八年级轴对称填空选择单元练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级轴对称填空选择单元练习(Word版含答案)
一、八年级数学全等三角形填空题(难)
1.将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DM、DN 分别交AB、AC于点E、F.则下列四个结论:
①BD=AD=CD;②△AED≌△CFD;③BE+CF=EF;④S四边形AEDF=1
4
BC2.其中正确结论
是_____(填序号).
【答案】①②
【解析】
分析:根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.
详解:∵∠B=45°,AB=AC
∴点D为BC的中点,
∴AD=CD=BD
故①正确;
由AD⊥BC,∠BAD=45°
可得∠EAD=∠C
∵∠MDN是直角
∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°
∴∠ADE=∠CDF
∴△ADE≌△CDF(ASA)
故②正确;
∴DE=DF,AE=CF,
∴AF=BE
∴BE+AE=AF+AE
∴AE+AF>EF
故③不正确;
由△ADE≌△CDF可得S△ADF=S△BDE
∴S四边形AEDF=S△ACD=1
2×AD×CD=
1
2
×
1
2
BC×
1
2
BC=
1
8
BC2,
故④不正确.
故答案为①②.
点睛:此题主要查了等腰三角形的性质和全等三角形的判定与性质,以及三角形的三边关系,关键是灵活利用等腰直角三角形的边角关系和三线合一的性质.
2.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.
【答案】12.5
【解析】
【分析】
过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角
形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=1
2
×5×5=12.5,即可得出结论.
【详解】
如图,过A作AE⊥AC,交CB的延长线于E,
∵∠DAB=∠DCB=90°,
∴∠D+∠ABC=180°=∠ABE+∠ABC,
∴∠D=∠ABE,
又∵∠DAB=∠CAE=90°,
∴∠CAD=∠EAB,
又∵AD=AB,
∴△ACD≌△AEB(ASA),
∴AC=AE,即△ACE是等腰直角三角形,
∴四边形ABCD的面积与△ACE的面积相等,
∵S△ACE=1
2
×5×5=12.5,
∴四边形ABCD的面积为12.5,故答案为12.5.
【点睛】
本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题
3.如图,已知△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,若BE交AD于点F,则∠AFE的大小为_____(度).
【答案】60
【解析】
【分析】
根据△ABC为等边三角形得到AB=BC,∠ABD=∠BCE=60°,再利用BD=CE证得
△ABD≌△BCE,得到∠BAD=∠CBE,再利用内角和外角的关系即可得到∠AFE=60°.【详解】
∵△ABC为等边三角形,点D,E分别在边BC,AC上,且BD=CE,
∴AB=BC,∠ABD=∠BCE=60°,
在△ABD和△BCE中,
AB BC
ABD BCE
BD CE
=
⎧
⎪
∠∠
⎨
⎪=
⎩
=,
∴△ABD≌△BCE(SAS),
∴∠BAD=∠CBE,
∵∠ABF+∠CBE=∠ABC=60°,
∴∠ABF+∠BAD=60°,
∵∠AFE=∠ABF+∠BAD,
∴∠AFE=60°,
故答案为:60.
【点睛】
此题考查三角形全等的判定定理及性质定理,题中证明三角形全等后得到∠BAD=
∠CBE,再利用外角和内角的关系求∠AFE是解题的关键.
4.如图,在等边△ABC中,AB=10,BD=4,BE=2,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD的右侧按如图所示的方式作等边△DPF,当点P从点E运动到点A 时,点F运动的路径长是________.
【答案】8
【解析】
【分析】
作FG⊥BC于点G,DE’⊥AB于点E’,易证E点和E’点重合,则∠FGD=∠DEP=90°;由
∠EDB+∠PDF=90°可知∠EDP+∠GFD=90°,则易得∠EPD=∠GDF,再由PD=DF易证
△EPD≌△GDF,则可得FG=DE,故F点的运动轨迹为平行于BC的线段,据此可进行求解.【详解】
解:作FG⊥BC于点G,DE’⊥AB于点E’,由BD=4、BE=2与∠B=60°可知DE⊥AB,即∠
∵DE’⊥AB,∠B=60°,
∴BE’=BD×1
=2,
2
∴E点和E’点重合,
∴∠EDB=30°,
∴∠EDB+∠PDF=90°,
∴∠EDP+∠GFD=90°=∠EDP+∠DPE,
∴∠DPE=∠GFD
∵∠DEP=∠FGD=90°,FD=GP,
∴△EPD≌△GDF,
∴FG=DE,DG=PE,
∴F点运动的路径与G点运动的路径平行,即与BC平行,
由图可知,当P点在E点时,G点与D点重合,
∵DG=PE,
∴F点运动的距离与P点运动的距离相同,
∴F点运动的路径长为:AB-BE=10-2=8,
故答案为8.
【点睛】
通过构造垂直线段构造三角形全等,从而确定F点运动的路径,本题有一些难度.
5.如图,平面直角坐标系中,A(0,3),B(4,0),BC∥y轴,且BC<OA,第一象限