刚体力学习题解答

合集下载

刚体部分习题参考答案

刚体部分习题参考答案

m2 g.
4-26 小幅摆动的周期: T = 2π l12 + l22 ; g(l2 − l1 )
等值摆长:
l0
=
l12 + l2 2 l2 − l1
> l1 + l2
.
4-27
I
=
T12 T2 2 − T12
ml(l

T2 2 4π 2
g)
= 1.21×103 g ⋅ cm2
4-28
(1)
T= T0
T2 = T1e−0.3π = 53.3N .
a1
=
(m1R − m2r)R I c + m1R 2 + m2r 2
g,
a2
=
r R
a1
=
(m1R − m2r)r I c + m1R 2 + m2r 2
g;
T1
=
Ic + m2r(r + R) I c + m1R 2 + m2r 2
m1 g
,
T2
=
I c + m1r(r + R) I c + m1R 2 + m2r 2
ω
=
1 mr 2
h 2π
= 4.13 ×1016 md / s
4-4
v2
=
r1 r2
v1, tgθ2
=
v23 gr1v1
∝ v23;即v2增大,故θ2亦增大,θ2
> θ1.
4-5 ω' = 8 ω; 5
ΔEk
= 39 25
Ek0 ,增加的能量来自汽车的动力。
4-6 ω = v (这是转台反方向旋转地角速度) 。 2R

刚体力学作业解答

刚体力学作业解答

1 ( MR 2 − mR 2 )ω 2
EK = 1 1 ( MR 2 − mR 2 )ω 2 2 2
4-11 •
30°
设碰后小球速度为v,受杆平均力f,作用时间∆t,则
小球 f∆t = mv − mv0 棒 − fl∆t = Iω − 0 (1) ( 2)

mv0 l − mvl = Iω
(3)
F (l1 + l 2 ) − N ′l1 = 0 (a)
Fy
l1
A
N ′
l2
闸 瓦
F
F r′
x
Fx
题图4-4(b)
N
α
Fr
R
N′ =
l1 + l 2 F l1
mg

O
ω
题图 4-4(c)
N′ =
l1 + l 2 F l1
N
飞轮受到闸瓦的摩擦力为:
l +l Fr = µN = µN ′ = µ 1 2 F l1
r r
α
r T
F = 98 N
m
mg = 98 N
(b)
T
a m
mg
(c)
(a)
题图4 = Jα
M Fr = = 39.2rad ⋅ s − 2 J J
(2)当绳子拉下l=5 m时,飞轮转过的角度 ω 2 = 2αθ =1960
θ=
l = 25rad r
ω = 44.3rad ⋅ s
θ = ω 0 t + αt 2 = 15 × 2π × 7.07 − × 13.3333 × ( π ) 2 = 53 × 2π (rad )
1 2 1 2 9 4
可知在这段时间里,飞轮转了53转. 53 (2)要求飞轮转速在t=2 s内减少一半,可知 ω0 − ω0 ω0 2 α= =− = −7.5πrad ⋅ s − 2

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

刚体力学习题答案.docx

刚体力学习题答案.docx
体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相
连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

轮子的角速度由w =0 增大到w =10 rad/s,求摩擦力矩 Mr. [5.0 N·m]
解:摩擦力矩与外力矩均为恒力矩,所以刚体作匀角加速转动。其角加速度为:
b = w - w0 = 10 - 0 = 1rad / s2
Dt
10
合外力矩为: M合 = Jb = 15 ´1 = 15(N × m) = M - M r Þ M r = 5.0(N × m)
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
w
答:左边力的力矩比右边的大,所以刚体会被加速,其角加速
F
F
度增大。 3-4 刚体角动量守恒的充分而必要的条件是什么? 答:刚体所受的合外力矩为零。
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
度w0 =10.0 rad/s,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向; (2) 定滑轮的角速度变化到w=0 时,物体上升的高度;
m
习题 3­10 图
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
[ 81.7 rad/s2 ,垂直纸面向外; 6.12×10-2 m; w = 10.0 rad/s,垂直纸面向外]

刚体力学参考答案

刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。

【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。

大学物理第3章刚体力学习题解答

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,那么半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如下图,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,圆孔中心在半径R的中点,求剩余局部对过大圆盘中心且与盘面垂直的轴线的转动惯量。

大学物理第三章刚体力学基础习题答案

大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma

g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

大学物理刚体力学测试题答案

大学物理刚体力学测试题答案

2 .如 图 所 示 , 一 长 为 轴
L = 0 .4 0 m
的 均 匀 木 棒 , 质 量
M = 1 .0 k g , 可 绕 水 平 m = 8 .0 g O 点 的 距
O 在 竖 直 面 内 转 动 。开 始 时 ,棒 自 然 地 竖 直 悬 垂 ,现 有 质 量
的 子 弹 以
v 200m s 1 的
0 240 转动,则飞轮边缘上一点在飞轮转过 时的切向加速度 at

0.15m s
2
,法向加速度 a n =
0.4 m s2

4 角度需变为弧度计算 240 rad 3 4 2 1 2 4 2 16 2 3 t t 2 3 0.5 3
1 mR 2 2
m相同d相同,而R的关系不知。 由
m m V R d R d
2 2
1 1 m 1 2 J mR m 2 2 d
2.一个可以绕定轴转动的刚体:( D ) (A)若转动角速度很大,则角加速度一定很大; 匀角速度转动 (B)若转动角加速度为零,则受力一定为零; (C)若受力很大,则角速度一定很大; (D)若受力矩为零,则角加速度也一定为零。
在子弹射入圆柱体的边缘的瞬间,其 合外力——重力过O轴,合外力矩为零, 子弹、圆盘系统对过O轴的角动量守恒。
( M 2m ) R
R O
m R 0 J m J M 2 1 2 m R 0 mR MR 2 2m
( M 2m ) R
2 为 3 J 0 时,则角速度为(
A (C)
)
3 03 0
(D)
2 0 3
合外力矩为零,系统角动量守恒

普通物理学教程力学课后答案高等教育出版社第七章-刚体力学习题解答

普通物理学教程力学课后答案高等教育出版社第七章-刚体力学习题解答

第七章刚体力学习题解答7.1.2 汽车发动机的转速在12s 内由1200rev/min 增加到3000rev/min.⑴假设转动是匀加速转动,求角加速度。

⑵在此时间内,发动机转了多少转?解:⑴21260/2)12003000(/7.15s rad t===-∆∆πωβ⑵rad 27.152)60/2)(12003000(21039.26222202⨯===∆⨯--πβωωθ对应的转数=42010214.3239.262≈⨯=⨯∆πθ7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω7.1.4 半径为0.1m 的圆盘在铅直平面内转动,在圆盘平面内建立o-xy 坐标系,原点在轴上,x 和y 轴沿水平和铅直向上的方向。

边缘上一点A 当t=0时恰好在x 轴上,该点的角坐标满足θ=1.2t+t 2 (θ:rad,t:s)。

⑴t=0时,⑵自t=0开始转45º时,⑶转过90º时,A 点的速度和加速度在x 和y 轴上的投影。

解:0.222.1==+==dtd dtd t ωθβω⑴t=0时,s m R v v y x /12.01.02.10,2.1=⨯====ωω2222/2.01.00.2/144.01.0/12.0/sm R a a s m R v a a y y n x =⨯===-=-=-=-=βτ⑵θ=π/4时,由θ=1.2t+t 2,求得t=0.47s,∴ω=1.2+2t=2.14rad/ssm R v s m R v y x /15.02/21.014.245sin /15.02/21.014.245cos =⨯⨯=︒=-=⨯⨯-=︒-=ωω222222222222/182.0)14.20.2(1.0)(45sin 45sin 45sin /465.0)14.20.2(1.0)(45cos 45cos 45cos s m R R R a s m R R R a y x -=-⨯=-︒=︒-︒=-=+⨯-=+︒-=︒-︒-=ωβωβωβωβ⑶θ=π/2时,由θ=1.2t+t 2,求得t=0.7895s,ω=1.2+2t=2.78rad/s2222/77.01.078.2/2.01.00.20/278.01.078.2s m R a s m R a v s m R v y x y x -=⨯-=-=-=⨯-=-==-=⨯-=-=ωβω7.1.5 钢制炉门由两个各长1.5m 的平行臂AB 和CD 支承,以角速率ω=10rad/s 逆时针转动,求臂与铅直成45º时门中心G 的速度和加速度。

大学物理2-1第四章(刚体力学)习题答案

大学物理2-1第四章(刚体力学)习题答案

大学物理2-1第四章(刚体力学)习题答案习题四4-1 一飞轮的半径为2m ,用一条一端系有重物的绳子绕在飞轮上,飞轮可绕水平轴转动,飞轮与绳子无相对滑动。

当重物下落时可使飞轮旋转起来。

若重物下落的距离由方程2at x =给出,其中2s m 0.2=a 。

试求飞轮在t 时刻的角速度和角加速度。

[解] 设重物的加速度为t a ,t 时刻飞轮的角速度和角加速度分别为ω和β,则a txa 2d d 22t ==因为飞轮与绳子之间无相对滑动,所以βR a =t则 2t rad/s 0.220.222=?===R a R a β 由题意知 t =0时刻飞轮的角速度00=ω 所以 rad 0.20t t t ==+=ββωω4-2 一飞轮从静止开始加速,在6s 内其角速度均匀地增加到200minrad,然后以这个速度匀速旋转一段时间,再予以制动,其角速度均匀减小。

又过了5s 后,飞轮停止转动。

若该飞轮总共转了100转,求共运转了多少时间 [解] 分三个阶段进行分析10 加速阶段。

由题意知111t βω= 和11212θβω= 得22111211t ωβωθ==20 匀速旋转阶段。

212t ωθ= 3制动阶段。

331t βω= 33212θβω= 22313213t ωβωθ== 由题意知100321=++θθθ 联立得到πωωω210022312111?=++t t t所以 s 1836020025602002660200210022=-??-=ππππt 因此转动的总时间 s 19418356321=++=++=t t t t4-3 历史上用旋转齿轮法测量光速的原理如下:用一束光通过匀速旋转的齿轮边缘的齿孔A ,到达远处的镜面反射后又回到齿轮上。

设齿轮的半径为5cm ,边缘上的齿孔数为500个,齿轮的转速,使反射光恰好通过与A 相邻的齿孔B 。

(1)若测得这时齿轮的角速度为600s r ,齿轮到反射镜的距离为500 m ,那么测得的光速是多大(2)齿轮边缘上一点的线速度和加速度是多大[解] (1) 齿轮由A 转到B 孔所需要的时间5103126005002?===ππωθt所以光速 s m 10310315002285=??==TL c(2) 齿轮边缘上一点的线速度s m 1088.1260010522?===-πωR v齿轮边缘上一点的加速度()25222s m 1010.71052600?===-πωR a4-4 刚体上一点随刚体绕定轴转动。

第七章 刚体力学习题及解答

第七章 刚体力学习题及解答

第七章刚体力学习题及解答7。

1.1 设地球绕日作圆周运动.求地球自转和公转的角速度为多少rad/s?估算地球赤道上一点因地球自转具有的线速度和向心加速度。

估算地心因公转而具有的线速度和向心加速度(自己搜集所需数据)。

解:7.1.2 汽车发动机的转速在12s内由1200rev/min增加到3000rev/min。

(1)假设转动是匀加速转动,求角加速度.(2)在此时间内,发动机转了多少转?解:( 1)( 2)所以转数 =7.1.3 某发动机飞轮在时间间隔t内的角位移为球 t时刻的角速度和角加速度.解:7.1.4 半径为0。

1m的圆盘在铅直平面内转动,在圆盘平面内建立坐标系,原点在轴上。

x和y轴沿水平和铅直向上的方向.边缘上一点A当t=0时恰好在x轴上,该点的角坐标满足求(1)t=0时,(2)自t=0开始转时,(3)转过时,A点的速度和加速度在x和y轴上的投影。

解:( 1)( 2) 时,由( 3)当时,由7。

1。

5 钢制炉门由两个各长1.5m的平行臂AB和CD支承,以角速度逆时针转动,求臂与铅直时门中心G的速度和加速度.解:因炉门在铅直面内作平动,门中心 G的速度、加速度与B或D点相同.所以:7。

1.6 收割机拔禾轮上面通常装4到6个压板。

拔禾轮一边旋转,一边随收割机前进。

压板转到下方才发挥作用,一方面把农作物压向切割器,另一方面把切割下来的作物铺放在收割台上,因此要求压板运动到下方时相对于作物的速度与收割机前进方向相反.已知收割机前进速率为 1。

2m/s,拔禾轮直径1.5m,转速22rev/min,求压板运动到最低点挤压作物的速度.解:取地面为基本参考系,收割机为运动参考系。

取收割机前进的方向为坐标系正方向7。

1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm,发动机转速2000rev/min。

(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹。

刚体习题及答案

刚体习题及答案
例1.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮 的质量为 M/4,均匀分布在其边缘上,绳子 A 端有一质量为 M的人抓住了绳端,而在绳的另 一端 B 系了一质量为 M/2 的重物,如图示。 A 设人从静止开始以相对绳匀速向上爬时,绳与 滑轮间无相对滑动,求 B 端重物上升的加速度? 解:受力分析如图示, 由题意 a人=aB=a
1 2 mvl mv l ml 3
③弹性碰撞,故动能也守恒,有:
1 1 1 1 mv 2 mv 2 ( ml 2 ) 2 2 2 2 3
④碰后杆上升过程,杆与地球系统的机械能守恒: 1 1 2 2 1 ( ml ) mgl (1 cos ) 2 3 2 3 arccos2 3 联立求解,得:
人: Mg T 2 Ma
1 1 物 : T1 - Mg = Ma 2 2
B

T2
o
T1
2 a g 7
A
Mg
B
a
轮: (T2 T1 ) R J
1 Mg 2
a R
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上 分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如 图所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的 长度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
r r
2.对薄平板刚体的正交轴定理 z J
yi xi x 典型应用:
z
mi ri

刚体力学答案

刚体力学答案

练习一 刚体的转动定律一、填空题1.25π,-π,625π22.刚体转动中惯性大小的量度,⎰=dm r J 2 ,刚体的形状、质量分布、转轴的位置 3.50ml 24.157 N ·m 5.1.5g 6.0.5kg ·m 2二、计算题1.解:由于 β=–kw即 d k dt ωω=-分离变量 kdtd -=ωω积分td kdtωωωω=-⎰⎰有lnkt ωω=-t 时飞轮角速度为 0kte ωω-=2.解:设绳中张力为T对于重物由牛顿第二定律∑=dt v m d F )( 得: m 2g –T =m 2a (1)对于滑轮按转动定律M =J β有β⋅=221mr Tr (2) 由角量线量关系有 a =r β (3)联立以上三式解得 21222m m gm a +=3.解:由转动定律M =J β得 -μNR=mR 2(ω-ω0)/ΔtN=-m R 2 (ω-ω0)/ μR Δt=250π又有 0.5N -(0.5+0.75)F=0F=100π=314(N)4.解:各物体受力情况如图.F -T =maT '=ma(T T '-)R =β221mR a =R β由上述方程组解得: β=2F / (5mR)=10 rad·s -2 T =3F / 5=6.0 N T '=2F / 5=4.0 N练习二 刚体的角动量及守恒定律一、填空题a a T ’1.定轴转动刚体所受外力对轴的冲量矩等于转动刚体对轴的角动量的量,0)(d 21ωωJ J t M t t z -=⎰,刚体所受对轴的合外力矩等于零2.4×1043.F r M⨯=,变角速度,角动量 4.杆和子弹,角动量 5.6π,3∶16.02ωm M M + ,02222ωmrMR MR + 二、计算题1.解:球体的自动收缩可视为只由球的内力所引起,因而在收缩前后球体的角动量守恒.设J 0和ω 0、J 和ω分别为收缩前后球体的转动惯量和角速度 则有 J 0ω 0 = J ω ① 由已知条件知:J 0 = 2mR 2 / 5,J = 2m(R / 2)2 / 5 代入①式得 ω = 4ω 0 即收缩后球体转快了 其周期 442200T T =π=π=ωω周期减小为原来的1 / 4.2.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min(2) A 轮受的冲量矩⎰t M A d = = -4.19×10 2N ·m ·s负号表示与A ω方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.3.解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆4.解:由人和转台系统的角动量守恒J 1ω1 + J 2ω2 = 0其中 J 1=300 kg ·m 2,ω1=v /r =0.5 rad / s ,J 2=3000 kg ∙m 2 ∴ ω2=-J 1ω1/J 2=-0.05 rad/s 人相对于转台的角速度 ωr =ω1-ω2=0.55 rad/s ∴ t =2π /r ω=11.4 s5.解:(1)小碎块飞出时与轮同步以角速度ω旋转 ∴ v 20=R ω 由机械能守恒定律得m g h mv =22021 gR h 22g v 22220ω==(2)据题意,系统角动量守恒 J 0ω0=J 1ω1+J 2ω2ωωω21222)(2M mR R m M R +-= 即余下部分的角速度、角动量、转动动能为 ωωmM mM --=21ωωω21211)2(2)(R m MR m M J -=-=222212211)(4)2(2)(2121ωωωR m M m M R m M J --=-=刚体自测题一、选择题BBDADCD 二、填空题 1.4s ,-15m/s 2.(1)(2)(4)3.5.0 N ·m 4.mgl 21,2g / (3l)5.()lm M /3460+v6.()212m RJ m r J ++ω7.20m R J m R J +-vω8. 8 rad ·s -1 .三、计算题1.解:体系所做的运动是匀速→匀加速→匀减速定轴转动.其中ω1是匀加速阶段的末角速度,也是匀减速阶段的初角速度, 由此可得 t =8 s 时 ω1=ω0+9=27 rad /s 当ω=0时,得 t =(ω1+24)/ 3=17s 所以,体系在17s 时角速度为零.2.解:人受力如图(1)由牛顿第二定律得 mgsin37°-T m =ma (1)由转动定律得 rT m -rT k =Jβ=Ja/r (2) 由胡克定律得 T k =kx (3) 有 dxdv v dt dx dx dv dt dv a =⋅==(4) 联立求解得 mgsin37°-kx=(m+ J /r 2)vdv/dxvdv r J m dx kx mg xv v ⎰⎰==+=-︒020)/()37sin (x=2mgsin37°/k=1.176(m)3.解:(1) ∵ mg -T =ma TR =J βa =R β∴ β = mgR / (mR 2+J)()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2方向垂直纸面向外.(2) ∵βθωω2202-=当ω=0 时, rad 612.022==βωθ物体上升的高度h = R θ = 6.12×10-2 m(3)==βθω210.0 rad/s方向垂直纸面向外.4.解:(1) 设当人以速率v 沿相对圆盘转动相反的方向走动时,圆盘对地的绕轴角速度为ω,则人对与地固联的转轴的角速度为R R v v221-=-='ωωω ① 人与盘视为系统,所受对转轴合外力矩为零,系统的角动量守恒.设盘的质量为M ,则人的质量为M / 10,有:ωωω'⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+22022211021211021R M MR R M MR ② 将①式代入②式得:R2120v+=ωω ③ (2) 欲使盘对地静止,则式③必为零.即 ω0 +2v / (21R)=0得: v =-21R ω0 / 2式中负号表示人的走动方向与上一问中人走动的方向相反,即与盘的初始转动方向一致.5.解:在子弹通过杆的过程中,子弹与杆系统因外力矩为零,故角动量守恒.则有m 2v 0 l / 4 = m 2v l / 4 +J ω()()lm m J l m 1020234v v v v -=-=ω =11.3rad/s6.解:碰撞前瞬时,杆对O 点的角动量为Lm L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中 为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以L m mL 022112/7v =ω∴ = 6v 0 / (7L)。

大学物理第3章刚体力学习题解答

大学物理第3章刚体力学习题解答

第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。

求t 时刻的角速度和角加速度。

解:23212643ct bt ct bt a dtd dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。

解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 ,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

第五章_刚体力学_习题解答

第五章_刚体力学_习题解答

5.1、一长为l 的棒AB ,靠在半径为r 的半圆形柱面上,如图所示。

今A 点以恒定速度0v 沿水平线运动。

试求:(i)B 点的速度B v ;(ii)画出棒的瞬时转动中心的位置。

解:如图,建立动直角系A xyz -,取A 点为原点。

B A AB v v r ω=+⨯,关键是求ω 法1(基点法):取A 点为基点,sin C A AC A CO A A v v r v v v v ωθ=+⨯=+=+ 即sin AC A r v ωθ⨯=,AC r ω⊥,化成标量为ω在直角三角形OCA ∆中,AC r rctg θ=所以200sin sin sin cos A AC v v v r rctg r θθθωθθ===即20sin cos v k r θωθ=取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=-- 法2(瞬心法):如图,因棒上C 点靠在半圆上,所以C 点的速度沿切线方向,故延长OC ,使其和垂直于A 点速度线交于P 点,那么P 点为瞬心。

在直角三角形OCA ∆中,sin OA r r θ=在直角三角形OPA ∆中,2cos sin AP OA r r r ctg θθθ==02cos ()sin A PA PA PA r v r k r j r i i v i θωωωωθ=⨯=⨯-===,即20sin cos v r θωθ= 取A 点为基点,那么B 点的速度为:2002300sin [(cos )sin ]cos sin sin (1)cos B A AB v v v r v i k l i l j r v l l v i jr rθωθθθθθθ=+⨯=+⨯-+=-- 5.2、一轮的半径为r ,竖直放置于水平面上作无滑动地滚动,轮心以恒定速度0v 前进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由求得: (2)拉力作功:
3.29质量为0.50 kg,长为0.40 m 的均匀细棒,可绕垂直于棒的一端的水 平轴转动.如将此棒放在水平位置,然后任其落下,如题3-29图所示, 求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置 时的动能;(3) 下落到竖直位置时的角速度. 解:设杆长为l,质量为m
(1) 由同转动定理有: 代入数据可求得: 由刚体定轴转动的动能定理得: ,代入数据得:(也可以用转动定理求得角加速度再积分求得角速度) (2)由刚体定轴转动的动能定理得: (3) 3-30 如题3-30图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮 的转动惯量J1 =10.0 kg· m2 ,开始时B 轮静止,A 轮以n1 =600 r· min-1 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到 两轮的转速都等于n =200 r· min-1 为止.求:(1) B 轮的转动惯量; (2) 在啮合过程中损失的机械能.
由转动定律:M= 得: 积分得: 所以从角速度为到停止转动,圆盘共转了圈。
3.23如图所示,弹簧的倔强系数k=2N/m,可视为圆盘的滑轮半径 r=0.05m,质量m1=80g,设弹簧和绳的质量可不计,绳不可伸长,绳与 滑轮间无相对滑动,运动中阻力不计,求1kg质量的物体从静止开始 (这时弹簧不伸长)落下1米时,速度的大小等于多少(g取10m/s2)
解;如图所示,取图示的阴影部分为研究对象
所以经过的时间,薄板角速度减为原来的一半。
3-25一个质量为M,半径为 R并以角速度旋转的飞轮(可看作匀质圆 盘),在某一瞬间突破口然有一片质量为m的碎片从轮的边缘上飞出, 见题3-25图。假定碎片脱离飞轮时的瞬时速度方向正好竖直向上, (1)问它能上升多高? (2)求余下部分的角速度、角动量和转动动能。 解:(1)碎片以的初速度竖直向上运动。上升的高度:
解:由转动定理: 制动过程可视为匀减速转动,
3.20一轻绳绕于r=0.2m的飞轮边缘轮的转动惯量 J=0.5kg.m2,轴承无摩擦。求 (1)飞轮的角加速度。 (2)绳子拉下5m时,飞轮的角速度和动能。 (3)如把重量 P=98N的物体挂在绳端,如题3-20图(b)所示,再求上 面的结果。 解 (1)由转动定理得: (2)由定轴转动刚体的动能定理得: =490J
(3)物体受力如图所示: 解方程组并代入数据得:
3.21现在用阿特伍德机测滑轮转动惯量。用轻线且尽可能润滑轮 轴。两端悬挂重物质量各为m1=0.46kg,m2=0.5kg,滑轮半径为0.05m。 自静止始,释放重物后并测得0.5s内m2下降了0.75m。滑轮转动惯量是 多少? 解:
隔离m2、m1及滑轮,受力及运动情况如图所示。对m2、m1分别应 用牛顿第二定律:
(2)余下部分的角速度仍为 角动量
转动动能 3.26两滑冰运动员,在相距1.5m的两平行线上相向而行。两人质量分别 为mA=60kg,mB=70kg,他们的速率分别为vA=7m.s-1, vB=6m.s-1,当二 者最接近时,便拉起手来,开始绕质心作圆运动,并保持二者的距离为 1.5m。求该瞬时: (1)系统对通过质心的竖直轴的总角动量;
第三章 习题解答
3.13 某发动机飞轮在时间间隔t内的角位移为 。求t时刻的角速度和角加速度。
解: 3.14桑塔纳汽车时速为166km/h,车轮滚动半径为0.26m,发动机转 速与驱动轮转速比为0.909, 问发动机转速为每分多少转? 解:设车轮半径为R=0.26m,发动机转速为n1, 驱动轮转速为n2, 汽车 速度为v=166km/h。显然,汽车前进的速度就是驱动轮边缘的线速度, ,所以:
(2)系统的角速度; (3)两人拉手前、后的总动能。这一过程中能量是否守恒? 解:如图所示, (1) (2) ,代入数据求得: (3)以地面为参考系。 拉手前的总动能:,代入数据得, 拉手后的总动能:包括两个部分:(1)系统相对于质心的动能(2)系 统随质心平动的动能
动能不变,总能量守恒(因为两人之间的距离不变,所以两人之 间的拉力不做功,故总动能守恒,但这个拉力的冲量不为0,所以总动 量不守恒)。
轴的转动惯量为mR2,由转动惯量的可加性可求得:半圆形细杆对过细 杆二端
轴的转动惯量为: 3.18 在质量为M,半径为R的匀质圆盘上挖出半径为r的两个圆孔,
圆孔中心在半
径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动 惯量。
解:大圆盘对过圆盘中心o且与盘面垂直的轴线(以下简称o轴)的 转动惯量为
3.15 如题3-15图所示,质量为m的空心圆柱体,质量均匀分布,其 内外半径为r1和r2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,密度为,则半径为r,厚为dr的薄圆筒的质量dm 为: 对其轴线的转动惯量为
3.17 如题3-17图所示,一半圆形细杆,半径为
,质量为
,求对过细杆二端
轴的转动惯量。 解:如图所示,圆形细杆对过O轴且垂直于圆形细杆所在平面的轴的转 动惯量为mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过
解:⑴以支点B为转轴,应用转动定理:,质心加速度 ,方向向 下。
⑵设杆B端受的力为N,对杆应用质心运动定理:Ny=0, Nx - mg = - m ac , Nx = m(g – ac) = mg/4 ∴ N = mg/4,方向向上。
解:以地球、物体、弹簧、滑轮为系统,其能量守恒物体地桌面处 为重力势能的零点,弹簧的原长为弹性势能的零点,
则有: 解方程得: 代入数据计算得:v=1.48m/s 。
即物体下落0.5m的速度为1.48m/s 3.24如题3-24图所示,均质矩形薄板绕竖直边转动,初始角速度为,转 动时受到空气的阻力。阻力垂直于板面,每一小面积所受阻力的大小与 其面积及速度平方的乘积成正比,比例常数为k。试计算经过多少时 间,薄板角速度减为原来的一半,设薄板竖直边长为b,宽为a,薄板质 量为m。
3.27一均匀细棒长为 l,质量为m,以与棒长方向相垂直的速度v0在光滑 水平面内平动时,与前方一固定的光滑支点 O发生完全非弹性碰撞,碰 撞点位于离棒中心一方l/4处,如题3-27图所示,求棒在碰撞后的瞬时绕 过O点垂直于杆所在平面的轴转动的角速度。 解:如图所示:碰撞前后系统对点O的角动量守恒。
.由于对称放置,两个小圆盘对o轴的转动惯量相等,设为I’,圆盘质 量的面密度σ=M/πR2,根据平行轴定理,
设挖去两个小圆盘后,剩余部分对o轴的转动惯量为I”
3.19一转动系统的转动惯量为I=8.0kgm2,转速为ω=41.9rad/s,两制 动闸瓦对轮的压力都为392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半 径为r=0.4m,问从开始制动到静止需多长时间?
题3-30图
解:研究对象:A、B系统在衔接过程中, 对轴无外力矩作用,故有 即: 代入数据可求得:
(2) 代入数据可求得: ,负号表示动能损失(减少)。
3.31质量为m长为l的匀质杆,其B端放在桌上,A端用手支住,使杆 成水平。突然释放A端,在此瞬时,求:⑴杆质心的加速度,⑵杆B端 所受的力。
题3-31图
对滑轮应用转动定理: (3) 质点m2作匀加速直线运动,由运动学公式:, 由 ⑴、⑵可求得 ,代入(3)中,可求得 ,代入数据:
3.22质量为m,半径为 的均匀圆盘在水平面上绕中心轴转动,如题3-22图所示。盘与水平面的 动摩擦因数为 ,圆盘的初角速度为,问到停止转动,圆盘共转了多少圈? 解: 如图所示:
碰撞前后: 碰撞前后:
由可求得:
3.28如题3-28图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在 无摩擦的水平面上,作半径为r0 的圆周运动.如果在绳的另一端作用一 竖直向下的拉力,使小球作半径为r0/2 的圆周运动.试求:(1) 小球新 的角速度;(2) 拉力所作的功. 解:如图所示,小球对桌面上的小孔的角动量守恒 (1)初态始角动量 ;终态始角动量
相关文档
最新文档