最新直线与方程和圆与方程-知识点总结
直线与方程知识点归纳
直线与方程知识点归纳1. 直线的定义和性质直线是平面上两个不同点之间的所有点的集合。
直线具有以下性质: - 直线没有宽度和长度,只有方向 - 直线上的任意两点可以确定一条直线 - 直线可以延伸无限远2. 直线的方程直线可以用方程来表示。
常见的直线方程有三种形式:点斜式、斜截式和截距式。
2.1 点斜式点斜式方程的形式为:y - y1 = m(x - x1)其中(x1, y1)是直线上的一点,m是直线的斜率。
2.2 斜截式斜截式方程的形式为:y = mx + b其中m是直线的斜率,b是直线在 y 轴上的截距。
2.3 截距式截距式方程的形式为:Ax + By = C其中A、B和C是常数,且A和B不同时为0。
3. 直线的斜率直线的斜率描述了直线的倾斜程度。
斜率可以通过两点之间的坐标计算得到,公式如下:m = (y2 - y1) / (x2 - x1)其中(x1, y1)和(x2, y2)是直线上的两个点。
直线的斜率还可以根据直线的方程得到。
对于点斜式和斜截式方程,斜率即为方程中的m值。
对于截距式方程,斜率可以通过以下公式计算:m = -A / B4. 直线的截距直线的截距是指直线与坐标轴的交点。
直线的截距可以通过直线的方程得到。
对于斜截式方程,直线与 x 轴的截距为(b, 0);直线与 y 轴的截距为(0, b)。
对于截距式方程,直线与 x 轴的截距为(C/A, 0);直线与 y 轴的截距为(0,C/B)。
5. 直线的平行和垂直关系两条直线平行的条件是它们的斜率相等。
如果直线的斜率为m1,另一条直线的斜率为m2,则两条直线平行的条件为m1 = m2。
两条直线垂直的条件是它们的斜率的乘积为 -1。
如果直线的斜率为m1,另一条直线的斜率为m2,则两条直线垂直的条件为m1 * m2 = -1。
6. 直线的倾斜角直线的倾斜角是指直线与 x 轴的夹角。
直线的倾斜角可以通过直线的斜率计算得到。
倾斜角的计算公式为:θ = arctan(m)其中m是直线的斜率。
直线方程和圆的方程概念及知识点拓展(高中数学)
直线与圆的概念公式及拓展一.直线的倾斜角与斜率1.直线的倾斜角α的范围[)π,0。
当直线l 与x 轴重合或平行时,规定倾斜角为0。
注意几种角的范围:异面直线所成的角⎥⎦⎤ ⎝⎛2,0π; 直线和平面所成角⎥⎦⎤⎢⎣⎡20π,; 二面角[]π,0; 两向量的夹角[]π,0;2.斜率定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率k , 即k=tan α(α≠90°);倾斜角为90°的直线没有斜率。
直线方程:Ax+By+C=0的斜率BAk -=。
方向向量:若()n m a ,=为直线的方向向量,则直线的斜率mn k =。
已知直线上两点:过两点()),(,,2211y x y x 的直线的斜率1212x x y y k --=。
二.直线方程的五种形式:1.点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程)(00x x k y y -=-,它不包括垂直于x 轴的直线。
2.斜截式:已知直线斜率为k ,在y 轴上的截距b ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线。
3.两点式:已知直线过了P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2,y 1≠y 2)两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于x 轴的直线。
4.截距式:已知直线在x ,y 轴上的截距分别为a ,b ( a ≠0,b ≠0)则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。
5.直线的一般式方程:任何直线都可以写成Ax +By +C =0(其中A ,B 不同时为0)的形式。
拓展:1.直线在坐标轴上的截距可正,可负,也可为0。
直线的斜率为1或直线过原点,则直线两截距互为相反数; 直线的斜率为-1或直线过原点,则直线两截距相等。
2.设直线方程的一些常用技巧:(1)已知直线y 轴截距b ,常设其方程为y =kx +b 。
直线与圆方程知识总结
直线与圆方程知识总结一、坐标法1.点和坐标建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系.2.两点间的距离公式设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离特殊位置的两点间的距离,可用坐标差的绝对值表示:(1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则|P 1P 2|=|y 2-y 1|(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则|P 1P 2|=|x 2-x 1|3.线段的定比分点(2)公式:分P 1(x 1,y 2)和P 2(x 2,y 2)连线所成的比为λ的分点坐标是公式|P P |=12()()x x y y 212212-+-(1)P P P P P PP P P PP P P P =P P P P 12121212112定义:设点把有向线段分成和两部分,那么有向线段和的数量的比,就是点分所成的比,通常用λ表示,即λ,点叫做分线段为定比λ的定比分点.P PP 2当点内分时,λ>;当点外分时,λ<.P P P 0P P P 01212x x x y y y =++=++⎧⎨⎪⎪⎩⎪⎪-1212111λλλλλ≠()特殊情况,当是的中点时,λ,得线段的中点坐标P P P =1P P 1212二、直线1.直线的倾斜角和斜率(1)当直线和x 轴相交时,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角,叫做这条直线的倾斜角.当直线和x 轴平行线重合时,规定直线的倾斜角为0.所以直线的倾斜角α∈[0,π).(2)倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜∴当k ≥0时,α=arctank .(锐角)当k <0时,α=π-arctank .(钝角) (3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0)(2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b(3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:(4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:(5)参数式 已知直线过点P(x 0,y 0),它的一个方向向量是(a ,b),v(cos α,sin α)(α为倾斜角)时,则其参数式方程为x x x y y y =+=+⎧⎨⎪⎪⎩⎪⎪121222率,直线的斜率常用表示,即αα≠π.k k =tan ()2k =y (x x )212--y x x 121≠y y y y x x x ----121121=x (x x )12≠x a y b +=1则其参数式方程为为参数,特别地,当方向向量为x x at y y bt =+=+⎧⎨⎩00(t )(6)一般式 Ax +By +C=0 (A 、B 不同时为0).(7)特殊的直线方程①垂直于x 轴且截距为a 的直线方程是x=a ,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b ,x 轴的方程是y=0.3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2.(2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2,当l 1和l 2是(3)相交:当l 1,l 2是斜截式方程时,k 1≠k 24.点P(x 0,y 0)与直线l :Ax +By +C=0的位置关系:x x t y y t =+=+⎧⎨⎩00cos sin αα为参数(t )这时,的几何意义是,→→t tv =p p |t|=|p p|=|p p|000当和是一般式方程时,≠l l 12A A B B C C 121212=一般方程时,A A B B C C 121212==当,是一般式方程时,≠l l 12A A B B 2212①斜交交点:的解到角:到的角θ≠夹角公式:和夹角θ≠A x B y C A x B y C k k k k k k k k k k k k 11122222112121221121200110110++=++=⎧⎨⎩=-++=-++⎧⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪l l l l 1tan ()tan ||()②垂直当和有叙截式方程时,-当和是一般式方程时,+l l l l 1212121212k k =1A A B B =0⎧⎨⎩Ax By C =0P ()Ax By C 0P 0000++在直线上点的坐标满足直线方程++≠在直线外.⇔⇔l l 点,到直线的距离为:P(x y )d =|Ax +By +C|0000l A B 22+5.两条平行直线l 1∶Ax +By +C 1=0,l 2∶Ax +By +C 2=0间6.直线系方程 具有某一共同属性的一类直线的集合称为直线系,它的方程的特点是除含坐标变量x ,y 以外,还含有特定的系数(也称参变量).确定一条直线需要两个独立的条件,在求直线方程的过程中往往先根据一个条件写出所求直线所在的直线系方程,然后再根据另一个条件来确定其中的参变量.(1)共点直线系方程:经过两直线l 1∶A 1x +B 1y +C 1=0,l 2∶A 2x +B 2y +C 2=0的交点的直线系方程为:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是待定的系数.在这个方程中,无论λ取什么实数,都得不到A 2x +B 2y +C 2=0,因此它不表示l 2.当λ=0时,即得A 1x +B 1y +C 1=0,此时表示l 1.(2)平行直线系方程:直线y=kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C=0平行的直线系方程是Ax +By +λ=0(λ≠C),λ是参变量.(3)垂直直线系方程:与直线Ax +By +C=0(A ≠0,B ≠0)垂直的直线系方程是:Bx -Ay +λ=0.如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,可选用直线系方程来求解.7.简单的线性规划(1)二元一次不等式Ax +By +C >0(或<0)表示直线Ax +By +C=0某一侧所有点组成的平面区域.二元一次不等式组所表示的平面区域是各个不等式所表示的平面点集的交集,即各个不等式所表示的平面区域的公共部分.(2)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,称为线性规划问题,例如,z=ax +by ,其中x ,y 满足下列条件:的距离为:.d =|C C |12-+A B 22求z 的最大值和最小值,这就是线性规划问题,不等式组(*)是一组对变量x 、y 的线性约束条件,z=ax +by 叫做线性目标函数.满足线性约束条件的解(x ,y)叫做可行解,由所有可行解组成的集合叫做可行域,使线性目标函数取得最大值和最小值的可行解叫做最优解.三、曲线和方程1.定义在选定的直角坐标系下,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下关系:(1)曲线C 上的点的坐标都是方程f(x ,y)=0的解(一点不杂);(2)以方程f(x ,y)=0的解为坐标的点都是曲线C 上的点(一点不漏).这时称方程f(x ,y)=0为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形). 设P={具有某种性质(或适合某种条件)的点},Q={(x ,y)|f(x ,y)=0},若设点M 的坐标为(x 0,y 0),则用集合的观点,上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题(逆否命题):为曲线C 的方程;曲线C 为方程f(x ,y)=0的曲线(图形).2.曲线方程的两个基本问题(1)由曲线(图形)求方程的步骤:①建系,设点:建立适当的坐标系,用变数对(x ,y)表示曲线上任意一点M 的坐标;②立式:写出适合条件p 的点M 的集合p={M|p(M)};A xB yC 0(0)A x B y C 0(0)A x B x C 0(0)111222n n n ++≥或≤++≥或≤……++≥或≤⎧⎨⎪⎪⎩⎪⎪(*)(1)M P (x y )Q P Q (2)(x y )Q M P Q P 0000∈,∈,即;,∈∈,即.⇒⊆⇒⊆(1)(x y )Q M P (2)M P (x y )Q 0000,;,.∉⇒∉∉⇒∉显然,当且仅当且,即时,才能称方程,P Q Q P P =Q f(x y)=0⊆⊆③代换:用坐标表示条件p(M),列出方程f(x ,y)=0;④化简:化方程f(x ,y)=0为最简形式;⑤证明:以方程的解为坐标的点都是曲线上的点.上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.(2)由方程画曲线(图形)的步骤:①讨论曲线的对称性(关于x 轴、y 轴和原点);②求截距:③讨论曲线的范围;④列表、描点、画线.3.交点求两曲线的交点,就是解这两条曲线方程组成的方程组.4.曲线系方程过两曲线f 1(x ,y)=0和f 2(x ,y)=0的交点的曲线系方程是f 1(x ,y)+λf 2(x ,y)=0(λ∈R).四、圆1.圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆.2.圆的方程(1)标准方程(x -a)2+(y -b)2=r 2.(a ,b)为圆心,r 为半径.特别地:当圆心为(0,0)时,方程为x 2+y 2=r 2(2)一般方程x 2+y 2+Dx +Ey +F=0方程组,的解是曲线与轴交点的坐标;f x y y ()==⎧⎨⎩00x 方程组,的解是曲线与轴交点的坐标;f x y x ()==⎧⎨⎩00y 配方()()x D y E D E F +++=+-22442222当D 2+E 2-4F <0时,方程无实数解,无轨迹.(3)参数方程 以(a ,b)为圆心,以r 为半径的圆的参数方程为特别地,以(0,0)为圆心,以r 为半径的圆的参数方程为3.点与圆的位置关系设点到圆心的距离为d ,圆的半径为r .4.直线与圆的位置关系设直线l :Ax +By +C=0和圆C :(x -a)2+(y -b)2=r 2,则5.求圆的切线方法(1)已知圆x 2+y 2+Dx +Ey +F=0.①若已知切点(x 0,y 0)在圆上,则切线只有一条,其方程是 过两个切点的切点弦方程.当+->时,方程表示以-,-为圆心,以为半径的圆;D E 4F 0()22D E D E F 2212422+-当+-时,方程表示点-,-D E 4F =0()22D E 22x a r y b r =+=+⎧⎨⎩cos sin θθθ为参数()x r y r ==⎧⎨⎩cos sin θθθ为参数()(1)d r (2)d =r (3)d r 点在圆外>;点在圆上;点在圆内<.⇔⇔⇔d Aa Bb C A B =+++||22.(1)0d r (2)=0d =r (3)0d r 相交直线与圆的方程组成的方程组有两解,△>或<;相切直线与圆的方程组成的方程组有一组解,△或;相离直线与圆的方程组成的方程组无解,△<或>.⇔⇔⇔x x y y D x x E y y F 0000220=+++++=()().当,在圆外时,++++表示(x y )x x y y D(x )E(y )F =0000000++x y 22②若已知切线过圆外一点(x 0,y 0),则设切线方程为y -y 0=k(x -x 0),再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③若已知切线斜率为k ,则设切线方程为y=kx +b ,再利用相切条件求b ,这时必有两条切线.(2)已知圆x 2+y 2=r 2.①若已知切点P 0(x 0,y 0)在圆上,则该圆过P 0点的切线方程为x 0x +y 0y=r 2.6.圆与圆的位置关系已知两圆圆心分别为O 1、O 2,半径分别为r 1、r 2,则②已知圆的切线的斜率为,圆的切线方程为±.k y =kx r k 2+1(1)|O O |=r r (2)|O O |=|r r |(3)|r r ||O O |r r 12121212121212两圆外切+;两圆内切-;两圆相交-<<+.⇔⇔⇔。
直线和圆的方程单元知识总结
直线和圆的方程单元知识总结 一、直线1.直线的倾斜角和斜率(1)直线的倾斜角α∈[0,π). (2)直线的斜率,即0tan (90)k αα=≠(3)斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为212121(0)y y k x x x x -=-≠-2.直线的方程(1)点斜式 已知直线过点(x 0,y 0),斜率为k ,则其方程为:y -y 0=k(x -x 0) (2)斜截式 已知直线在y 轴上的截距为b ,斜率为k ,则其方程为:y=kx +b (3)两点式 已知直线过两点(x 1,y 1)和(x 2,y 2),则其方程为:112121y y x x y y x x --=-- (4)截距式 已知直线在x ,y 轴上截距分别为a 、b ,则其方程为:1x ya b+= (5)一般式 Ax +By +C=0 (A 、B 不同时为0). (6)直线系方程:过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程是111222()0A x B y C A x B y C λ+++++=(0222=++C y B x A 不包括在内)3.两条直线的位置关系(1)平行:当直线l 1和l 2有斜截式方程时,k 1=k 2且b 1≠b 2; (2)重合:当l 1和l 2有斜截式方程时,k 1=k 2且b 1=b 2; (3)相交:当l 1,l 2是斜截式方程时,k 1≠k 2(4)垂直:设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l一般式方程时,1212210l l A B A B ⊥⇔+=(优点:对斜率是否存在不讨论)(5)到角:直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ.(6)夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ. (7)交点:求两直线交点,即解方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩4.点到直线的距离:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为2200BA C By Ax d +++=.5.两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA C C d +-=.6. 关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.即求点00(,)P x y 关于直线l :0=++C By Ax (B A ,不全为零)对称点时,设对称点为'(,)P x y '',则根据l 是线段'PP 的垂直平分线,即l ⊥'PP 且'PP 的中点在直线l 上,得'x ,'y 应满足的方程组为:0000'()1'''022y y A x x B x x y y A B C -⎧⋅-=-⎪-⎪⎨++⎪⋅+⋅+=⎪⎩,由此解得'P 点的坐标(,)x y ''. 7.简单的线性规划----线性规划的三种类型:1.截距型:形如z=ax+by, 把z 看作是y 轴上的截距,目标函数的最值就转化为y 轴上的截距的最值。
直线和圆的方程知识点总结
直线和圆的方程知识点总结一、直线方程. 1. 直线的倾斜角2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.3. ⑴两条直线平行:1l 推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有 4. 直线的交角: 5. 过两直线的交点的直线系方程为参数,不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:.2. 定比分点坐标分式。
若点P(x,y)分有向线段,其中P 1(x 1,y 1),P 2(x 2,y 2).则特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤<180°)、斜率:21,l l 21,αα1l 212αα=⇔l 1l 2l 1k 2k 12121-=⇔⊥k k l l ⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l λλ(0)(222111=+++++C y B x A C y B x A 0222=++C y B x A ),(00y x P P C By Ax l ,0:=++l d 2200BA C By Ax d +++=21221221)()(||y y x x P P -+-=1212PP PP PP λλ=所成的比为即λλλλ++=++=1,12121y y y x x x ααtan =k4. 过两点.当(即直线和x 轴垂直)时,直线的倾斜角=,没有斜率⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.注;直线系方程1. 与直线:A x +B y +C= 0平行的直线系方程是:A x +B y +m =0.( m ∊R, C ≠m ).2. 与直线:A x +B y +C= 0垂直的直线系方程是:B x -A y +m =0.( m ∊R)3. 过定点(x 1,y 1)的直线系方程是: A(x -x 1)+B(y -y 1)=0 (A,B 不全为0)4. 过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ∊R ) 注:该直线系不含l 2.7. 关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:12()x x ≠2121,y y x x ≠=α︒90)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++d2221BA C C d +-=若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点. 二、圆的方程.2. 圆的标准方程:以点为圆心,为半径的圆的标准方程是.3. 圆的一般方程: .当时,方程表示一个圆,其中圆心,半径.当时,方程表示一个点.当时,方程无图形(称虚圆). 注:①圆的参数方程:(为参数).②方程表示圆的充要条件是:且且.③圆的直径或方程:已知(用向量可征).4. 点和圆的位置关系:给定点及圆. ①在圆内②在圆上 ③在圆外),(b a C r 222)()(r b y a x =-+-022=++++F Ey Dx y x 0422 F E D -+⎪⎭⎫ ⎝⎛--2,2E D C 2422FE D r -+=0422=-+F E D ⎪⎭⎫⎝⎛--2,2E D 0422F E D -+⎩⎨⎧+=+=θθsin cos r b y r a x θ022=+++++F Ey Dx Cy Bxy Ax 0=B 0≠=C A 0422 AF E D -+0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A ),(00y x M 222)()(:r b y a x C =-+-M C 22020)()(r b y a x -+-⇔M C 22020)()r b y a x =-+-⇔(M C 22020)()(r b y a x -+-⇔5. 直线和圆的位置关系:设圆圆:; 直线:; 圆心到直线的距离.①时,与相切; ②时,与相交;,有两个交点,则其公共弦方程为.③时,与相离. 5. 圆的切线方程:①一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0– b)=R 2. 特别地,过圆上一点的切线方程为.②若点(x 0 ,y 0)不在圆上,圆心为(a,b)则,联立求出切线方程.7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD 四类共圆. 已知的方程…① 又以ABCD 为圆为方程为…②…③,所以BC 的方程即③代②,①②相切即为所求.解题方法:1)直接法:建系设点,列式表标,简化检验; 2)参数法; 3)定义法, 4)待定系数法.C )0()()(222 r r b y a x =-+-l )0(022≠+=++B A C By Ax ),(b a C l 22BA C Bb Aa d +++=r d =l C rd l C0)()()(212121=-+-+-F F y E E x D D r d l C 222r y x =+),(00y x P 200r y y x x =+⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ⇒k O Θ022=++++F Ey Dx y x 2))(())((k b x y y a x x x A A =--+--4)()(222b y a x R A A -+-=BC)。
第2章 直线和圆的方程基础知识点汇总
Ax0 By0 C A2 B2
.
(3)两平行线间的距离公式:
l1 : Ax By C1 0 与 l2 : Ax By C2 0 间的距离 d 为:Βιβλιοθήκη d C1 C2 . A2 B2
2.4 圆与方程
1.圆的方程:
⑴标准方程: x a2 y b2 r 2 (其中圆心为 (a, b) ,半径为 r .)
(一)对于直线 l1 : y k1x b1, l2 : y k2 x b2 有:
⑴ l1
// l2
bk11
k2 b2
;
⑵ l1 和 l2 相交 k1 k2 ;
⑶ l1
和 l2
重合
bk11
k2 b2
;
⑷ l1 l2 k1k2 1.
(二)对于直线 l : Ax By C 0 :
2.直线和圆相交弦长公式: l 2 r 2 d 2 ( d 表示圆心到直线的距离)
3.两圆位置关系: d O1O2
(1)外离: d R r ; (2)外切: d R r ; (3)相交: R r d R r ; (4)内切: d R r ( R r ); (5)内含: d R r ( R r .
斜率分别为 k1,k2 的两条不重合的直线l1, l2 ,有l1 / /l2 k1 k2 .
斜率分别为 k1,k2 的两条直线 l1, l2 ,有 l1 l2 k1k2 1 .
2.2 直线的方程
1.直线方程:
⑴点斜式: y y0 kx x0 (不能表示斜率不存在的直线)
⑵斜截式: y kx b(不能表示斜率不存在的直线,b 是直线与 y 轴的交点纵坐标(即 y
l1 l2 A1 A2 B1B2 0 .
2.3直线的交点坐标与距离公式
直线与圆的方程知识点总结
直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线方程和圆的方程概念和知识点总结
直线的倾斜角与斜率直线的倾斜角1.倾斜角的定义(1)当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.直线的倾斜角α的取值范围为0°≤α<180°.直线的斜率1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan α.2.斜率与倾斜角的对应关系α=0° 0°<α<90°α=90° 90°<α<180°3.过两点的直线的斜率公式过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =1212x x y y --.两条直线(不重合)平行的判定两条直线垂直的判定l∥l(两直线的斜率都存在)⇔l的斜率不存在,l的斜率为0直线的方程直线的点斜式方程和斜截式方程y-y=k(x-x)y=kx+b直线的两点式方程和截距式方程直线的一般式方程关于x 和y 的二元一次方程都表示一条直线.我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.直线方程的一般式与斜截式、截距式的互化直线的五种形式的方程比较两条直线的交点1.两直线的交点已知直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.点A(a ,b). (1)若点A 在直线l 1:A 1x +B 1y +C 1=0上,则有A 1a +B 1b +C 1=0 .(2)若点A 是直线l 1与l 2的交点,则有⎩⎨⎧=++=++00222111C b B a A C b B a A2.两直线的位置关系两点间的距离公式公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式21P P =212212)()(y y x x -+-.特别提醒:(1)此公式与两点的先后顺序无关. (2) 原点O(0,0)与任一点P (x ,y )的距离22y x OP +=.点到直线的距离、两条平行线间的距离点P (x ,y )到直线两条平行直线圆的标准方程(1)条件:圆心为C (a ,b ),半径长为r . (2)方程:(x -a )2+(y -b )2=r 2.(3)特例:圆心为坐标原点,半径长为r 的圆的方程是x 2+y 2=r 2.点与圆的位置关系点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2的位置关系及判断方法圆的一般方程1.圆的一般方程当D2+E2-4F>0时,二元二次方程x2+y2+Dx+Ey+F=0称为圆的一般方程.=0表示的图形2.方程x2+y2+Dx+Ey+F直线与圆的位置关系:直线Ax+By+C=0与圆(x-a)2+(y-b)2=r2的位置关系及判断直线与圆相切1.圆的切线方程的几个重要结论:(1)经过圆222r y x =+上一点P (x 0 , y 0)的圆的切线方程为200r y y x x =+。
高中数学直线与圆的方程知识点总结
直线与方程、圆与方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标)32,32(2121y y x x ++ 靠近B 的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
圆直线方程知识点总结
圆直线方程知识点总结圆直线方程是解析几何中的重要内容,它描述了圆和直线在平面上的几何特性。
掌握圆直线方程的知识对于解决与圆和直线相关的几何问题是至关重要的。
本文将对圆直线方程的相关知识进行总结,包括圆的标准方程、一般方程和直线的一般方程等内容,并对圆和直线的位置关系、交点等问题进行探讨。
一、圆的标准方程和一般方程1. 圆的标准方程圆的标准方程是描述平面上一点到圆心的距离等于半径的平方的方程。
设圆的圆心坐标为(h,k),半径为r,则圆的标准方程为:(x - h)² + (y - k)² = r²其中,(x,y)为圆上的任意一点的坐标。
例如,圆心坐标为(2,3),半径为5的圆的标准方程为:(x - 2)² + (y - 3)² = 252. 圆的一般方程圆的一般方程是描述平面上一点到圆心的距离等于半径的平方的方程的一般形式。
设圆的圆心坐标为(h,k),半径为r,则圆的一般方程为:x² + y² + 2gx + 2fy + c = 0其中,g、f、c分别为常数,满足g² + f² - c > 0。
具体的圆心坐标和半径通过一般方程不容易直接看出来,但一般方程更灵活,适合解决一些特殊情况下的圆的问题。
二、直线的一般方程直线的一般方程是描述平面上一条直线的一般形式方程。
设直线的斜率为m,截距为b,则直线的一般方程为:y = mx + b其中,m为斜率,表示直线的倾斜程度,b为截距,表示直线与y轴的交点。
三、圆和直线的位置关系1. 圆和直线的位置关系有四种可能的相交情况:(1)相离:直线与圆无交点;(2)相切:直线与圆只有一个交点;(3)相交:直线与圆有两个不同的交点;(4)相含:直线完全包含在圆内部,或者圆完全包含在直线内部。
2. 判断圆和直线的位置关系的方法:(1)计算直线方程和圆的方程,求出交点;(2)用坐标代入判断,判断交点的位置关系;(3)通过图像观察,直线与圆的位置关系。
高中数学直线与圆的方程知识点总结
高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α =0°;③范围: 0°≤ α<180° 。
2、斜率:①找k :k=tan α(α ≠ 90°);②垂直:斜率k 不存在;③范围:斜率 k∈ R。
y1y2y2y13、斜率与坐标:k tanx1x2x2x1①构造直角三角形(数形结合);②斜率 k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:l1 : y k1x b1, l 2 : y k2 x b2①相交:斜率k1k2(前提是斜率都存在)特例 ---- 垂直时: <1>l1x轴,即 k1不存在,则 k20 ;<2>斜率都存在时: k1 k21 。
②平行: <1> 斜率都存在时:k1k2 , b1b2;<2>斜率都不存在时:两直线都与x 轴垂直。
③重合:斜率都存在时: k1k2 ,b1b2;二、方程与公式:1、直线的五个方程:①点斜式:②斜截式:y y0k (x x0 )将已知点( x0, y0)与斜率k直接带入即可;y kx b将已知截距(0, b)与斜率 k 直接带入即可;③两点式:y y1x x1,(其中 x1x2 , y1 y2 ) 将已知两点 ( x1 , y1 ), ( x2 , y2 ) 直接y2y1x2x1带入即可;④截距式:⑤一般式:x y1将已知截距坐标 (a,0), (0,b) 直接带入即可;a bAx By C0 ,其中A、B不同时为0用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:P1P2( x1 x2 )2( y1 y2 )2②点到直线距离:d Ax0By0CA2B2C1C2③平行直线间距离:dA2B24、中点、三分点坐标公式:已知两点A( x1 , y1 ), B( x2 , y2 )① AB中点( x0, y0):(x1x2 ,y1y2 ) 22② AB三分点(s1,t1), ( s2,t2):(2x1x2, 2 y1y2 ) 靠近A的三分点坐标33(x12 x2 ,y12 y2 ) 靠近B的三分点坐标33中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
高二数学知识点汇总-直线与圆
直线与圆知识点1直线的方程1、直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π).2、直线的斜率(1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是π2的直线没有斜率.(2)过两点的直线的斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.3、直线方程的五种形式形式几何条件方程适用范围点斜式过一点(x 0,y 0),斜率k y -y 0=k (x -x 0)与x 轴不垂直的直线斜截式纵截距b ,斜率k y =kx +b 与x 轴不垂直的直线两点式过两点(x 1,y 1),(x 2,y 2)y -y 1y 2-y 1=x -x 1x 2-x 1与x 轴、y 轴均不垂直的直线截距式横截距a ,纵截距bx a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0(A 2+B 2≠0)平面直角坐标系内所有直线【注意】“截距”是直线与坐标轴交点的坐标值,它可正、可负,也可以是零,而“距离”是一个非负数.知识点2两条直线的位置关系1、两条直线平行与垂直的判定(1)两条直线平行①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.(2)两条直线垂直①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2、两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),则l 1与l 21x +B 1y +C 1=0,2x +B 2y +C 2=0的解.3、三种距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|= x 2-x 1 2+ y 2-y 1 2.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.(2)点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.4、直线系方程的常见类型(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数且λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R ,但不包括l 2).知识点3圆的方程1、圆的定义及方程2点M (x 0,y 0),圆的标准方程(x -a )2+(y -b )2=r 2.理论依据点到圆心的距离与半径的大小关系三种情况(x 0-a )2+(y 0-b )2=r 2⇔点在圆上(x 0-a )2+(y 0-b )2>r 2⇔点在圆外(x 0-a )2+(y 0-b )2<r 2⇔点在圆内3、二元二次方程与圆的关系不要把形如x 2+y 2+Dx +Ey +F =0的结构都认为是圆,一定要先判断D 2+E 2-4F 的符号,只有大于0时才表示圆.若x 2+y 2+Dx +Ey +F =0表示圆,则有:(1)当F =0时,圆过原点.(2)当D =0,E ≠0时,圆心在y 轴上;当D ≠0,E =0时,圆心在x 轴上.(3)当D =F =0,E ≠0时,圆与x 轴相切于原点;E =F =0,D ≠0时,圆与y 轴相切于原点.(4)当D 2=E 2=4F 时,圆与两坐标轴相切.知识点4直线与圆、圆与圆的位置关系1、直线与圆的位置关系及判断(1)三种位置关系:相交、相切、相离.(2)两种判断方法:①代数法――――――――――――――――联立方程得方程组消去x 或y得一元二次方程,Δ=b 2-4ac >0⇔相交=0⇔相切<0⇔相离②几何法――――――――――――圆心到直线的距离为d半径为r<r ⇔相交=r ⇔相切>r ⇔相离2、圆的切线与切线长(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ar d.【注意】过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数.3、圆的弦长直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|.4、圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)相离外切相交内切内含图形量的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|【注意】涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.一、直线的倾斜角与斜率范围的求法1、求倾斜角的取值范围的一般步骤(1)求出斜率k =tan α的取值范围.(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.2、斜率取值范围的2种求法(1)数形结合法:作出直线在平面直角坐标系中可能的位置,借助图形,结合正切函数的单调性确定;(2)函数图象法:根据正切函数图象,由倾斜角范围求斜率范围,反之亦可三、由一般式方程确定两直线位置关系的方法直线方程l 1:A 1x +B 1y +C 1=0(A 21+B 21≠0),l 2:A 2x +B 2y +C 2=0(A 22+B 22≠0)l 1与l 2垂直的充要条件A 1A 2+B 1B 2=0l 1与l 2平行的充分条件A 1A 2=B 1B 2≠C 1C 2(A 2B 2C 2≠0)l 1与l 2相交的充分条件A 1A 2≠B 1B 2(A 2B 2≠0)l 1与l 2重合的充分条件A 1A 2=B 1B 2=C 1C 2(A 2B 2C 2≠0)四、两条直线的交点与距离问题1、求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程,也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.2、点到直线、两平行线间的距离公式的使用条件(1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.五、对称问题的求解方法1、点关于点:点P (x ,y )关于点Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .2、线关于点:直线关于点的对称可转化为点关于点的对称问题来解决.3、点关于线:点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),六、求圆的方程的两种方法1、几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2、待定系数法:(1)若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;(2)若已知条件没有明确给出圆心或半径,则选择设圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.七、解决有关弦长问题的常用方法及结论1、几何法:如图所示,设直线l 被圆C 截得的弦为AB ,圆的半径为r ,圆心到直线的距离为d ,则有关系式:|AB |=2r 2-d 22、代数法:若斜率为k 的直线与圆相交于A (x A ,y A ),B (x B ,y B )两点,则|AB |=1+k 2· x A +x B 2-4x A x B =1+1k2y A -y B |(其中k ≠0).特别地,当k =0时,|AB |=|x A -x B |;当斜率不存在时,|AB |=|y A -y B |,八、求过一点(x 0,y 0)的圆的切线方程的方法1、几何法:当斜率存在时,设为k ,则切线方程为y -y 0=k (x -x 0),即kx -y +y 0-kx 0=0.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程,当斜率不存在时,要进行验证;2、代数法:当斜率存在时,设为k ,则切线方程为y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0,求得k ,切线方程即可求出,当斜率不存在时,要进行验证九、求与圆有关的轨迹问题的方法1、直接法:直接根据题目提供的条件列出方程;2、定义法:根据圆、直线等定义列方程;3、几何法:利用圆的几何性质列方程;4、代入法:找到要求点与已知点的关系,代入已知点满足的关系式。
高二直线和圆的方程知识点归纳
高二直线和圆的方程知识点归纳直线和圆是数学中常见的几何图形,它们的方程是我们学习的重点内容。
在高二阶段,我们对直线和圆的方程有了更深入的学习和理解。
下面是对高二直线和圆的方程知识点的归纳总结。
1. 直线的方程直线的方程可以分为两种形式:一般式和点斜式。
一般式方程为Ax+By+C=0,其中A、B、C为常数,且A和B不同时为0。
点斜式方程为y-y₁=m(x-x₁),其中m为直线的斜率,(x₁,y₁)为直线上的一点。
2. 直线的斜率和倾斜角直线的斜率m定义为y轴上的增量与x轴上的增量的比值。
直线的倾斜角θ是它与x轴正方向的夹角。
两者满足关系式m=tanθ。
3. 直线的截距直线与x轴的截距为点(0,b),与y轴的截距为点(a,0)。
直线的一般式方程中的常数C即为与y轴的截距。
4. 圆的方程圆的方程有两种形式:标准式和一般式。
标准式方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为半径。
一般式方程为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
5. 直线和圆的关系直线和圆的关系可以分为三种情况:相离、相切和相交。
判断方法是将直线的方程代入圆的方程,观察判别式的值。
6. 切线和法线在圆上的一点处,过该点的直线与圆相切,该直线称为切线。
切线与半径的夹角为直角,称为法线。
7. 直线和圆的位置关系直线和圆的位置关系有两种情况:相离和相交。
判断方法是将直线的方程代入圆的方程,观察判别式的值。
如果判别式大于0,则直线和圆相交;如果判别式小于0,则直线和圆相离;如果判别式等于0,则直线与圆相切。
8. 直线和圆的交点坐标如果直线与圆相交,交点坐标可通过解方程组得到。
将直线的方程和圆的方程联立,解得x和y的值,即为交点的坐标。
综上所述,高二直线和圆的方程知识点主要包括直线的方程、直线的斜率和倾斜角、直线的截距、圆的方程、直线和圆的关系、切线和法线、直线和圆的位置关系以及直线和圆的交点坐标。
直线与圆的方程复习知识点和经典题
直线与方程知识点总结:1、直线方程的几种形式(1)点斜式:00()y y k x x -=-(2)斜截式:y kx b =+*注:b 是直线l 在y 轴上的截距(3)两点式:112121y y x x y y x x --=--(4)截距式:1x y a b +=*注意:方程1x y a b+=中0,0a b ≠≠,所以它不能表示与坐标轴平行(重合)的直线,还不能表示过原点的直线。
(5)一般式方程:0Ax By C ++=(其中A,B 不同时为0)注意:①直线的一般式方程能表示所有直线的方程,这是其他形式的方程所不具备的。
②直线的一般式方程成立的条件是A,B 不同时为0。
③ 若0B ≠,则方程可化为0A C x y B B ++=,即A C y x B B =--;三、直线的位置关系(同一平面上的直线)1、平行与垂直当不考虑斜率,即给出直线的一般式时,有如下结论:设两条直线分别为1l :1110A x B y C ++=,2l :2220A x B y C ++= 可得11112222//A B C l l A B C ⇔=≠(其中分母不为0) (2)两条直线垂直的判定当不考虑斜率,即给出直线的一般式时,有如下结论:设两条直线分别为1l :1110A x B y C ++=,2l :2220A x B y C ++= 可得1212210l l A A B B ⊥⇔+=四、两条直线的交点坐标:设两条直线分别为1l :1110A x B y C ++=,2l :2220A x B y C ++= 则1l 与2l 是否有交点,只需看方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩是否有唯一解(1)若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;(2)若方程组无解,则两条直线无公共点,此时两条直线平行;(3)若方程组有无穷多解,则两直线重合五、两点间的距离,点到直线间的距离、两平行线间的距离(1)两点间的距离:已知111222(,),(,)P x y P x y 则22122121()()PP x x y y =-+-(2)点到直线的距离: 点()000,P x y 到直线:0l Ax By C ++=的距离0022Ax By Cd A B ++=+ (3)两平行线间的距离两条平行直线11:0l Ax By C ++=与22:0l Ax By C ++=的距离公式1222C C d A B -=+练习:1、 直线l 过点P (1,3),倾斜角的正弦是4/5,求直线l 的方程2、 过点P(3,0)作直线l ,使它被两相交直线2x -y-2 = 0和x + y + 3 = 0所截得的线段AB 恰好被P 点平分,求直线l 的方程.3、 求垂直于直线3x-4y-7=0,且与坐标轴构成的三角形的周长为10的直线方程。
直线与方程和圆与方程-知识点总结
第三章直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α︒≤<︒(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
当直线l 与x 轴平行或重合时,0α=︒,tan 00k =︒=; 当直线l 与x 轴垂直时,90α=︒,k 不存在.当[) 90,0∈α时,0≥k ;当() 180,90∈α时,0<k ;当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=(11122212(,),(,),P x y P x y x x ≠) 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
注意:当直线的斜率为1当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但l x x x(5)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔;方程组有无数解⇔1l 与2l 重合(6设(,),A x y B x y ,()(7一点()00,y x P 到直线0:1=++C By Ax l(8已知两条平行线直线1l 和2l01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l第四章圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
高中数学直线与圆的方程知识点总结
高中数学直线与圆的方程知识点总结公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1>0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121yy x x ++ 靠近A 的三分点坐标)32,32(2121y y x x ++ 靠近B 的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线与方程和圆与方程-知识点总结教学文案
(6)两点间距离公式:|设A(X 1,yJ , (X 2,y 2)是平面直角坐标系中的两个点,则精品文档第三章直线与方程(1) 直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它 的倾斜角为0° •因此,倾斜角的取值范围是 0 180(2) 直线的斜率 ① 定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用 k 表示。
即k tan 斜率反映直线与轴的倾斜程度。
当直线I 与x 轴平行或重合时,0 , k tan0 0;② 过两点的直线的斜率公式 :k 池—— (x 1 x 2)( P(x 1, ), P a (x 2, y 2), x 2 )x 2 x 1 注意下面四点:(1)当X 1 X 2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2) k 与P 1、P 2的顺序无关;(3) 以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; ⑷ 求直线的倾斜角可由直线上两点的坐标先求斜率得到。
注意:当直线的斜率为0°时,k=0,直线的方程是 y=y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示•但因I 上每一点的横坐标都等于X 1,所以它的方程是 X =X 1。
注 ②特殊的方程如:平行于x 轴的直线:y__b (b 为常数);|平行于y 轴的直线:x a (a 为常数); (4)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(5) 两条直线的交点h :Ax By G 0 I 2 :A 2X B 2y C 2 0相交交点坐标即方程组A1X B1 y C10的一组解。
A2X B2y C20方程组无解I1//I2 ;方程组有无数解I1与12重合精品文档(7)点到直线距离公式:一点P Xo, Vo 到直线l 1 : Ax Bv C 0的距离d l A 0_B y0 C I 1/ / i' 2 2(8)两平行直线距离公式 :已知两条平行线直线|1和|2的一般式方程为l 1 : Ax By C 1 0 , l 2 :Ax By C 2 0 ,则l i 与l 2的距离为d C l C 2I J A 2 B 2I 第四章圆与方程1、 圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
直线和圆的方程知识点
直线和圆--知识总结一、直线的方程 1、倾斜角:,X 围0≤α<π,若x l //轴或与x 轴重合时,α=00. 2、斜率: k=tan αα=0⇔κ=0已知L 上两点P 1〔x 1,y 1〕 0<α<02>⇔k πP 2〔x 2,y 2〕 α=κπ⇔2不存在⇒k=1212x x y y --022<⇔<<κππ当1x =2x 时,α=900,κ不存在.当0≥κ时,α=arctank,κ<0时,α=π+arctank 3、截距〔略〕曲线过原点⇔横纵截距都为0. 几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx两个重要结论:①平面内任何一条直线的方程都是关于x 、y 的二元一次方程.②任何一个关于x 、y 的二元一次方程都表示一条直线.5、直线系:〔1〕共点直线系方程:p 0〔x 0,y 0〕为定值,k 为参数y-y 0=k 〔x-x 0〕 特别:y=kx+b,表示过〔0、b 〕的直线系〔不含y 轴〕 〔2〕平行直线系:①y=kx+b,k 为定值,b 为参数.②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系〔3〕过L 1,L 2交点的直线系A 1x+B 1y+C 1+入〔A 2X+B 2Y+C 2〕=0〔不含L2〕 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上.二、两直线的位置关系2、L 1到L 2的角为0,则12121tan k k k k •+-=θ〔121-≠k k 〕3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=〔已知点〔p 0<x 0,y 0>,L :AX+BY+C=0〕①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B Ad③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是5、对称:〔1〕点关于点对称:p<x 1,y 1>关于M 〔x 0,y 0〕的对称)2,2(1010Y Y X X P --' 〔2〕点关于线的对称:设p<a 、b>一般方法:如图:<思路1>设P 点关于L 的对称点为P 0<x 0,y 0> 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程解出P 0<x 0,y 0>〔思路2〕写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0<x 0,y 0>的坐标.P yL P 0x〔3〕直线关于点对称L :AX+BY+C=0关于点P 〔X 0、Y 0〕的对称直线l ':A 〔2X 0-X 〕+B 〔2Y 0-Y 〕+C=0 〔4〕直线关于直线对称①几种特殊位置的对称:已知曲线f<x 、y>=0关于x 轴对称曲线是f<x 、-y>=0 关于y=x 对称曲线是f<y 、x>=0 关于y 轴对称曲线是f<-x 、y>=0 关于y= -x 对称曲线是f<-y 、-x>=0 关于原点对称曲线是f<-x 、-y>=0 关于x=a 对称曲线是f<2a-x 、y>=0关于y=b 对称曲线是f<x 、2b-y>=0一般位置的对称、结合平几知识找出相关特征,逐步求解. 三、简单的线性规划不等式表示的区域约束条件、线性约束条件、目标函数、线性目标函数、线性规划,可行解,最优解. 要点:①作图必须准确〔建议稍画大一点〕.②线性约束条件必须考虑完整.③先找可行域再找最优解. 四、园的方程1、园的方程:①标准方程 ()22)(r b y a x =-+-,c 〔a 、b 〕为园心,r 为半径.②一般方程:022=++++F EY DX y x ,⎪⎭⎫ ⎝⎛--2,2E D C ,2422FE D r -+=当0422=-+F E D 时,表示一个点. 当0422<-+F E D 时,不表示任何图形. ③参数方程: θcos r a x +=θsin r b y +=θ为参数以A 〔X 1,Y 1〕,B 〔X 2,Y 2〕为直径的两端点的园的方程是 〔X-X 1〕〔X-X 2〕+〔Y-Y 1〕〔Y-Y 2〕=02、点与园的位置关系:考察点到园心距离d,然后与r 比较大小.3、直线和园的位置关系:相交、相切、相离判定:①联立方程组,消去一个未知量,得到一个一元二次方程:△>0⇔相交、△=0⇔相切、△<0⇔相离②利用园心c<a 、b>到直线AX+BY+C=0的距离d 来确定: d <r ⇔相交、d =r ⇔相切d >r ⇔相离〔直线与园相交,注意半径、弦心距、半弦长所组成的kt △〕 4、园的切线:〔1〕过园上一点的切线方程与园222r y x =+相切于点〔x 1、y 1〕的切线方程是211r y y x x =+与园222)()(r b y a x =-+-相切于点〔x 1、y 1〕的切成方程 为:211))(())((r b y b y a x a x =--+--与园022=++++F EY DX y x 相切于点〔x 1、y 1〕的切线是〔2〕过园外一点切线方程的求法:已知:p 0<x 0,y 0>是园 222)()(r b y a x =-+- 外一点①设切点是p 1<x 1、y 1>解方程组 先求出p 1的坐标,再写切线的方程②设切线是)(00x x k y y -=-即000=+--y kx y kx 再由r k y kx b ka =++--120,求出k,再写出方程.〔当k 值唯一时,应结合图形、考察是否有垂直于x 轴的切线〕③已知斜率的切线方程:设b kx y +=〔b 待定〕,利用园心到L 距离为r,确定b. 5、园与园的位置关系由园心距进行判断、相交、相离〔外离、内含〕、相切〔外切、内切〕 6、园系①同心园系:222)()(r b y a x =-+-,〔a 、b 为常数,r 为参数〕 或:022=++++F EY DX y x 〔D 、E 为常数,F 为参数〕 ②园心在x 轴:222)(r y a x =+- ③园心在y 轴:222)(r b y x =-+④过原点的园系方程2222)()(b a b y a x +=-+- ⑤过两园0:111221=++++F Y E X D y x C 和0:222222=++++F Y E X D y x C 的交点的园系方程为0(2222211122=+++++++++F Y E X D y x F Y E X D y x 入〔不含C 2〕,其中入为参数若C 1与C 2相交,则两方程相减所得一次方程就是公共弦所在直线方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 直线与方程
(1)直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α︒≤<︒
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
斜率反映直线与轴的倾斜程度。
当直线l 与x 轴平行或重合时, 0α=︒, tan 00k =︒=; 当直线l 与x 轴垂直时, 90α=︒, k 不存在.
当[
)
90,0∈α时,0≥k ; 当()
180,90∈α时,0<k ; 当
90=α时,k 不存在。
②过两点的直线的斜率公式:)(211
21
2x x x x y y k ≠--=
( 1
1122212(,),(,),P x y P x y x x ≠ ) 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
1
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
(5)两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨
⎧=++=++0
0222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
(6设1122(,),A x y B x y ,()
(7
一点()00,y x P 到直线
0:1=++C By Ax l
(8已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax , 2l
:
02=++C By Ax ,则1l 与2l
圆与方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2(1
点00(,)M x y 与圆222
()()x a y b r -+-=的位置关系:
当2200()()x a y b -+->2
r ,点在圆外 当2200()()x a y b -+-
=2
r ,点在圆上 当2200()()x a y b -+-<2
r ,点在圆内
(2
当042
2
>-+F E D 时,方程表示圆,此时圆心为⎪
⎭
⎫ ⎝
⎛--2,2
E D ,半径为
F E D r 42
122-+=
当0422
=-+F E D
时,表示一个点;
当042
2<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线0:=++C By Ax l ,圆()()2
22:r b y a x C =-+-,圆心()b a C ,到l
则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<
(2)过圆外一点的切线:①k 不存在,验证是否成立②k 解k ,得到方程【一定两解】
过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()22
22
22:R b y a x C =-+-
两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点。