物线的解析式;(2)由图及四边形ABCD为矩形可知AD∥x轴,长为2x的据对值,AB的长为A点的总坐标,由x与y的关系,可求得p关于自变量x的解析式,因为矩形ABCD在抛物线里面,所以x小于0,大于抛物线与x负半轴的交点;(3)由(2)得到的p关于x的解析式,可令p=9,求x的方程,看x是否有解,有解则存在,无解则不存在,显然不存在这样的p.解答:解:(1)∵二次函数y=﹣mx2+4m的顶点坐标为(0,2),∴4m=2,即m=,∴抛物线的解析式为:y=﹣x2+2;(2)∵A点在x轴的负方向上坐标为(x,y),四边形ABCD为矩形,BC在x轴上,∴AD∥x轴,又∵抛物线关于y轴对称,∴D、C点关于y轴分别与A、B对称.∴AD的长为2x,AB长为y,∴周长p=2y+4x=2(﹣x2+2)﹣4x=﹣(x+2)2+8.∵A在抛物线上,且ABCD组成矩形,∴x<2,∵四边形ABCD为矩形,∴y>0,即x>﹣2.∴p=﹣(x+2)2+8,其中﹣2<x<2.(3)不存在,证明:假设存在这样的p,即:9=﹣(x+2)2+8,解此方程得:x无解,所以不存在这样的p.27.解:(1)旋转后的△A'CM'如图1所示:(2)连接M'N,∵△ABC与△DCE为等腰直角三角形,∠ACB=90°,∠DCE=45°,∴∠A=∠CBA=45°,∠ACM+∠BCN=45°,∵△BCM'是由△ACM旋转得到的,∴∠BCM'=∠ACM,CM=CM',AM=BM',∠CBM'=∠A=45°,∴∠M'CN=∠MCN=45°,∠NBM'=90°,∵CN=CN,在△MCN与△M'CN中,,∴△MCN≌△M'CN(SAS),∴MN=M'N,在RT△BM'N中,根据勾股定理得:M'N2=BN2+BM'2,∴MN2=AM2+BN2;(3)如图2,将△ADC顺时针旋转90°到△AC'D',连接C'C,则△AC'C是等腰直角三角形,C'D=3,∵∠C'=∠ACB=45°,∴C',D',B,C均在同一直线上,在△DAB与△D'AB中,,∴△DAB≌△D'AB(SAS),∴DB=D'B,在RT△BCD'中,∵BC=4,CD=3,∴DB=5,∴CC'=12,∴AC=6.。
2017年江苏省南京市中考数学试卷-答案
江苏省南京市 2017 年初中毕业生学业考试数学答案分析第Ⅰ 卷一、选择题1.【答案】 C【分析】解:原式12 3 6 21,应选 C【提示】原式先计算乘除运算,再计算加减运算即可获得结果.【考点】有理数综合运算.2.【答案】 C【分析】解: 106(102 )3104106106104106 6 4108,应选:C.【提示】先算幂的乘方,再依据同底数幂的乘除法运算法例计算即可求解.【考点】同底数幂的运算.3.【答案】 D【分析】解:四棱锥的底面是四边形,侧面是四个三角形,底面有四条棱,侧面有 4 条棱,应选: D .【提示】依据四棱锥的特色,可得答案.【考点】辨别几何体.4.【答案】 B【分析】解:∵ 1 3 2 , 3 10 4,又∵ 3 a 10 ,∴ 1 a 4 ,应选 B.【提示】第一估量 3 和10 的大小,再做选择.【考点】无理数的估量.5.【答案】 C【分析】解:∵方程( x 5)2 19 的两根为 a 和b,∴a 5 和 b 5 是 19 的两个平方根,且互为相反数,∵ a b ,∴ a 5 是 19 的算术平方根,应选 C.【提示】联合平方根和算术平方根的定义可做选择.【考点】算数平方根的定义.6.【答案】 A【分析】解:已知A(2,2 ), B(6, 2), C( 4,5) ,∴AB的垂直均分线是x 2 64 ,设直线BC 的分析式为26k b 2 k33 xy kxb ,把 B(6,2 ),C(4, 5) 代入上式得2 ,∴ y11 ,设 BC 的垂直平4k b,解得5b 11 2分线为 y2x m ,把线段 BC 的中点坐标 7 1 ,∴ BC 的垂直均分线是2 13 5,代入得 myx,当 x 42636时, y17,∴过 A , B , C 三点的圆的圆心坐标为4,17.66【提示】已知 A( 2,2), B(6, 2),C( 4, 5) ,则过 A , B , C 三点的圆的圆心,就是弦的垂直均分线的交点,故求得 AB 的垂直均分线和 BC 的垂直均分线的交点即可.【考点】三角形外接圆的性质,垂径定理,勾股定理.第 Ⅱ 卷二、填空题7.【答案】 3, 3【分析】解:3 3 ,( 3)232 3 ,故答案为: 3,3.【提示】依据绝对值的性质,二次根式的性质,可得答案.【考点】化简绝对值和二次根式.8.【答案】104【分析】解: 10500104 ,故答案为: 104 .【提示】科学记数法的表示形式为 a 10n 的形式,此中 1 a <10,n 为整数.确立 n 的值是易错点,因为10500 有 5 位,因此能够确立n 5 1 4 .【考点】科学计数法.9.【答案】 x1【分析】解:由题意得x 1 0 ,解得 x 1 ,故答案为: x 1 .【提示】依据分式存心义,分母不等于 0 列式计算即可得解.【考点】分式存心义的条件. 10.【答案】 6 3【分析】解:原式 2386 23 436 3 ,故答案为 6 3 . 【提示】先依据二次根式的乘法法例获得原式 2 38 6 ,而后化简后归并即可.【考点】二次根式的化简和运算. 11.【答案】 x 2【分析】 解:2 1 0 ,方程两边都乘以 x( x 2) 得: 2x ( x 2)0,解得: x 2 ,查验:当 x 2 时,x 2xx( x 2) 0 ,因此 x2 是原方程的解,故答案为: x 2 .【提示】先把分式方程转变成整式方程,求出方程的解,最后进行查验即可.【考点】分式方程. 12.【答案】 4, 3【分析】解:∵对于 x 的方程 x 2px q 0 的两根为 3 和1,∴ 3(1)p , ( 3) ( 1) q ,∴ p 4, q 3 .【提示】由根与系数的关系可得出对于p 或 q 的一元一次方程,解之即可得出结论.【考点】一元二次方程根与系数的关系.13.【答案】 2016 , 2015【分析】 解:由条形统计图可得: 该市个人汽车拥有量年净增量最多的是2016 年,净增 183-150=33( 万辆 ),由折线统计图可得,个人汽车拥有量年增加率最大的是:2015 年.【提示】直接利用条形统计图以及折线统计图分别提示得出答案.【考点】统计图的应用.14.【答案】 425【分析】解:∵165,∴AED 115 ,∴ A B C D 540 AED 425 .【提示】依据补角的定义获得AED 115 ,依据五边形的内角和即可获得结论.【考点】多边形的内角和定理,外角的定理. 15.【答案】 27【分析】解:∵四边形ABCD 是菱形,D78 ,∴ ACB1 1 D) 51,2DCB(1802∵四边形v是圆内接四边形,∴ AEBD78 ,∴ EAC AEB ACE 27 ,故答案为: 27.【提示】依据菱形的性质获得1DCB1D) 51 ,依据圆内接四边形的性质获得 ACB(1802 2AEBD 78 ,由三角形的外角的性质即可获得结论.【考点】菱形的性质,圆内接四边形的性质,三角形的内角和定理.16.【答案】①③【分析】解:①由图像能够看出函数图像上的每一个点都能够找到对于原点对称的点,故正确;②在每个象限内,不一样自变量的取值,函数值的变化是不一样的,故错误;4 2③ y x2 ,当且仅当 x 2 时取 “ ”.即在第一象限内,最低点的坐标为(2,4) ,故正x4 4xx确,∴正确的有①③.【提示】联合图形判断各个选项能否正确即可.【考点】反比率函数,一次函数的图像与性质.三、解答题17.【答案】答案看法析【分析】解: a1 12 aa aa2 2a 1 a 2 1a a(a 1)g a1)a ( a 1)(aa 1a 1【提示】依据分式的加减法和除法能够分析此题.【考点】分式计算.18.【答案】 (1) x 3 ,不等式的基天性质(2) x 2(3)把不等式①,②和③的解集在数轴上表示出来.(4) 2 x 2【分析】解:( 1)解不等式①,得x 3 ,依照是:不等式的基天性质.(2)解不等式③,得x 2 .(4)从图中能够找出三个不等式解集的公共部分,得不等式组的解集为:-2< x< 2.【提示】分别求出每一个不等式的解集,依据各不等式解集在数轴上的表示,确立不等式组的解集.【考点】一元一次不等式.19.【答案】证明:方法1,连结 BE, DF ,如下图:∵四边形ABCD 是平行四边形,∴AD∥ BC, AD BC ,∵ AE CF ,∴DE BF ,∴四边形 BEDF 是平行四边形,∴OF OE .方法 2,∵四边形ABCD 是平行四边形,∴AD∥ BC, AD BC ,∵ODE OBF , AE CF ,DOE BOF∴ DE BF ,在△DOE 和△BOF 中,ODE OBF ,∴△ DOE ≌△ BOF ( AAS) ,∴OF OE .DE BF【提示】方法1.连结 BE, DF ,由已知证出四边形BEDF是平行四边形,即可得出结论.方法 2.先判断出DE BF ,从而判断出△DOE≌△BOF 即可.【考点】平行四边形的性质,全等三角形的判断和性质.20.【答案】( 1) 3400, 3000(2)用中位数或众数来描绘更加适合.原因:均匀数受极端值45000 元的影响,只有 3 个人的薪资达到了6276 元,不适合.【分析】解:( 1)共有 25 个职工,中位数是第13 个数,则中位数是3400 元;3000 出现了 11 次,出现的次数最多,则众数是3000.【提示】( 1)依据中位数的定义把这组数据从小到大摆列起来,找出最中间一个数即可;依据众数的定义找出现次数最多的数据即可.(2)依据均匀数、中位数和众数的意义回答.【考点】统计的初步知识运用.121.【答案】( 1)2(2 )34【分析】解:( 1)第二个孩子是女孩的概率=1,故答案为1.2 2(2 )画树状图为:共有 4 种等可能的结果数,此中起码有一个孩子是女孩的结果数为3,因此起码有一个孩子是女孩的概率= 3 .4【提示】( 1)直接利用概率公式求解.(2)画树状图展现全部 4 种等可能的结果数,再找出起码有一个孩子是女孩的结果数,而后依据概率公式求解.【考点】随机事件的概率.22.【答案】答案看法析【分析】解:方法一:如图 1,在 OA, OB 上分别截取OC 4, OD 3 ,若 CD 的长为 5,则AOB 90 .方法二:如图2,在 OA, OB 上分别取点C, D ,以 CD 为直径画圆,若点O 在圆上,则AOB 90 .【提示】( 1)依据勾股定理的逆定理,可得答案;(2)依据圆周角定理,可得答案.【考点】判断直角的方法.23.【答案】( 1)① 99, 2②y 2x 200(2)答案看法析【分析】解:( 1)①∵100 1 99 ,∴x 99,y 2,故答案为99, 2.②由题意 y 2(100 x) 2x 200 ,∴ y 与x之间的函数表达式为y2x 200 .(2)由题意y 2x 200 x 6060 个和 80 个.5x 3y,解得y,答:甲、乙两种文具各购置了540 80【提示】( 1)①由题意可知x 99, y 2 .②由题意 y 2(100 x) 2x 200 , y 与 x之间的函数表达式即可列出.(2)列出方程组,解方程组即可解决问题.【考点】一次函数,二元一次方程组.24.【答案】( 1)答案看法析(2)答案看法析【分析】解:( 1)如图,连结OB ,∵ PA, PB 是O 的切线,∴PO 均分APC .(2)∵ OA AP , OB BP ,∴CAP OBP 90 ,∵ C 30 ,∴ APC 90 C 90 30 60 , ∵PO 均分APC ,∴OPC1130 ,∴ POB 90 OPC 90 30 60 ,APC 602 2又 OD OB ,∴ △ODB 是等边三角形,∴ OBD60 ,∴ DBPOBPOBD 90 60 =30 ,∴ DBPC ,∴ DB ∥AC .【提示】( 1)连结 OB ,依据切线长定理即可分析.(2)先证明 △ODB 是等边三角形,获得OBD 60 ,再由 DBP C ,即可获得 DB ∥ AC .【考点】切线的性质,角均分线的判断,平行线的判断.25.【答案】 35km【分析】解:如图作 CH AD 于H ,设CHxkm ,在 Rt △ACH 中, A 37,∵ tan37 CH ,AHCHx,在 Rt △ CEH 中,∵CEH 45 ,∴ CH EHx ,∵ CH AD , BD AD ,∴ AHtan37tan37∴ CH ∥ BD ,∴AH AC,∵ AC CB ,∴ AC CB ,∴x = x 5 ,∴ x 5 tan37 15 ,HDCBtan371 tan37∴AE AH HE15 15 35km ,∴ E 处距离港口 A 有 35km .tan37【提示】如图作 CHAD 于 H .设CHCHx,在 Rt △CEHxkm ,在 Rt △ACH 中,可得 AHtan37tan37中,可得 CH EHx ,由 CH ∥BD ,推出AH AC,由 AC CB ,推出 ACCB ,可得 x =x 5 ,HDCBtan37 求出 x 即可解决问题.【考点】解直角三角形,平行线分线段成比率定理.(2)答案看法析(3)0 z 4【分析】解:(1)∵函数 y2(m 1) x m ( m为常数 ),∴(m 1)2( m 1)2,x 4m 0则该函数图像与x 轴的公共点的个数是 1 或2,应选 D.2( m 1) ,把x m 1代入 y ( x 1)2(2)y x2 ( m 1)x m x m 12 4 2m 1 2(m 1)2得: y 1 ,则无论 m 为什么值,该函数的图像的极点都在函数y ( x 1) 2的图像上;2 4(3)设函数z (m 1)21时, z 有最小值为0.4 ,当m当 m 1 时, z 随 m 的增大而减小;当 m 1 时, z 随 m 的增大而增大,当m 2 时, z 1;当 m 3 时,z 4 ,则当 2 m 3 时,该函数4图像的极点坐标的取值范围是0 z 4 .【提示】( 1)表示出根的鉴别式,判断其正负即可获得结果.(2)将二次函数分析式配方变形后,判断其极点坐标能否在已知函数图像即可.(3)依据m的范围确立出极点纵坐标范围即可.【考点】一元二次方程组根的鉴别式,二次函数的图像和性质.27.【答案】( 1)答案看法析(2)答案看法析(3)答案看法析(4)165【分析】( 1)证明:由折叠的性质得:EF 是BC的垂直均分线,BG是PC的垂直均分线,∴ PB PC,PB CB ,∴ PB PC CB ,∴△PBC是等边三角形.(2)解:以点B 为中心,在矩形ABCD 中把△PBC逆时针方向旋转适合的角度,获得△PBC.11再以点B 为位似中心,将△PBC1 放大,使点C1 的对应点C2 落在CD上,获得△PBC2.1 2如图⑤所示.(3)解:此题答案不独一,举比如图6 所示,( 4)解:如图 7 所示: △CEF 是直角三角形, CEF 90 , CE 4,EF 1 ,∴ AEFCED 90 ,∵四边形 ABCD 是正方形,∴ A D 90 ,AD CD ,∴DCECED 90 ,∴AEFDCE ,∴ △AEF ∽△DCE ,∴AEEF 1,设 AEx ,则 AD CD4 x ,∴ DEAD AE 3x ,DCCE4在 Rt △CDE 中,由勾股定理得:( 3x)2 (4x)242 ,解得: x4 ,∴AD 4 4 16 ,故答案为: 16 .55 5 51PB PC ,PB CB ,得出 PB PC CB 即可.【提示】( )由折叠的性质和垂直均分线的性质得出( 2)由旋转的性质和位似的性质即可得出答案.( 3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(4)证明 △AEF ∽△DCE ,得出AEEF 1 ,设 AE x ,则 AD CD 4x ,DEAD AE 3x ,在DC CE 4Rt △CDE 中,由勾股定理得出方程,解方程即可.【考点】轴对称图形的性质,等边三角形的性质和判断,正方形的性质,直角三角形的性质.。
江苏省南京市2017年中考数学真题试题(含解析)
江苏省南京市2017年中考数学真题试题第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算12+(-18)÷(-6)-(-3)×2的结果是( )A . 7B . 8C . 21D .36【答案】C考点:有理数的混合运算2. 计算()3624101010⨯÷的结果是( ) A . 310 B . 710 C .810 D .910【答案】C【解析】试题分析:根据乘方的意义及幂的乘方,可知623410(10)10⨯÷=664810101010⨯÷=.故选:C考点:同底数幂相乘除3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( )A .三棱柱B .四棱柱C . 三棱锥D .四棱锥【答案】D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选:D考点:几何体的形状4. 若310a <<,则下列结论中正确的是 ( )A .13a <<B .14a << C. 23a << D .24a <<【答案】B【解析】试题分析:根据二次根式的近似值可知134=2<<,而3=9104<<,可得1<a <4.故选:B考点:二次根式的近似值5. 若方程()2519x −=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根 C.5a −是19的算术平方根 D .5b +是19的平方根【答案】C考点:平方根6. 过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3) C.(5,176) D .(5,3) 【答案】A【解析】试题分析:根据题意,可知线段AB 的线段垂直平分线为x=4,然后由C 点的坐标可求得圆心的横坐标为x=4,然后设圆的半径为r ,则根据勾股定理可知2222(52)r r =+−−,解得r=136,因此圆心的纵坐标为1317566−=,因此圆心的坐标为(4,176). 故选:A考点:1、线段垂直平分线,2、三角形的外接圆,3、勾股定理第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7. 计算:3−= ;()23−= .【答案】3,3【解析】 试题分析:根据绝对值的性质(0)0(0)(0)a a a a a a ⎧⎪==⎨⎪−⎩><,可知|-3|=3,根据二次根式的性质2(0)0(0)(0)a a a a a a a ⎧⎪===⎨⎪−⎩><,2(3)3−=.故答案为:3,3.考点:1、绝对值,2、二次根式的性质8. 2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 .【答案】1.05×104考点:科学记数法的表示较大的数9. 若式子21x−在实数范围内有意义,则x的取值范围是.【答案】x≠1【解析】试题分析:根据分式有意义的条件,分母不为0,可知x-1≠0,解得x≠1.故答案为:x≠1.考点:分式有意义的条件10. 1286的结果是.【答案】3【解析】1286234363故答案为:63考点:合并同类二次根式11. 方程212x x−=+的解是.【答案】x=2考点:解分式方程12. 已知关于x 的方程20x px q ++=的两根为-3和-1,则p = ;q = .【答案】4,3【解析】试题分析:根据一元二次方程的根与系数的关系,可知p=-(-3-1)=4,q=(-3)×(-1)=3.故答案为:4,3.考点:一元二次方程的根与系数的关系13. 下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.【答案】2016,2015【解析】试题分析:根据条形统计图可知私家车拥有最多的年份为2016年,由折线统计图可知2015年的私家车的拥有量增长率最高.故答案为:2016,2015.考点:1、条形统计图,2、折线统计图14. 如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠= .【答案】425考点:1、多边形的内角和,2、多边形的外角15. 如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠= .【答案】27【解析】试题分析:根据菱形的性质可知AD=DC ,AD ∥BC ,因此可知∠DAC=∠DCA ,AE DC =,然后根据三角形的内角和为180°,可知∠DAC=51°,即∠ACE=51°,然后根据等弧所对的圆周角可知∠DAE=∠D=78°,因此可求得∠EAC=78°-51°=27°.故答案为:27.考点:1、菱形的性质,2、圆周角的性质,3、三角形的内角和16. 函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,y 随x 的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③考点:一次函数与反比例函数 三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17. 计算112a a a a ⎛⎫⎛⎫++÷− ⎪ ⎪⎝⎭⎝⎭. 【答案】11a a +− 【解析】试题分析:根据分式的混合运算的法则,可先算括号里面的(通分后相加减),然后把除法转化为乘法,再约分化简即可.试题解析:112a a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝++÷⎭−22211a a a a a ++−=÷ 22211a a a a a ++=⋅− ()()()2111a a aa a +=⋅+− 11a a +=−. 考点:分式的混合运算18. 解不等式组()26,2,31 1.x x x x −≤>−−<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答.(1)解不等式①,得 ,依据是______.(2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .【答案】22x −<<【解析】试题分析:分别求解两个不等式,系数化为1时可用性质2或性质3,然后画数轴,确定其公共部分,得到不等式组的解集.考点:解不等式19. 如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.【答案】证明见解析试题解析:∵四边形ABCD 是平行四边形,∴//,AD BC AD BC =.∴,EDO FBO DEO BFO ∠=∠∠=∠.∵AE CF =,∴AD AE CB CF −=−,即DE BF =.∴DOE BOF ∆∆≌.∴OE OF=.考点:1、平行四边形的性质,2、全等三角形的判定与性质20. 某公司共25名员工,下标是他们月收入的资料.月收入/元45000 18000 10000 5500 4800 3400 5000 2200人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.【答案】(1)3400,3000. (2)利用中位数可以更好地反映这组数据的集中趋势【解析】试题分析:(1)根据大小排列确定中间一个或两个的平均数,得到中位数,然后找到出现最多的为众数;(2)根据表格信息,结合中位数、平均数、众数说明即可.试题解析:(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势.考点:1、中位数,2、众数21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.【答案】(1)12(2)34考点:概率22. “直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).小丽的方法如图,在,OA OB 上分别取点,C D ,以C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若OE OD =,则90AOB ∠=︒.【答案】作图见解析【解析】试题分析:方法一是根据勾股定理作图,方法二是根据直径所对的圆周角为直角画图.方法2:如图②,在,OA OB 上分别取点,C D ,以CD 为直径画圆.若点O 在圆上,则90AOB ∠=︒.考点:基本作图——作直角23. 张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买一个甲种文具时,x = ,y = ;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?【答案】(1)①99,2②2200y x =−+(2)甲、乙两种文具各购买了60个和80个【解析】试题分析:(1)①根据“每减少购买1个甲种文具,需增加购买2个乙种文具”可直接求解;②根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.考点:1、一次函数,2、二元一次方程组24. 如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)连接OB ,根据切线的性质和角平分线的概念可证明;(2)根据角平分线的性质可证明△ODB 是等边三角形,然后根据平行线的判定得证.试题解析:(1)如图,连接OB .∵,PA PB 是⊙O 的切线,∴,OA AP OB BP ⊥⊥,又OA OB =,∴PO 平分APC ∠.又OD OB =,∴ODB ∆是等边三角形.∴60OBD ∠=︒.∴906030DBP OPB OBD ∠=∠−∠=︒−︒=︒.∴DBP C ∠=∠.∴//DB AC .考点:1、圆的切线,2、角平分线的性质与判定,3、平行线的判定25. 如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)【答案】35km【解析】试题分析:过点C 作CH AD ⊥,垂足为H .构造直角三角形的模型,然后解直角三角形和平行线分线段成比例的定理列方程求解即可.∵,CH AD BD AD ⊥⊥,∴90AHC ADB ∠=∠=︒.∴//HC DB . ∴B AH HD AC C =. 又C 为AB 的中点,∴AC CB =.∴AH HD =.∴tan 375x x ︒=+. ∴5tan 3750.75151tan 3710.75x ⨯︒⨯=≈=−︒−. ∴()151535tan 37AE AH HE km =+=+≈︒. 因此,E 处距离港口A 大约为35km .考点:解直角三角形26. 已知函数()21y x m x m =−+−+(m 为常数) (1)该函数的图像与x 轴公共点的个数是( )A.0B.1C.2D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上.(3)当23m −≤≤时,求该函数的图像的顶点纵坐标的取值范围.【答案】(1)D (2)证明见解析(3)04z ≤≤试题解析:(1)D .(2)()()22211124m m y x m x m x ⎛⎫ ⎪⎝+−=−+−+=−−+⎭, 所以该函数的图像的顶点坐标为()211,24m m ⎛⎫ ⎝+ −⎪⎪⎭. 把x =12m −代入()21y x =+,得()2211124m m y ⎛⎫ ⎪⎭=⎝+−=+. 因此,不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)设函数z =()214m +.当1m =−时,z 有最小值0.当1m <−时,z 随m 的增大而减小;当1m >−时,z 随m 的增大而增大.又当2m =−时,()221144z −+==;当3m =时,()23144z +==. 因此,当23m −≤≤时,该函数的的图像的顶点纵坐标的取值范围是04z ≤≤.考点:二次函数的图像与性质27. 折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC ∆经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为acm .对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为 cm .【答案】(1)PBC ∆是等边三角形(2)答案见解析(3)3302a <≤,33223a <<,23a ≥ (4)165试题解析:(1)由折叠,,PB PC BP BC == ,因此,PBC ∆是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点B 为中心,在矩形ABCD 中把PBC ∆逆时针方向旋转适当的角度,得到11PBC ∆;再以点B 为位似中心,将11PBC ∆放大,使点1C 的对应点2C 落在CD 上,得到22P BC ∆.(3)本题答案不惟一,下列解法供参考,例如,02a <≤ 2a <<a ≥(4)165. 考点:1、规律探索,2、矩形的性质,3、正方形的性质,4、等边三角形。
2017南京市各区中考一模数学试题(含答案及评分标准)
九年级数学试卷 第1 页 共 6 页2016~2017学年度第一次调研测试九年级数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算-1+2的值是( ▲ )A .-3B .-1C .1D .32.不等式组⎩⎨⎧ 2 x >-1,x -1≤0的解集是( ▲ )A .x >-12B .x <-12C .x ≤1D .-12<x ≤13. 计算32)(a 的结果是( ▲ )A. 23a B. 32a C. 5a D. 6a4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( ▲ )A .0.264×10 7千米B .2.64×10 6千米C .26.4×10 5千米D .264×10 4千米 5.如图所示的平面图形能折叠成的长方体可能是( ▲ )6.把函数y =2x 2的图象先沿x 轴向右平移3个单位长度,再沿y 轴向下平移2个单位长度得到新函数的图象,则新函数的关系式是( ▲ )A .y =2(x +3)2-2B .y =2(x -3)2-2C .y =2(x +3)2+2D .y =2(x -3)2+2(第5题)A .B .C .D .九年级数学试卷 第2 页 共 6 页DCBA(第13题) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20 +112-⎛⎫ ⎪⎝⎭= ▲ .8.分解因式:269xx -+= ▲ .9.计算:82+= ▲ .10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是 ▲ (填“甲”、“乙”、“丙”中的一个). 11.如果反比例函数y =kx 的图象经过点(1,3),那么它一定经过点(-1, ▲ ).12.圆锥形烟囱帽的底面直径为80 cm ,母线长为50 cm ,该烟囱帽的侧面积等于 ▲ cm 2(结果保留π).13.如图,在△ABC 中,AD =DB =BC .若∠C =n °,则∠ABC = ▲ 度.(用含n 的代数式表示)14.如图,在Rt △ABC 中,∠C =90°,∠B =60°,内切圆O 与边AB 、BC 、CA 分别相切于点D 、E 、F ,则∠DEF 的度数为 ▲ °.15.已知正比例函数y =2x 的图象过点),(11y x 、),(22y x .若112=-x x ,则21y y -= ▲ . 16.如图,已知A 、B 两点的坐标分别为(2,0)、(0,4),P 是△AOB 外接圆⊙C 上的一点,且∠AOP =45°,则点P的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (7分)计算: (a 2a -b +b 2b -a)÷a +b ab .(第14题)(第16题)九年级数学试卷 第3 页 共 6 页18. (7分) 解方程组:⎩⎪⎨⎪⎧x +y =2,2x - 13 y =53.19. (7分)某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由 ▲ 下降到 ▲ ; (2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.20. (8分) 如图,某同学在大楼AD 的观光电梯中的E 点测得大楼BC 楼底C 点的俯角为45°,此时该同学距地面高度AE 为20米,电梯再上升5米到达D 点,此时测得大楼BC 楼顶B 点的仰角为37º,求大楼的高度BC .(参考数据:sin37 º≈0.60, cos37 º≈0.80, tan37 º≈0.75)不合格合格 15 5 10(第19题)(第20题)九年级数学试卷 第4 页 共 6 页21.(8分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB . 求证:(1)AE =DC ;(2)四边形ADCE 为矩形.22.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏. (1)在实验中他们共做了50次试验,试验结果如下:① 填空:此次实验中,“1点朝上”的频率是 ▲ ;② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么? (2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.23.(8分)建造一个池底为正方形、深度为2m 的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.ABCDE(第21题图)九年级数学试卷 第5 页 共 6 页24.(8分)甲、乙两车从A 地将一批物品匀速运往B 地,已知甲出发0.5h 后乙开始出发,如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km )与时间t (h )的关系,请结合图中的信息解决如下问题: (1)计算甲、乙两车的速度及a 的值; (2)乙车到达B 地后以原速立即返回.①在图中画出乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象;(请标出必要的相关数据)②请问甲车在离B 地多远处与返程中的乙车相遇?25.(8分)如图,CD 为⊙O 的直径,弦AB 垂直于CD ,垂足为H ,∠EAD =∠HAD . (1)求证:AE 为⊙O 的切线;(2)延长AE 与CD 的延长线交于点P ,过D 作DE ⊥AP ,垂足为E ,已知P A =2,PD =1,求⊙O 的半径和DE 的长.26.(9分)已知:二次函数y =ax 2 +bx 的图像经过点M (1,n )、N (3,n ).(1)求b 与a 之间的关系式;(2)若二次函数y =ax 2 +bx 的图像与x 轴交于点A 、B ,顶点为C ,△ABC 为直角三角形,求该二次函数的关系式.C(第25题)九年级数学试卷 第6 页 共 6 页27.(10分)重温我们知道:同弧或等弧所对的圆周角相等.也就是,如图(1),⊙O 中,AB ︵所对的圆周角∠ACB=∠ADB=∠AEB . 应用(1)已知:如图(2),矩形ABCD . ①若AB <12BC ,在边AD 上求作点P ,使∠BPC =90°.(保留作图痕迹,写出作法.)②小明经研究发现,当AB 、BC 的大小关系发生变化时,①中点P 的个数也会发生变化,请你就点P 的个数,探讨AB 与BC 之间的数量关系.(直接写出结论) 创新(2)小明经进一步研究发现:命题“若四边形的一组对边相等和一组对角相等,则这个四边形是平行四边形.”是一个假命题,并在平行四边形的基础上利用“同弧或等弧所对的圆周角相等.”作出了一个反例图形.请你利用下面如图(3)所给的□ABCD 作出该反例图形.(不写作法,保留作图痕迹)(第27题图(1))C(第27题图(2))ADBABCD(第27题图(3))九年级数学试卷 第7 页 共 6 页初三一模数学试题参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3 8.(x-3)2 9.10.乙 11.-3 12.2000π 13.180-1.5n 14.75 15.2 16.(3,3) 三、解答题(本大题共11小题,共88分) 17.(7分)解:原式=(a 2a -b -b 2a -b)÷a +b ab ………2分=a 2-b 2a -b ÷a +bab ……………4分=()()a b a b a b+--×aba +b……6分 =ab ……………………………7分18. (7分) 对某一方程进行有效变形且正确 ………………………………………1分 得用代入或加减消去一个未知数得一元一次方程正确………………3分 解得一个未知数的值正确………………………………………………4分 代入求得另一个未知数的值正确………………………………………6分正确写出方程组的解1,1.x y =⎧⎨=⎩…………………………………………7分.19.(7分)(1)75﹪,25﹪…………………………………………………………………4分 (2)据题意得:培训后32名学生中“合格”与“优秀”的学生共有24名 ………5分 考分等级为“合格”与“优秀”的学生人数约占2432=34…………………………6分 所以,培训后全校考分等级为“合格”与“优秀”的学生人数约有: 640×34=480名分20. (8分)解:过点E 、D 分别作BC 的垂线,交BC 于点F 、G .在Rt △EFC 中,因为FC =AE =20,∠FEC =45° 所以EF =20………………………………………3分 在Rt △DBG 中,DG =EF =20,∠BDG =37°C因为tan∠BDG=BGDG≈0.75 ………………………………5分所以BG≈DG×0.75=20×0.75=15………………………6分而GF=DE=5所以BC=BG+GF+FC=15+5+20=40答:大楼BC的高度是40米.………………………………8分21.(8分)证明:(1)在△ABC中,∵AB=AC,AD⊥BC,∴BD=DC ……………………………………………………2分∵AE∥BC, DE∥AB,∴四边形ABDE为平行四边形………………………………4分∴BD=AE,…………………………………………………5分∵BD=DC∴AE = DC.……………………………………………………6分(2)∵AE∥BC,AE = DC,∴四边形ADCE为平行四边形.………………………………7分又∵AD⊥BC,∴∠ADC=90°,∴四边形ADCE为矩形.………………………………………8分22.(8分)(1)①0.2 …………………………………………………………1分②不正确……………………………………………………2分因为在一次实验中频率并不一定等于概率,只有当实验中试验次数很大时,频率才趋近于概率.………………………………………………………3分(2)列表如下:………5分所有可能的结果共有36种,每一种结果出现的可能性相同.九年级数学试卷第8 页共6 页九年级数学试卷 第9 页 共 6 页)所以P (点数之和超过6)=2136 ,P (点数之和不超过6)=1536 ………7分因为2136 >1536,所以小亮获胜的可能性大.………………………………8分23.(8分)设池底的边长为x m . ……………………………………1分 200x 2+800x =6400 …………………………………………4分 解得x 1=4,x 2=-8(舍) …………………………………7分 答:池底的边长为4m . ……………………………………8分24.(本题8分) 解:(1)由题意可知M (0.5,0),线段OP 、MN 都经过(1.5,60)甲车的速度60÷1.5=40 km/小时,……………………………………………1分乙车的速度60÷(1.5-0.5)=60 km/小时, ………………………………2分 a =40×4.5=180 km ; …………………………………………………………3分(2)①乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象25.(8分)连结OA∵AB ⊥CD ,∴∠AHD =90°.∴∠HAD +∠ODA =90°………………………1分 ∵OA =OD ,∴∠OAD =∠ODA …………2分 又∵∠EAD =∠HAD∴∠EAD +∠OAD =90°, …………………3分 ∴OA ⊥AE ,又∵点A 在圆上,∵AE 为⊙O 的切线.………4分 (2)设⊙O 的半径为x ,在Rt △AOP 中,OA 2+AP 2=OP 2x 2+22=(x +1)2 …………………5分 解得x =1.5 ………………………6分 ∴⊙O 的半径为1.5∵OA ∥DE ,所以△PED ∽△P AO ,PC九年级数学试卷 第10 页 共 6 页∴DP PO =DE AO ,1 2.5 =DE1.5,…………………7分 解得DE =35…………………………………8分26.(本题9分)解:(1)∵图像经过M (1,n )、N (3,n )∴图像的对称轴为直线x =2. …………………………………2分 ∴22ba-=,所以b = -4a .…………………………………4分 (2)y =ax 2 -4ax 的图像与x 轴交于点A (0,0)、B (4,0).………5分∵△ABC 为直角三角形,∴顶点C 坐标为(2,2)或(2,-2).…………………………7分 代入得4a -8a =2或4a -8a =-2.∴a =-12 或12 .……………………………………………………8分∴y = - 12 x 2 +2x 或y =12x 2 -2x .…………………………………9分27.(10分)(1)①作图正确………………………………………………………………2分.作法:以BC 为直径作⊙O ,交AD 于P 1、P 2P 1、P 2 为所求作的点P .………………………………………………4分 ②AB <12BC 时,点P 有两个;………………………………………………5分 AB=12BC 时,点P 有且只有1个; ………………………………………6分 AB >12BC 时,点P 有0个; ………………………………………………7分(2)……………………………………………10分连接AC ,作△ADC 的外接圆⊙O ,再以C 为圆心, CD 的长为半径画弧,与⊙O 相交于点E ,则四边形ABCE 即为所求反例图形.(画法不计分)九年级数学试卷 第11 页 共 6 页2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .0(第4题) A BCD (第6题)6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,则△ABC 的面积为(▲)A.48 B.50 C.54 D.60九年级数学试卷第12 页共6 页九年级数学试卷 第13 页 共 6 页二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ .10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =k x 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m.(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a=_▲_,初赛成绩为1.70m所在扇形图形的圆心角为_▲_°;(2)补全条形统计图;(3)这组初赛成绩的众数是▲ m,中位数是▲ m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG 于点H.(1)求证:△EDC≌△HFE;九年级数学试卷第14 页共6 页九年级数学试卷 第15 页 共 6 页(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 时,四边形BEHC 为菱形.(第21题)ABCDGFEH九年级数学试卷 第16 页 共 6 页22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点.(1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。
江苏省南京市2017年中考数学真题试题(含答案)
南京市2017年初中毕业生学业考试第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算()()()1218632÷−÷−−−⨯的结果是( ) A . 7 B . 8 C . 21 D .362.计算()3624101010⨯÷的结果是( )A . 310 B . 710 C . 410 D .9103.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙间学:它有8条棱.该模型的形状对应的立体图形可能是 ( ) A .三棱柱 B .四棱柱 C . 三棱锥 D .四棱锥4.a < ( )A .13a <<B .14a << C. 23a << D .24a << 5.若方程()2519x −=的两根为a 和b ,且a b >,则下列结论中正确的是 ( )A .a 是19的算术平方根B .b 是19的平方根 C.5a −是19的算术平方根 D .5b +是19的平方根 6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( ) A .(4,176) B .(4,3) C.(5,176) D .(5,3) 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)7.计算:3−= ;= .8.2016年南京实现GDP 约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是 . 9.若式子21x −在实数范围内有意义,则x 的取值范围是 .10.计算1286+⨯的结果是 . 11.方程2102x x−=+的解是 . 12.已知关于x 的方程20x px q ++=的两根为-3和-1,则p = ;q = .13.下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大的是 年.14.如图,1∠是五边形ABCDE 的一个外角,若165∠=︒,则A B C D ∠+∠+∠+∠= .15.如图,四边形ABCD 是菱形,⊙O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若78D ∠=︒,则EAC ∠= .16.函数1y x =与24y x=的图像如图所示,下列关于函数12y y y =+的结论:①函数的图像关于原点中心对称;②当2x <时,随的增大而减小;③当0x >时,函数的图像最低点的坐标是(2,4),其中所有正确结论的序号是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17. 计算112a a a a ⎛⎫⎛⎫++÷− ⎪ ⎪⎝⎭⎝⎭. 18. 解不等式组()26,2,31 1.x x x x −≤>−−<+⎧⎪⎨⎪⎩①②③请结合题意,完成本题的解答. (1)解不等式①,得 . (2)解不等式③,得 .(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .19. 如图,在ABCD 中,点,E F 分别在,AD BC 上,且,,AE CF EF BD =相交于点O .求证OE OF =.20. 某公司共25名员工,下标是他们月收入的资料.月收入/元 45000 18000 10000 5500 4800 3400 5000 2200 人数111361111(1)该公司员工月收入的中位数是 元,众数是 元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数,中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题: (1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ; (2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率. 22.“直角”在初中几何学习中无处不在.如图,已知AOB ∠,请仿照小丽的方式,再用两种不同的方法判断AOB ∠是否为直角(仅限用直尺和圆规).小丽的方法如图,在,OA OB 上分别取点,C D ,以C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若OE OD =,则90AOB ∠=︒.23.张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择.如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具. (1)①当减少购买一个甲种文具时,x =▲,y =▲;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元.甲,乙两种文具各购买了多少个?24.如图,,PA PB 是⊙O 的切线,,A B 为切点.连接AO 并延长,交PB 的延长线于点C ,连接PO ,交⊙O 于点D .(1)求证:PO 平分APC ∠.(2)连结DB ,若30C ∠=︒,求证//DB AC .25.如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)26.已知函数()21y x m x m =−+−+(m 为常数)(1)该函数的图像与x 轴公共点的个数是( ) A.0 B.1 C.2 D.1或2(2)求证:不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)当23m −≤≤时,求该函数的图像的顶点纵坐标的取值范围. 27. 折纸的思考. 【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片()ABCD AB BC >(图①),使AB 与DC 重合,得到折痕EF ,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C 落在EF 上的P 处,并使折痕经过点B ,得到折痕BG ,折出,PB PC ,得到PBC ∆.(1)说明PBC ∆是等边三角形.【数学思考】(2)如图④.小明画出了图③的矩形ABCD 和等边三角形PBC .他发现,在矩形ABCD 中把PBC ∆经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3cm ,另一边长为acm .对于每一个确定的a 的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a 的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为cm.试卷答案一、选择题1-5:CCDBC 6:A 二、填空题7.3,3. 8.41.0510⨯. 9.1x ≠. 10.6. 11.2x =. 12.4,3 13.2016,2015. 14.425. 15.27. 16.①③. 三、解答题 17.解:112a a a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝++÷⎭− 22211a a a a a ++−=÷22211a a aa a ++=⋅− ()()()2111a aaa a +=⋅+−11a a +=−. 18.(1)3x ≥−.不等式两边乘(或除以)同一个负数,不等号的方向改变. (2)2x <. (3)(4)22x −<<.19.证明:∵四边形ABCD 是平行四边形, ∴//,AD BC AD BC =.∴,EDO FBO DEO BFO ∠=∠∠=∠. ∵AE CF =,∴AD AE CB CF −=−,即DE BF =. ∴DOE BOF ∆∆≌. ∴OE OF =.20.解(1)3400,3000.(2)本题答案不惟一,下列解法供参考,例如,用中位数反映该公司全体员工月收入水平较为合适,在这组数据中有差异较大的数据,这会导致平均数较大.该公司员工月收入的中位数是3400元,这说明除去收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.因此,利用中位数可以更好地反映这组数据的集中趋势. 21.解:(1)12. (2)乙家庭没有孩子,准备生两个孩子,所有可能出现的结果有:(男,男)、(男,女)、(女,男)、(女,女),共有4种,它们出现的可能性相同.所有的结果中,满足“至少有一个是女孩”(记为事件A )的结果有三种,所以()34P A =. 22.本题答案不惟一,下列解法供参考,例如,方法1:如图①,在,OA OB 上分别截取4,3OC OD ==.若5CD =,则90AOB ∠=︒.方法2:如图②,在,OA OB 上分别取点,C D ,以CD 为直径画圆.若点O 在圆上,则90AOB ∠=︒. 23.解:(1)①99,2.②根据题意,得()21002200y x x =−=−+. 所以y 与x 之间的函数表达式为2200y x =−+.(2)根据题意,得2200,53540.y x x y =−+⎧⎨+=⎩解得60,80.x y =⎧⎨=⎩答:甲、乙两种文具各购买了60个和80个. 24.证明:(1)如图,连接OB .∵,PA PB 是⊙O 的切线, ∴,OA AP OB BP ⊥⊥, 又OA OB =, ∴PO 平分APC ∠.(2)∵,AO AP OB BP ⊥⊥,∴90CAP OBP ∠=∠=︒.∵30C ∠=︒,∴90903060APC C ∠=︒−∠=︒−︒=︒.∵PO 平分APC ∠, ∴11603022OPC APC ∠=∠=⨯︒=︒, ∴90903060POB OPC ∠=︒−∠=︒−︒=︒.又OD OB =,∴ODB ∆是等边三角形.∴60OBD ∠=︒.∴906030DBP OPB OBD ∠=∠−∠=︒−︒=︒.∴DBP C ∠=∠.∴//DB AC .25.解:如图,过点C 作CH AD ⊥,垂足为H .设CH xkm =.在Rt ACH ∆中,37A ∠=︒ , ∵tan 37CH AH︒=, ∴tan 37tan 37CH x AH ==︒︒. 在Rt CEH ∆中,45CEH ∠=︒ , ∵tan 45CH EH︒=, ∴tan 45CH EH x ==︒. ∵,CH AD BD AD ⊥⊥,∴90AHC ADB ∠=∠=︒.∴//HC DB . ∴BAH HD AC C =. 又C 为AB 的中点,∴AC CB =.∴AH HD =. ∴tan 375x x ︒=+. ∴5tan 3750.75151tan 3710.75x ⨯︒⨯=≈=−︒−. ∴()151535tan 37AE AH HE km =+=+≈︒. 因此,E 处距离港口A 大约为35km .26.解:(1)D .(2)()()22211124m m y x m x m x ⎛⎫ ⎪⎝+−=−+−+=−−+⎭, 所以该函数的图像的顶点坐标为()211,24m m ⎛⎫ ⎝+ −⎪⎪⎭. 把x =12m −代入()21y x =+,得()2211124m m y ⎛⎫ ⎪⎭=⎝+−=+. 因此,不论m 为何值,该函数的图像的顶点都在函数()21y x =+的图像上. (3)设函数z =()214m +.当1m =−时,z 有最小值0.当1m <−时,z 随m 的增大而减小;当1m >−时,z 随m 的增大而增大.又当2m =−时,()221144z −+==;当3m =时,()23144z +==. 因此,当23m −≤≤时,该函数的的图像的顶点纵坐标的取值范围是04z ≤≤.27.解:(1)由折叠,,PB PC BP BC == ,因此,PBC ∆是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点B 为中心,在矩形ABCD 中把PBC ∆逆时针方向旋转适当的角度,得到11PBC ∆;再以点B 为位似中心,将11PBC ∆放大,使点1C 的对应点2C 落在CD 上,得到22PBC ∆. (3)本题答案不惟一,下列解法供参考,例如,3302a <≤ 33223a <<23a ≥(4)165.。
建邺区2017一模(有答案)4
2017年建邺区中考第一次模拟测试卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡....上)...相应位置1.在下列实数中,无理数是()。
A: B: C: D:2.下列运算正确的是A.B.C.D.3.一个不透明的布袋里装有3个红球、2个白球,每个球除颜色外其它均相同,搅拌均匀后从中任意摸出一个球,则摸出的球是红球的概率是( )A. B. C. D.4.某小名初中男生参加引体向上体育测试的成绩分别为:,,,,,,,则这组数据的众数和中位数分别为()。
A: ,B: ,C: ,D: ,5.如图,AB 是⊙O 的弦,OC 是半径,,,,则⊙O 的半径为( )A. 4B. 5C. 6D. 86.如图,A 是反比例函数图象上一点,C 是线段OA 上一点,且,作轴,垂足为点D,延长DC 交反比例函数图象于点B,,则k 的值为 A.3 B.4 C.5 D.6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.若式子22-x 在实数范围内有意义,则x 的取值范围是_______ 8.2017年南京国际马拉松于4月16日在本市正式开跑,本次参赛对手共12629人,将12629用科学记数法表示为_______9.因式分解:=+-a a a 232_______10.计算:=-824_______ 11.已知21,x x 是方程=+-342x x 的两个实数根,则=+21x x _______12.将点A (2,-1)向左平移3个单位长度,再向上平移4个单位得到点'A ,则'A 的坐标是_______13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD 的位置,则旋转角为_______14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED 沿直线DE 翻折,点A 落在点P 处,且DP ⊥BC ,则∠EDP=_______15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则的长为_______16.如图,在等腰三角形ABC 中,AB=AC=5,BC=6,半径为1的圆O 分别与AB 、AC 相切于E 、F 两点,BG 是圆O 的切线,切点为G ,则BG 的长为_______三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:4-m 1m 2m 2m 1-122++÷+)(,其中m=1.18.(7分)解不等式组⎪⎩⎪⎨⎧++≥+9-1-x 31x 23x )(,并把解集在数轴上表示出来。
2017中考数学一模测试卷(含答案)
2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。
下文为大家准备了中考数学一模测试卷的内容。
A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考第一次模拟测试卷数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是A .2B .- 1 2C .3.14D .32.下列运算正确的是A .a 2+a 3=a 5B .a 2 a 3=a 6C .a 4÷a 2=a 2D .(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A . 3 5B . 2 5C . 2 3D . 1 24.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7 B .6,7 C .8,5 D .8,7 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为A .30°B .45°C .60°D .75°6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = kx 的图像上,若∠C =90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为A .3B .4C .5D .6(第5题)Cy二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子x -22在实数范围内有意义,则x 的取值范围是 ▲ . 8. 2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ .9. 因式分解:a 3-2a 2+a = ▲ .10.计算: 42- 8 = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1 + x 2= ▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ . 13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD的位置,则旋转角为 ▲ °.14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED 沿直线DE 翻折,点A落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则⌒BF 的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O 分别与AB 、AC 相切于E 、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .ABCDEP(第14题)A(第16题) BC D EF(第15题)AABCD O (第13题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.18.(7分)解不等式组⎩⎪⎨⎪⎧ x +32 ≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:(1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图; (3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图 某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延长线于点E .(1)求证:△ABC ≌△DCE ;(2)若CD =CE ,求证:AC ⊥BD .0 1 -4 -3 -2 -1 2 3 4 (第20题)A B CDE O (第19题) 等级 图2C 10% A BD 23% 32% 图121.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P 为∠ABC 内一点,利用直尺和圆规确定一条过点P 的直线,分别交AB 、BC 于点E 、F ,使得BE =BF .(不写作法,保留作图痕迹)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN =14cm ,小球在最低点B 时,与地面距离BM =5cm ,∠AOB =66°,求细线OB 的长度. (参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)AB P (第22题) A B M NC O (第23题)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围.(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.(1)AB两地的距离为▲km;(2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图像,并求出y1与x的函数关系式.A BC图1h)3 4 5 6 7图2(第26题)27.(12分)定义:当点P 在射线OA 上时,把OPOA的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA = 13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形; ②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形; ③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有A .①②B .②③C .①③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点B 是⊙O 上任意点. ①如图2,若点B 在射线OA 上的射影值为 12.求证:直线BC 是⊙O 的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.图2BCDOA图3图1 (第27题)2017年中考第一次模拟测试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.4 12.(-1,3) 13.90° 14.45° 15.815π 16.113三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=m +1m +2 (m +2)(m -2)(m +2)2·········································································· 2分=m -2m +1······························································································ 4分 当m =1时,原式=1-21+1=-12. ························································· 6分18.(本题7分)解:解不等式①,得x ≤1. ·············································································· 2分解不等式②,得x >-2. ·········································································· 4分 所以,不等式组的解集是-2<x ≤1. ······················································· 5分 画图正确(略). ···················································································· 7分 19.(本题7分)(1)126; ···································································································· 2分 (2)图略; ·································································································· 4分 (3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%, ····································································· 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ···························· 7分20.(本小题满分8分)证明:(1)∵ 四边形ABCD 是平行四边形,∴ AB //CD ,AB =DC .∴ ∠ABC =∠DCE . ∵ AC //DE ,∴ ∠ACB =∠DEC . ································································· 3分在△ABC 和△DCE 中,∠ABC =∠DCE ,∠ACB =∠DEC ,AB =DC .∴△ABC ≌△DCE (AAS ). ································································ 4分 (2)由(1)知△ABC ≌△DCE ,则有BC =CE . ∵ CD =CE , ∴ BC =CD .∴四边形ABCD 为菱形. ·········································································· 7分 ∴AC ⊥BD . ························································································· 8分 21.(本题7分)列表或树状图表示正确; ·········································································· 3分22方法1: 方法2: ··············································································· 6分 23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,∴DM =AN , ·············································分设OB =OA =x cm ,在Rt ∆OAD 中,∠ODA =cos ∠AOD =OD OA = x +5-14x ≈0.6. ··············分解得x =15cm .经检验,x =15为原方程的解. 答:细线OB 的长度是15cm . ······················分24.(本小题满分7分)解:设每千克樱桃应降价x 元,根据题意,得 ······················································ 1分(60-x -40)(100+10x ) = 2240. ······················································· 4分 解得:x 1=4,x 2=6. ··············································································· 6分 答:每千克樱桃应降价4元或6元. ··························································· 7分25.(本小题满分9分)(1)解法一:∵关于x 的一元二次方程x 2-4mx +4m 2+2m -4=0有实数根, ∴△=(-4m )2-4(4m 2+2m -4)=-8m +16≥0, ··································· 3分M N∴m ≤2. ······························································································· 4分 解法二:∵x 2-4mx +4m 2+2m -4=0,∴(x -2m )2=4-2m . ······················· 3分 ∴m ≤2. ······························································································· 4分 (2)解法一:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ··········· 6分 ∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ········································· 7分 ∴MO 长度的最小值为22. ····································································· 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ·················· 6分 ∴点M 在直线l :y=x -4上, ···································································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ············································ 9分 26.(本小题满分12分)解:(1)3000; ···························································································· 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:3000-2400x -24008x =3, ············································································ 4分 解之得:x =100.经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .答:飞机的速度为800 km/h . ···································································· 6分 (3)图略. ··························································································· 8分 当0≤x ≤3,y 1=800x .当3<x ≤9,,设函数关系式为y 1=kx +b ,代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,b =2100.∴函数关系式为:y 1=100x +2100 ···························································· 12分 27.(本题10分)解:(1)B . ································································································ 2分(2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12,∵CA =OA ,∴OB OC =12,∴OH OB =OBOC.又∵∠O =∠O , ∴△OHB ∽△OBC . ····························································∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12=cos ∠O ,∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ·············· 4分∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ··································· 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 (3)y =0 (12≤x <34); ··············································································· 10分y =2x -32(34≤x ≤32) ········································································· 12分。