人教a版数学必修5第三章不等式教学案
人教A版高中数学必修五河北省张家口第三章不等关系与不等式学案
3.1 不等关系与不等式(一)一、教学目标1.通过具体实例使学生感受到在现实世界和日常生活中存在着大量的不等关系,在学生了解了一些不等式(组)产生的实际背景的前提下,能列出不等式与不等式组,解决实际问题。
让学生学会用数学思想来思考问题,用数学知识来解决问题。
2. 掌握实数的运算性质与大小顺序之间的关系,学会比较两个代数式的大小.3. 培养学生转化的数学思想和逻辑推理能力。
二、教学重、难点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值。
差值比较法:作差→变形→判断差三、教学过程(一)[创设问题情境]下面的几个不等关系用什么样的不等词表示?能用简洁的数学符号表示吗?你还能列举出你周围日常生活中的不等关系吗?1. 限速40km/h 的路标,表示汽车的速度v 不超过40km/h 。
2. 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于2.5%,蛋白质的含量应不少于2.3%。
3. a 与b 的和是非负数。
4. 大圆1O 的半径为R ,小圆2O 的半径为r ,两圆的圆心距为d ,若两圆相交,则d 需要满足什么条件?5. 某种杂志原以每本2.5元的价格销售,可以售出8万本。
根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元?6. 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍。
7. 某厂使用两种零件A 、B,装配两种产品甲乙,该厂的生产能力是甲月产量最多2500件,乙月产量最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B 。
某个月,该厂能用的A 最多有14000个,B 最多有12000个,用不等式将甲乙两种产品产量之间的关系表示出来。
高中数学 第三章不等式复习教案 新人教A版必修5
课题: 《不等式》复习小结授课类型:复习课【教学目标】1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小;3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系;4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题;5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。
【教学重点】不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。
【教学难点】利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。
【教学过程】1.本章知识结构2.知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔>(2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小;作差法3、应用不等式性质证明(二)一元二次不等式及其解法一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)有两相异实根有两相等实根(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数. ③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解2a b + 1、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a 22a b +≤几何意义是“半径不小于半弦” 3.典型例题1、用不等式表示不等关系例1、某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装软件,根据需要,软件至少买3片,磁盘至少买2盒,写出满足上述不等关系的不等式。
人教A版高中数学必修5《三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题》示范课教案_1
利用Excel 求解数学规划问题1、 线性规划 例1⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥≥≤+++≤+++≤++++++=4,3,2,10105000452110001001401101401100101461680..6001180310460max 214321432143214321j x x x x x x x x x x x x x x x t s x x x x z j利用Excel 求解其步骤如下:1、选择“工具”菜单中的“加载宏”选项,装入“规划求解”宏,此时,“工具”菜单中便出现“规划求解”选项。
如果“工具”菜单中已有“规划求解”选项,则直接进行第2步。
2、 按下表格式输入线性规划模型表中3、 在目标函数所在行的G3单元格内输入公式: =$B$2*B3+$C$2*C3+$D$2*D3+$E$2*E3此公式即为目标函数表达式,将该公式复制到G4,G5,G6,G7,G8单元格,即得约束条件左端表达式。
4、选择“工具”菜单的“规划求解”选项,弹出“规划求解参数”对话框,依次选定符合模型要求的项目。
(1)单击“设置目标单元格”框,将光标定位于框内,然后单击目标函数值单元格G3。
(2)在“规划求解参数”对话框的“等于”栏内,选择“最大值”选项。
(3)在“可变单元格”栏输入处,从表中选择$B$2:$E$2区域,使之出现$B$2:$E$2。
(4)在“约束”栏,单击“添加”按钮,弹出“添加约束”对话框,依次输入约束条件。
在“单元格引用位置”处,点击G4单元格,从“约束值”位置处选择约束类型“>=,<=,=,int,bin ”中的“<=”,在后面的框内点击F4单元格,按“添加”按钮,产生第一个约束条件。
类似地,添加第二、第三、第四、第五个约束条件后,按“确定”按钮,返回“规划求解参数”对话框。
(5)点击“选项”按钮,根据需要选择“假定非负”等项目后,按“确定”按钮,返回“规划求解参数”对话框(6)按“求解”按钮,弹出“规划求解结果”对话框,可根据需要选择“运算结果报告、敏感性报告、极限值报告”。
高中数学必修5第三章《基本不等式》教案
《基本不等式》(第一课时)教材:高中数学必修5(人教版)第三章教学目标:★知识与技能:引导学生从问题中发现基本不等式,让学生理解、掌握基本不等式,并能运用它解决一些简单问题;培养他们的探究能力以及分析问题解决问题的能力。
★过程与方法:1.通过问题情境的设置,使学生认识到数学是从实际中来,培养学生观察、分析、猜想等能力;2.通过引导学生用多种方法证明推导基本不等式,培养学生的创新思维和探索精神;3.通过不等式的应用培养学生的应用意识。
引领学生主动探索基本不等式性质,体会学习数学规律的方法。
★情感、态度与价值观:在教学中发挥学生学习的主体作用,培养学生勇于探索的精神,激发他们学习数学的兴趣。
教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式2ba ab +≤的证明过程及应用。
教学难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、用基本不等式求最大值和最小值。
教学方法:采用启发式教学和探究式教学的方法让学生掌握本节课的内容,并通过讲练结合的方法让学生巩固课堂所学的内容。
教学手段:借助PowerPoint课件整合教材内容,利用几何画板作出动画营造轻松生动的课堂学习氛围。
教学过程:板书设计《基本不等式》教案说明教材:高中数学必修5(人教版)第三章一、教材分析本课内容为普通高中课程标准实验教科书(人教A 版)数学必修5第三章不等式中的3.4 基本不等式。
新课标对该内容的相关要求为:①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的最大(小)值问题。
基本不等式是不等式证明和应用的重要依据和工具,要进一步了解不等式的性质及运用,研究最值问题,基本不等式是必不可缺的。
本节内容预计为两课时,第一课时侧重于基本不等式的理解及证明;第二课时侧重于基本不等式的应用。
二、教学目的分析本节课是在学生已经系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。
学生通过之前的学习已经掌握了证明不等式的基本方法,同时初步具备了从实际问题中抽象出不等式并运用数学方法解决实际问题的能力。
人教A版高中数学必修五《基本不等式》精品教案
《基本不等式:》教案《普通高中课程标准实验教科书·数学》必修5(人教A 版)第三章3.4节 一.教学目标①知识与技能目标:学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握式子中取等号的条件,会用基本不等式解决简单的数学问题。
②过程方法与能力目标:通过类比、直觉、发散等探索性思维的培养,激发学生学习数学的兴趣,进一步培养学生的解题能力,创新能力,勇于探索的精神。
③情感、态度与价值观目标:通过本节的学习,体会数学来源于生活并用于生活,增强学生应用数学的意识,激发学生学习数学的兴趣。
让学生享受学习数学带来的情感体验和成功喜悦。
二.教学重点、难点教学重点:创设代数与几何背景理解基本不等式,并从不同角度探索基本2a b+≤。
教学难点:理解“当且仅当a b =时取“=”号”的数学内涵,基本不等式的简单应用。
三、教学方法与手段本节课采用启发引导,讲练结合,自主探究的互动式教学方法。
以学生为主体,以基本不等式为主线,从实际问题出发,让学生探究思索。
以多媒体作为教学辅助手段,加深学生对基本不等式的理解。
四、教学过程设计设置情景,导入新课1.图中的面积有哪些相等和不等的关系?2.正方形ABCD的面积肯定大于4个直角三角形的面积和吗?有没有相等的情况呢?1.让学生观察常见的图形,目的是调动学生的学习兴趣,让学生感受到数学来源于生活,从而激发他们的学习动机。
2.借助《几何画板》动态演示和数据验算让学生更容易理解“当且仅当a b时取“=”号”的数学内涵,突破一个难点。
教师利用多媒体展示问题情景:1.(投影出)在北京召开的第24届国际数学家大会的会标——风车。
2.让学生直观观察(多媒体动画演示,“当正方形EFGH缩为一个点时,它们的面积相等”。
)自主探究,从而归纳出:“正方形ABCD的面积不小于4个直角三角形的面积和”。
五、板书设计板书设计方面主要板书两个不等式和应用不等式求最值的问题,例题及练习则利用多媒体课件展现,这样有利增加课堂容量,提高课堂效率。
说课标说教说课稿人教版高中数学必修5第三章不等式
说课标,说教材说课稿人教版高中数学必修5第三章《不等式》各位评委、各位老师,大家好:今天我“说课标、说教材”的内容是人教版高中数学必修5第三章《不等式》。
下面我将从说课标、说教材、说建议三大方面面进行研说。
其中说课标包括数学课程的总体目标、必修五《不等式》课程目标、必修五《不等式》内容标准。
说教材包括教材的编写特点、教材编写体例、目的、教材的内容结构及知识与技能的立体式整合一、说课标(一)、数学课程的总体目标高中数学课程的总目标是:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下:1、获得数学基础知识、基本技能、基本方法、基本实践活动2、培养学生的空间想象、抽象概括、推理论证、运算求解、数据处理的能力;培养应用意识、创新意识3、提高兴趣、树立信心、树立辩证唯物主义世界观这三个目标分别体现了数学课程在知识与技能、过程与方法、情感态度与价值观上对学生提出的要求。
(二)、必修五《不等式》课程目标:1、知识与技能:了解不等式(组)的实际背景。
经历从实际情境中抽象出一元二次不等式二元一次不等式组模型的过程。
探索并了解基本不等式的证明过程。
会用基本不等式解决简单的最值问题。
2、过程与方法:通过本章学习培养和发展学生勇于自主探索,合作学习,勇于创新精神,体会事物之间普遍联系的思想。
3、情感态度与价值观:激发学生学习兴趣,拓展学生视野,培养良好的学习习惯。
(三)、必修五《不等式》内容标准:在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
二、说教材:(一)、教材的编写特点1、关注数学情境的建立,注重兴趣培养。
人教A版高中数学必修5第三章 不等式3.4 基本不等式教案(3)
基本不等式目的要求: 复习与掌握基本不等式及其运用。
重点难点: 利用基本不等式的运用技巧。
教学设计: 一、引入:我们已经学习过重要不等式 a²+b²≥2ab ,下面将它以定理的形式给出. 二、定理1 如果a, b ∈R, 那么a²+b²≥2ab.当且仅当a=b 时等号成立。
让学生自己给出证明.探究: 你能从几何的角度解释定理1吗?分析:a²与b²的几何意义是正方形面积,ab 的几何意义是矩形面积,可考虑从图形的面积角度解释定理。
几何意义:如图把实数a ,b 作为线段长度,以a ≥b 为例,在正方形ABCD 中,AB=a ;在正方形CEFG 中,EF=b.则 S 正方形ABCD+S 正方形CEFG=a ²+b ².2ab S S CEFG BCGH =+矩形矩形,其值等于图中有阴影部分的面积,它不大于正方形ABCD 与正方形CEFG 的面积和。
即a ²+b ²≥2ab.当且仅当a=b 时,两个矩形成为正方形,此时有 a ²+b ²=2ab 。
三、定理2:将定理1做简单变形即可得到定理2,如下:如果a,b>0,那么ab ba ≥+2,当且仅当a=b 时,等号成立.证明:因为 ()()ab b a b a b a 2222=≥+=+所以ab ba ≥+2, 上式当且仅当b a =,即a=b 时,等号成立。
其中2ba +为a,b 的算术平均,ab a,b 的几何平均,于是基本不等式可以表述为:两个正数的算术平均不小于它们的几何平均。
几何意义为:如图在直角三角形中,CO 、CD 分C别是斜边上的中线和高,设AD=a ,DB=b ,则由图形可得到基本不等式的几何解释。
四、.教学例题例3 求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短。
基本不等式教学设计
《基本不等式》教学设计张中华教材:人教版《普通高中课程标准实验教科书•数学(A版)》必修5课题:3.4 基本不等式(第一课时)一、教材分析《基本不等式》是高中教材人教A版必修五第三章第三节的内容,是《不等式》这一章中继一元二次不等式、简单线性规划之后,从几何背景(赵爽的弦图)中抽离出的基本结论,是证明其他不等式成立的重要依据,也是求解最值问题的有力工具之一。
就本章的编写而言,教材讲究从直观性上学习,注重每个数学模型引领数学思想的教材编排暗线,并且都体现出遵循从几何背景入手,强调数形结合思想。
本节内容在此基本上渗透不等式的证明方法(比较法、综合法、分析法),并且会在后续学习时再次得到加强。
基本不等式的学时安排是3课时,它涉及基本不等式的推导教学和求解最值问题两大部分。
本节课是基本不等式教学的第一课时,其主要学习任务是通过赵爽弦图中面积的直观比较、抽象概括,提炼出不等式a 2+ b 2 > 2 ab (a, b G R)。
在此基础上,通过演绎替换、证明探究、数形结合及实际应用等四种不同的角度引导学生认识基本不等式。
其中基本不等式的证明是从代数、几何多方面展开,既有逻辑推理,又有直观的几何解释,使学生充分运用数形结合的思想方法,进一步培养其抽象概括能力和推理论证能力。
这就使得不等式的证明成为本节课的核心内容。
二、教学重难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程。
教学难点:从不同角度探索基本不等式的证明,能利用基本不等式的模型求解函数最值。
三、教学目标《课程标准》对本节课的要求有以下两条:①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最值问题。
根据《课标》要求和本节教学内容,并考虑学生的接受能力,我将本节课的教学目标确定为:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
高二人教A版必修5教案:3-1不等关系与不等式
提高 0.1 元,销量就相应地减少 2000 本。若把提价后杂志的定价设为 x 元,怎样用不等式
表示销售的总收入还不底于 20 万元呢?
(教师示范 → 学生板演 → 小结)
3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.
三、巩固练习:
1.某电脑拥护计划使用不超过 500 元的资金购买单价分别为 60 元、70 元的单片软件和盒装
教学重点:理解不等式的性质及其证明.
教学难点:从实际的不等关系中抽象出具体的不等式.
教学过程:
一、复习准备:
1. 提问:实数的运算性质与大小顺序之间的关系
2. 设点A与平面 之间的距离为 d,B为平面 上任意一点,则点A与平面 的距离小于
或等于A,B两点间的距离,请将上述不等关系写成不等式.
二、讲授新课:
三、本节难点
用不等式(组)正确表示出不等关系。
四、知识储备
“作差法”比较两个实数的大小和常用的不等式的基本性质 ① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理
化等方法.常用的结论有 x2 0,− x2 0,|x| 0,-|x| 0 等.
② “作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. ③常用的不等式的基本性质
_____________.
④.配制 A, B 两种药剂需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 毫克,乙料 5 毫克, 配一剂 B 药需甲料 5 毫克,乙料 4 毫克。今有甲料 20 毫克,乙料 25 毫克,若 A, B 两种药 至少各配一剂,则 A, B 两种药在配制时应满足怎样的不等关系呢?用不等式表示出来.
人教版高中必修5第三章不等式课程设计
人教版高中必修5第三章不等式课程设计一、课程目标本课程设计的学习目标是帮助学生:1.了解不等式的基本概念、符号及其性质;2.掌握一元一次不等式、一元二次不等式的解法和应用;3.培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容1.不等式的基本概念、符号及其性质;2.一元一次不等式的解法和应用;3.一元二次不等式的解法和应用;4.不等式组的解法和应用。
三、教学方法根据教学内容,本课程设计采用以下教学方法:1.讲授法:对不等式的基本概念、符号及其性质进行讲解;2.演示法:通过例题演示一元一次不等式和一元二次不等式的解法和应用;3.练习法:通过练习巩固学生对一元一次不等式和一元二次不等式的掌握程度;4.合作学习法:学生分组进行不等式组的解法和应用的探究。
四、教学过程1. 不等式的基本概念、符号及其性质(1课时)教学目标:了解不等式的基本概念、符号及其性质教学内容:不等式的基本概念、符号及其性质教学方法:讲授法教学步骤:1.引入不等式的概念;2.讲解不等式的符号和基本性质;3.练习不等式的符号及其性质。
2. 一元一次不等式的解法和应用(2课时)教学目标:掌握一元一次不等式的解法和应用教学内容:一元一次不等式的解法和应用教学方法:演示法、练习法教学步骤:1.讲解一元一次不等式的基本概念;2.通过例题演示一元一次不等式的解法和应用;3.练习一元一次不等式的解法和应用。
3. 一元二次不等式的解法和应用(2课时)教学目标:掌握一元二次不等式的解法和应用教学内容:一元二次不等式的解法和应用教学方法:演示法、练习法教学步骤:1.讲解一元二次不等式的基本概念;2.通过例题演示一元二次不等式的解法和应用;3.练习一元二次不等式的解法和应用。
4. 不等式组的解法和应用(2课时)教学目标:掌握不等式组的解法和应用教学内容:不等式组的解法和应用教学方法:合作学习法、练习法教学步骤:1.讲解不等式组的基本概念;2.学生分组进行不等式组的解法和应用的探究;3.练习不等式组的解法和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A版数学必修5第三章不等式教学案课题:§ 3.1不等式与不等关系第1课时授课类型:新授课【教学目标】1 •知识与技能:通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质;2 •过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3 •情态与价值:通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯。
【教学重点】用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
理解不等式(组)对于刻画不等关系的意义和价值。
【教学难点】用不等式(组)正确表示出不等关系。
【教学过程】1. 课题导入在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系。
如两点之间线段最短,三角形两边之和大于第三边,等等。
人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系。
在数学中,我们用不等式来表示不等关系。
下面我们首先来看如何利用不等式来表示不等关系。
2. 讲授新课1)用不等式表示不等关系引例1:限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h, 写成不等式就是:v乞40引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量应不少于 2.5%,蛋白质的含量p应不少于2.3%,写成不等式组就是用不等式组来表示问题1:设点A与平面:-的距离为d,B为平面〉上的任意一点,贝U d -| AB |。
问题2:某种杂志原以每本 2.5元的价格销售,可以售出8万本。
据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?x _ 2 5解:设杂志社的定价为x元,则销售的总收入为(8 0.2)x万元,那么不等关系0.1“销售的总收入仍不低于20万元”可以表示为不等式x —2 5(8 0.2)x_200.1问题3:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种。
按照生产的要求,600mm的数量不能超过500mm钢管的3倍。
怎样写出满足所有上述不等关系的不等式呢?解:假设截得500 mm的钢管x根,截得600mm的钢管y根。
根据题意,应有如下的不等关系:(1 )截得两种钢管的总长度不超过4000mm ;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)截得两种钢管的数量都不能为负。
要同时满足上述的三个不等关系,可以用下面的不等式组来表示:500^600^4000;』3x>y;| xZO;I y"3. 随堂练习1、试举几个现实生活中与不等式有关的例子。
2、课本P82的练习1、24. 课时小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题。
5. 评价设计课本P83习题3.1[A组]第4、5题【板书设计】【授后记】第2课时授课类型:新授课【教学目标】1. 知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2 .过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3 .情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;【教学难点】利用不等式的性质证明简单的不等式。
【教学过程】1. 课题导入在初中,我们已经学习过不等式的一些基本性质。
请同学们回忆初中不等式的的基本性质。
(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若a b= a -c・b=c(2 )不等式的两边同时乘以或除以同一个正数,不等号的方向不改变;即若a b, c 0 二ac bc(3 )不等式的两边同时乘以或除以同一个负数,不等号的方向改变。
即若a b, c ::: 0= ac ::: bc2. 讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗?证明:1)°.° (a + c) —(b + c)=a—b> 0,a+ c > b+ c2) T(a c)「(b c)二a「b 0 ,实际上,我们还有a . b, b . c= a . c ,(证明:T a> b, b>c,--a—b> 0, b —c > 0.根据两个正数的和仍是正数,得(a—b) + (b —c) > 0,即a —c > 0,••• a> c.于是,我们就得到了不等式的基本性质:(1) a b,b c= a c(2) a b= a c b c(3) a b,c 0= ac bc(4) a b,c ::: 0= ac ::: bc2、探索研究思考,禾U用上述不等式的性质,证明不等式的下列性质:(1) a b,c d = a c b d ;(2) a b 0,c d 0= ac bd ;(3) a b 0,n N, n 1= a n b n;n a n b。
证明:1)T a> b,•- a+ c> b+c.•/ c> d,…b+ c> b+ d.由①、②得a + c >b + d .2)a b,c °—c b — ac bd c d,b 0= bc bd 3)反证法)假设n a 乞n b ,则:若\a "= a::: b这都与a b 矛盾,a = b[范例讲解]:例1、已知a b 0,c ::: 0,求证c c 。
a b1 证明:以为a b • 0 ,所以ab>0,-ab 1 1 1 1 ab ,即一 ab abba由 c<0,得 c .-a b3. 随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号:3 + •、2 ) 2[补充例题]例 2、比较(a + 3) (a —5 )与(a + 2) ( a — 4)的大小。
分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开, 合并同类项之后,判断差值正负 (注意是指差的符号,至于差的值究竟是多少,在这里无关 紧要)。
根据实数运算的符号法则来得出两个代数式的大小。
比较两个实数大小的问题转化 为实数运算符号问题。
解:由题意可知:ab(2) (6 — 1)2;(3).5-2- 5 '⑷当 a >b > 0 时,log 1 a.2log 1 b2答案:⑴v(2)v (3 )v (4 )v(a + 3)( a —5) — ( a + 2)( a —4)=(a2—2a —1 5) — ( a2—2a—8)= —7< 0■'■( a+ 3)( a — 5)<( a + 2) ( a —4)随堂练习21、比较大小:(1)(x+5) (x +7)与(x+6) 2(2)x25x 6与2x25x 94. 课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论5. 评价设计课本P83习题3.1[A组]第2、3题;[B组]第1题【板书设计】【授后记】课题:§ 3.2 一元二次不等式及其解法第1课时授课类型:新授课【教学目标】1 •知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2 .过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3 •情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
【教学重点】从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。
【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。
【教学过程】1. 课题导入从实际情境中抽象出一元二次不等式模型:教材P84互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:2x —5x::0 ................. (1) .....2. 讲授新课1) 一元二次不等式的定义象x2 -5x 0这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式2) 探究一元二次不等式x2 - 5x ::: 0的解集怎样求不等式(1)的解集呢?探究:(1)二次方程的根与二次函数的零点的关系容易知道:二次方程的有两个实数根:X")= 0,屜-5二次函数有两个零点:N =0,x2 =5于是,我们得到:二次方程的根就是二次函数的零点。
(2 )观察图象,获得解集画出二次函数y =x2_5X的图象,如图,观察函数图象,可知:当x<0,或x>5时,函数图象位于x轴上方,此时,y>0,即x2 _ 5x ■ 0 ;当0<x<5时,函数图象位于x轴下方,此时,y<0,即x2 _ 5x ::: 0 ;所以,不等式x2-5x :::0的解集是1x|0 :::x :::5?,从而解决了本节开始时提出的问题。
3)探究一般的一元二次不等式的解法任意的一元二次不等式,总可以化为以下两种形式:ax2bx c 0,(a 0)或ax2bx c ::0,(a 0)一般地,怎样确定一元二次不等式ax2 bx c>0与ax2 bx c<0的解集呢?组织讨论:从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点:(1)抛物线y =ax2• bx • c与x轴的相关位置的情况,也就是一元二次方程ax2 bx c=0 的根的情况⑵抛物线y =ax2• bx c的开口方向,也就是a的符号总结讨论结果:(1)抛物线y = ax2 bx c (a> 0 )与x轴的相关位置,分为三种情况,这可以由一元二次方程ax2 bx c=0的判别式厶=b2 - 4ac三种取值情况(△> 0 , A=0,△")来确定.因此,要分二种情况讨论(2)a<0可以转化为a>0分A>O, A=0, A<0三种情况,得到一元二次不等式ax2 bx - c>0与ax2 bx - c<0的解集一元二次不等式ax2 bx c - 0或ax2■ bx ■ c :::0 a 0的解集:设相应的一元二次方程ax2■ bx ■ c = 0 a = 0的两根为为、X2且为乞X2,厶=b2- 4ac , 则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格)范例讲解例2 (课本第87页)求不等式4x2—4x 1 0的解集21解:因为厶二0 ,方程4x -4x^0的解是X i = X2 .2所以,原不等式的解集是卡x x式例3 (课本第88页)解不等式—x2,2x-3 0 .解:整理,得x2_2x • 3 :::0.因为L:0,方程x - 2x • 3 = 0无实数解,所以不等式x —2x + 3co的解集是°.从而,原不等式的解集是-.3. 随堂练习课本第89的练习1(1)、(3)、(5)、(7)4. 课时小结解一元二次不等式的步骤:①将二次项系数化为“ + ”:A= ax2 bx c>0(或<0)(a>0)②计算判别式厶,分析不等式的解的情况:,丄若A A O,则XC X J或a x2;i . A >0 时,求根X1<X2 ,若 A <0,则%v x < x2.若A .0,则x = x0的一切实数;ii. A=0 时,求根X1 = X2 = X0 ,丿若A < 0,贝V x w♦;若A誉0,贝V x =x0.若A>0,则X E R; 若AMO,贝U♦.iii.厶<0时,方程无解,-③写出解集.5. 评价设计课本第89页习题3.2[A]组第1题【板书设计】【授后记】课题:§ 3.2 一元二次不等式及其解法第2课时授课类型:新授课【教学目标】1 •知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2 •过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3 •情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1. 课题导入1•一元二次方程、一元二次不等式与二次函数的关系2. ---------------------------------------- —元二次不等式的解法步骤课本第86页的表格2. 讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离s m和汽车的速度x km/h有如下的关系:1 1 2S = X x20 180在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h )1 1 2解:设这辆汽车刹车前的速度至少为x km/h,根据题意,我们得到一x 一x 39.520 180移项整理得:x29^7110 0显然L 0,方程x2,9x-7110=0有两个实数根,即为:、-88.94,X2 79.94。