立体几何证明垂直专项含练习题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何证明------垂直

一.复习引入

1.空间两条直线的位置关系有:_________,_________,_________三种。

2.(公理4)平行于同一条直线的两条直线互相_________.

3.直线与平面的位置关系有_____________,_____________,_____________三种。

4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行

5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________.

6.两个平面的位置关系:_________,_________.

7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行.

8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理

要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线

线垂直线面垂直)

Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二

面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征:

ⅰ. 点在棱上 ⅱ. 线在面 ⅲ.

与棱垂直

Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<.

知识点四、平面和平面垂直的定义和判定

(垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼)

三.常用证明垂直的方法

立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:

(1) 通过“平移”。

(2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。

(4) 利用直径所对的圆周角是直角

(1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α

1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2

1

DC ,中点为PD E . 求证:AE ⊥平面PDC.

2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ;

(第2题

(2)利用等腰三角形底边上的中线的性质

3、在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;

(3)利用勾股定理

4.如图,四棱锥P ABCD -的底面是边长为1

的正方形,,1,PA CD PA PD ⊥== 求证:PA ⊥平面ABCD ;

_ D

_ C

_ B

_ A

_ P

A

C

B

P

(4)利用直径所对的圆周角是直角

5、如图,AB 是圆O 的直径,C 是圆周上一点,P A ⊥平面ABC . (1)求证:平面P AC ⊥平面PBC ;

课堂及课后练习题:

1.判断下列命题是否正确,对的打“√”,错误的打“×”。 (1)垂直于同一直线的两个平面互相平行 ( ) (2)垂直于同一平面的两条直线互相平行 ( )

(3)一条直线在平面,另一条直线与这个平面垂直,则这两条直线垂直( )

2.已知直线

a,b

和平面α

,且,,a b a α⊥⊥则

b

与α

的位置关系是

________________________________________________.

3.如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且1

2

DF AB =

,PH 为PAD ∆中AD 边上的高。 (1)证明:PH ABCD ⊥平面;

4.如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, P A =AD 。 证明: BE PDC ⊥平面;

5.如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º 证明:AB ⊥PC

6.如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,

2,CA CB CD BD AB AD ====== (1)求证:AO ⊥平面BCD ; (2)求异面直线AB 与CD 所成角的大小;

7.如图,四棱锥S ABCD -中,BC

AB ⊥,BC CD ⊥,侧面SAB 为等边三角形,

2,1AB BC CD SD ====.

(Ⅰ)证明:SD SAB ⊥平面;

8.如图,在圆锥PO 中,已知PO =2,⊙O 的直径2AB =,C 是狐AB 的中点,D 为AC 的中点.证明:平面POD ⊥平面PAC ;

课堂及课后练习题答案:

相关文档
最新文档